1
|
Liu S, Zhu M, Ma W, Wan Y, Liu Y. Effects of calcium ions and cell wall deposition on the pollen viability of Paeonia lactiflora after cryopreservation. PLANTA 2024; 260:96. [PMID: 39278995 DOI: 10.1007/s00425-024-04530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/08/2024] [Indexed: 09/18/2024]
Abstract
MAIN CONCLUSION Four cultivars of Paeonia lactiflora pollen have a different viability after cryopreservation, and that the difference of pollen viability is related to calcium ions and cell wall deposition. Cryopreservation is a vital technique for preserving germplasm resources, offering extensive application prospects. Understanding the factors influencing pollen viability after cryopreservation is crucial for the permanent preservation and exchange of pollen resources. This study investigated pollen from four Paeonia lactiflora cultivars with varying viability after cryopreservation, aiming to determine whether calcium ions (Ca2+) and cell wall deposition affect these viability changes. The results showed that Ca2+-ATPase activity and cytoplasmic Ca2+ of all four cultivars exhibited an increasing trend after cryopreservation; the calmodulin (CaM) content varied with cultivars. Correlation analysis showed that fresh pollen viability was significantly negatively correlated with cytoplasmic Ca2+ content and positively correlated with Ca2+-ATPase activity, while pollen viability after cryopreservation exhibited a significantly negative correlation with cytoplasmic Ca2+ content and a positive correlation with CaM content. The pollen cell wall of the cultivar 'Zi Feng Chao Yang' (ZFCY), which showed increased viability after cryopreservation, contained significantly higher levels of low-temperature tolerance-related phospholipids and proteins compared to other cultivars. Additionally, all cultivars maintained a clear Ca2+ gradient at the tips of pollen tubes after cryopreservation, without significant callose accumulation. These findings suggest that differences in Ca2+ signaling and cell wall components deposition influence changes in pollen viability after cryopreservation, and the Ca2+ gradient and callose at the tip of pollen tubes are not responsible for preventing pollen tube growth.
Collapse
Affiliation(s)
- Shangqian Liu
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center for Floriculture, Beijing, 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing, 100083, China
| | - Mengting Zhu
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center for Floriculture, Beijing, 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing, 100083, China
| | - Wenjie Ma
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center for Floriculture, Beijing, 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing, 100083, China
| | - Yingling Wan
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center for Floriculture, Beijing, 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing, 100083, China
| | - Yan Liu
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
- National Engineering Research Center for Floriculture, Beijing, 100083, China.
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China.
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing, 100083, China.
| |
Collapse
|
2
|
Gismondi A, Di Marco G, Canuti L, Altamura MM, Canini A. Ultrastructure and development of the floral nectary from Borago officinalis L. and phytochemical changes in its secretion. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 345:112135. [PMID: 38797382 DOI: 10.1016/j.plantsci.2024.112135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Although Boraginaceae have been classified as good sources of nectar for many insects, little is still known about their nectar and nectaries. Thus, in the present contribution, we investigated the nectar production dynamics and chemistry in Borago officinalis L. (borage or starflower), together with its potential interaction capacity with pollinators. A peak of nectar secretion (∼5.1 µL per flower) was recorded at anthesis, to decrease linearly during the following 9 days. In addition, TEM and SEM analyses were performed to understand ultrastructure and morphological changes occurring in borage nectary before and after anthesis, but also after its secretory phase. Evidence suggested that nectar was transported by the apoplastic route (mainly from parenchyma to epidermis) and then released essentially by exocytotic processes, that is a granulocrine secretion. This theory was corroborated by monitoring the signal of complex polysaccharides and calcium, respectively, via Thiéry staining and ESI/EELS technique. After the secretory phase, nectary underwent degeneration, probably through autophagic events and/or senescence induction. Furthermore, nectar (Nec) and other flower structures (i.e., sepals, gynoecia with nectaries, and petals) from borage were characterized by spectrophotometry and HPLC-DAD, in terms of plant secondary metabolites, both at early (E-) and late (L-) phase from anthesis. The content of phytochemicals was quantified and discussed for all samples, highlighting potential biological roles of these compounds in the borage flower (e.g., antimicrobial, antioxidant, staining effects). Surprisingly, a high significant accumulation of flavonoids was registered in L-Nec, with respect to E-Nec, indicating that this phenomenon might be functional and able to hide molecular (e.g., defence against pathogens) and/or ecological (e.g., last call for pollinators) purposes. Indeed, it is known that these plant metabolites influence nectar palatability, encouraging the approach of specialist pollinators, deterring nectar robbers, and altering the behaviour of insects.
Collapse
Affiliation(s)
- Angelo Gismondi
- Dept. of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy.
| | - Gabriele Di Marco
- Dept. of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy.
| | - Lorena Canuti
- Dept. of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy
| | | | - Antonella Canini
- Dept. of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy.
| |
Collapse
|
3
|
Rafińska K, Niedojadło K, Świdziński M, Bednarska-Kozakiewicz E. Distribution of exchangeable Ca 2+ during the process of Larix decidua Mill. pollination and germination. Sci Rep 2024; 14:5639. [PMID: 38454044 PMCID: PMC10920793 DOI: 10.1038/s41598-024-54903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/18/2024] [Indexed: 03/09/2024] Open
Abstract
The involvement of Ca2+ ions in angiosperms sexual processes is well established, while in gymnosperms, such knowledge remains limited and is still a topic of discussion. In this study, we focused on Larix decidua, using Alizarin-red S staining and the pyroantimonate method to examine the tissue and subcellular distribution of free and loosely bound Ca2+ ions at different stages of the male gametophyte's development and its interaction with the ovule. Our findings show that in larch, both the germination of pollen grains and the growth of pollen tubes occur in an environment rich in Ca2+. These ions play a crucial role in the adhesion of the pollen grain to the stigmatic tip and its subsequent movement to the micropylar canal. There is a significant presence of free and loosely bound Ca2+ ions in both the fluid of the micropylar canal and the extracellular matrix of the nucellus. As the pollen tube extends through the nucellus, we observed a notable accumulation of Ca2+ ions just above the entry to the mature archegonium, a region likely crucial for the male gametophyte's directional growth. Meanwhile, the localized presence of free and loosely bound Ca2+ ions within the egg cell cytoplasm may inhibit the pollen tubes growth and rupture, playing an important role in fertilization.
Collapse
Affiliation(s)
- Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland
| | - Katarzyna Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland.
| | - Michał Świdziński
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| | - Elżbieta Bednarska-Kozakiewicz
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
4
|
Ahmed S, Khan MSS, Xue S, Islam F, Ikram AU, Abdullah M, Liu S, Tappiban P, Chen J. A comprehensive overview of omics-based approaches to enhance biotic and abiotic stress tolerance in sweet potato. HORTICULTURE RESEARCH 2024; 11:uhae014. [PMID: 38464477 PMCID: PMC10923648 DOI: 10.1093/hr/uhae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/09/2024] [Indexed: 03/12/2024]
Abstract
Biotic and abiotic stresses negatively affect the yield and overall plant developmental process, thus causing substantial losses in global sweet potato production. To cope with stresses, sweet potato has evolved numerous strategies to tackle ever-changing surroundings and biological and environmental conditions. The invention of modern sequencing technology and the latest data processing and analysis instruments has paved the way to integrate biological information from different approaches and helps to understand plant system biology more precisely. The advancement in omics technologies has accumulated and provided a great source of information at all levels (genome, transcript, protein, and metabolite) under stressful conditions. These latest molecular tools facilitate us to understand better the plant's responses to stress signaling and help to process/integrate the biological information encoded within the biological system of plants. This review briefly addresses utilizing the latest omics strategies for deciphering the adaptive mechanisms for sweet potatoes' biotic and abiotic stress tolerance via functional genomics, transcriptomics, proteomics, and metabolomics. This information also provides a powerful reference to understand the complex, well-coordinated stress signaling genetic regulatory networks and better comprehend the plant phenotypic responses at the cellular/molecular level under various environmental stimuli, thus accelerating the design of stress-resilient sweet potato via the latest genetic engineering approaches.
Collapse
Affiliation(s)
- Sulaiman Ahmed
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | | | - Songlei Xue
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng 224000, China
| | - Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Aziz Ul Ikram
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Abdullah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minghang, 200240, Shanghai, China
| | - Shan Liu
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Piengtawan Tappiban
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
Bawa G, Liu Z, Zhou Y, Fan S, Ma Q, Tissue DT, Sun X. Cotton proteomics: Dissecting the stress response mechanisms in cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:1035801. [PMID: 36466262 PMCID: PMC9714328 DOI: 10.3389/fpls.2022.1035801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
The natural environment of plants comprises a complex set of biotic and abiotic stresses, and plant responses to these stresses are complex as well. Plant proteomics approaches have significantly revealed dynamic changes in plant proteome responses to stress and developmental processes. Thus, we reviewed the recent advances in cotton proteomics research under changing environmental conditions, considering the progress and challenging factors. Finally, we highlight how single-cell proteomics is revolutionizing plant research at the proteomics level. We envision that future cotton proteomics research at the single-cell level will provide a more complete understanding of cotton's response to stresses.
Collapse
Affiliation(s)
- George Bawa
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Yaping Zhou
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, China
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, China
| | - David T. Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
6
|
Cai Z, Cai Z, Huang J, Wang A, Ntambiyukuri A, Chen B, Zheng G, Li H, Huang Y, Zhan J, Xiao D, He L. Transcriptomic analysis of tuberous root in two sweet potato varieties reveals the important genes and regulatory pathways in tuberous root development. BMC Genomics 2022; 23:473. [PMID: 35761189 PMCID: PMC9235109 DOI: 10.1186/s12864-022-08670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background Tuberous root formation and development is a complex process in sweet potato, which is regulated by multiple genes and environmental factors. However, the regulatory mechanism of tuberous root development is unclear. Results In this study, the transcriptome of fibrous roots (R0) and tuberous roots in three developmental stages (Rl, R2, R3) were analyzed in two sweet potato varieties, GJS-8 and XGH. A total of 22,914 and 24,446 differentially expressed genes (DEGs) were identified in GJS-8 and XGH respectively, 15,920 differential genes were shared by GJS-8 and XGH. KEGG pathway enrichment analysis showed that the DEGs shared by GJS-8 and XGH were mainly involved in “plant hormone signal transduction” “starch and sucrose metabolism” and “MAPK signal transduction”. Trihelix transcription factor (Tai6.25300) was found to be closely related to tuberous root enlargement by the comprehensive analysis of these DEGs and weighted gene co-expression network analysis (WGCNA). Conclusion A hypothetical model of genetic regulatory network for tuberous root development of sweet potato is proposed, which emphasizes that some specific signal transduction pathways like “plant hormone signal transduction” “Ca2+signal” “MAPK signal transduction” and metabolic processes including “starch and sucrose metabolism” and “cell cycle and cell wall metabolism” are related to tuberous root development in sweet potato. These results provide new insights into the molecular mechanism of tuberous root development in sweet potato. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08670-x.
Collapse
Affiliation(s)
- Zhaoqin Cai
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China.,Guangxi South Subtropical Agricultural Science Research Institute, Chongzuo, 532406, People's Republic of China
| | - Zhipeng Cai
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Jingli Huang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Aiqin Wang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China.,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Aaron Ntambiyukuri
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Bimei Chen
- Hepu Institute of Agricultural Sciences, Beihai, 536101, People's Republic of China
| | - Ganghui Zheng
- Hepu Institute of Agricultural Sciences, Beihai, 536101, People's Republic of China
| | - Huifeng Li
- Maize Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Yongmei Huang
- Maize Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Jie Zhan
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China.,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Dong Xiao
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China. .,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China.
| | - Longfei He
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China. .,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China.
| |
Collapse
|
7
|
Zhang M, Chen Z, Yuan F, Wang B, Chen M. Integrative transcriptome and proteome analyses provide deep insights into the molecular mechanism of salt tolerance in Limonium bicolor. PLANT MOLECULAR BIOLOGY 2022; 108:127-143. [PMID: 34950990 DOI: 10.1007/s11103-021-01230-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/02/2021] [Indexed: 05/21/2023]
Abstract
Integrative transcriptome and proteome analyses revealed many candidate members that may involve in salt secretion from salt glands in Limonium bicolor. Limonium bicolor, a typical recretohalophyte, protects itself from salt damage by excreting excess salt out of its cells through salt glands. Here, to provide an overview of the salt-tolerance mechanism of L. bicolor, we conducted integrative transcriptome and proteome analyses of this species under salt treatment. We identified numerous differentially expressed transcripts and proteins that may be related to the salt-tolerance mechanism of L. bicolor. By measuring the Na+ secretion rate, were found that this cation secretion rate of a single salt gland was significantly increased after high salinity treatment compared with that in control and then reached the maximum in a short time. Interestingly, transcripts and proteins involved in transmembrane transport of ions were differentially expressed in response to high salinity treatment, suggesting a number of genes and proteins they may play important roles in the salt-stress response. Correlation between differentially expressed transcript and protein profiles revealed several transcripts and proteins that may be responsible for salt tolerance, such as cellulose synthases and annexins. Our findings uncovered many candidate transcripts and proteins in response to the salt tolerance of L. bicolor, providing deep insights into the molecular mechanisms of this important process in recretohalophytes.
Collapse
Affiliation(s)
- Mingjing Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Zhuo Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
8
|
Breygina M, Klimenko E, Schekaleva O. Pollen Germination and Pollen Tube Growth in Gymnosperms. PLANTS (BASEL, SWITZERLAND) 2021; 10:1301. [PMID: 34206892 PMCID: PMC8309077 DOI: 10.3390/plants10071301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 01/08/2023]
Abstract
Pollen germination and pollen tube growth are common to all seed plants, but these processes first developed in gymnosperms and still serve for their successful sexual reproduction. The main body of data on the reproductive physiology, however, was obtained on flowering plants, and one should be careful to extrapolate the discovered patterns to gymnosperms. In recent years, physiological studies of coniferous pollen have been increasing, and both the features of this group and the similarities with flowering plants have already been identified. The main part of the review is devoted to physiological studies carried out on conifer pollen. The main properties and diversity of pollen grains and pollination strategies in gymnosperms are described.
Collapse
Affiliation(s)
- Maria Breygina
- Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.K.); (O.S.)
| | | | | |
Collapse
|
9
|
BIDHENDI A, CHEBLI Y, GEITMANN A. Fluorescence visualization of cellulose and pectin in the primary plant cell wall. J Microsc 2020; 278:164-181. [DOI: 10.1111/jmi.12895] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/07/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022]
Affiliation(s)
- A.J. BIDHENDI
- Department of Plant ScienceMcGill UniversityMacdonald Campus Ste‐Anne‐de‐Bellevue Québec Canada
| | - Y. CHEBLI
- Department of Plant ScienceMcGill UniversityMacdonald Campus Ste‐Anne‐de‐Bellevue Québec Canada
| | - A. GEITMANN
- Department of Plant ScienceMcGill UniversityMacdonald Campus Ste‐Anne‐de‐Bellevue Québec Canada
| |
Collapse
|
10
|
Zhou Y, Luo S, Hameed S, Xiao D, Zhan J, Wang A, He L. Integrated mRNA and miRNA transcriptome analysis reveals a regulatory network for tuber expansion in Chinese yam (Dioscorea opposita). BMC Genomics 2020; 21:117. [PMID: 32013881 DOI: 10.21203/rs.2.9777/v4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 01/14/2020] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Yam tuber is a storage organ, derived from the modified stem. Tuber expansion is a complex process, and depends on the expressions of genes that can be influenced by environmental and endogenous factors. However, little is known about the regulatory mechanism of tuber expansion. In order to identify the genes and miRNAs involved in tuber expansion, we examined the mRNAs and small RNAs in Dioscorea opposita (Chinese yam) cv. Guihuai 16 tuber during its initiation and expansion stages. RESULTS A total of 14,238 differentially expressed genes in yam tuber at its expansion stage were identified by using RNA sequencing technology. Among them, 5723 genes were up-regulated, and 8515 genes were down-regulated. Functional analysis revealed the coordination of tuber plant involved in processes of cell events, metabolism, biosynthesis, and signal transduction pathways at transcriptional level, suggesting that these differentially expressed genes are somehow involved in response to tuber expansion, including CDPK, CaM, CDL, SAUR, DELLA, SuSy, and expansin. In addition, 541 transcription factor genes showed differential expression during the expansion stage at transcriptional level. MADS, bHLH, and GRAS were involved in cell differentiation, division, and expansion, which may relate to tuber expansion. Noteworthy, data analysis revealed that 22 known tuber miRNAs belong to 10 miRNA families, and 50 novel miRNAs were identified. The integrated analysis of miRNA-mRNA showed that 4 known miRNAs and 11 genes formed 14 miRNA-target mRNA pairs were co-expressed in expansion stage. miRNA160, miRNA396, miRNA535 and miRNA5021 may be involved in complex network to regulate cell division and differentiation in yam during its expansion stage. CONCLUSION The mRNA and miRNA datasets presented here identified a subset of candidate genes and miRNAs that are putatively associated with tuber expansion in yam, a hypothetical model of genetic regulatory network associated with tuber expansion in yam was put forward, which may provide a foundation for molecular regulatory mechanism researching on tuber expansion in Dioscorea species.
Collapse
Affiliation(s)
- Yunyi Zhou
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Shuzhen Luo
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Saba Hameed
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Dong Xiao
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Jie Zhan
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Aiqin Wang
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China.
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China.
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China.
| | - Longfei He
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China.
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China.
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China.
| |
Collapse
|
11
|
Zhou Y, Luo S, Hameed S, Xiao D, Zhan J, Wang A, He L. Integrated mRNA and miRNA transcriptome analysis reveals a regulatory network for tuber expansion in Chinese yam (Dioscorea opposita). BMC Genomics 2020; 21:117. [PMID: 32013881 PMCID: PMC6998100 DOI: 10.1186/s12864-020-6492-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 01/14/2020] [Indexed: 01/05/2023] Open
Abstract
Background Yam tuber is a storage organ, derived from the modified stem. Tuber expansion is a complex process, and depends on the expressions of genes that can be influenced by environmental and endogenous factors. However, little is known about the regulatory mechanism of tuber expansion. In order to identify the genes and miRNAs involved in tuber expansion, we examined the mRNAs and small RNAs in Dioscorea opposita (Chinese yam) cv. Guihuai 16 tuber during its initiation and expansion stages. Results A total of 14,238 differentially expressed genes in yam tuber at its expansion stage were identified by using RNA sequencing technology. Among them, 5723 genes were up-regulated, and 8515 genes were down-regulated. Functional analysis revealed the coordination of tuber plant involved in processes of cell events, metabolism, biosynthesis, and signal transduction pathways at transcriptional level, suggesting that these differentially expressed genes are somehow involved in response to tuber expansion, including CDPK, CaM, CDL, SAUR, DELLA, SuSy, and expansin. In addition, 541 transcription factor genes showed differential expression during the expansion stage at transcriptional level. MADS, bHLH, and GRAS were involved in cell differentiation, division, and expansion, which may relate to tuber expansion. Noteworthy, data analysis revealed that 22 known tuber miRNAs belong to 10 miRNA families, and 50 novel miRNAs were identified. The integrated analysis of miRNA-mRNA showed that 4 known miRNAs and 11 genes formed 14 miRNA-target mRNA pairs were co-expressed in expansion stage. miRNA160, miRNA396, miRNA535 and miRNA5021 may be involved in complex network to regulate cell division and differentiation in yam during its expansion stage. Conclusion The mRNA and miRNA datasets presented here identified a subset of candidate genes and miRNAs that are putatively associated with tuber expansion in yam, a hypothetical model of genetic regulatory network associated with tuber expansion in yam was put forward, which may provide a foundation for molecular regulatory mechanism researching on tuber expansion in Dioscorea species.
Collapse
Affiliation(s)
- Yunyi Zhou
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Shuzhen Luo
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Saba Hameed
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Dong Xiao
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China.,Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China.,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Jie Zhan
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China.,Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China.,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Aiqin Wang
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China. .,Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China. .,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China.
| | - Longfei He
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China. .,Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China. .,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China.
| |
Collapse
|
12
|
Breygina M, Maksimov N, Polevova S, Evmenyeva A. Bipolar pollen germination in blue spruce (Picea pungens). PROTOPLASMA 2019; 256:941-949. [PMID: 30788602 DOI: 10.1007/s00709-018-01333-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Direct growth of a pollen tube is an effective mechanism of sperm delivery characteristic for the majority of seed plants. In most cases, only one tube grows from one grain to perform the delivery function; meanwhile in Picea the appearance of two tubes from a single pollen grain is quite common during in vitro germination. Here, we describe the phenomenon of bipolar germination and test two hypotheses on its nature and possible role in gametophyte functioning. The hypothesis on "trophic" function of multiple tubes provoked by poor nutrition discussed in literature was not confirmed by in vitro growth tests; bipolar germination strongly decreased with lowering sucrose availability. The highest proportion of bipolar germination occurred in optimal conditions. We then assumed that bipolar germination occurs because turgor pressure is a non-directional force and effective systems of cell wall mechanical regulation are lacking. In hypertonic medium, bipolar germination was sufficiently lower than in isotonic medium, which was consistent with prediction of the «mechanical» hypothesis. Scanning electron microscopy and fluorescence microscopy analysis of pollen morphology and cell wall dynamics during both types of germination showed that the appearance of a single tube or bipolar germination depends on the extension of exine rupture. Cell wall softening by short-term ·OH treatment sufficiently decreased the percent of bipolar germination without affecting total germination efficiency. We concluded that mechanical properties of the cell wall and turgor pressure could shift the balance towards one of the germination patterns.
Collapse
Affiliation(s)
- M Breygina
- Lomonosov Moscow State University, Russian Federation, Moscow, 119991, Russia.
| | - N Maksimov
- Lomonosov Moscow State University, Russian Federation, Moscow, 119991, Russia
| | - S Polevova
- Lomonosov Moscow State University, Russian Federation, Moscow, 119991, Russia
| | - A Evmenyeva
- Lomonosov Moscow State University, Russian Federation, Moscow, 119991, Russia
| |
Collapse
|
13
|
Fang KF, Du BS, Zhang Q, Xing Y, Cao QQ, Qin L. Boron deficiency alters cytosolic Ca 2+ concentration and affects the cell wall components of pollen tubes in Malus domestica. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:343-351. [PMID: 30444945 DOI: 10.1111/plb.12941] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Boron (B) is essential for normal plant growth, including pollen tube growth. B deficiency influences various physiological and metabolic processes in plants. However, the underlying mechanism of B deficiency in pollen tube growth is not sufficiently understood. In the present research, the influence of B deficiency on apple (Malus domestica) pollen tube growth was studied and the possible regulatory mechanism evaluated. Apple pollen grains were cultured under different concentrations of B. Scanning ion-selective electrode technique, fluorescence labelling and Fourier-transform infrared (FTIR) analysis were used to detect calcium ion flux, cytosolic Ca2+ concentration ([Ca2+ ]cyt), actin filaments and cell wall components of pollen tubes. B deficiency inhibited apple pollen germination and induced retardation of tube growth. B deficiency increased extracellular Ca2+ influx and thus led to increased [Ca2+ ]cyt in the pollen tube tip. In addition, B deficiency modified actin filament arrangement at the pollen tube apex. B deficiency also altered the deposition of pollen tube wall components. Clear differences were not observed in the distribution patterns of cellulose and callose between control and B deficiency treated pollen tubes. However, B deficiency affected distribution patterns of pectin and arabinogalactan proteins (AGP). Clear ring-like signals of pectins and AGP on control pollen tubes varied according to B deficiency. B deficiency further decreased acid pectins, esterified pectins and AGP content at the tip of the pollen tube, which were supported by changes in chemical composition of the tube walls. B appears to have an active role in pollen tube growth by affecting [Ca2+ ]cyt, actin filament assembly and pectin and AGP deposition in the pollen tube. These findings provide valuable information that enhances our current understanding of the mechanism regulating pollen tube growth.
Collapse
Affiliation(s)
- K F Fang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - B S Du
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Q Zhang
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, China
- Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Y Xing
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, China
- Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Q Q Cao
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, China
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - L Qin
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, China
- Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
14
|
Nie S, Zhang M, Zhang L. Genome-wide identification and expression analysis of calmodulin-like (CML) genes in Chinese cabbage (Brassica rapa L. ssp. pekinensis). BMC Genomics 2017; 18:842. [PMID: 29096605 PMCID: PMC5668983 DOI: 10.1186/s12864-017-4240-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/25/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Calmodulin-like (CML) proteins are a primary family of plant-specific Ca2+ sensors that specifically bind to Ca2+ and deliver a Ca2+ signal. CML proteins have been identified and characterized in many plant species, such as the model plant Arabidopsis and rice. Based on considerable evidence, the roles of CML proteins are crucial in plant growth and development and in the response to various external stimuli. Nevertheless, the characterization and expression profiling of CML genes in Chinese cabbage (Brassica rapa L. ssp. pekinensis) remain limited. RESULTS In this study, a genome-wide search and comprehensive analysis were performed, and a total of 79 BrCML genes were identified in Chinese cabbage. Gene structure analysis revealed that these BrCML genes contained two to four conserved EF-hand motifs. Phylogenetic analysis showed that CML homologs between Chinese cabbage and Arabidopsis shared close relationships. The identified BrCML genes were located across ten chromosomes and three different subgenomes of Chinese cabbage. Moreover, 126 pairs of orthologous CML genes were found among Chinese cabbage, Arabidopsis and Brassica oleracea. Expression analysis revealed that the expression of some BrCML genes was tissue-specific and that of some was susceptible to temperature stress. A putative interaction network of BrCML proteins was proposed, which suggested that BrCML2, BrCML6, BrCML15 and BrCML25 were co-expressed and might play roles in flower development and other relevant biological processes of Chinese cabbage. CONCLUSIONS The results of this study increased the understanding and characterization of BrCML genes in Chinese cabbage, and will be a rich resource for further studies to investigate BrCML protein function in various developmental processes of Chinese cabbage.
Collapse
Affiliation(s)
- Shanshan Nie
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Minjuan Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Lugang Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| |
Collapse
|
15
|
Pan J, Wang W, Li D, Shu Z, Ye X, Chang P, Wang Y. Gene expression profile indicates involvement of NO in Camellia sinensis pollen tube growth at low temperature. BMC Genomics 2016; 17:809. [PMID: 27756219 PMCID: PMC5070194 DOI: 10.1186/s12864-016-3158-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 10/12/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Nitric oxide (NO) functions as a critical signaling molecule in the low-temperature stress responses in plants, including polarized pollen tube growth in Camellia sinensis. Despite this, the potential mechanisms underlying the participation of NO in pollen tube responses to low temperature remain unclear. Here, we investigate alterations to gene expression in C. sinensis pollen tubes exposed to low-temperature stress and NO using RNA-Seq technology, in order to find the potential candidate genes related to the regulation of pollen tube elongation by NO under low-temperature stress. RESULTS Three libraries were generated from C. sinensis cv. 'Longjingchangye' pollen tubes cultured at 25 °C (CsPT-CK) and 4 °C (CsPT-LT) or with 25 μM DEA NONOate (CsPT-NO). The number of unigenes found for the three biological replications were 39,726, 40,440 and 41,626 for CsPT-CK; 36,993, 39,070 and 39,439 for CsPT-LT; and 39,514, 38,298 and 39,061 for CsPT-NO. A total of 36,097 unique assembled and annotated sequences from C. sinensis pollen tube reads were found in a BLAST search of the following databases: NCBI non-redundant nucleotide, Swiss-prot protein, Kyoto Encyclopedia of Genes and Genomes, Cluster of Orthologous Groups of proteins, and Gene Ontology. The absolute values of log2Ratio > 1 and probability > 0.7 were used as the thresholds for significantly differential gene expression, and 766, 497 and 929 differentially expressed genes (DEGs) were found from the comparison analyses of the CK-VS-LT, CK-VS-NO and LT-VS-NO libraries, respectively. Genes related to metabolism and signaling pathways of plant hormones, transcription factors (TFs), vesicle polarized trafficking, cell wall biosynthesis, the ubiquitination machinery of the ubiquitin system and species-specific secondary metabolite pathways were mainly observed in the CK-VS-LT and CK-VS-NO libraries. CONCLUSION Differentially expressed unigenes related to the inhibition of C. sinensis pollen tube growth under low temperature and NO are identified in this study. The transcriptomic gene expression profiles present a valuable genomic tool to improve studying the molecular mechanisms underlying low-temperature tolerance in pollen tube.
Collapse
Affiliation(s)
- Junting Pan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Weidong Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dongqin Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zaifa Shu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaoli Ye
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Pinpin Chang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
16
|
Chaturvedi P, Ghatak A, Weckwerth W. Pollen proteomics: from stress physiology to developmental priming. PLANT REPRODUCTION 2016; 29:119-32. [PMID: 27271282 PMCID: PMC4909805 DOI: 10.1007/s00497-016-0283-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 05/05/2016] [Indexed: 05/19/2023]
Abstract
Pollen development and stress. In angiosperms, pollen or pollen grain (male gametophyte) is a highly reduced two- or three-cell structure which plays a decisive role in plant reproduction. Male gametophyte development takes place in anther locules where diploid sporophytic cells undergo meiotic division followed by two consecutive mitotic processes. A desiccated and metabolically quiescent form of mature pollen is released from the anther which lands on the stigma. Pollen tube growth takes place followed by double fertilization. Apart from its importance in sexual reproduction, pollen is also an interesting model system which integrates fundamental cellular processes like cell division, differentiation, fate determination, polar establishment, cell to cell recognition and communication. Recently, pollen functionality has been studied by multidisciplinary approaches which also include OMICS analyses like transcriptomics, proteomics and metabolomics. Here, we review recent advances in proteomics of pollen development and propose the process of developmental priming playing a key role to guard highly sensitive developmental processes.
Collapse
Affiliation(s)
- Palak Chaturvedi
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Arindam Ghatak
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
- School of Biotechnology and Bioinformatics, D.Y. Patil University, Sector No-15, CBD, Belapur, Navi Mumbai, India
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria.
| |
Collapse
|
17
|
Wang W, Sheng X, Shu Z, Li D, Pan J, Ye X, Chang P, Li X, Wang Y. Combined Cytological and Transcriptomic Analysis Reveals a Nitric Oxide Signaling Pathway Involved in Cold-Inhibited Camellia sinensis Pollen Tube Growth. FRONTIERS IN PLANT SCIENCE 2016; 7:456. [PMID: 27148289 PMCID: PMC4830839 DOI: 10.3389/fpls.2016.00456] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/24/2016] [Indexed: 05/05/2023]
Abstract
Nitric oxide (NO) as a signaling molecule plays crucial roles in many abiotic stresses in plant development processes, including pollen tube growth. Here, the signaling networks dominated by NO during cold stress that inhibited Camellia sinensis pollen tube growth are investigated in vitro. Cytological analysis show that cold-induced NO is involved in the inhibition of pollen tube growth along with disruption of the cytoplasmic Ca(2+) gradient, increase in ROS content, acidification of cytoplasmic pH and abnormalities in organelle ultrastructure and cell wall component distribution in the pollen tube tip. Furthermore, differentially expressed genes (DEGs)-related to signaling pathway, such as NO synthesis, cGMP, Ca(2+), ROS, pH, actin, cell wall, and MAPK cascade signal pathways, are identified and quantified using transcriptomic analyses and qRT-PCR, which indicate a potential molecular mechanism for the above cytological results. Taken together, these findings suggest that a complex signaling network dominated by NO, including Ca(2+), ROS, pH, RACs signaling and the crosstalk among them, is stimulated in the C. sinensis pollen tube in response to cold stress, which further causes secondary and tertiary alterations, such as ultrastructural abnormalities in organelles and cell wall construction, ultimately resulting in perturbed pollen tube extension.
Collapse
Affiliation(s)
- Weidong Wang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xianyong Sheng
- College of Life Sciences, Capital Normal UniversityBeijing, China
| | - Zaifa Shu
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Dongqin Li
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Junting Pan
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xiaoli Ye
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Pinpin Chang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xinghui Li
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
18
|
Fang K, Gao S, Zhang W, Xing Y, Cao Q, Qin L. Addition of Phenylboronic Acid to Malus domestica Pollen Tubes Alters Calcium Dynamics, Disrupts Actin Filaments and Affects Cell Wall Architecture. PLoS One 2016; 11:e0149232. [PMID: 26886907 PMCID: PMC4757038 DOI: 10.1371/journal.pone.0149232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 01/28/2016] [Indexed: 12/20/2022] Open
Abstract
A key role of boron in plants is to cross-link the cell wall pectic polysaccharide rhamnogalacturonan-II (RG-II) through borate diester linkages. Phenylboronic acid (PBA) can form the same reversible ester bonds but cannot cross-link two molecules, so can be used as an antagonist to study the function of boron. This study aimed to evaluate the effect of PBA on apple (Malus domestica) pollen tube growth and the underlying regulatory mechanism. We observed that PBA caused an inhibition of pollen germination, tube growth and led to pollen tube morphological abnormalities. Fluorescent labeling, coupled with a scanning ion-selective electrode technique, revealed that PBA induced an increase in extracellular Ca2+ influx, thereby elevating the cytosolic Ca2+ concentration [Ca2+]c and disrupting the [Ca2+]c gradient, which is critical for pollen tube growth. Moreover the organization of actin filaments was severely perturbed by the PBA treatment. Immunolocalization studies and fluorescent labeling, together with Fourier-transform infrared analysis (FTIR) suggested that PBA caused an increase in the abundance of callose, de-esterified pectins and arabinogalactan proteins (AGPs) at the tip. However, it had no effect on the deposition of the wall polymers cellulose. These effects are similar to those of boron deficiency in roots and other organs, indicating that PBA can induce boron deficiency symptoms. The results provide new insights into the roles of boron in pollen tube development, which likely include regulating [Ca2+]c and the formation of the actin cytoskeleton, in addition to the synthesis and assembly of cell wall components.
Collapse
Affiliation(s)
- Kefeng Fang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Sai Gao
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Weiwei Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yu Xing
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Qingqin Cao
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Ling Qin
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- * E-mail:
| |
Collapse
|
19
|
Anion Channel Inhibitor NPPB-Inhibited Fluoride Accumulation in Tea Plant (Camellia sinensis) Is Related to the Regulation of Ca²⁺, CaM and Depolarization of Plasma Membrane Potential. Int J Mol Sci 2016; 17:ijms17010057. [PMID: 26742036 PMCID: PMC4730302 DOI: 10.3390/ijms17010057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 12/20/2015] [Accepted: 12/22/2015] [Indexed: 11/16/2022] Open
Abstract
Tea plant is known to be a hyper-accumulator of fluoride (F). Over-intake of F has been shown to have adverse effects on human health, e.g., dental fluorosis. Thus, understanding the mechanisms fluoride accumulation and developing potential approaches to decrease F uptake in tea plants might be beneficial for human health. In the present study, we found that pretreatment with the anion channel inhibitor NPPB reduced F accumulation in tea plants. Simultaneously, we observed that NPPB triggered Ca(2+) efflux from mature zone of tea root and significantly increased relative CaM in tea roots. Besides, pretreatment with the Ca(2+) chelator (EGTA) and CaM antagonists (CPZ and TFP) suppressed NPPB-elevated cytosolic Ca(2+) fluorescence intensity and CaM concentration in tea roots, respectively. Interestingly, NPPB-inhibited F accumulation was found to be significantly alleviated in tea plants pretreated with either Ca(2+) chelator (EGTA) or CaM antagonists (CPZ and TFP). In addition, NPPB significantly depolarized membrane potential transiently and we argue that the net Ca(2+) and H⁺ efflux across the plasma membrane contributed to the restoration of membrane potential. Overall, our results suggest that regulation of Ca(2+)-CaM and plasma membrane potential depolarization are involved in NPPB-inhibited F accumulation in tea plants.
Collapse
|
20
|
Wang SS, Diao WZ, Yang X, Qiao Z, Wang M, Acharya BR, Zhang W. Arabidopsis thaliana CML25 mediates the Ca(2+) regulation of K(+) transmembrane trafficking during pollen germination and tube elongation. PLANT, CELL & ENVIRONMENT 2015; 38:2372-86. [PMID: 25923414 DOI: 10.1111/pce.12559] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 04/09/2015] [Indexed: 05/10/2023]
Abstract
The concentration alteration of cytosolic-free calcium ([Ca(2+) ]cyt ) is a well-known secondary messenger in plants and plays important roles during pollen grain germination and tube elongation. Here we demonstrate that CML25, a member of calmodulin-like proteins, has Ca(2+) -binding activity and plays a role in pollen grain germination, tube elongation and seed setting. CML25 transcript was abundant in mature pollen grains and pollen tubes, and its product CML25 protein was primarily directed to the cytoplasm. Two independent CML25 loss-of-function T-DNA insertion mutants suffered a major reduction in both the rate of pollen germination and the elongation of the pollen tube. Also, pollen grains of cml25 mutants were less sensitive to the external K(+) and Ca(2+) concentration than wild-type pollen. The disruption of CML25 increased the [Ca(2+) ]cyt in both the pollen grain and the pollen tube, which in turn impaired the Ca(2+) -dependent inhibition of whole-cell inward K(+) currents in protoplasts prepared from these materials (pollen grain and pollen tube). Complementation of cml25-1 mutant resulted in the recovery of wild-type phenotype. Our findings indicate that CML25 is an important transducer in the Ca(2+) -mediated regulation of K(+) influx during pollen germination and tube elongation.
Collapse
Affiliation(s)
- Shuang-Shuang Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Wen-Zhu Diao
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Xue Yang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
- College of Technological Gardening, Shandong Yingcai University, Jinan, 250104, China
| | - Zhu Qiao
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Mei Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Biswa R Acharya
- Department of Biology, Pennsylvania State University University Park, State College, PA, 16802, USA
| | - Wei Zhang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| |
Collapse
|
21
|
Zhang XC, Gao HJ, Wu HH, Yang TY, Zhang ZZ, Mao JD, Wan XC. Ca(2+) and CaM are involved in Al(3+) pretreatment-promoted fluoride accumulation in tea plants (Camellia sinesis L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 96:288-295. [PMID: 26318146 DOI: 10.1016/j.plaphy.2015.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 06/04/2023]
Abstract
Tea plant (Camellia sinensis (L.) O. kuntze) is known to be a fluoride (F) and aluminum (Al(3+)) hyper-accumulator. Previous study showed that pre-treatment of Al(3+) caused a significant increase of F accumulation in tea plants. However, less is known about the intricate network of Al(3+) promoted F accumulation in tea plants. In this study, the involvement of endogenous Ca(2+) and CaM in Al(3+) pretreatment-promoted F accumulation in tea plants was investigated. Our results showed that Al(3+) induced the inverse change of intracellular Ca(2+) fluorescence intensity and stimulated Ca(2+) trans-membrane transport in the mature zone of tea root. Also, a link between internal Ca(2+) and CaM was found in tea roots under the presence of Al(3+). In order to investigate whether Ca(2+) and CaM were related to F accumulation promoted by Al(3+) pretreatment, Ca(2+) chelator EGTA and CaM antagonists CPZ and TFP were used. EGTA, CPZ, and TFP pretreatment inhibited Al(3+)-induced increase of Ca(2+) fluorescence intensity and CaM content in tea roots, and also significantly reduced Al(3+)-promoted F accumulation in tea plants. Taken together, our results suggested that the endogenous Ca(2+) and CaM are involved in Al(3+) pretreatment-promoted F accumulation in tea roots.
Collapse
Affiliation(s)
- Xian-Chen Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Hong-Jian Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| | - Hong-Hong Wu
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Tian-Yuan Yang
- College of Resource & Environment Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zheng-Zhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Jing-Dong Mao
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Xiao-Chun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
22
|
Li M, Yang Y, Li X, Gu L, Wang F, Feng F, Tian Y, Wang F, Wang X, Lin W, Chen X, Zhang Z. Analysis of integrated multiple 'omics' datasets reveals the mechanisms of initiation and determination in the formation of tuberous roots in Rehmannia glutinosa. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5837-51. [PMID: 26077835 DOI: 10.1093/jxb/erv288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
All tuberous roots in Rehmannia glutinosa originate from the expansion of fibrous roots (FRs), but not all FRs can successfully transform into tuberous roots. This study identified differentially expressed genes and proteins associated with the expansion of FRs, by comparing the tuberous root at expansion stages (initiated tuberous root, ITRs) and FRs at the seedling stage (initiated FRs, IFRs). The role of miRNAs in the expansion of FRs was also explored using the sRNA transcriptome and degradome to identify miRNAs and their target genes that were differentially expressed between ITRs and FRs at the mature stage (unexpanded FRs, UFRs, which are unable to expand into ITRs). A total of 6032 genes and 450 proteins were differentially expressed between ITRs and IFRs. Integrated analyses of these data revealed several genes and proteins involved in light signalling, hormone response, and signal transduction that might participate in the induction of tuberous root formation. Several genes related to cell division and cell wall metabolism were involved in initiating the expansion of IFRs. Of 135 miRNAs differentially expressed between ITRs and UFRs, there were 27 miRNAs whose targets were specifically identified in the degradome. Analysis of target genes showed that several miRNAs specifically expressed in UFRs were involved in the degradation of key genes required for the formation of tuberous roots. As far as could be ascertained, this is the first time that the miRNAs that control the transition of FRs to tuberous roots in R. glutinosa have been identified. This comprehensive analysis of 'omics' data sheds new light on the mechanisms involved in the regulation of tuberous roots formation.
Collapse
Affiliation(s)
- Mingjie Li
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| | - Yanhui Yang
- College of Bioengineering, Henan University of Technology, Zhengzhou, China, 450001
| | - Xinyu Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China, 450002
| | - Li Gu
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| | - Fengji Wang
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| | - Fajie Feng
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| | - Yunhe Tian
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| | - Fengqing Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China, 450002
| | - Xiaoran Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China, 450002
| | - Wenxiong Lin
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| | - Xinjian Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China, 450002
| | - Zhongyi Zhang
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| |
Collapse
|
23
|
Suo J, Zhao Q, Zhang Z, Chen S, Cao J, Liu G, Wei X, Wang T, Yang C, Dai S. Cytological and Proteomic Analyses of Osmunda cinnamomea Germinating Spores Reveal Characteristics of Fern Spore Germination and Rhizoid Tip Growth. Mol Cell Proteomics 2015; 14:2510-34. [PMID: 26091698 DOI: 10.1074/mcp.m114.047225] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Indexed: 12/29/2022] Open
Abstract
Fern spore is a good single-cell model for studying the sophisticated molecular networks in asymmetric cell division, differentiation, and polar growth. Osmunda cinnamomea L. var. asiatica is one of the oldest fern species with typical separate-growing trophophyll and sporophyll. The chlorophyllous spores generated from sporophyll can germinate without dormancy. In this study, the spore ultrastructure, antioxidant enzyme activities, as well as protein and gene expression patterns were analyzed in the course of spore germination at five typical stages (i.e. mature spores, rehydrated spores, double-celled spores, germinated spores, and spores with protonemal cells). Proteomic analysis revealed 113 differentially expressed proteins, which were mainly involved in photosynthesis, reserve mobilization, energy supplying, protein synthesis and turnover, reactive oxygen species scavenging, signaling, and cell structure modulation. The presence of multiple proteoforms of 25 differentially expressed proteins implies that post-translational modification may play important roles in spore germination. The dynamic patterns of proteins and their encoding genes exhibited specific characteristics in the processes of cell division and rhizoid tip growth, which include heterotrophic and autotrophic metabolisms, de novo protein synthesis and active protein turnover, reactive oxygen species and hormone (brassinosteroid and ethylene) signaling, and vesicle trafficking and cytoskeleton dynamic. In addition, the function skew of proteins in fern spores highlights the unique and common mechanisms when compared with evolutionarily divergent spermatophyte pollen. These findings provide an improved understanding of the typical single-celled asymmetric division and polar growth during fern spore germination.
Collapse
Affiliation(s)
- Jinwei Suo
- From the ‡Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | - Qi Zhao
- From the ‡Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | - Zhengxiu Zhang
- From the ‡Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | - Sixue Chen
- ‖Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610
| | - Jian'guo Cao
- ¶College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Guanjun Liu
- §State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Xing Wei
- §State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Tai Wang
- **Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chuanping Yang
- §State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Shaojun Dai
- From the ‡Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China; §State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China;
| |
Collapse
|
24
|
Zhao Q, Gao J, Suo J, Chen S, Wang T, Dai S. Cytological and proteomic analyses of horsetail (Equisetum arvense L.) spore germination. FRONTIERS IN PLANT SCIENCE 2015; 6:441. [PMID: 26136760 PMCID: PMC4469821 DOI: 10.3389/fpls.2015.00441] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/29/2015] [Indexed: 05/25/2023]
Abstract
Spermatophyte pollen tubes and root hairs have been used as single-cell-type model systems to understand the molecular processes underlying polar growth of plant cells. Horsetail (Equisetum arvense L.) is a perennial herb species in Equisetopsida, which creates separately growing spring and summer stems in its life cycle. The mature chlorophyllous spores produced from spring stems can germinate without dormancy. Here we report the cellular features and protein expression patterns in five stages of horsetail spore germination (mature spores, rehydrated spores, double-celled spores, germinated spores, and spores with protonemal cells). Using 2-DE combined with mass spectrometry, 80 proteins were found to be abundance changed upon spore germination. Among them, proteins involved in photosynthesis, protein turnover, and energy supply were over-represented. Thirteen proteins appeared as proteoforms on the gels, indicating the potential importance of post-translational modification. In addition, the dynamic changes of ascorbate peroxidase, peroxiredoxin, and dehydroascorbate reductase implied that reactive oxygen species homeostasis is critical in regulating cell division and tip-growth. The time course of germination and diverse expression patterns of proteins in photosynthesis, energy supply, lipid and amino acid metabolism indicated that heterotrophic and autotrophic metabolism were necessary in light-dependent germination of the spores. Twenty-six proteins were involved in protein synthesis, folding, and degradation, indicating that protein turnover is vital to spore germination and rhizoid tip-growth. Furthermore, the altered abundance of 14-3-3 protein, small G protein Ran, actin, and caffeoyl-CoA O-methyltransferase revealed that signaling transduction, vesicle trafficking, cytoskeleton dynamics, and cell wall modulation were critical to cell division and polar growth. These findings lay a foundation toward understanding the molecular mechanisms underlying fern spore asymmetric division and rhizoid polar growth.
Collapse
Affiliation(s)
- Qi Zhao
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal UniversityShanghai, China
| | - Jing Gao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry UniversityHarbin, China
| | - Jinwei Suo
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry UniversityHarbin, China
| | - Sixue Chen
- Department of Biology, Interdisciplinary Center for Biotechnology Research, Genetics Institute, Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
| | - Tai Wang
- Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal UniversityShanghai, China
| |
Collapse
|
25
|
Rafińska K, Świdziński M, Bednarska-Kozakiewicz E. Homogalacturonan deesterification during pollen-ovule interaction in Larix decidua Mill.: an immunocytochemical study. PLANTA 2014; 240:195-208. [PMID: 24793355 PMCID: PMC4065381 DOI: 10.1007/s00425-014-2074-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 04/01/2014] [Indexed: 05/07/2023]
Abstract
Studies on angiosperm plants have shown that homogalacturonan present in the extracellular matrix of pistils plays an important role in the interaction with the male gametophyte. However, in gymnosperms, knowledge on the participation of HG in the pollen-ovule interaction is limited, and only a few studies on male gametophytes have been reported. Thus, the aim of this study was to determine the distribution of HG in male gametophytes and ovules during their interaction in Larix decidua Mill. The distribution of HG in pollen grains and unpollinated and pollinated ovules was investigated by immunofluorescence techniques using monoclonal antibodies that recognise high methyl-esterified HG (JIM7), low methyl-esterified HG (JIM5) and calcium cross-linked HG (2F4). All studied categories of HG were detected in the ovule. Highly methyl-esterified HG was present in the cell walls of all cells throughout the interaction; however, the distribution of low methyl-esterified and calcium cross-linked HG changed during the course of interaction. Both of these categories of HG appeared only in the apoplast and the extracellular matrix of the ovule tissues, which interact with the male gametophyte. This finding suggests that in L. decidua, low methyl-esterified and calcium cross-linked HG play an important role in pollen-ovule interaction. The last category of HG is most likely involved in adhesion between the pollen and the ovule and might provide an optimal calcium environment for pollen grain germination and pollen tube growth.
Collapse
Affiliation(s)
- Katarzyna Rafińska
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Michał Świdziński
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Elżbieta Bednarska-Kozakiewicz
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| |
Collapse
|
26
|
Yu GH, Zou J, Feng J, Peng XB, Wu JY, Wu YL, Palanivelu R, Sun MX. Exogenous γ-aminobutyric acid (GABA) affects pollen tube growth via modulating putative Ca2+-permeable membrane channels and is coupled to negative regulation on glutamate decarboxylase. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3235-48. [PMID: 24799560 PMCID: PMC4071839 DOI: 10.1093/jxb/eru171] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
γ-Aminobutyric acid (GABA) is implicated in pollen tube growth, but the molecular and cellular mechanisms that it mediates are largely unknown. Here, it is shown that exogenous GABA modulates putative Ca(2+)-permeable channels on the plasma membranes of tobacco pollen grains and pollen tubes. Whole-cell voltage-clamp experiments and non-invasive micromeasurement technology (NMT) revealed that the influx of Ca(2+) increases in pollen tubes in response to exogenous GABA. It is also demonstrated that glutamate decarboxylase (GAD), the rate-limiting enzyme of GABA biosynthesis, is involved in feedback controls of Ca(2+)-permeable channels to fluctuate intracellular GABA levels and thus modulate pollen tube growth. The findings suggest that GAD activity linked with Ca(2+)-permeable channels relays an extracellular GABA signal and integrates multiple signal pathways to modulate tobacco pollen tube growth. Thus, the data explain how GABA mediates the communication between the style and the growing pollen tubes.
Collapse
Affiliation(s)
- Guang-Hui Yu
- Department of Cell and Development Biology, College of Life Science, State Key Laboratory of Plant hybrid rice, Wuhan University, Wuhan 30072, China Key Laboratory for Biotechnology of the State Ethnic Affairs Commission, Hubei provincial Key laboratory for protection and application of special plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Jie Zou
- Department of Cell and Development Biology, College of Life Science, State Key Laboratory of Plant hybrid rice, Wuhan University, Wuhan 30072, China
| | - Jing Feng
- State key laboratory of Virology, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Xiong-Bo Peng
- Department of Cell and Development Biology, College of Life Science, State Key Laboratory of Plant hybrid rice, Wuhan University, Wuhan 30072, China
| | - Ju-You Wu
- College of Horticulture, State key laboratory of crop genetics and germplasm enhancement, Nanjing Agriculture University, Nanjing 210095, China
| | - Ying-Liang Wu
- State key laboratory of Virology, College of Life Science, Wuhan University, Wuhan 430072, China
| | | | - Meng-Xiang Sun
- Department of Cell and Development Biology, College of Life Science, State Key Laboratory of Plant hybrid rice, Wuhan University, Wuhan 30072, China
| |
Collapse
|
27
|
Corpas FJ, Barroso JB. Peroxisomal plant nitric oxide synthase (NOS) protein is imported by peroxisomal targeting signal type 2 (PTS2) in a process that depends on the cytosolic receptor PEX7 and calmodulin. FEBS Lett 2014; 588:2049-54. [DOI: 10.1016/j.febslet.2014.04.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 04/18/2014] [Accepted: 04/23/2014] [Indexed: 01/09/2023]
|
28
|
Tang W, Tu L, Yang X, Tan J, Deng F, Hao J, Guo K, Lindsey K, Zhang X. The calcium sensor GhCaM7 promotes cotton fiber elongation by modulating reactive oxygen species (ROS) production. THE NEW PHYTOLOGIST 2014; 202:509-520. [PMID: 24443839 DOI: 10.1111/nph.12676] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 12/09/2013] [Indexed: 05/18/2023]
Abstract
Fiber elongation is the key determinant of fiber quality and output in cotton (Gossypium hirsutum). Although expression profiling and functional genomics provide some data, the mechanism of fiber development is still not well understood. Here, a gene encoding a calcium sensor, GhCaM7, was isolated based on its high expression level relative to other GhCaMs in fiber cells at the fast elongation stage. The level of expression of GhCaM7 in the wild-type and the fuzzless/lintless mutant correspond to the presence and absence, respectively, of fiber initials. Overexpressing GhCaM7 promotes early fiber elongation, whereas GhCaM7 suppression by RNAi delays fiber initiation and inhibits fiber elongation. Reactive oxygen species (ROS) play important roles in early fiber development. ROS induced by exogenous hydrogen peroxide (H2 O2 ) and Ca(2+) starvation promotes early fiber elongation. GhCaM7 overexpression fiber cells show increased ROS concentrations compared with the wild-type, while GhCaM7 RNAi fiber cells have reduced concentrations. Furthermore, we show that H2 O2 enhances Ca(2+) influx into the fiber and feedback-regulates the expression of GhCaM7. We conclude that GhCaM7, Ca(2+) and ROS are three important regulators involved in early fiber elongation. GhCaM7 might modulate ROS production and act as a molecular link between Ca(2+) and ROS signal pathways in early fiber development.
Collapse
Affiliation(s)
- Wenxin Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiafu Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fenglin Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Juan Hao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Kai Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Keith Lindsey
- Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, University of Durham, South Road, Durham, DH1 3LE, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
29
|
Ischebeck T, Valledor L, Lyon D, Gingl S, Nagler M, Meijón M, Egelhofer V, Weckwerth W. Comprehensive cell-specific protein analysis in early and late pollen development from diploid microsporocytes to pollen tube growth. Mol Cell Proteomics 2014; 13:295-310. [PMID: 24078888 PMCID: PMC3879621 DOI: 10.1074/mcp.m113.028100] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 09/24/2013] [Indexed: 01/10/2023] Open
Abstract
Pollen development in angiosperms is one of the most important processes controlling plant reproduction and thus productivity. At the same time, pollen development is highly sensitive to environmental fluctuations, including temperature, drought, and nutrition. Therefore, pollen biology is a major focus in applied studies and breeding approaches for improving plant productivity in a globally changing climate. The most accessible developmental stages of pollen are the mature pollen and the pollen tubes, and these are thus most frequently analyzed. To reveal a complete quantitative proteome map, we additionally addressed the very early stages, analyzing eight stages of tobacco pollen development: diploid microsporocytes, meiosis, tetrads, microspores, polarized microspores, bipolar pollen, desiccated pollen, and pollen tubes. A protocol for the isolation of the early stages was established. Proteins were extracted and analyzed by means of a new gel LC-MS fractionation protocol. In total, 3817 protein groups were identified. Quantitative analysis was performed based on peptide count. Exceedingly stage-specific differential protein regulation was observed during the conversion from the sporophytic to the gametophytic proteome. A map of highly specialized functionality for the different stages could be revealed from the metabolic activity and pronounced differentiation of proteasomal and ribosomal protein complex composition up to protective mechanisms such as high levels of heat shock proteins in the very early stages of development.
Collapse
Affiliation(s)
- Till Ischebeck
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Luis Valledor
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - David Lyon
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Stephanie Gingl
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Matthias Nagler
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Mónica Meijón
- ¶Gregor-Mendel-Institute for Molecular Plant Biology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Volker Egelhofer
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Wolfram Weckwerth
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| |
Collapse
|
30
|
Ling Y, Chen T, Jing Y, Fan L, Wan Y, Lin J. γ-Aminobutyric acid (GABA) homeostasis regulates pollen germination and polarized growth in Picea wilsonii. PLANTA 2013; 238:831-43. [PMID: 23900837 DOI: 10.1007/s00425-013-1938-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/19/2013] [Indexed: 05/10/2023]
Abstract
γ-Aminobutyric acid (GABA) is a four-carbon non-protein amino acid found in a wide range of organisms. Recently, GABA accumulation has been shown to play a role in the stress response and cell growth in angiosperms. However, the effect of GABA deficiency on pollen tube development remains unclear. Here, we demonstrated that specific concentrations of exogenous GABA stimulated pollen tube growth in Picea wilsonii, while an overdose suppressed pollen tube elongation. The germination percentage of pollen grains and morphological variations in pollen tubes responded in a dose-dependent manner to treatment with 3-mercaptopropionic acid (3-MP), a glutamate decarboxylase inhibitor, while the inhibitory effects could be recovered in calcium-containing medium supplemented with GABA. Using immunofluorescence labeling, we found that the actin cables were disorganized in 3-MP treated cells, followed by the transition of endo/exocytosis activating sites from the apex to the whole tube shank. In addition, variations in the deposition of cell wall components were detected upon labeling with JIM5, JIM7, and aniline blue. Our results demonstrated that calcium-dependent GABA signaling regulates pollen germination and polarized tube growth in P. wilsonii by affecting actin filament patterns, vesicle trafficking, and the configuration and distribution of cell wall components.
Collapse
Affiliation(s)
- Yu Ling
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | | | | | | | | | | |
Collapse
|
31
|
Lazzaro MD, Marom EY, Reddy ASN. Polarized cell growth, organelle motility, and cytoskeletal organization in conifer pollen tube tips are regulated by KCBP, the calmodulin-binding kinesin. PLANTA 2013; 238:587-97. [PMID: 23784715 DOI: 10.1007/s00425-013-1919-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/11/2013] [Indexed: 05/07/2023]
Abstract
Kinesin-like calmodulin-binding protein (KCBP), a member of the Kinesin 14 family, is a minus end directed C-terminal motor unique to plants and green algae. Its motor activity is negatively regulated by calcium/calmodulin binding, and its tail region contains a secondary microtubule-binding site. It has been identified but not functionally characterized in the conifer Picea abies. Conifer pollen tubes exhibit polarized growth as organelles move into the tip in an unusual fountain pattern directed by microfilaments but uniquely organized by microtubules. We demonstrate here that PaKCBP and calmodulin regulate elongation and motility. PaKCBP is a 140 kDa protein immunolocalized to the elongating tip, coincident with microtubules. This localization is lost when microtubules are disrupted with oryzalin, which also reorganizes microfilaments into bundles. Colocalization of PaKCBP along microtubules is enhanced when microfilaments are disrupted with latrunculin B, which also disrupts the fine network of microtubules throughout the tip while preserving thicker microtubule bundles. Calmodulin inhibition by W-12 perfusion reversibly slows pollen tube elongation, alters organelle motility, promotes microfilament bundling, and microtubule bundling coincident with increased PaKCBP localization. The constitutive activation of PaKCBP by microinjection of an antibody that displaces calcium/calmodulin and activates microtubule bundling repositions vacuoles in the tip before rapidly stopping organelle streaming and pollen tube elongation. We propose that PaKCBP is one of the target proteins in conifer pollen modulated by calmodulin inhibition leading to microtubule bundling, which alters microtubule and microfilament organization, repositions vacuoles and slows organelle motility and pollen tube elongation.
Collapse
Affiliation(s)
- Mark D Lazzaro
- Department of Biology, College of Charleston, Charleston, SC, USA.
| | | | | |
Collapse
|
32
|
Domozych DS, Fujimoto C, LaRue T. Polar Expansion Dynamics in the Plant Kingdom: A Diverse and Multifunctional Journey on the Path to Pollen Tubes. PLANTS (BASEL, SWITZERLAND) 2013; 2:148-73. [PMID: 27137370 PMCID: PMC4844288 DOI: 10.3390/plants2010148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/24/2013] [Accepted: 03/01/2013] [Indexed: 12/18/2022]
Abstract
Polar expansion is a widespread phenomenon in plants spanning all taxonomic groups from the Charophycean Green Algae to pollen tubes in Angiosperms and Gymnosperms. Current data strongly suggests that many common features are shared amongst cells displaying polar growth mechanics including changes to the structural features of localized regions of the cell wall, mobilization of targeted secretion mechanisms, employment of the actin cytoskeleton for directing secretion and in many cases, endocytosis and coordinated interaction of multiple signal transduction mechanisms prompted by external biotic and abiotic cues. The products of polar expansion perform diverse functions including delivery of male gametes to the egg, absorption, anchorage, adhesion and photo-absorption efficacy. A comparative analysis of polar expansion dynamics is provided with special emphasis on those found in early divergent plants.
Collapse
Affiliation(s)
- David S Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York, NY 12866, USA.
| | - Chelsea Fujimoto
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York, NY 12866, USA.
| | - Therese LaRue
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York, NY 12866, USA.
| |
Collapse
|
33
|
Wang L, Lv X, Li H, Zhang M, Wang H, Jin B, Chen T. Inhibition of apoplastic calmodulin impairs calcium homeostasis and cell wall modeling during Cedrus deodara pollen tube growth. PLoS One 2013; 8:e55411. [PMID: 23405148 PMCID: PMC3566176 DOI: 10.1371/journal.pone.0055411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 12/21/2012] [Indexed: 12/14/2022] Open
Abstract
Calmodulin (CaM) is one of the most well-studied Ca(2+) transducers in eukaryotic cells. It is known to regulate the activity of numerous proteins with diverse cellular functions; however, the functions of apoplastic CaM in plant cells are still poorly understood. By combining pharmacological analysis and microscopic techniques, we investigated the involvement of apoplastic CaM in pollen tube growth of Cedrus deodara (Roxb.) Loud. It was found that the tip-focused calcium gradient was rapidly disturbed as one of the early events after application of pharmacological agents, while the cytoplasmic organization was not significantly affected. The deposition and distribution of acidic pectins and esterified pectins were also dramatically changed, further perturbing the normal modeling of the cell wall. Several protein candidates from different functional categories may be involved in the responses to inhibition of apoplastic CaM. These results revealed that apoplastic CaM functions to maintain the tip-focused calcium gradient and to modulate the distribution/transformation of pectins during pollen tube growth.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xueqin Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Biological Science and Technology, Yangzhou University, Yangzhou, China
| | - Hong Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Biological Science and Technology, Yangzhou University, Yangzhou, China
| | - Min Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hong Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tong Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
Xu W, Ding G, Yokawa K, Baluška F, Li QF, Liu Y, Shi W, Liang J, Zhang J. An improved agar-plate method for studying root growth and response of Arabidopsis thaliana. Sci Rep 2013; 3:1273. [PMID: 23429403 PMCID: PMC3572446 DOI: 10.1038/srep01273] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 01/30/2013] [Indexed: 11/20/2022] Open
Abstract
Arabidopsis thaliana is a widely used model plant for plant biology research. Under traditional agar-plate culture system (TPG, traditional plant-growing), both plant shoots and roots are exposed to illumination, and roots are grown in sucrose-added medium. This is not a natural environment for the roots and may cause artifact responses. We have developed an improved agar-plate culture system (IPG, improved plant-growing) where shoots are illuminated but roots are grown in darkness without sucrose addition. Compared to TPG, IPG produced plants with significantly less total root length, lateral root length and root hair density, although their primary roots were longer. Root gravitropism, PIN2 (an auxin efflux carrier) abundance, H⁺ efflux or Ca²⁺ influx in root apexes, were weaker in IPG-grown roots than those in TPG-grown roots. We conclude that IPG offers a more natural way to study the root growth and response of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Weifeng Xu
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- These authors contributed equally to this work
| | - Guochang Ding
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- These authors contributed equally to this work
| | - Ken Yokawa
- Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Qian-Feng Li
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Yinggao Liu
- College of Life Science, Shandong Agricultural University, Taian, China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jiansheng Liang
- Department of Biology, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Jianhua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
35
|
Dai S, Chen S. Single-cell-type proteomics: toward a holistic understanding of plant function. Mol Cell Proteomics 2012; 11:1622-30. [PMID: 22982375 DOI: 10.1074/mcp.r112.021550] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multicellular organisms such as plants contain different types of cells with specialized functions. Analyzing the protein characteristics of each type of cell will not only reveal specific cell functions, but also enhance understanding of how an organism works. Most plant proteomics studies have focused on using tissues and organs containing a mixture of different cells. Recent single-cell-type proteomics efforts on pollen grains, guard cells, mesophyll cells, root hairs, and trichomes have shown utility. We expect that high resolution proteomic analyses will reveal novel functions in single cells. This review provides an overview of recent developments in plant single-cell-type proteomics. We discuss application of the approach for understanding important cell functions, and we consider the technical challenges of extending the approach to all plant cell types. Finally, we consider the integration of single-cell-type proteomics with transcriptomics and metabolomics with the goal of providing a holistic understanding of plant function.
Collapse
Affiliation(s)
- Shaojun Dai
- Department of Biology, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | | |
Collapse
|
36
|
Chen Y, Liu P, Hoehenwarter W, Lin J. Proteomic and Phosphoproteomic Analysis of Picea wilsonii Pollen Development under Nutrient Limitation. J Proteome Res 2012; 11:4180-90. [DOI: 10.1021/pr300295m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yanmei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College
of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Peng Liu
- Key Laboratory of Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wolfgang Hoehenwarter
- Department Molecular Systems Biology, University of Vienna, Faculty of Life Sciences, Althanstrasse
14, A-1090, Vienna
| | - Jinxing Lin
- Key Laboratory of Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
37
|
Takáč T, Pechan T, Samajová O, Ovečka M, Richter H, Eck C, Niehaus K, Samaj J. Wortmannin treatment induces changes in Arabidopsis root proteome and post-Golgi compartments. J Proteome Res 2012; 11:3127-42. [PMID: 22524784 DOI: 10.1021/pr201111n] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Wortmannin is a widely used pharmaceutical compound which is employed to define vesicular trafficking routes of particular proteins or cellular compounds. It targets phosphatidylinositol 3-kinase and phosphatidylinositol 4-kinases in a dose-dependent manner leading to the inhibition of protein vacuolar sorting and endocytosis. Combined proteomics and cell biological approaches have been used in this study to explore the effects of wortmannin on Arabidopsis root cells, especially on proteome and endomembrane trafficking. On the subcellular level, wortmannin caused clustering, fusion, and swelling of trans-Golgi network (TGN) vesicles and multivesicular bodies (MVBs) leading to the formation of wortmannin-induced multivesicular compartments. Appearance of wortmannin-induced compartments was associated with depletion of TGN as revealed by electron microscopy. On the proteome level, wortmannin induced massive changes in protein abundance profiles. Wortmannin-sensitive proteins belonged to various functional classes. An inhibition of vacuolar trafficking by wortmannin was related to the downregulation of proteins targeted to the vacuole, as showed for vacuolar proteases. A small GTPase, RabA1d, which regulates vesicular trafficking at TGN, was identified as a new protein negatively affected by wortmannin. In addition, Sec14 was upregulated and PLD1 alpha was downregulated by wortmannin.
Collapse
Affiliation(s)
- Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University , Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abril N, Gion JM, Kerner R, Müller-Starck G, Cerrillo RMN, Plomion C, Renaut J, Valledor L, Jorrin-Novo JV. Proteomics research on forest trees, the most recalcitrant and orphan plant species. PHYTOCHEMISTRY 2011; 72:1219-42. [PMID: 21353265 DOI: 10.1016/j.phytochem.2011.01.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 12/27/2010] [Accepted: 01/06/2011] [Indexed: 05/06/2023]
Abstract
The contribution of proteomics to the knowledge of forest tree (the most recalcitrant and almost forgotten plant species) biology is being reviewed and discussed, based on the author's own research work and papers published up to November 2010. This review is organized in four introductory sections starting with the definition of forest trees (1), the description of the environmental and economic importance (2) and its derived current priorities and research lines for breeding and conservation (3) including forest tree genomics (4). These precede the main body of this review: a general overview to proteomics (5) for introducing the forest tree proteomics section (6). Proteomics, defined as scientific discipline or experimental approach, it will be discussed both from a conceptual and methodological point of view, commenting on realities, challenges and limitations. Proteomics research in woody plants is limited to a reduced number of genera, including Pinus, Picea, Populus, Eucalyptus, and Fagus, mainly using first-generation approaches, e.g., those based on two-dimensional electrophoresis coupled to mass spectrometry. This area joins the own limitations of the technique and the difficulty and recalcitrance of the plant species as an experimental system. Furthermore, it contributes to a deeper knowledge of some biological processes, namely growth, development, organogenesis, and responses to stresses, as it is also used in the characterization and cataloguing of natural populations and biodiversity (proteotyping) and in assisting breeding programmes.
Collapse
Affiliation(s)
- Nieves Abril
- Dpt. of Biochemistry and Molecular Biology, ETSIAM, University of Cordoba, Campus de Rabanales, Ed. Severo Ochoa, Cordoba, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Virdi AS, Pareek A, Singh P. Evidence for the possible involvement of calmodulin in regulation of steady state levels of Hsp90 family members (Hsp87 and Hsp85) in response to heat shock in sorghum. PLANT SIGNALING & BEHAVIOR 2011; 6:393-9. [PMID: 21336025 PMCID: PMC3142421 DOI: 10.4161/psb.6.3.13867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/17/2010] [Accepted: 10/05/2010] [Indexed: 05/09/2023]
Abstract
Pharmacological studies, using Ca(2+) channel blockers (LaCl 3 and verapamil) and calmodulin (CaM) antagonists (CPZ and W7), were carried out to understand the role of Ca(2+)/CaM in the regulation of heat shock-induced expression of Hsp90 (Hsp87 and Hsp85) and Hsp70 (Hsp75 and Hsp73) members in sorghum. It was observed that the expression of both Hsp87 and Hsp85 proteins was decreased in presence of Ca ( 2+) channel blockers and CaM antagonists, under both control and heat stress conditions, as contrary to the steady state levels of Hsp75 and Hsp73, which were not affected significantly under similar conditions. Further, the exposure of sorghum seedlings to geldanamycin, a specific inhibitor of Hsp90, resulted in induction of Hsp87 and Hsp85 in the absence of heat shock also. This study provides the first evidence suggesting that in plants, the in vivo expression of Hsp90 (Hsp87 and Hsp85) is likely to be modulated by Ca(2+)/CaM under normal and thermal stress conditions. The likely implications of these findings are discussed.
Collapse
Affiliation(s)
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory; School of Life Sciences; Jawaharlal Nehru University; New Delhi, India
| | - Prabhjeet Singh
- Department of Biotechnology; Guru Nanak Dev University; Amritsar, Punjab India
| |
Collapse
|
40
|
Takáč T, Pechan T, Samaj J. Differential proteomics of plant development. J Proteomics 2011; 74:577-88. [PMID: 21315196 DOI: 10.1016/j.jprot.2011.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/28/2011] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
Abstract
In this mini-review, recent advances in plant developmental proteomics are summarized. The growing interest in plant proteomics continually produces large numbers of developmental studies on plant cell division, elongation, differentiation, and formation of various organs. The brief overview of changes in proteome profiles emphasizes the participation of stress-related proteins in all developmental processes, which substantially changes the view on functional classification of these proteins. Next, it is noteworthy that proteomics helped to recognize some metabolic and housekeeping proteins as important signaling inducers of developmental pathways. Further, cell division and elongation are dependent on proteins involved in membrane trafficking and cytoskeleton dynamics. These protein groups are less prevalently represented in studies concerning cell differentiation and organ formation, which do not target primarily cell division. The synthesis of new proteins, generally observed during developmental processes, is followed by active protein folding. In this respect, disulfide isomerase was found to be commonly up-regulated during several developmental processes. The future progress in plant proteomics requires new and/or complementary approaches including cell fractionation, specific chemical treatments, molecular cloning and subcellular localization of proteins combined with more sensitive methods for protein detection and identification.
Collapse
Affiliation(s)
- Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | | | | |
Collapse
|
41
|
Landoni M, De Francesco A, Galbiati M, Tonelli C. A loss-of-function mutation in Calmodulin2 gene affects pollen germination in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2010; 74:235-247. [PMID: 20683641 DOI: 10.1007/s11103-010-9669-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 07/22/2010] [Indexed: 05/29/2023]
Abstract
Calmodulin (CAM) is an ubiquitous calcium binding protein whose function is to translate the signals, perceived as calcium concentration variations, into the appropriate cellular responses. In Arabidopsis thaliana there are 4 CAM isoforms which are highly similar, encoded by 7 genes, and one possible explanation proposed for the evolutionary conservation of the CAM gene family is that the different genes have acquired different functions so that they play possibly overlapping but non-identical roles. Here we report the characterization of the Arabidopsis mutant cam2-2, identified among the lines of the gene-trapping collection EXOTIC because of a distorted segregation of kanamycin resistance. Phenotypic analysis showed that in normal growth conditions cam2-2 plants were indistinguishable from the wild type while genetic analysis showed a reduced transmission of the cam2-2 allele through the male gametophyte and in vitro pollen germination revealed a reduced level of germination in comparison with the wild type. These results provide genetic evidence of the involvement of a CAM gene in pollen germination and support the theory of functional diversification of the CAM gene family.
Collapse
Affiliation(s)
- Michela Landoni
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy.
| | | | | | | |
Collapse
|
42
|
Comparative temporal analyses of the Pinus sylvestris L. var. mongolica litv. apical bud proteome from dormancy to growth. Mol Biol Rep 2010; 38:721-9. [DOI: 10.1007/s11033-010-0159-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 03/26/2010] [Indexed: 12/14/2022]
|
43
|
Abstract
Ca2+ ions play a vital role as second messengers in plant cells during various developmental processes and in response to environmental stimuli. Plants have evolved a diversity of unique proteins that bind Ca2+ using the evolutionarily conserved EF-hand motif. The currently held hypothesis is that these proteins function as Ca2+ sensors by undergoing conformational changes in response to Ca2+-binding that facilitate their regulation of target proteins and thereby co-ordinate various signalling pathways. The three main classes of these EF-hand Ca2+sensors in plants are CaMs [calmodulins; including CMLs (CaM-like proteins)], CDPKs (calcium-dependent protein kinases) and CBLs (calcineurin B-like proteins). In the plant species examined to date, each of these classes is represented by a large family of proteins, most of which have not been characterized biochemically and whose physiological roles remain unclear. In the present review, we discuss recent advances in research on CaMs and CMLs, CDPKs and CBLs, and we attempt to integrate the current knowledge on the different sensor classes into common physiological themes.
Collapse
|
44
|
Mikami K, Li L, Takahashi M, Saga N. Photosynthesis-dependent Ca2+ influx and functional diversity between phospholipases in the formation of cell polarity in migrating cells of red algae. PLANT SIGNALING & BEHAVIOR 2009; 4:911-913. [PMID: 19938378 PMCID: PMC2802806 DOI: 10.4161/psb.4.9.9534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 07/16/2009] [Indexed: 05/28/2023]
Abstract
Unicellular spore cells, designated as monospores (also called archeospores), are well known as migrating plant cells, in which establishment of the anterior-posterior axis directs asymmetrical distribution of F-actin. Since the mechanisms of cell polarity formation are not yet fully elucidated in monospores, we investigated the roles of phosphoinositide signaling systems and Ca2+ mobilization in migration. Although we have already found the critical involvement of phosphatidylinositol 3-kinase in the establishment of cell polarity, we recently demonstrated the important roles of extracellular Ca2+ influx, phospholipase C (PLC) and phospholipase D (PLD). The remarkable characteristics of these factors are that Ca2+ influx depends on photosynthetic activity and that PLC and PLD play roles in the establishment and maintenance of cell polarity, respectively. These findings could provide new insight into the regulation of migration in eukaryotic cells.
Collapse
Affiliation(s)
- Koji Mikami
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan.
| | | | | | | |
Collapse
|
45
|
Shi YY, Tao WJ, Liang SP, Lü Y, Zhang L. Analysis of the tip-to-base gradient of CaM in pollen tube pulsant growth using in vivo CaM-GFP system. PLANT CELL REPORTS 2009; 28:1253-64. [PMID: 19536549 DOI: 10.1007/s00299-009-0725-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 05/26/2009] [Accepted: 05/27/2009] [Indexed: 05/27/2023]
Abstract
Ca(2+)-CaM signaling is involved in pollen tube development. However, the distribution and function of CaM and the downstream components of Ca(2+)-CaM signal in pollen tube development still need more exploration. Here we obtained the CaM-GFP fusion protein transgenic line of Nicotiana tobacum SRI, which allowed us to monitor CaM distribution pattern in vivo and provided a useful tool to observe CaM response to various exogenous stimulations and afforded solid evidences of the essential functions of CaM in pollen tube growth. CaM-GFP fusion gene was constructed under the control of Lat52-7 pollen-specific promoter and transformed into Nicotiana tobacum SRI. High level of CaM-GFP fluorescence was detected at the germinal pores and the tip-to-base gradient of fluorescence was observed in developing pollen tubes. The distribution of CaM at apical dome had close relationship with the pulsant growth mode of pollen tubes: when CaM aggregated at the apical dome, pollen tubes stepped into growth state; When CaM showed non-polarized distribution, pollen tubes stopped growing. In addition, after affording exogenous Ca(2+), calmidazolium (antagonism of CaM) or Brefeldin A (an inhibitor of membrane trafficking), CaM turned to a uniform distribution at the apical dome and pollen tube growth was held back. Taken together, our results showed that CaM played a vital role in pollen tube elongation and growth rate, and the oscillation of tip-to-base gradient of CaM was required for the normal pulsant growth of pollen tube.
Collapse
Affiliation(s)
- Ya-Ya Shi
- Key Lab of MOE for Plant Developmental Biology, Wuhan University, 430072, Wuhan, People's Republic of China
| | | | | | | | | |
Collapse
|