1
|
Chung KP, Frieboese D, Waltz F, Engel BD, Bock R. Identification and characterization of the COPII vesicle-forming GTPase Sar1 in Chlamydomonas. PLANT DIRECT 2024; 8:e614. [PMID: 38887666 PMCID: PMC11180857 DOI: 10.1002/pld3.614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
Eukaryotic cells are highly compartmentalized, requiring elaborate transport mechanisms to facilitate the movement of proteins between membrane-bound compartments. Most proteins synthesized in the endoplasmic reticulum (ER) are transported to the Golgi apparatus through COPII-mediated vesicular trafficking. Sar1, a small GTPase that facilitates the formation of COPII vesicles, plays a critical role in the early steps of this protein secretory pathway. Sar1 was characterized in yeast, animals and plants, but no Sar1 homolog has been identified and functionally analyzed in algae. Here we identified a putative Sar1 homolog (CrSar1) in the model green alga Chlamydomonas reinhardtii through amino acid sequence similarity. We employed site-directed mutagenesis to generate a dominant-negative mutant of CrSar1 (CrSar1DN). Using protein secretion assays, we demonstrate the inhibitory effect of CrSar1DN on protein secretion. However, different from previously studied organisms, ectopic expression of CrSar1DN did not result in collapse of the ER-Golgi interface in Chlamydomonas. Nonetheless, our data suggest a largely conserved role of CrSar1 in the ER-to-Golgi protein secretory pathway in green algae.
Collapse
Affiliation(s)
- Kin Pan Chung
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdamGermany
| | - Daniel Frieboese
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdamGermany
| | | | | | - Ralph Bock
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdamGermany
| |
Collapse
|
2
|
Fedoreyeva LI. Molecular Mechanisms of Regulation of Root Development by Plant Peptides. PLANTS (BASEL, SWITZERLAND) 2023; 12:1320. [PMID: 36987008 PMCID: PMC10053774 DOI: 10.3390/plants12061320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Peptides perform many functions, participating in the regulation of cell differentiation, regulating plant growth and development, and also involved in the response to stress factors and in antimicrobial defense. Peptides are an important class biomolecules for intercellular communication and in the transmission of various signals. The intercellular communication system based on the ligand-receptor bond is one of the most important molecular bases for creating complex multicellular organisms. Peptide-mediated intercellular communication plays a critical role in the coordination and determination of cellular functions in plants. The intercellular communication system based on the receptor-ligand is one of the most important molecular foundations for creating complex multicellular organisms. Peptide-mediated intercellular communication plays a critical role in the coordination and determination of cellular functions in plants. The identification of peptide hormones, their interaction with receptors, and the molecular mechanisms of peptide functioning are important for understanding the mechanisms of both intercellular communications and for regulating plant development. In this review, we drew attention to some peptides involved in the regulation of root development, which implement this regulation by the mechanism of a negative feedback loop.
Collapse
Affiliation(s)
- Larisa I Fedoreyeva
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia
| |
Collapse
|
3
|
Hao G, Zhao X, Zhang M, Ying J, Yu F, Li S, Zhang Y. Vesicle trafficking in
Arabidopsis
pollen tubes. FEBS Lett 2022; 596:2231-2242. [DOI: 10.1002/1873-3468.14343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Guang‐Jiu Hao
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Xin‐Ying Zhao
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | | | - Jun Ying
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Fei Yu
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Sha Li
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Yan Zhang
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
- College of Life Sciences Nankai University China
- Frontiers Science Center for Cell Responses Nankai University China
| |
Collapse
|
4
|
Hou S, Shi J, Hao L, Wang Z, Liao Y, Gu H, Dong J, Dresselhaus T, Zhong S, Qu LJ. VPS18-regulated vesicle trafficking controls the secretion of pectin and its modifying enzyme during pollen tube growth in Arabidopsis. THE PLANT CELL 2021; 33:3042-3056. [PMID: 34125904 PMCID: PMC8462820 DOI: 10.1093/plcell/koab164] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/03/2021] [Indexed: 05/07/2023]
Abstract
In eukaryotes, homotypic fusion and vacuolar protein sorting (HOPS) as well as class C core vacuole/endosome tethering (CORVET) are evolutionarily conserved membrane tethering complexes that play important roles in lysosomal/vacuolar trafficking. Whether HOPS and CORVET control endomembrane trafficking in pollen tubes, the fastest growing plant cells, remains largely elusive. In this study, we demonstrate that the four core components shared by the two complexes, Vacuole protein sorting 11 (VPS11), VPS16, VPS33, and VPS18, are all essential for pollen tube growth in Arabidopsis thaliana and thus for plant reproduction success. We used VPS18 as a representative core component of the complexes to show that the protein is localized to both multivesicular bodies (MVBs) and the tonoplast in a growing pollen tube. Mutant vps18 pollen tubes grew more slowly in vivo, resulting in a significant reduction in male transmission efficiency. Additional studies revealed that membrane fusion from MVBs to vacuoles is severely compromised in vps18 pollen tubes, corroborating the function of VPS18 in late endocytic trafficking. Furthermore, vps18 pollen tubes produce excessive exocytic vesicles at the apical zone and excessive amounts of pectin and pectin methylesterases in the cell wall. In conclusion, this study establishes an additional conserved role of HOPS/CORVET in homotypic membrane fusion during vacuole biogenesis in pollen tubes and reveals a feedback regulation of HOPS/CORVET in the secretion of cell wall modification enzymes of rapidly growing plant cells.
Collapse
Affiliation(s)
- Saiying Hou
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Jiao Shi
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Lihong Hao
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
- School of Life Sciences, Shanxi University, Taiyuan, Shanxi Province 030006, People’s Republic of China
| | - Zhijuan Wang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Yalan Liao
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Hongya Gu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Juan Dong
- The Waksman Institute of Microbiology, Rutgers the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Sheng Zhong
- Author for correspondence: (S.Z.), (L.-J.Q.)
| | - Li-Jia Qu
- Author for correspondence: (S.Z.), (L.-J.Q.)
| |
Collapse
|
5
|
Zhang M, Hu S, Yi F, Gao Y, Zhu D, Wang Y, Cai Y, Hou D, Lin X, Shen J. Organelle Visualization With Multicolored Fluorescent Markers in Bamboo. FRONTIERS IN PLANT SCIENCE 2021; 12:658836. [PMID: 33936145 PMCID: PMC8081836 DOI: 10.3389/fpls.2021.658836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 05/03/2023]
Abstract
Bamboo is an important model plant to study the molecular mechanisms of rapid shoot growth and flowering once in a lifetime. However, bamboo research about protein functional characterization is largely lagged behind, mainly due to the lack of gene transformation platforms. In this study, a protoplast transient gene expression system in moso bamboo has been first established. Using this reliable and efficient system, we have generated a set of multicolored fluorescent markers based on the targeting sequences from endogenous proteins, which have been validated by their comparative localization with Arabidopsis organelle markers, in a combination with pharmaceutical treatments. Moreover, we further demonstrated the power of this multicolor marker set for rapid, combinatorial analysis of the subcellular localization of uncharacterized proteins, which may play potential functions in moso bamboo flowering and fast growth of shoots. Finally, this protoplast transient gene expression system has been elucidated for functional analysis in protein-protein interaction by fluorescence resonance energy transfer (FRET) and co-immunoprecipitation analysis. Taken together, in combination with the set of moso bamboo organelle markers, the protoplast transient gene expression system could be used for subcellular localization and functional study of unknown proteins in bamboo and will definitely promote rapid progress in diverse areas of research in bamboo plants.
Collapse
Affiliation(s)
- Mengdi Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Shuai Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Fang Yi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Yanli Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Dongmei Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Yizhu Wang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Yi Cai
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Dan Hou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
6
|
Zhu D, Zhang M, Gao C, Shen J. Protein trafficking in plant cells: Tools and markers. SCIENCE CHINA-LIFE SCIENCES 2019; 63:343-363. [DOI: 10.1007/s11427-019-9598-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/22/2019] [Indexed: 12/26/2022]
|
7
|
Liu L, Li C, Teo ZWN, Zhang B, Yu H. The MCTP-SNARE Complex Regulates Florigen Transport in Arabidopsis. THE PLANT CELL 2019; 31:2475-2490. [PMID: 31439803 PMCID: PMC6790074 DOI: 10.1105/tpc.18.00960] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/07/2019] [Accepted: 08/20/2019] [Indexed: 05/16/2023]
Abstract
Multiple flowering pathways in Arabidopsis (Arabidopsis thaliana) converge on the transcriptional regulation of FLOWERING LOCUS T (FT), encoding a mobile floral stimulus that moves from leaves to the shoot apex. Despite our progress in understanding FT movement, the mechanisms underlying its transport along the endoplasmic reticulum-plasmalemma pathway in phloem companion cells remain largely unclear. Here, we show that the plasma membrane-resident syntaxin-like glutamine-soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor (Q-SNARE), SYNTAXIN OF PLANTS121 (SYP121), interacts with QUIRKY (QKY), a member of the family of multiple C2 domain and transmembrane region proteins (MCTPs), to mediate FT transport in Arabidopsis. QKY and SYP121 coordinately regulate FT movement to the plasmalemma through the endosomal trafficking pathway and are required for FT export from companion cells to sieve elements, thus affecting FT transport through the phloem to the shoot apical meristem. These findings suggest that MCTP-SNARE complex-mediated endosomal trafficking is essential for the export of florigen from phloem companion cells to sieve elements to induce flowering.plantcell;31/10/2475/FX1F1fx1.
Collapse
Affiliation(s)
- Lu Liu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543, Singapore
| | - Chunying Li
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543, Singapore
| | - Zhi Wei Norman Teo
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543, Singapore
| | - Bin Zhang
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543, Singapore
| | - Hao Yu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543, Singapore
| |
Collapse
|
8
|
Niemann MCE, Weber H, Hluska T, Leonte G, Anderson SM, Novák O, Senes A, Werner T. The Cytokinin Oxidase/Dehydrogenase CKX1 Is a Membrane-Bound Protein Requiring Homooligomerization in the Endoplasmic Reticulum for Its Cellular Activity. PLANT PHYSIOLOGY 2018; 176:2024-2039. [PMID: 29301955 PMCID: PMC5841711 DOI: 10.1104/pp.17.00925] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/29/2017] [Indexed: 05/05/2023]
Abstract
Degradation of the plant hormone cytokinin is controlled by cytokinin oxidase/dehydrogenase (CKX) enzymes. The molecular and cellular behavior of these proteins is still largely unknown. In this study, we show that CKX1 is a type II single-pass membrane protein that localizes predominantly to the endoplasmic reticulum (ER) in Arabidopsis (Arabidopsis thaliana). This indicates that this CKX isoform is a bona fide ER protein directly controlling the cytokinin, which triggers the signaling from the ER. By using various approaches, we demonstrate that CKX1 forms homodimers and homooligomers in vivo. The amino-terminal part of CKX1 was necessary and sufficient for the protein oligomerization as well as for targeting and retention in the ER. Moreover, we show that protein-protein interaction is largely facilitated by transmembrane helices and depends on a functional GxxxG-like interaction motif. Importantly, mutations rendering CKX1 monomeric interfere with its steady-state localization in the ER and cause a loss of the CKX1 biological activity by increasing its ER-associated degradation. Therefore, our study provides evidence that oligomerization is a crucial parameter regulating CKX1 biological activity and the cytokinin concentration in the ER. The work also lends strong support for the cytokinin signaling from the ER and for the functional relevance of the cytokinin pool in this compartment.
Collapse
Affiliation(s)
- Michael C E Niemann
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Henriette Weber
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Tomáš Hluska
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, 78371 Olomouc, Czech Republic
| | - Georgeta Leonte
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Samantha M Anderson
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany ASCR, 78371 Olomouc, Czech Republic
| | - Alessandro Senes
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Tomáš Werner
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany ASCR, 78371 Olomouc, Czech Republic
- Institute of Plant Sciences, University of Graz, 8010 Graz, Austria
| |
Collapse
|
9
|
Chung KP, Zeng Y, Li Y, Ji C, Xia Y, Jiang L. Signal motif-dependent ER export of the Qc-SNARE BET12 interacts with MEMB12 and affects PR1 trafficking in Arabidopsis. J Cell Sci 2018; 131:jcs.202838. [PMID: 28546447 DOI: 10.1242/jcs.202838] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/23/2017] [Indexed: 12/27/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) are well-known for their role in controlling membrane fusion, the final, but crucial step, in vesicular transport in eukaryotes. SNARE proteins contribute to various biological processes including pathogen defense and channel activity regulation, as well as plant growth and development. Precise targeting of SNARE proteins to destined compartments is a prerequisite for their proper functioning. However, the underlying mechanism(s) for SNARE targeting in plants remains obscure. Here, we investigate the targeting mechanism of the Arabidopsis thaliana Qc-SNARE BET12, which is involved in protein trafficking in the early secretory pathway. Two distinct signal motifs that are required for efficient BET12 ER export were identified. Pulldown assays and in vivo imaging implicated that both the COPI and COPII pathways were required for BET12 targeting. Further studies using an ER-export-defective form of BET12 revealed that the Golgi-localized Qb-SNARE MEMB12, a negative regulator of pathogenesis-related protein 1 (PR1; At2g14610) secretion, was its interacting partner. Ectopic expression of BET12 caused no inhibition in the general ER-Golgi anterograde transport but caused intracellular accumulation of PR1, suggesting that BET12 has a regulatory role in PR1 trafficking in A. thaliana.
Collapse
Affiliation(s)
- Kin Pan Chung
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yimin Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Changyang Ji
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China .,The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
10
|
Konopka-Postupolska D, Clark G. Annexins as Overlooked Regulators of Membrane Trafficking in Plant Cells. Int J Mol Sci 2017; 18:E863. [PMID: 28422051 PMCID: PMC5412444 DOI: 10.3390/ijms18040863] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022] Open
Abstract
Annexins are an evolutionary conserved superfamily of proteins able to bind membrane phospholipids in a calcium-dependent manner. Their physiological roles are still being intensively examined and it seems that, despite their general structural similarity, individual proteins are specialized toward specific functions. However, due to their general ability to coordinate membranes in a calcium-sensitive fashion they are thought to participate in membrane flow. In this review, we present a summary of the current understanding of cellular transport in plant cells and consider the possible roles of annexins in different stages of vesicular transport.
Collapse
Affiliation(s)
- Dorota Konopka-Postupolska
- Plant Biochemistry Department, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland.
| | - Greg Clark
- Molecular, Cell, and Developmental Biology, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
11
|
Miclaus M, Balacescu O, Has I, Balacescu L, Has V, Suteu D, Neuenschwander S, Keller I, Bruggmann R. Maize Cytolines Unmask Key Nuclear Genes That Are under the Control of Retrograde Signaling Pathways in Plants. Genome Biol Evol 2016; 8:3256-3270. [PMID: 27702813 PMCID: PMC5203784 DOI: 10.1093/gbe/evw245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The genomes of the two plant organelles encode for a relatively small number of proteins. Thus, nuclear genes encode the vast majority of their proteome. Organelle-to-nucleus communication takes place through retrograde signaling (RS) pathways. Signals relayed through RS pathways have an impact on nuclear gene expression but their target-genes remain elusive in a normal state of the cell (considering that only mutants and stress have been used so far). Here, we use maize cytolines as an alternative. The nucleus of a donor line was transferred into two other cytoplasmic environments through at least nine back-crosses, in a time-span of > 10 years. The transcriptomes of the resulting cytolines were sequenced and compared. There are 96 differentially regulated nuclear genes in two cytoplasm-donor lines when compared with their nucleus-donor. They are expressed throughout plant development, in various tissues and organs. One-third of the 96 proteins have a human homolog, stressing their potential role in mitochondrial RS. We also identified syntenic orthologous genes in four other grasses and homologous genes in Arabidopsis thaliana. These findings contribute to the paradigm we use to describe the RS in plants. The 96 nuclear genes identified here are not differentially regulated as a result of mutation, or any kind of stress. They are rather key players of the organelle-to-nucleus communication in a normal state of the cell.
Collapse
Affiliation(s)
- Mihai Miclaus
- National Institute of Research and Development for Biological Sciences, Cluj-Napoca, Romania .,Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Ovidiu Balacescu
- The Oncology Institute "Prof Dr Ion Chiricuta", Cluj-Napoca, Romania.,Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioan Has
- Agricultural Research and Development Station, Turda, Romania
| | - Loredana Balacescu
- The Oncology Institute "Prof Dr Ion Chiricuta", Cluj-Napoca, Romania.,Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Voichita Has
- Agricultural Research and Development Station, Turda, Romania
| | - Dana Suteu
- National Institute of Research and Development for Biological Sciences, Cluj-Napoca, Romania
| | - Samuel Neuenschwander
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland.,Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Irene Keller
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland.,Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Harmoko R, Yoo JY, Ko KS, Ramasamy NK, Hwang BY, Lee EJ, Kim HS, Lee KJ, Oh DB, Kim DY, Lee S, Li Y, Lee SY, Lee KO. N-glycan containing a core α1,3-fucose residue is required for basipetal auxin transport and gravitropic response in rice (Oryza sativa). THE NEW PHYTOLOGIST 2016; 212:108-22. [PMID: 27241276 DOI: 10.1111/nph.14031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/24/2016] [Indexed: 05/18/2023]
Abstract
In plants, α1,3-fucosyltransferase (FucT) catalyzes the transfer of fucose from GDP-fucose to asparagine-linked GlcNAc of the N-glycan core in the medial Golgi. To explore the physiological significance of this processing, we isolated two Oryza sativa (rice) mutants (fuct-1 and fuct-2) with loss of FucT function. Biochemical analyses of the N-glycan structure confirmed that α1,3-fucose is missing from the N-glycans of allelic fuct-1 and fuct-2. Compared with the wild-type cv Kitaake, fuct-1 displayed a larger tiller angle, shorter internode and panicle lengths, and decreased grain filling as well as an increase in chalky grains with abnormal shape. The mutant allele fuct-2 gave rise to similar developmental abnormalities, although they were milder than those of fuct-1. Restoration of a normal tiller angle in fuct-1 by complementation demonstrated that the phenotype is caused by the loss of FucT function. Both fuct-1 and fuct-2 plants exhibited reduced gravitropic responses. Expression of the genes involved in tiller and leaf angle control was also affected in the mutants. We demonstrate that reduced basipetal auxin transport and low auxin accumulation at the base of the shoot in fuct-1 account for both the reduced gravitropic response and the increased tiller angle.
Collapse
Affiliation(s)
- Rikno Harmoko
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Jae Yong Yoo
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Ki Seong Ko
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Nirmal Kumar Ramasamy
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Bo Young Hwang
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Eun Ji Lee
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Ho Soo Kim
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Kyung Jin Lee
- Integrative Omics Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Doo-Byoung Oh
- Integrative Omics Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Dool-Yi Kim
- Crop Function Division, National Institute of Crop Science, Rural Development Administration, 181 Hyeoksin-ro, Wanju-gun, Jeollabuk-do, 55365, Korea
| | - Sanghun Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Yang Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Kyun Oh Lee
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| |
Collapse
|
13
|
Cui Y, Shen J, Gao C, Zhuang X, Wang J, Jiang L. Biogenesis of Plant Prevacuolar Multivesicular Bodies. MOLECULAR PLANT 2016; 9:774-86. [PMID: 26836198 DOI: 10.1016/j.molp.2016.01.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/04/2016] [Accepted: 01/26/2016] [Indexed: 05/20/2023]
Abstract
Plant prevacuolar compartments (PVCs), or multivesicular bodies (MVBs), are single membrane-bound organelles that play important roles in mediating protein trafficking to vacuoles in the secretory pathway. PVC/MVB also serves as a late endosome in the endocytic pathway in plants. Since the plant PVC was identified as an MVB more than 10 years ago, great progress has been made toward the understanding of PVC/MVB function and biogenesis in plants. In this review, we first summarize previous research into the identification and characterization of plant PVCs/MVBs, and then highlight recent advances on the mechanisms underlying intraluminal vesicle formation and maturation of plant PVCs/MVBs. In addition, we discuss the possible crosstalk that appears to occur between PVCs/MVBs and autophagosomes during autophagy in plants. Finally, we list some open questions and present future perspectives in this field.
Collapse
Affiliation(s)
- Yong Cui
- State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jinbo Shen
- State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Caiji Gao
- State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiaohong Zhuang
- State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Junqi Wang
- State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology, South University of Science and Technology of China, Shenzhen 518055, China
| | - Liwen Jiang
- State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| |
Collapse
|
14
|
Hafidh S, Potěšil D, Fíla J, Čapková V, Zdráhal Z, Honys D. Quantitative proteomics of the tobacco pollen tube secretome identifies novel pollen tube guidance proteins important for fertilization. Genome Biol 2016; 17:81. [PMID: 27139692 PMCID: PMC4853860 DOI: 10.1186/s13059-016-0928-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/24/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As in animals, cell-cell communication plays a pivotal role in male-female recognition during plant sexual reproduction. Prelaid peptides secreted from the female reproductive tissues guide pollen tubes towards ovules for fertilization. However, the elaborate mechanisms for this dialogue have remained elusive, particularly from the male perspective. RESULTS We performed genome-wide quantitative liquid chromatography-tandem mass spectrometry analysis of a pistil-stimulated pollen tube secretome and identified 801 pollen tube-secreted proteins. Interestingly, in silico analysis reveals that the pollen tube secretome is dominated by proteins that are secreted unconventionally, representing 57 % of the total secretome. In support, we show that an unconventionally secreted protein, translationally controlled tumor protein, is secreted to the apoplast. Remarkably, we discovered that this protein could be secreted by infiltrating through the initial phases of the conventional secretory pathway and could reach the apoplast via exosomes, as demonstrated by co-localization with Oleisin1 exosome marker. We demonstrate that translationally controlled tumor protein-knockdown Arabidopsis thaliana plants produce pollen tubes that navigate poorly to the target ovule and that the mutant allele is poorly transmitted through the male. Further, we show that regulators of the endoplasmic reticulum-trans-Golgi network protein secretory pathway control secretion of Nicotiana tabacum Pollen tube-secreted cysteine-rich protein 2 and Lorelei-like GPI-anchor protein 3 and that a regulator of endoplasmic reticulum-trans-Golgi protein translocation is essential for pollen tube growth, pollen tube guidance and ovule-targeting competence. CONCLUSIONS This work, the first study on the pollen tube secretome, identifies novel genome-wide pollen tube-secreted proteins with potential functions in pollen tube guidance towards ovules for sexual reproduction. Functional analysis highlights a potential mechanism for unconventional secretion of pollen tube proteins and reveals likely regulators of conventional pollen tube protein secretion. The association of pollen tube-secreted proteins with marker proteins shown to be secreted via exosomes in other species suggests exosome secretion is a possible mechanism for cell-cell communication between the pollen tube and female reproductive cells.
Collapse
Affiliation(s)
- Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany ASCR, Rozvojová 263, 165 02, Prague 6, Czech Republic.
| | - David Potěšil
- Research group Proteomics, CEITEC-MU, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jan Fíla
- Laboratory of Pollen Biology, Institute of Experimental Botany ASCR, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Věra Čapková
- Laboratory of Pollen Biology, Institute of Experimental Botany ASCR, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Zbyněk Zdráhal
- Research group Proteomics, CEITEC-MU, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany ASCR, Rozvojová 263, 165 02, Prague 6, Czech Republic.
| |
Collapse
|
15
|
Xu W, Meng Y, Surana P, Fuerst G, Nettleton D, Wise RP. The knottin-like Blufensin family regulates genes involved in nuclear import and the secretory pathway in barley-powdery mildew interactions. FRONTIERS IN PLANT SCIENCE 2015; 6:409. [PMID: 26089830 PMCID: PMC4454880 DOI: 10.3389/fpls.2015.00409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 05/21/2015] [Indexed: 05/24/2023]
Abstract
Plants have evolved complex regulatory mechanisms to control a multi-layered defense response to microbial attack. Both temporal and spatial gene expression are tightly regulated in response to pathogen ingress, modulating both positive and negative control of defense. BLUFENSINs, small knottin-like peptides in barley, wheat, and rice, are highly induced by attack from fungal pathogens, in particular, the obligate biotrophic fungus, Blumeria graminis f. sp. hordei (Bgh), causal agent of barley powdery mildew. Previous research indicated that Blufensin1 (Bln1) functions as a negative regulator of basal defense mechanisms. In the current report, we show that BLN1 and BLN2 can both be secreted to the apoplast and Barley stripe mosaic virus (BSMV)-mediated overexpression of Bln2 increases susceptibility of barley to Bgh. Bimolecular fluorescence complementation (BiFC) assays signify that BLN1 and BLN2 can interact with each other, and with calmodulin. We then used BSMV-induced gene silencing to knock down Bln1, followed by Barley1 GeneChip transcriptome analysis, to identify additional host genes influenced by Bln1. Analysis of differential expression revealed a gene set enriched for those encoding proteins annotated to nuclear import and the secretory pathway, particularly Importin α1-b and Sec61 γ subunits. Further functional analysis of these two affected genes showed that when silenced, they also reduced susceptibility to Bgh. Taken together, we postulate that Bln1 is co-opted by Bgh to facilitate transport of disease-related host proteins or effectors, influencing the establishment of Bgh compatibility on its barley host.
Collapse
Affiliation(s)
- Weihui Xu
- Department of Plant Pathology and Microbiology, Center for Plant Responses to Environmental Stresses, Iowa State UniversityAmes, IA, USA
| | - Yan Meng
- Department of Plant Pathology and Microbiology, Center for Plant Responses to Environmental Stresses, Iowa State UniversityAmes, IA, USA
| | - Priyanka Surana
- Department of Plant Pathology and Microbiology, Center for Plant Responses to Environmental Stresses, Iowa State UniversityAmes, IA, USA
- Bioinformatics and Computational Biology Graduate Program, Iowa State UniversityAmes, IA, USA
| | - Greg Fuerst
- Department of Plant Pathology and Microbiology, Center for Plant Responses to Environmental Stresses, Iowa State UniversityAmes, IA, USA
- Corn Insects and Crop Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Iowa State UniversityAmes, IA, USA
| | - Dan Nettleton
- Department of Statistics, Iowa State UniversityAmes, IA, USA
| | - Roger P. Wise
- Department of Plant Pathology and Microbiology, Center for Plant Responses to Environmental Stresses, Iowa State UniversityAmes, IA, USA
- Corn Insects and Crop Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Iowa State UniversityAmes, IA, USA
| |
Collapse
|
16
|
Ichino T, Fuji K, Ueda H, Takahashi H, Koumoto Y, Takagi J, Tamura K, Sasaki R, Aoki K, Shimada T, Hara-Nishimura I. GFS9/TT9 contributes to intracellular membrane trafficking and flavonoid accumulation in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:410-23. [PMID: 25116949 DOI: 10.1111/tpj.12637] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/14/2014] [Accepted: 08/06/2014] [Indexed: 05/20/2023]
Abstract
Flavonoids are the most important pigments for the coloration of flowers and seeds. In plant cells, flavonoids are synthesized by a multi-enzyme complex located on the cytosolic surface of the endoplasmic reticulum, and they accumulate in vacuoles. Two non-exclusive pathways have been proposed to mediate flavonoid transport to vacuoles: the membrane transporter-mediated pathway and the vesicle trafficking-mediated pathway. No molecules involved in the vesicle trafficking-mediated pathway have been identified, however. Here, we show that a membrane trafficking factor, GFS9, has a role in flavonoid accumulation in the vacuole. We screened a library of Arabidopsis thaliana mutants with defects in vesicle trafficking, and isolated the gfs9 mutant with abnormal pale tan-colored seeds caused by low flavonoid accumulation levels. gfs9 is allelic to the unidentified transparent testa mutant tt9. The responsible gene for these phenotypes encodes a previously uncharacterized protein containing a region that is conserved among eukaryotes. GFS9 is a peripheral membrane protein localized at the Golgi apparatus. GFS9 deficiency causes several membrane trafficking defects, including the mis-sorting of vacuolar proteins, vacuole fragmentation, the aggregation of enlarged vesicles, and the proliferation of autophagosome-like structures. These results suggest that GFS9 is required for vacuolar development through membrane fusion at vacuoles. Our findings introduce a concept that plants use GFS9-mediated membrane trafficking machinery for delivery of not only proteins but also phytochemicals, such as flavonoids, to vacuoles.
Collapse
Affiliation(s)
- Takuji Ichino
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Feeney M, Frigerio L, Kohalmi SE, Cui Y, Menassa R. Reprogramming cells to study vacuolar development. FRONTIERS IN PLANT SCIENCE 2013; 4:493. [PMID: 24348496 PMCID: PMC3848493 DOI: 10.3389/fpls.2013.00493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 11/15/2013] [Indexed: 05/29/2023]
Abstract
During vegetative and embryonic developmental transitions, plant cells are massively reorganized to support the activities that will take place during the subsequent developmental phase. Studying cellular and subcellular changes that occur during these short transitional periods can sometimes present challenges, especially when dealing with Arabidopsis thaliana embryo and seed tissues. As a complementary approach, cellular reprogramming can be used as a tool to study these cellular changes in another, more easily accessible, tissue type. To reprogram cells, genetic manipulation of particular regulatory factors that play critical roles in establishing or repressing the seed developmental program can be used to bring about a change of cell fate. During different developmental phases, vacuoles assume different functions and morphologies to respond to the changing needs of the cell. Lytic vacuoles (LVs) and protein storage vacuoles (PSVs) are the two main vacuole types found in flowering plants such as Arabidopsis. Although both are morphologically distinct and carry out unique functions, they also share some similar activities. As the co-existence of the two vacuole types is short-lived in plant cells, how they replace each other has been a long-standing curiosity. To study the LV to PSV transition, LEAFY COTYLEDON2, a key transcriptional regulator of seed development, was overexpressed in vegetative cells to activate the seed developmental program. At the cellular level, Arabidopsis leaf LVs were observed to convert to PSV-like organelles. This presents the opportunity for further research to elucidate the mechanism of LV to PSV transitions. Overall, this example demonstrates the potential usefulness of cellular reprogramming as a method to study cellular processes that occur during developmental transitions.
Collapse
Affiliation(s)
- Mistianne Feeney
- Department of Biology, University of Western OntarioLondon, ON, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food CanadaLondon, ON, Canada
- School of Life Sciences, University of WarwickCoventry, UK
| | | | | | - Yuhai Cui
- Department of Biology, University of Western OntarioLondon, ON, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food CanadaLondon, ON, Canada
| | - Rima Menassa
- Department of Biology, University of Western OntarioLondon, ON, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food CanadaLondon, ON, Canada
| |
Collapse
|
18
|
Zhao P, Liu F, Zhang B, Liu X, Wang B, Gong J, Yu G, Ma M, Lu Y, Sun J, Wang Z, Jia P, Liu H. MAIGO2 is involved in abscisic acid-mediated response to abiotic stresses and Golgi-to-ER retrograde transport. PHYSIOLOGIA PLANTARUM 2013; 148:246-60. [PMID: 23025793 DOI: 10.1111/j.1399-3054.2012.01704.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/29/2012] [Accepted: 09/09/2012] [Indexed: 05/24/2023]
Abstract
The central role of multisubunit tethering complexes in intracellular trafficking has been established in yeast and mammalian systems. However, little is known about their roles in the stress responses and the early secretory pathway in Arabidopsis. In this study, Maigo2 (MAG2), which is equivalent to the yeast Tip20p and mammalian Rad50-interacting protein, is found to be required for the responses to salt stress, osmotic stress and abscisic acid in seed germination and vegetative growth, and MAG2-like (MAG2L) is partially redundant with MAG2 in response to environmental stresses. MAG2 strongly interacts with the central region of ZW10, and both proteins are important as plant endoplasmic reticulum (ER)-stress regulators. ER morphology and vacuolar protein trafficking are unaffected in the mag2, mag2l and zw10 mutants, and the secretory marker to the apoplast is correctly transported in mag2 plants, which indicate that MAG2 functions as a complex with ZW10, and is potentially involved in Golgi-to-ER retrograde trafficking. Therefore, a new role for ER-Golgi membrane trafficking in abiotic-stress and ER-stress responses is discovered.
Collapse
Affiliation(s)
- Pengshan Zhao
- Laboratory of Plant Stress Ecophysiology and Biotechnology, Shapotou Desert Research and Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sauer M, Delgadillo MO, Zouhar J, Reynolds GD, Pennington JG, Jiang L, Liljegren SJ, Stierhof YD, De Jaeger G, Otegui MS, Bednarek SY, Rojo E. MTV1 and MTV4 encode plant-specific ENTH and ARF GAP proteins that mediate clathrin-dependent trafficking of vacuolar cargo from the trans-Golgi network. THE PLANT CELL 2013; 25:2217-35. [PMID: 23771894 PMCID: PMC3723622 DOI: 10.1105/tpc.113.111724] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/14/2013] [Accepted: 05/30/2013] [Indexed: 05/18/2023]
Abstract
Many soluble proteins transit through the trans-Golgi network (TGN) and the prevacuolar compartment (PVC) en route to the vacuole, but our mechanistic understanding of this vectorial trafficking step in plants is limited. In particular, it is unknown whether clathrin-coated vesicles (CCVs) participate in this transport step. Through a screen for modified transport to the vacuole (mtv) mutants that secrete the vacuolar protein VAC2, we identified MTV1, which encodes an epsin N-terminal homology protein, and MTV4, which encodes the ADP ribosylation factor GTPase-activating protein nevershed/AGD5. MTV1 and NEV/AGD5 have overlapping expression patterns and interact genetically to transport vacuolar cargo and promote plant growth, but they have no apparent roles in protein secretion or endocytosis. MTV1 and NEV/AGD5 colocalize with clathrin at the TGN and are incorporated into CCVs. Importantly, mtv1 nev/agd5 double mutants show altered subcellular distribution of CCV cargo exported from the TGN. Moreover, MTV1 binds clathrin in vitro, and NEV/AGD5 associates in vivo with clathrin, directly linking these proteins to CCV formation. These results indicate that MTV1 and NEV/AGD5 are key effectors for CCV-mediated trafficking of vacuolar proteins from the TGN to the PVC in plants.
Collapse
Affiliation(s)
- Michael Sauer
- Departamento Molecular de Plantas, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Cientificas), 28049 Madrid, Spain
| | - M. Otilia Delgadillo
- Departamento Molecular de Plantas, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Cientificas), 28049 Madrid, Spain
| | - Jan Zouhar
- Departamento Molecular de Plantas, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Cientificas), 28049 Madrid, Spain
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica, 28223 Madrid, Spain
| | | | | | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Sarah J. Liljegren
- Department of Biology, University of Mississippi, Oxford, Mississippi 38677-1848
| | - York-Dieter Stierhof
- Zentrum für Molekularbiologie der Pflanzen, University of Tübingen, 72076 Tuebingen, Germany
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Marisa S. Otegui
- Department of Botany, University of Madison, Madison, Wisconsin 53706
| | | | - Enrique Rojo
- Departamento Molecular de Plantas, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Cientificas), 28049 Madrid, Spain
- Address correspondence to
| |
Collapse
|
20
|
Du W, Tamura K, Stefano G, Brandizzi F. The integrity of the plant Golgi apparatus depends on cell growth-controlled activity of GNL1. MOLECULAR PLANT 2013; 6:905-915. [PMID: 23125314 DOI: 10.1093/mp/sss124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Membrane traffic and organelle integrity in the plant secretory pathway depend on ARF-GTPases, which are activated by guanine-nucleotide exchange factors (ARF-GEFs). While maintenance of conserved roles, evolution of unique functions as well as tissue-specific roles have been shown for a handful of plant ARF-GEFs, a fundamental yet unanswered question concerns the extent to which their function overlaps during cell growth. To address this, we have characterized pao, a novel allele of GNOM-like 1 (GNL1), a brefeldin A (BFA)-insensitive ARF-GEF, isolated through a confocal microscopy-based forward genetics screen of the Golgi in Arabidopsis thaliana. Specifically, we have analyzed the dependence of the integrity of trafficking routes and secretory organelles on GNL1 availability during expansion stages of cotyledon epidermal cells, an exquisite model system for vegetative cell growth analyses in intact tissues. We show that Golgi traffic is influenced largely by GNL1 availability at early stages of cotyledon cell expansion but by BFA-sensitive GEFs when cell growth terminates. These data reveal an unanticipated level of complexity in the biology of GNL1 by showing that its cellular roles are correlated with cell growth. These results also indicate that the cell growth stage is an important element weighting into functional analyses of the cellular roles of ARF-GEFs.
Collapse
Affiliation(s)
- Wenyan Du
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
21
|
De Marchis F, Bellucci M, Pompa A. Traffic of human α-mannosidase in plant cells suggests the presence of a new endoplasmic reticulum-to-vacuole pathway without involving the Golgi complex. PLANT PHYSIOLOGY 2013; 161:1769-82. [PMID: 23449646 PMCID: PMC3613454 DOI: 10.1104/pp.113.214536] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/28/2013] [Indexed: 05/08/2023]
Abstract
The transport of secretory proteins from the endoplasmic reticulum to the vacuole requires sorting signals as well as specific transport mechanisms. This work is focused on the transport in transgenic tobacco (Nicotiana tabacum) plants of a human α-mannosidase, MAN2B1, which is a lysosomal enzyme involved in the turnover of N-linked glycoproteins and can be used in enzyme replacement therapy. Although ubiquitously expressed, α-mannosidases are targeted to lysosomes or vacuoles through different mechanisms according to the organisms in which these proteins are produced. In tobacco cells, MAN2B1 reaches the vacuole even in the absence of mannose-6-phosphate receptors, which are responsible for its transport in animal cells. We report that MAN2B1 is targeted to the vacuole without passing through the Golgi complex. In addition, a vacuolar targeting signal that is recognized in plant cells is located in the MAN2B1 amino-terminal region. Indeed, when this amino-terminal domain is removed, the protein is retained in the endoplasmic reticulum. Moreover, when this domain is added to a plant-secreted protein, the resulting fusion protein is partially redirected to the vacuole. These results strongly suggest the existence in plants of a new type of vacuolar traffic that can be used by leaf cells to transport vacuolar proteins.
Collapse
Affiliation(s)
- Francesca De Marchis
- Istituto di Genetica Vegetale, Consiglio Nazionale delle Ricerche, 06128 Perugia, Italy
| | - Michele Bellucci
- Istituto di Genetica Vegetale, Consiglio Nazionale delle Ricerche, 06128 Perugia, Italy
| | - Andrea Pompa
- Istituto di Genetica Vegetale, Consiglio Nazionale delle Ricerche, 06128 Perugia, Italy
| |
Collapse
|
22
|
Zhou LZ, Li S, Feng QN, Zhang YL, Zhao X, Zeng YL, Wang H, Jiang L, Zhang Y. Protein S-ACYL Transferase10 is critical for development and salt tolerance in Arabidopsis. THE PLANT CELL 2013; 25:1093-107. [PMID: 23482856 PMCID: PMC3634679 DOI: 10.1105/tpc.112.108829] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/11/2013] [Accepted: 02/17/2013] [Indexed: 05/18/2023]
Abstract
Protein S-acylation, commonly known as palmitoylation, is a reversible posttranslational modification that catalyzes the addition of a saturated lipid group, often palmitate, to the sulfhydryl group of a Cys. Palmitoylation regulates enzyme activity, protein stability, subcellular localization, and intracellular sorting. Many plant proteins are palmitoylated. However, little is known about protein S-acyl transferases (PATs), which catalyze palmitoylation. Here, we report that the tonoplast-localized PAT10 is critical for development and salt tolerance in Arabidopsis thaliana. PAT10 loss of function resulted in pleiotropic growth defects, including smaller leaves, dwarfism, and sterility. In addition, pat10 mutants are hypersensitive to salt stresses. We further show that PAT10 regulates the tonoplast localization of several calcineurin B-like proteins (CBLs), including CBL2, CBL3, and CBL6, whose membrane association also depends on palmitoylation. Introducing a C192S mutation within the highly conserved catalytic motif of PAT10 failed to complement pat10 mutants, indicating that PAT10 functions through protein palmitoylation. We propose that PAT10-mediated palmitoylation is critical for vacuolar function by regulating membrane association or the activities of tonoplast proteins.
Collapse
Affiliation(s)
- Liang-Zi Zhou
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Sha Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Qiang-Nan Feng
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Yu-Ling Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Xinying Zhao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Yong-lun Zeng
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Hao Wang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, Shandong, China
- Address correspondence to
| |
Collapse
|
23
|
Xiang L, Etxeberria E, den Ende W. Vacuolar protein sorting mechanisms in plants. FEBS J 2013; 280:979-93. [DOI: 10.1111/febs.12092] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 11/08/2012] [Accepted: 12/11/2012] [Indexed: 01/12/2023]
Affiliation(s)
- Li Xiang
- Laboratory of Molecular Plant Biology KU Leuven Belgium
| | - Ed Etxeberria
- Horticulture Department Citrus Research and Education Center University of Florida Lake Alfred FL USA
| | - Wim den Ende
- Laboratory of Molecular Plant Biology KU Leuven Belgium
| |
Collapse
|
24
|
Vyacheslavova AO, Berdichevets IN, Tyurin AA, Shimshilashvili KR, Mustafaev ON, Goldenkova-Pavlova IV. Expression of heterologous genes in plant systems: New possibilities. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795412110130] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Rivera-Serrano EE, Rodriguez-Welsh MF, Hicks GR, Rojas-Pierce M. A small molecule inhibitor partitions two distinct pathways for trafficking of tonoplast intrinsic proteins in Arabidopsis. PLoS One 2012; 7:e44735. [PMID: 22957103 PMCID: PMC3434187 DOI: 10.1371/journal.pone.0044735] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 08/07/2012] [Indexed: 01/26/2023] Open
Abstract
Tonoplast intrinsic proteins (TIPs) facilitate the membrane transport of water and other small molecules across the plant vacuolar membrane, and members of this family are expressed in specific developmental stages and tissue types. Delivery of TIP proteins to the tonoplast is thought to occur by vesicle–mediated traffic from the endoplasmic reticulum to the vacuole, and at least two pathways have been proposed, one that is Golgi-dependent and another that is Golgi-independent. However, the mechanisms for trafficking of vacuolar membrane proteins to the tonoplast remain poorly understood. Here we describe a chemical genetic approach to unravel the mechanisms of TIP protein targeting to the vacuole in Arabidopsis seedlings. We show that members of the TIP family are targeted to the vacuole via at least two distinct pathways, and we characterize the bioactivity of a novel inhibitor that can differentiate between them. We demonstrate that, unlike for TIP1;1, trafficking of markers for TIP3;1 and TIP2;1 is insensitive to Brefeldin A in Arabidopsis hypocotyls. Using a chemical inhibitor that may target this BFA-insensitive pathway for membrane proteins, we show that inhibition of this pathway results in impaired root hair growth and enhanced vacuolar targeting of the auxin efflux carrier PIN2 in the dark. Our results indicate that the vacuolar targeting of PIN2 and the BFA-insensitive pathway for tonoplast proteins may be mediated in part by common mechanisms.
Collapse
Affiliation(s)
- Efrain E. Rivera-Serrano
- Department of Plant Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Maria F. Rodriguez-Welsh
- Department of Plant Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Glenn R. Hicks
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, California, United States of America
- Center for Plant Cell Biology, University of California Riverside, Riverside, California, United States of America
| | - Marcela Rojas-Pierce
- Department of Plant Biology, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
26
|
Abirached-Darmency M, Dessaint F, Benlicha E, Schneider C. Biogenesis of protein bodies during vicilin accumulation in Medicago truncatula immature seeds. BMC Res Notes 2012; 5:409. [PMID: 22862819 PMCID: PMC3431269 DOI: 10.1186/1756-0500-5-409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/17/2012] [Indexed: 12/05/2022] Open
Abstract
Background Grain legumes play a worldwide role as a source of plant proteins for feed and food. In the model legume Medicago truncatula, the organisation of protein storage vacuoles (PSV) in maturing seeds remains unknown. Findings The sub-cellular events accompanying the accumulation of vicilin (globulin7S) were analysed during seed mid-maturation. Immuno-detection of vicilin in light microscopy, allowed a semi-quantitative assessment of the protein body complement. The identified populations of vicilin-containing protein bodies are distinguished by their number and size which allowed to propose a model of their biogenesis. Two distributions were detected, enabling a separation of their processing at early and mid maturation stages. The largest protein bodies, at 16 and 20 days after pollination (DAP), were formed by the fusion of small bodies. They have probably attained their final size and correspond to mature vicilin aggregations. Electron microscopic observations revealed the association of the dense protein bodies with rough endoplasmic reticulum. The presence of a ribosome layer surrounding protein bodies, would support an endoplasmic reticulum–vacuole trafficking pathway. Conclusions The stastistic analysis may be useful for screening mutations of candidate genes governing protein content. The definitive evidence for an ER-storage vacuole pathway corresponds to a challenge, for the storage of post-translationally unstable proteins. It was proposed for the accumulation of one class of storage protein, the vicilins. This alternative pathway is a matter of controversy in dicotyledonous seeds.
Collapse
|
27
|
Komarova NY, Meier S, Meier A, Grotemeyer MS, Rentsch D. Determinants for Arabidopsis peptide transporter targeting to the tonoplast or plasma membrane. Traffic 2012; 13:1090-105. [PMID: 22537078 DOI: 10.1111/j.1600-0854.2012.01370.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 04/19/2012] [Accepted: 04/26/2012] [Indexed: 12/29/2022]
Abstract
Di- and tripeptide transporters of the PTR/NRT1 (peptide transporter/nitrate transporter1)-family are localized either at the tonoplast (TP) or plasma membrane (PM). As limited information is available on structural determinants required for targeting of plant membrane proteins, we performed gene shuffling and domain swapping experiments of Arabidopsis PTRs. A 7 amino acid fragment of the hydrophilic N-terminal region of PTR2, PTR4 and PTR6 was required for TP localization and sufficient to redirect not only PM-localized PTR1 or PTR5, but also sucrose transporter SUC2 to the TP. Alanine scanning mutagenesis identified L(11) and I(12) of PTR2 to be essential for TP targeting, while only one acidic amino acid at position 5, 6 or 7 was required, revealing a dileucine (LL or LI) motif with at least one upstream acidic residue. Similar dileucine motifs could be identified in other plant TP transporters, indicating a broader role of this targeting motif in plants. Targeting to the PM required the loop between transmembrane domain 6 and 7 of PTR1 or PTR5. Deletion of either PM or TP targeting signals resulted in retention in internal membranes, indicating that PTR trafficking to these destination membranes requires distinct signals and is in both cases not by default.
Collapse
Affiliation(s)
- Nataliya Y Komarova
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | | | | | | | | |
Collapse
|
28
|
Meckfessel MH, Blancaflor EB, Plunkett M, Dong Q, Dickstein R. Multiple domains in MtENOD8 protein including the signal peptide target it to the symbiosome. PLANT PHYSIOLOGY 2012; 159:299-310. [PMID: 22415512 PMCID: PMC3366718 DOI: 10.1104/pp.111.191403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Symbiotic nitrogen fixation occurs in nodules, specialized organs on the roots of legumes. Within nodules, host plant cells are infected with rhizobia that are encapsulated by a plant-derived membrane forming a novel organelle, the symbiosome. In Medicago truncatula, the symbiosome consists of the symbiosome membrane, a single rhizobium, and the soluble space between them, called the symbiosome space. The symbiosome space is enriched with plant-derived proteins, including the M. truncatula EARLY NODULIN8 (MtENOD8) protein. Here, we present evidence from green fluorescent protein (GFP) fusion experiments that the MtENOD8 protein contains at least three symbiosome targeting domains, including its N-terminal signal peptide (SP). When ectopically expressed in nonnodulated root tissue, the MtENOD8 SP delivers GFP to the vacuole. During the course of nodulation, there is a nodule-specific redirection of MtENOD8-SP-GFP from the vacuole to punctate intermediates and subsequently to symbiosomes, with redirection of MtENOD8-SP-GFP from the vacuole to punctate intermediates preceding intracellular rhizobial infection. Experiments with M. truncatula mutants having defects in rhizobial infection and symbiosome development demonstrated that the MtNIP/LATD gene is required for redirection of the MtENOD8-SP-GFP from the vacuoles to punctate intermediates in nodules. Our evidence shows that MtENOD8 has evolved redundant targeting sequences for symbiosome targeting and that intracellular localization of ectopically expressed MtENOD8-SP-GFP is useful as a marker for monitoring the extent of development in mutant nodules.
Collapse
MESH Headings
- Amino Acid Sequence
- Blotting, Western
- Cloning, Molecular
- Green Fluorescent Proteins/chemistry
- Medicago truncatula/chemistry
- Medicago truncatula/genetics
- Medicago truncatula/microbiology
- Molecular Sequence Data
- Nitrogen Fixation
- Plant Proteins/chemistry
- Plant Root Nodulation
- Plants, Genetically Modified/chemistry
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/microbiology
- Protein Sorting Signals
- Protein Structure, Tertiary
- Protein Transport
- RNA, Plant/analysis
- RNA, Plant/chemistry
- Recombinant Fusion Proteins/chemistry
- Root Nodules, Plant/chemistry
- Root Nodules, Plant/genetics
- Root Nodules, Plant/microbiology
- Sequence Alignment
- Sinorhizobium meliloti/physiology
- Symbiosis
- Vacuoles/chemistry
Collapse
|
29
|
Popescu SC. A model for the biosynthesis and transport of plasma membrane-associated signaling receptors to the cell surface. FRONTIERS IN PLANT SCIENCE 2012; 3:71. [PMID: 22639660 PMCID: PMC3355576 DOI: 10.3389/fpls.2012.00071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/26/2012] [Indexed: 05/03/2023]
Abstract
Intracellular protein transport is emerging as critical in determining the outcome of receptor-activated signal transduction pathways. In plants, relatively little is known about the nature of the molecular components and mechanisms involved in coordinating receptor synthesis and transport to the cell surface. Recent advances in this field indicate that signaling pathways and intracellular transport machinery converge and coordinate to render receptors competent for signaling at their plasma membrane (PM) activity sites. The biogenesis and transport to the cell surface of signaling receptors appears to require both general trafficking and receptor-specific factors. Several molecular determinants, residing or associated with compartments of the secretory pathway and known to influence aspects in receptor biogenesis, are discussed and integrated into a predictive cooperative model for the functional expression of signaling receptors at the PM.
Collapse
Affiliation(s)
- Sorina C. Popescu
- Boyce Thompson Institute for Plant ResearchIthaca, NY, USA
- *Correspondence: Sorina C. Popescu, Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA. e-mail:
| |
Collapse
|
30
|
Lee HY, Bowen CH, Popescu GV, Kang HG, Kato N, Ma S, Dinesh-Kumar S, Snyder M, Popescu SC. Arabidopsis RTNLB1 and RTNLB2 Reticulon-like proteins regulate intracellular trafficking and activity of the FLS2 immune receptor. THE PLANT CELL 2011; 23:3374-91. [PMID: 21949153 PMCID: PMC3203430 DOI: 10.1105/tpc.111.089656] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 08/26/2011] [Accepted: 09/12/2011] [Indexed: 05/18/2023]
Abstract
Receptors localized at the plasma membrane are critical for the recognition of pathogens. The molecular determinants that regulate receptor transport to the plasma membrane are poorly understood. In a screen for proteins that interact with the FLAGELIN-SENSITIVE2 (FLS2) receptor using Arabidopsis thaliana protein microarrays, we identified the reticulon-like protein RTNLB1. We showed that FLS2 interacts in vivo with both RTNLB1 and its homolog RTNLB2 and that a Ser-rich region in the N-terminal tail of RTNLB1 is critical for the interaction with FLS2. Transgenic plants that lack RTNLB1 and RTNLB2 (rtnlb1 rtnlb2) or overexpress RTNLB1 (RTNLB1ox) exhibit reduced activation of FLS2-dependent signaling and increased susceptibility to pathogens. In both rtnlb1 rtnlb2 and RTNLB1ox, FLS2 accumulation at the plasma membrane was significantly affected compared with the wild type. Transient overexpression of RTNLB1 led to FLS2 retention in the endoplasmic reticulum (ER) and affected FLS2 glycosylation but not FLS2 stability. Removal of the critical N-terminal Ser-rich region or either of the two Tyr-dependent sorting motifs from RTNLB1 causes partial reversion of the negative effects of excess RTNLB1 on FLS2 transport out of the ER and accumulation at the membrane. The results are consistent with a model whereby RTNLB1 and RTNLB2 regulate the transport of newly synthesized FLS2 to the plasma membrane.
Collapse
Affiliation(s)
- Hyoung Yool Lee
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | | | - George Viorel Popescu
- National Institute for Laser, Plasma, and Radiation Physics, Magurele 077125 Bucharest, Romania
| | - Hong-Gu Kang
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Naohiro Kato
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Shisong Ma
- College of Biological Sciences, University of California, Davis, California 95616
| | | | - Michael Snyder
- Department of Genetics, Stanford University, Stanford, California 94305
| | - Sorina Claudia Popescu
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
- Address correspondence to
| |
Collapse
|
31
|
Maîtrejean M, Wudick MM, Voelker C, Prinsi B, Mueller-Roeber B, Czempinski K, Pedrazzini E, Vitale A. Assembly and sorting of the tonoplast potassium channel AtTPK1 and its turnover by internalization into the vacuole. PLANT PHYSIOLOGY 2011; 156:1783-96. [PMID: 21697507 PMCID: PMC3149923 DOI: 10.1104/pp.111.177816] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/18/2010] [Indexed: 05/18/2023]
Abstract
The assembly, sorting signals, and turnover of the tonoplast potassium channel AtTPK1 of Arabidopsis (Arabidopsis thaliana) were studied. We used transgenic Arabidopsis expressing a TPK1-green fluorescent protein (GFP) fusion or protoplasts transiently transformed with chimeric constructs based on domain exchange between TPK1 and TPK4, the only TPK family member not located at the tonoplast. The results show that TPK1-GFP is a dimer and that the newly synthesized polypeptides transiently interact with a thus-far unidentified 20-kD polypeptide. A subset of the TPK1-TPK4 chimeras were unable to assemble correctly and these remained located in the endoplasmic reticulum where they interacted with the binding protein chaperone. Therefore, TPK1 must assemble correctly to pass endoplasmic reticulum quality control. Substitution of the cytosolic C terminus of TPK4 with the corresponding domain of TPK1 was sufficient to allow tonoplast delivery, indicating that this domain contains tonoplast sorting information. Pulse-chase labeling indicated that TPK1-GFP has a half-life of at least 24 h. Turnover of the fusion protein involves internalization into the vacuole where the GFP domain is released. This indicates a possible mechanism for the turnover of tonoplast proteins.
Collapse
|
32
|
Kota U, Goshe MB. Advances in qualitative and quantitative plant membrane proteomics. PHYTOCHEMISTRY 2011; 72:1040-60. [PMID: 21367437 DOI: 10.1016/j.phytochem.2011.01.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 01/13/2011] [Accepted: 01/19/2011] [Indexed: 05/08/2023]
Abstract
The membrane proteome consists of integral and membrane-associated proteins that are involved in various physiological and biochemical functions critical for cellular function. It is also dynamic in nature, where many proteins are only expressed during certain developmental stages or in response to environmental stress. These proteins can undergo post-translational modifications in response to these different conditions, allowing them to transiently associate with the membrane or other membrane proteins. Along with their increased size, hydrophobicity, and the additional organelle and cellular features of plant cells relative to mammalian systems, the characterization of the plant membrane proteome presents unique challenges for effective qualitative and quantitative analysis using mass spectrometry (MS) analysis. Here, we present the latest advancements developed for the isolation and fractionation of plant organelles and their membrane components amenable to MS analysis. Separations of membrane proteins from these enriched preparations that have proven effective are discussed for both gel- and liquid chromatography-based MS analysis. In this context, quantitative membrane proteomic analyses using both isotope-coded and label-free approaches are presented and reveal the potential to establish a wider-biological interpretation of the function of plant membrane proteins that will ultimately lead to a more comprehensive understanding of plant physiology and their response mechanisms.
Collapse
Affiliation(s)
- Uma Kota
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA
| | | |
Collapse
|
33
|
De Caroli M, Lenucci MS, Di Sansebastiano GP, Dalessandro G, De Lorenzo G, Piro G. Protein trafficking to the cell wall occurs through mechanisms distinguishable from default sorting in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:295-308. [PMID: 21223393 DOI: 10.1111/j.1365-313x.2010.04421.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The secretory pathway in plants involves sustained traffic to the cell wall, as matrix components, polysaccharides and proteins reach the cell wall through the endomembrane system. We studied the secretion pattern of cell-wall proteins in tobacco protoplasts and leaf epidermal cells using fluorescent forms of a pectin methylesterase inhibitor protein (PMEI1) and a polygalacturonase inhibitor protein (PGIP2). The two most representative protein fusions, secGFP-PMEI1 and PGIP2-GFP, reached the cell wall by passing through ER and Golgi stacks but using distinct mechanisms. secGFP-PMEI1 was linked to a glycosylphosphatidylinositol (GPI) anchor and stably accumulated in the cell wall, regulating the activity of the endogenous pectin methylesterases (PMEs) that are constitutively present in this compartment. A mannosamine-induced non-GPI-anchored form of PMEI1 as well as a form (PMEI1-GFP) that was unable to bind membranes failed to reach the cell wall, and accumulated in the Golgi stacks. In contrast, PGIP2-GFP moved as a soluble cargo protein along the secretory pathway, but was not stably retained in the cell wall, due to internalization to an endosomal compartment and eventually the vacuole. Stable localization of PGIP2 in the wall was observed only in the presence of a specific fungal endopolygalacturonase ligand in the cell wall. Both secGFP-PMEI1 and PGIP2-GFP sorting were distinguishable from that of a secreted GFP, suggesting that rigorous and more complex controls than the simple mechanism of bulk flow are the basis of cell-wall growth and differentiation.
Collapse
Affiliation(s)
- Monica De Caroli
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Matsubayashi Y. Post-translational modifications in secreted peptide hormones in plants. PLANT & CELL PHYSIOLOGY 2011; 52:5-13. [PMID: 21071428 PMCID: PMC3023852 DOI: 10.1093/pcp/pcq169] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 11/04/2010] [Indexed: 05/18/2023]
Abstract
More than a dozen secreted peptides are now recognized as important hormones that coordinate and specify cellular functions in plants. Recent evidence has shown that secreted peptide hormones often undergo post-translational modification and proteolytic processing, which are critical for their function. Such 'small post-translationally modified peptide hormones' constitute one of the largest groups of peptide hormones in plants. This short review highlights recent progress in research on post-translationally modified peptide hormones, with particular emphasis on their structural characteristics and modification mechanisms.
Collapse
Affiliation(s)
- Yoshikatsu Matsubayashi
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 Japan.
| |
Collapse
|
35
|
Rosado A, Raikhel NV. Understanding plant vacuolar trafficking from a systems biology perspective. PLANT PHYSIOLOGY 2010; 154:545-50. [PMID: 20921182 PMCID: PMC2949022 DOI: 10.1104/pp.110.161091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Accepted: 06/29/2010] [Indexed: 05/29/2023]
Affiliation(s)
- Abel Rosado
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
36
|
Cacas JL. Devil inside: does plant programmed cell death involve the endomembrane system? PLANT, CELL & ENVIRONMENT 2010; 33:1453-1473. [PMID: 20082668 DOI: 10.1111/j.1365-3040.2010.02117.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Eukaryotic cells have to constantly cope with environmental cues and integrate developmental signals. Cell survival or death is the only possible outcome. In the field of animal biology, tremendous efforts have been put into the understanding of mechanisms underlying cell fate decision. Distinct organelles have been proven to sense a broad range of stimuli and, if necessary, engage cell death signalling pathway(s). Over the years, forward and reverse genetic screens have uncovered numerous regulators of programmed cell death (PCD) in plants. However, to date, molecular networks are far from being deciphered and, apart from the autophagic compartment, no organelles have been assigned a clear role in the regulation of cellular suicide. The endomembrane system (ES) seems, nevertheless, to harbour a significant number of cell death mediators. In this review, the involvement of this system in the control of plant PCD is discussed in-depth, as well as compared and contrasted with what is known in animal and yeast systems.
Collapse
Affiliation(s)
- Jean-Luc Cacas
- Institut de Recherche pour le Développement, Equipe 2, Mécanismes des Résistances, Montpellier Cedex 5, France.
| |
Collapse
|
37
|
Lewis MW, Leslie ME, Fulcher EH, Darnielle L, Healy P, Youn JY, Liljegren SJ. The SERK1 receptor-like kinase regulates organ separation in Arabidopsis flowers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:817-28. [PMID: 20230490 PMCID: PMC2884084 DOI: 10.1111/j.1365-313x.2010.04194.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Through a sensitized screen for novel components of pathways regulating organ separation in Arabidopsis flowers, we have found that the leucine-rich repeat receptor-like kinase SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 (SERK1) acts as a negative regulator of abscission. Mutations in SERK1 dominantly rescue abscission in flowers without functional NEVERSHED (NEV), an ADP-ribosylation factor GTPase-activating protein required for floral organ shedding. We previously reported that the organization of the Golgi apparatus and location of the trans-Golgi network (TGN) are altered in nev mutant flowers. Disruption of SERK1 restores Golgi structure and the close association of the TGN in nev flowers, suggesting that defects in these organelles may be responsible for the block in abscission. We have also found that the abscission zones of nev serk1 flowers are enlarged compared to wild-type. A similar phenotype was previously observed in plants constitutively expressing a putative ligand required for organ separation, INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), suggesting that signalling through IDA and its proposed receptors, HAESA and HAESA-LIKE2, may be deregulated in nev serk1 abscission zone cells. Our studies indicate that in addition to its previously characterized roles in stamen development and brassinosteroid perception, SERK1 plays a unique role in modulating the loss of cell adhesion that occurs during organ abscission.
Collapse
Affiliation(s)
- Michael W. Lewis
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Michelle E. Leslie
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Emilee H. Fulcher
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Lalitree Darnielle
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Patrick Healy
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Ji-Young Youn
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Sarah J. Liljegren
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
38
|
Yamazaki T, Takata N, Uemura M, Kawamura Y. Arabidopsis synaptotagmin SYT1, a type I signal-anchor protein, requires tandem C2 domains for delivery to the plasma membrane. J Biol Chem 2010; 285:23165-76. [PMID: 20498364 DOI: 10.1074/jbc.m109.084046] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The correct localization of integral membrane proteins to subcellular compartments is important for their functions. Synaptotagmin contains a single transmembrane domain that functions as a type I signal-anchor sequence in its N terminus and two calcium-binding domains (C(2)A and C(2)B) in its C terminus. Here, we demonstrate that the localization of an Arabidopsis synaptotagmin homolog, SYT1, to the plasma membrane (PM) is modulated by tandem C2 domains. An analysis of the roots of a transformant-expressing green fluorescent protein-tagged SYT1 driven by native SYT1 promoter suggested that SYT1 is synthesized in the endoplasmic reticulum, and then delivered to the PM via the exocytotic pathway. We transiently expressed a series of truncated proteins in protoplasts, and determined that tandem C(2)A-C(2)B domains were necessary for the localization of SYT1 to the PM. The PM localization of SYT1 was greatly reduced following mutation of the calcium-binding motifs of the C(2)B domain, based on sequence comparisons with other homologs, such as endomembrane-localized SYT5. The localization of SYT1 to the PM may have been required for the functional divergence that occurred in the molecular evolution of plant synaptotagmins.
Collapse
Affiliation(s)
- Tomokazu Yamazaki
- 21st Century Center of Excellence Program, Iwate University, Morioka, Iwate 020-8550, Japan
| | | | | | | |
Collapse
|
39
|
Kato N, He H, Steger AP. A systems model of vesicle trafficking in Arabidopsis pollen tubes. PLANT PHYSIOLOGY 2010; 152:590-601. [PMID: 19933386 PMCID: PMC2815877 DOI: 10.1104/pp.109.148700] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 11/16/2009] [Indexed: 05/18/2023]
Abstract
A systems model that describes vesicle trafficking during pollen tube growth in Arabidopsis (Arabidopsis thaliana) was constructed. The model is composed of ordinary differential equations that connect the molecular functions of genes expressed in pollen. The current model requires soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) and small GTPases, Arf or Rab, to reasonably predict tube growth as a function of time. Tube growth depends on vesicle trafficking that transports phospholipid and pectin to the tube tip. The vesicle trafficking genes identified by analyzing publicly available transcriptome data comprised 328 genes. Fourteen of them are up-regulated by the gibberellin signaling pathway during pollen development, which includes the SNARE genes SYP124 and SYP125 and the Rab GTPase gene RABA4D. The model results adequately fit the pollen tube growth of both previously reported wild-type and raba4d knockout lines. Furthermore, the difference of pollen tube growth in syp124/syp125 single and double mutations was quantitatively predicted based on the model analysis. In general, a systems model approach to vesicle trafficking arguably demonstrated the importance of the functional connections in pollen tube growth and can help guide future research directions.
Collapse
Affiliation(s)
- Naohiro Kato
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | | | |
Collapse
|
40
|
Hashiguchi Y, Niihama M, Takahashi T, Saito C, Nakano A, Tasaka M, Morita MT. Loss-of-function mutations of retromer large subunit genes suppress the phenotype of an Arabidopsis zig mutant that lacks Qb-SNARE VTI11. THE PLANT CELL 2010; 22:159-72. [PMID: 20086190 PMCID: PMC2828691 DOI: 10.1105/tpc.109.069294] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Arabidopsis thaliana zigzag (zig) is a loss-of-function mutant of Qb-SNARE VTI11, which is involved in membrane trafficking between the trans-Golgi network and the vacuole. zig-1 exhibits abnormalities in shoot gravitropism and morphology. Here, we report that loss-of-function mutants of the retromer large subunit partially suppress the zig-1 phenotype. Moreover, we demonstrate that three paralogous VPS35 genes of Arabidopsis have partially overlapping but distinct genetic functions with respect to zig-1 suppression. Tissue-specific complementation experiments using an endodermis-specific SCR promoter show that expression of VPS35B or VPS35C cannot complement the function of VPS35A. The data suggest the existence of functionally specialized paralogous VPS35 genes that nevertheless share common functions.
Collapse
Affiliation(s)
- Yasuko Hashiguchi
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Mitsuru Niihama
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Tetsuya Takahashi
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Chieko Saito
- Molecular Membrane Biology Laboratory, RIKEN, Wako 351-0198, Japan
| | - Akihiko Nakano
- Molecular Membrane Biology Laboratory, RIKEN, Wako 351-0198, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masao Tasaka
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Miyo Terao Morita
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
- Address correspondence to
| |
Collapse
|
41
|
Plattner H. Membrane Trafficking in Protozoa. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 280:79-184. [DOI: 10.1016/s1937-6448(10)80003-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Niihama M, Takemoto N, Hashiguchi Y, Tasaka M, Morita MT. ZIP genes encode proteins involved in membrane trafficking of the TGN-PVC/vacuoles. PLANT & CELL PHYSIOLOGY 2009; 50:2057-2068. [PMID: 19884248 DOI: 10.1093/pcp/pcp137] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Arabidopsis zigzgag (zig) is a loss-of-function mutant of Qb-SNARE VTI11 which is involved in vesicle trafficking between the trans-Golgi network (TGN) and vacuoles. zig-1 exhibits abnormality in both shoot gravitropism and morphology. To elucidate the molecular network of the post-Golgi membrane trafficking in plant cells, we have isolated the suppressor mutants of zig. Here we report zig suppressor 2 (zip2) and zip4 that are recessive mutants and partially suppress abnormality in both gravitropism and morphology. ZIP2 encodes AtVPS41/AtVAM2 protein that is thought to be an Arabidopsis ortholog of yeast Vps41p/Vam2p, which is involved in protein sorting to vacuoles as a subunit of the tethering complex HOPS. Yeast Vps41p is also proposed to function in budding of adaptor protein (AP)-3-coated vesicles from the Golgi. The zip2 mutation is a missense mutation in a conserved amino acid of a putative clathrin heavy chain repeat (CHCR) domain. AtVPS41 is a single-copy gene in the Arabidopsis genome and the T-DNA insertion mutant appears to be lethal, whereas the zip2 single mutant showed no obvious phenotype. On the other hand, zip4 is a loss-of-function mutant of a putative ortholog of the yeast AP-3 mu subunit. In addition, loss-of-function mutants of other subunits of AP-3, ap-3beta and ap-3delta, also exhibit a suppressive effect on the zig-1 phenotype. Although these genes are also single-copy genes in the genome, the loss-of-function mutants of AP-3 grow normally. Our results suggest that AtVPS41 and AP-3 play roles in the proper function of the post-Golgi trafficking network and support membrane trafficking to vacuoles.
Collapse
Affiliation(s)
- Mitsuru Niihama
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | | | | | | | | |
Collapse
|
43
|
Kong Y, Zhou G, Avci U, Gu X, Jones C, Yin Y, Xu Y, Hahn MG. Two poplar glycosyltransferase genes, PdGATL1.1 and PdGATL1.2, are functional orthologs to PARVUS/AtGATL1 in Arabidopsis. MOLECULAR PLANT 2009; 2:1040-50. [PMID: 19825678 DOI: 10.1093/mp/ssp068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Several genes in Arabidopsis, including PARVUS/AtGATL1, have been implicated in xylan synthesis. However, the biosynthesis of xylan in woody plants, where this polysaccharide is a major component of wood, is poorly understood. Here, we characterize two Populus genes, PdGATL1.1 and PdGATL1.2, the closest orthologs to the Arabidopsis PARVUS/GATL1 gene, with respect to their gene expression in poplar, their sub-cellular localization, and their ability to complement the parvus mutation in Arabidopsis. Overexpression of the two poplar genes in the parvus mutant rescued most of the defects caused by the parvus mutation, including morphological changes, collapsed xylem, and altered cell wall monosaccharide composition. Quantitative RT-PCR showed that PdGATL1.1 is expressed most strongly in developing xylem of poplar. In contrast, PdGATL1.2 is expressed much more uniformly in leaf, shoot tip, cortex, phloem, and xylem, and the transcript level of PdGATL1.2 is much lower than that of PdGATL1.1 in all tissues examined. Sub-cellular localization experiments showed that these two proteins are localized to both ER and Golgi in comparison with marker proteins resident to these sub-cellular compartments. Our data indicate that PdGATL1.1 and PdGATL1.2 are functional orthologs of PARVUS/GATL1 and can play a role in xylan synthesis, but may also have role(s) in the synthesis of other wall polymers.
Collapse
Affiliation(s)
- Yingzhen Kong
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Chatre L, Wattelet-Boyer V, Melser S, Maneta-Peyret L, Brandizzi F, Moreau P. A novel di-acidic motif facilitates ER export of the syntaxin SYP31. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3157-65. [PMID: 19516076 PMCID: PMC2718219 DOI: 10.1093/jxb/erp155] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 03/16/2009] [Accepted: 04/16/2009] [Indexed: 05/18/2023]
Abstract
It is generally accepted that ER protein export is largely influenced by the transmembrane domain (TMD). The situation is unclear for membrane-anchored proteins such as SNAREs, which are anchored to the membrane by their TMD at the C-terminus. For example, in plants, Sec22 and SYP31 (a yeast Sed5 homologue) have a 17 aa TMD but different locations (ER/Golgi and Golgi), indicating that TMD length alone is not sufficient to explain their targeting. To establish the identity of factors that influence SNARE targeting, mutagenesis and live cell imaging experiments were performed on SYP31. It was found that deletion of the entire N-terminus domain of SYP31 blocked the protein in the ER. Several deletion mutants of different parts of this N-terminus domain indicated that a region between the SNARE helices Hb and Hc is required for Golgi targeting. In this region, replacement of the aa sequence MELAD by GAGAG or MALAG retained the protein in the ER, suggesting that MELAD may function as a di-acidic ER export motif EXXD. This suggestion was further verified by replacing the established di-acidic ER export motif DLE of a type II Golgi protein AtCASP and a membrane-anchored type I chimaera, TMcCCASP, by MELAD or GAGAG. The MELAD motif allowed the proteins to reach the Golgi, whereas the motif GAGAG was found to be insufficient to facilitate ER protein export. Our analyses indicate that we have identified a novel and transplantable di-acidic motif that facilitates ER export of SYP31 and may function for type I and type II proteins in plants.
Collapse
Affiliation(s)
- Laurent Chatre
- University of Bordeaux 2, Membrane Biogenesis Laboratory, CNRS UMR 5200, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - Valérie Wattelet-Boyer
- University of Bordeaux 2, Membrane Biogenesis Laboratory, CNRS UMR 5200, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Su Melser
- University of Bordeaux 2, Membrane Biogenesis Laboratory, CNRS UMR 5200, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Lilly Maneta-Peyret
- University of Bordeaux 2, Membrane Biogenesis Laboratory, CNRS UMR 5200, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Federica Brandizzi
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
- Michigan State University-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Patrick Moreau
- University of Bordeaux 2, Membrane Biogenesis Laboratory, CNRS UMR 5200, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
- Imaging platform of the IFR 103, INRA-Bordeaux, France
| |
Collapse
|
45
|
Toyooka K, Goto Y, Asatsuma S, Koizumi M, Mitsui T, Matsuoka K. A mobile secretory vesicle cluster involved in mass transport from the Golgi to the plant cell exterior. THE PLANT CELL 2009; 21:1212-29. [PMID: 19376937 PMCID: PMC2685622 DOI: 10.1105/tpc.108.058933] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 03/08/2009] [Accepted: 03/30/2009] [Indexed: 05/17/2023]
Abstract
Secretory proteins and extracellular glycans are transported to the extracellular space during cell growth. These materials are carried in secretory vesicles generated at the trans-Golgi network (TGN). Analysis of the mammalian post-Golgi secretory pathway demonstrated the movement of separated secretory vesicles in the cell. Using secretory carrier membrane protein 2 (SCAMP2) as a marker for secretory vesicles and tobacco (Nicotiana tabacum) BY-2 cell as a model cell, we characterized the transport machinery in plant cells. A combination of analyses, including electron microscopy of quick-frozen cells and four-dimensional analysis of cells expressing fluorescent-tagged SCAMP2, enabled the identification of a clustered structure of secretory vesicles generated from TGN that moves in the cell and eventually fuses with plasma membrane. This structure was termed the secretory vesicle cluster (SVC). The SVC was also found in Arabidopsis thaliana and rice (Oryza sativa) cells and moved to the cell plate in dividing tobacco cells. Thus, the SVC is a motile structure involved in mass transport from the Golgi to the plasma membrane and cell plate in plant cells.
Collapse
Affiliation(s)
- Kiminori Toyooka
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Zouhar J, Rojo E, Bassham DC. AtVPS45 is a positive regulator of the SYP41/SYP61/VTI12 SNARE complex involved in trafficking of vacuolar cargo. PLANT PHYSIOLOGY 2009; 149:1668-78. [PMID: 19251905 PMCID: PMC2663731 DOI: 10.1104/pp.108.134361] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 02/24/2009] [Indexed: 05/18/2023]
Abstract
We report a functional characterization of AtVPS45 (for vacuolar protein sorting 45), a protein from the Sec1/Munc18 family in Arabidopsis (Arabidopsis thaliana) that interacts at the trans-Golgi network (TGN) with the SYP41/SYP61/VTI12 SNARE complex. A null allele of AtVPS45 was male gametophytic lethal, whereas stable RNA interference lines with reduced AtVPS45 protein levels had stunted growth but were viable and fertile. In the silenced lines, we observed defects in vacuole formation that correlated with a reduction in cell expansion and with autophagy-related defects in nutrient turnover. Moreover, transport of vacuolar cargo with carboxy-terminal vacuolar sorting determinants was blocked in the silenced lines, suggesting that AtVPS45 functions in vesicle trafficking to the vacuole. These trafficking defects are similar to those observed in vti12 mutants, supporting a functional relationship between AtVPS45 and VTI12. Consistent with this, we found a decrease in SYP41 protein levels coupled to the silencing of AtVPS45, pointing to instability and malfunction of the SYP41/SYP61/VTI12 SNARE complex in the absence of its cognate Sec1/Munc18 regulator. Based on its localization on the TGN, we hypothesized that AtVPS45 could be involved in membrane fusion of retrograde vesicles recycling vacuolar trafficking machinery. Indeed, in the AtVPS45-silenced plants, we found a striking alteration in the subcellular fractionation pattern of vacuolar sorting receptors, which are required for sorting of carboxy-terminal vacuolar sorting determinant-containing cargo. We propose that AtVPS45 is essential for recycling of the vacuolar sorting receptors back to the TGN and that blocking this step underlies the defects in vacuolar cargo trafficking observed in the silenced lines.
Collapse
Affiliation(s)
- Jan Zouhar
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, E-28049 Madrid, Spain
| | | | | |
Collapse
|
47
|
Arsovski AA, Villota MM, Rowland O, Subramaniam R, Western TL. MUM ENHANCERS are important for seed coat mucilage production and mucilage secretory cell differentiation in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2601-12. [PMID: 19401413 PMCID: PMC2692007 DOI: 10.1093/jxb/erp102] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 02/20/2009] [Accepted: 03/11/2009] [Indexed: 05/17/2023]
Abstract
Pollination triggers not only embryo development but also the differentiation of the ovule integuments to form a specialized seed coat. The mucilage secretory cells of the Arabidopsis thaliana seed coat undergo a complex differentiation process in which cell growth is followed by the synthesis and secretion of pectinaceous mucilage. A number of genes have been identified affecting mucilage secretory cell differentiation, including MUCILAGE-MODIFIED4 (MUM4). mum4 mutants produce a reduced amount of mucilage and cloning of MUM4 revealed that it encodes a UDP-L-rhamnose synthase that is developmentally up-regulated to provide rhamnose for mucilage pectin synthesis. To identify additional genes acting in mucilage synthesis and secretion, a screen for enhancers of the mum4 phenotype was performed. Eight mum enhancers (men) have been identified, two of which result from defects in known mucilage secretory cell genes (MUM2 and MYB61). Our results show that, in a mum4 background, mutations in MEN1, MEN4, and MEN5 lead to further reductions in mucilage compared to mum4 single mutants, suggesting that they are involved in mucilage synthesis or secretion. Conversely, mutations in MEN2 and MEN6 appear to affect mucilage release rather than quantity. With the exception of men4, whose single mutant exhibits reduced mucilage, none of these genes have a single mutant phenotype, suggesting that they would not have been identified outside the compromised mum4 background.
Collapse
Affiliation(s)
| | - Maria M. Villota
- Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, Ottawa, ON, Canada K1A 0C6
| | - Owen Rowland
- Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
| | - Rajagopal Subramaniam
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, Ottawa, ON, Canada K1A 0C6
| | - Tamara L. Western
- Department of Biology, McGill University, Montreal, QC, Canada H3A 1B1
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
48
|
Moeller L, Gan Q, Wang K. A bacterial signal peptide is functional in plants and directs proteins to the secretory pathway. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3337-52. [PMID: 19491306 PMCID: PMC2724687 DOI: 10.1093/jxb/erp167] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The Escherichia coli heat-labile enterotoxin B subunit (LT-B) has been used as a model antigen for the production of plant-derived high-valued proteins in maize. LT-B with its native signal peptide (BSP) has been shown to accumulate in starch granules of transgenic maize kernels. To elucidate the targeting properties of the bacterial LT-B protein and BSP in plant systems, the subcellular localization of visual marker green fluorescent protein (GFP) fused to LT-B and various combinations of signal peptides was examined in Arabidopsis protoplasts and transgenic maize. Biochemical analysis indicates that the LT-B::GFP fusion proteins can assemble and fold properly retaining both the antigenicity of LT-B and the fluorescing properties of GFP. Maize kernel fractionation revealed that transgenic lines carrying BSP result in recombinant protein association with fibre and starch fractions. Confocal microscopy analysis indicates that the fusion proteins accumulate in the endomembrane system of plant cells in a signal peptide-dependent fashion. This is the first report providing evidence of the ability of a bacterial signal peptide to target proteins to the plant secretory pathway. The results provide important insights for further understanding the heterologous protein trafficking mechanisms and for developing effective strategies in molecular farming.
Collapse
Affiliation(s)
- Lorena Moeller
- Interdepartmental Plant Biology Major, Iowa State University, Ames, IA 50011-1010, USA
- Department of Agronomy, Iowa State University, Ames, IA 50011-1010, USA
| | - Qinglei Gan
- Department of Agronomy, Iowa State University, Ames, IA 50011-1010, USA
| | - Kan Wang
- Department of Agronomy, Iowa State University, Ames, IA 50011-1010, USA
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
49
|
Žárský V, Cvrčková F, Potocký M, Hála M. Exocytosis and cell polarity in plants - exocyst and recycling domains. THE NEW PHYTOLOGIST 2009; 183:255-272. [PMID: 19496948 DOI: 10.1111/j.1469-8137.2009.02880.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In plants, exocytosis is a central mechanism of cell morphogenesis. We still know surprisingly little about some aspects of this process, starting with exocytotic vesicle formation, which may take place at the trans-Golgi network even without coat assistance, facilitated by the local regulation of membrane lipid organization. The RabA4b guanosine triphosphatase (GTPase), recruiting phosphatidylinositol-4-kinase to the trans-Golgi network, is a candidate vesicle formation organizer. However, in plant cells, there are obviously additional endosomal source compartments for secretory vesicles. The Rho/Rop GTPase regulatory module is central for the initiation of exocytotically active domains in plant cell cortex (activated cortical domains). Most plant cells exhibit several distinct plasma membrane domains, established and maintained by endocytosis-driven membrane recycling. We propose the concept of a 'recycling domain', uniting the activated cortical domain and the connected endosomal compartments, as a dynamic spatiotemporal entity. We have recently described the exocyst tethering complex in plant cells. As a result of the multiplicity of its putative Exo70 subunits, this complex may belong to core regulators of recycling domain organization, including the generation of multiple recycling domains within a single cell. The conventional textbook concept that the plant secretory pathway is largely constitutive is misleading.
Collapse
Affiliation(s)
- Viktor Žárský
- Department of Plant Physiology, Charles University, Viničná 5, 128 44 Praha 2, Czech Republic
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Praha 6, Czech Republic
| | - Fatima Cvrčková
- Department of Plant Physiology, Charles University, Viničná 5, 128 44 Praha 2, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Praha 6, Czech Republic
| | - Michal Hála
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Praha 6, Czech Republic
| |
Collapse
|
50
|
Wei T, Wang A. Biogenesis of cytoplasmic membranous vesicles for plant potyvirus replication occurs at endoplasmic reticulum exit sites in a COPI- and COPII-dependent manner. J Virol 2008; 82:12252-64. [PMID: 18842721 PMCID: PMC2593340 DOI: 10.1128/jvi.01329-08] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 09/29/2008] [Indexed: 12/31/2022] Open
Abstract
Single-stranded positive-sense RNA viruses induce the biogenesis of cytoplasmic membranous vesicles, where viral replication takes place. However, the mechanism underlying this characteristic vesicular proliferation remains poorly understood. Previously, a 6-kDa potyvirus membrane protein (6K) was shown to interact with the endoplasmic reticulum (ER) and to induce the formation of the membranous vesicles. In this study, the involvement of the early secretory pathway in the formation of the 6K-induced vesicles was investigated in planta. By means of live-cell imaging, it was found that the 6K protein was predominantly colocalized with Sar1, Sec23, and Sec24, which are known markers of ER exit sites (ERES). The localization of 6K at ERES was prevented by the coexpression of a dominant-negative mutant of Sar1 that disables the COPII activity or by the coexpression of a mutant of Arf1 that disrupts the COPI complex. The secretion of a soluble secretory marker targeting the apoplast was arrested at the level of the ER in cells overexpressing 6K or infected by a potyvirus. This blockage of protein trafficking out of the ER by 6K and the distribution of 6K toward the ERES may account for the aggregation of the 6K-bound vesicles. Finally, virus infection was reduced when the accumulation of 6K at ERES was inhibited by impairing either the COPI or COPII complex. Taken together, these results imply that the cellular COPI and COPII coating machineries are involved in the biogenesis of the potyvirus 6K vesicles at the ERES for viral-genome replication.
Collapse
Affiliation(s)
- Taiyun Wei
- Southern Crop Protection and Food Research Centre, AAFC, 1391 Sandford Street, London, Ontario N5V 4T3, Canada
| | | |
Collapse
|