1
|
Jiao H, Liu Q, Zhang H, Qi K, Liu Z, Wang P, Wu J, Zhang S. PbrPCCP1 mediates the PbrTTS1 signaling to control pollen tube growth in pear. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110244. [PMID: 31623778 DOI: 10.1016/j.plantsci.2019.110244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/25/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
In plants, genes containing the C2 domain have been identified and play a crucial role in many key physiological processes. One hundred and sixty-six genes containing a C2 domain were identified in pear and 38 genes contained multiple C2 domains. Whole genome duplication and tandem duplication events were the major forces driving the C2 superfamily expansion, and C2 superfamily members have evolved under negative selection. There were 104 C2 genes expressed during pollen tube growth. Here, we identified Pbr028378.1 containing the C2 domain from pear and named it PbrPCCP1. PbrPCCP1 was localized in the plasma membrane and mainly expressed in pollen. PbrPCCP1 interacted with PbrTTS1, which contained a Cys-rich C-terminal domain, and promoted pollen tube growth. The Pollen ole e I domain of PbrTTS1 was responsible for its interaction. Additionally, pollen tube growth was inhibited and the promoting effect of PbrTTS1 was attenuated when PbrPCCP1 expression level was knocked-down by antisense oligonucleotides. The qRT-PCR results indicated that PbrPCCP1 and PbrTTS1 expression levels were consistently present in the style after pollination, and their expression levels were up-regulated within 24 h. This implied that they could co-regulate pollen tube growth when the pollen tube grew in the pistil.
Collapse
Affiliation(s)
- HuiJun Jiao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China
| | - Qian Liu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China
| | - Hao Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China
| | - Kaijie Qi
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China
| | - Zhe Liu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China
| | - Peng Wang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China
| | - JuYou Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China.
| | - ShaoLing Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China.
| |
Collapse
|
2
|
Du J, Lv Y, Xiong J, Ge C, Iqbal S, Qiao Y. Identifying Genome-Wide Sequence Variations and Candidate Genes Implicated in Self-Incompatibility by Resequencing Fragaria viridis. Int J Mol Sci 2019; 20:E1039. [PMID: 30818833 PMCID: PMC6429439 DOI: 10.3390/ijms20051039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/16/2019] [Accepted: 02/22/2019] [Indexed: 12/01/2022] Open
Abstract
It is clear that the incompatibility system in Fragaria is gametophytic, however, the genetic mechanism behind this remains elusive. Eleven second-generation lines of Fragaria viridis with different compatibility were obtained by manual self-pollination, which can be displayed directly by the level of fruit-set rate. We sequenced two second-generation selfing lines with large differences in fruit-set rate: Ls-S₂-53 as a self-incompatible sequencing sample, and Ls-S₂-76 as a strong self-compatible sequencing sample. Fragaria vesca was used as a completely self-compatible reference sample, and the genome-wide variations were identified and subsequently annotated. The distribution of polymorphisms is similar on each chromosome between the two sequencing samples, however, the distribution regions and the number of homozygous variations are inconsistent. Expression pattern analysis showed that six candidate genes were significantly associated with self-incompatibility. Using F. vesca as a reference, we focused our attention on the gene FIP2-like (FH protein interacting protein), associated with actin cytoskeleton formation, as the resulting proteins in Ls-S₂-53 and Ls-S₂-76 have each lost a number of different amino acids. Suppression of FIP2-like to some extent inhibits germination of pollen grains and growth of pollen tubes by reducing F-actin of the pollen tube tips. Our results suggest that the differential distribution of homozygous variations affects F. viridis fruit-set rate and that the fully encoded FIP2-like can function normally to promote F-actin formation, while the new FIP2-like proteins with shortened amino acid sequences have influenced the (in)compatibility of two selfing lines of F. viridis.
Collapse
Affiliation(s)
- Jianke Du
- Laboratory of Fruit Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Yan Lv
- Laboratory of Fruit Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Jinsong Xiong
- Laboratory of Fruit Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Chunfeng Ge
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, Jiangsu, China.
| | - Shahid Iqbal
- Laboratory of Fruit Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Yushan Qiao
- Laboratory of Fruit Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
3
|
Jiao H, Liu X, Sun S, Wang P, Qiao X, Li J, Tang C, Wu J, Zhang S, Tao S. The unique evolutionary pattern of the Hydroxyproline-rich glycoproteins superfamily in Chinese white pear (Pyrus bretschneideri). BMC PLANT BIOLOGY 2018; 18:36. [PMID: 29454308 PMCID: PMC5816549 DOI: 10.1186/s12870-018-1252-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 02/05/2018] [Indexed: 06/01/2023]
Abstract
BACKGROUND The hydroxyproline-rich glycoprotein (HRGP) superfamily, comprising three families (arabinogalactan-proteins, AGPs; extensins, EXTs; proline-rich proteins, PRPs), is a class of proline-rich proteins that exhibit high diversity and are involved in many aspects of plant biology. RESULTS In this study, 838 HRGPs were identified from Chinese white pear (Pyrus bretschneideri) by searching for biased amino acid composition and conserved motifs. 405 HRGPs were derived from whole genome duplication (WGD) events which is suggested to be the major force of driving HRGPs expansion and the recent WGD event shared by apple and pear generated most duplicated HRGPs in pear. This duplication event drived the structural variation of the HRGPs encoding hydroxyproline (Hyp)-rich motifs. The rate of HRGPs evolution mainly impacted the Hyp-rich motifs even in chimeric HRGPs. During the evolution of 53 PRPs that are also typified by 7-deoxyloganetin glucosyltransferase-like genes, the duplication from PRP to non-PRP was indirectly modified by positive selection. These results suggested that the rate of HRGP evolution mainly influenced the Hyp-rich motifs even in chimeric HRGPs. The expression divergence of HRGPs was higher than that of other commonly duplicated genes. In pear pistil, 601 HRGPs exhibited expression, while in pear pollen, 285 HRGPs were expressed. The qPCR results revealed that Pbr036330.1 and Pbr010506.1 showed different expression profile in self-incompatibility of pear pistil. CONCLUSIONS The researches indicated that WGD events was the main duplication type during the evolution of HRGPs, and the highly variable Hyp-motifs might be accountable for the expansion, evolution and expression divergence of HRGPs and that this divergence may be responsible for the gain of new functions in plants.
Collapse
Affiliation(s)
- Huijun Jiao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xing Liu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shuguang Sun
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Peng Wang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xin Qiao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jiaming Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chao Tang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Juyou Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shutian Tao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
4
|
Gene expression of an arabinogalactan lysine-rich protein CaAGP18 during vegetative and reproductive development of bell pepper ( Capsicum annuum L.). 3 Biotech 2018; 8:5. [PMID: 29259880 DOI: 10.1007/s13205-017-1031-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/04/2017] [Indexed: 11/26/2022] Open
Abstract
Lysine-rich (Lys-rich) proteins encoded by AGP17, AGP18, and AGP19 genes are cell wall-associated glycopeptides related to sexual reproduction in flowering plants. This subclass belongs to classical arabinogalactan proteins (AGPs) widely studied in model plants like Arabidopsis. In this study, we identified the CaAGP18 cDNA from bell pepper (Capsicum annuum L.), as well as its expression pattern during vegetative and reproductive development. The deduced amino acid sequence revealed a Lys-rich AGP18 protein of 238 amino acids residues in length with an estimated molecular mass of 22.85 kDa and an isoelectric point of 9.7. The protein is predicted as canonical AGP due to the presence of a small Lys-rich region and a C-terminal sequence essential for posttranslational modification with a glycosylphosphatidylinositol (GPI). Phylogenetic analysis showed that CaAGP18 is clustered together with NtAGP18, SpAGP18, StAGP18 and NaAGP18 from Solanaceae species. CaAGP18 expression through plant phenological stages had the highest transcription level in leaves at the seedling stage, whereas in reproductive organs there was a significant up-regulation in pistils during anthesis, also in petals 2 days post-anthesis (DPA), and in fruit at the expansion stage. Our results open future research for possible roles of CaAGP18 in cell expansion as a wall-associated plasticizer and reproductive processes like pistil interactions and petal cell death.
Collapse
|
5
|
Borghi M, Fernie AR. Floral Metabolism of Sugars and Amino Acids: Implications for Pollinators' Preferences and Seed and Fruit Set. PLANT PHYSIOLOGY 2017; 175:1510-1524. [PMID: 28986424 PMCID: PMC5717749 DOI: 10.1104/pp.17.01164] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/04/2017] [Indexed: 05/10/2023]
Abstract
New discoveries open up future directions in the study of the primary metabolism of flowers.
Collapse
Affiliation(s)
- Monica Borghi
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
6
|
García-Valencia LE, Bravo-Alberto CE, Wu HM, Rodríguez-Sotres R, Cheung AY, Cruz-García F. SIPP, a Novel Mitochondrial Phosphate Carrier, Mediates in Self-Incompatibility. PLANT PHYSIOLOGY 2017; 175:1105-1120. [PMID: 28874520 PMCID: PMC5664454 DOI: 10.1104/pp.16.01884] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 08/30/2017] [Indexed: 05/27/2023]
Abstract
In Solanaceae, the S-specific interaction between the pistil S-RNase and the pollen S-Locus F-box protein controls self-incompatibility (SI). Although this interaction defines the specificity of the pollen rejection response, the identification of three pistil essential modifier genes unlinked to the S-locus (HT-B, 120K, and NaStEP) unveils a higher degree of complexity in the pollen rejection pathway. We showed previously that NaStEP, a stigma protein with homology with Kunitz-type protease inhibitors, is essential to SI in Nicotiana spp. During pollination, NaStEP is taken up by pollen tubes, where potential interactions with pollen tube proteins might underlie its function. Here, we identified NaSIPP, a mitochondrial protein with phosphate transporter activity, as a novel NaStEP-interacting protein. Coexpression of NaStEP and NaSIPP in pollen tubes showed interaction in the mitochondria, although when expressed alone, NaStEP remains mostly cytosolic, implicating NaSIPP-mediated translocation of NaStEP into the organelle. The NaSIPP transcript is detected specifically in mature pollen of Nicotiana spp.; however, in self-compatible plants, this gene has accumulated mutations, so its coding region is unlikely to produce a functional protein. RNA interference suppression of NaSIPP in Nicotiana spp. pollen grains disrupts the SI by preventing pollen tube inhibition. Taken together, our results are consistent with a model whereby the NaStEP and NaSIPP interaction, in incompatible pollen tubes, might destabilize the mitochondria and contribute to arrest pollen tube growth.
Collapse
Affiliation(s)
- Liliana E García-Valencia
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Ciudad de Mexico, Mexico
| | - Carlos E Bravo-Alberto
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Ciudad de Mexico, Mexico
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Rogelio Rodríguez-Sotres
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Ciudad de Mexico, Mexico
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Felipe Cruz-García
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Ciudad de Mexico, Mexico
| |
Collapse
|
7
|
Han T, Dong H, Cui J, Li M, Lin S, Cao J, Huang L. Genomic, Molecular Evolution, and Expression Analysis of Genes Encoding Putative Classical AGPs, Lysine-Rich AGPs, and AG Peptides in Brassica rapa. FRONTIERS IN PLANT SCIENCE 2017; 8:397. [PMID: 28424711 PMCID: PMC5372829 DOI: 10.3389/fpls.2017.00397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/08/2017] [Indexed: 05/27/2023]
Abstract
Arabinogalactan proteins (AGPs) belong to a class of Pro/Hyp-rich glycoproteins and are some of the most complex types of macromolecules found in plants. In the economically important plant species, Brassica rapa, only chimeric AGPs have been identified to date. This has significantly limited our understanding of the functional roles of AGPs in this plant. In this study, 64 AGPs were identified in the genome of B. rapa, including 33 classical AGPs, 28 AG peptides and three lys-rich AGPs. Syntenic gene analysis between B. rapa and A. thaliana suggested that the whole genome triplication event dominated the expansion of the AGP gene family in B. rapa. This resulted in a high retained proportion of the AGP family in the B. rapa genome, especially in the least fractionated subgenome. Phylogenetic and motif analysis classified the classical AGPs into six clades and three orphan genes, and the AG peptides into three clades and five orphan genes. Classical AGPs has a faster rate of molecular evolution than AG peptides revealed by estimation of molecular evolution rates. However, no significant differences were observed between classical AGPs and lys-rich AGPs. Under control conditions and in response to phytohormones treatment, a complete expression profiling experiment has identified five anther-specific AGPs and quite a number of AGPs responding to abscisic acid, methyl jasmonate and/or gibberellin. In this study, we presented a bioinformatics approach to identify important types of AGPs. Moreover, the association between their function and their protein structure, as well as the evolution and the expression of AGP genes were investigated, which might provide fundamental information for revealing the roles of AGPs in B. rapa.
Collapse
Affiliation(s)
- Tianyu Han
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang UniversityHangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of AgricultureHangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| | - Heng Dong
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang UniversityHangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of AgricultureHangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| | - Jie Cui
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang UniversityHangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of AgricultureHangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| | - Ming Li
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang UniversityHangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of AgricultureHangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| | - Sue Lin
- Institute of Vegetable Science, Wenzhou Vocational College of Science and TechnologyWenzhou, China
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang UniversityHangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of AgricultureHangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| | - Li Huang
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang UniversityHangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of AgricultureHangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| |
Collapse
|
8
|
Li W, Yang Q, Gu Z, Wu C, Meng D, Yu J, Chen Q, Li Y, Yuan H, Wang D, Li T. Molecular and genetic characterization of a self-compatible apple cultivar, 'CAU-1'. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:162-175. [PMID: 27717452 DOI: 10.1016/j.plantsci.2016.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
In this study, we characterized a naturally occurring self-compatible apple cultivar, 'CAU-1' (S1S9), and studied the underlying mechanism that causes its compatibility. Analyses of both fruit set rate and seed number after self-pollination or cross-pollination with 'Fuji' (S1S9), and of pollen tube growth, demonstrated that 'CAU-1' is self-compatible. Genetic analysis by S-RNase PCR-typing of selfed progeny of 'CAU-1' revealed the presence of all progeny classes (S1S1, S1S9, and S9S9). Moreover, no evidence of S-allele duplication was found. These findings support the hypothesis that loss of function of an S-locus unlinked pollen-part mutation (PPM) expressed in pollen, rather than a natural mutation in the pollen-S gene (S1- and S9- haplotype), leads to SI breakdown in 'CAU-1'. In addition, there were no significant differences in pollen morphology or fertility between 'Fuji' and 'CAU-1'. However, we found that the effect of S1- and S9-RNase on the SI behavior of pollen could not be addressed better in 'CAU-1' than in 'Fuji'. Furthermore, we found that a pollen-expressed hexose transporter, MdHT1, interacted with S-RNases and showed significantly less expression in 'CAU-1' than in 'Fuji' pollen tubes. These findings support the hypothesis that MdHT1 may participate in S-RNase internalization during the SI process, and decrease of MdHT1 expression in 'CAU-1' hindered the release of self S-RNase into the cytoplasm of pollen tubes, thereby protecting pollen from the cytotoxicity of S-RNase, finally probably resulting in self-compatibility. Together, these findings indicate that S-locus external factors are required for gametophytic SI in the Rosaceae subtribe Pyrinae.
Collapse
Affiliation(s)
- Wei Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Qing Yang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zhaoyu Gu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chuanbao Wu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Dong Meng
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jie Yu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Qiuju Chen
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yang Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Hui Yuan
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Dongmei Wang
- Institute of Pomology, Liaoning Academy of Agricultural Sciences, Yingkou 115009, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Paul P, Röth S, Schleiff E. Importance of organellar proteins, protein translocation and vesicle transport routes for pollen development and function. PLANT REPRODUCTION 2016; 29:53-65. [PMID: 26874709 DOI: 10.1007/s00497-016-0274-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/18/2016] [Indexed: 05/27/2023]
Abstract
Protein translocation. Cellular homeostasis strongly depends on proper distribution of proteins within cells and insertion of membrane proteins into the destined membranes. The latter is mediated by organellar protein translocation and the complex vesicle transport system. Considering the importance of protein transport machineries in general it is foreseen that these processes are essential for pollen function and development. However, the information available in this context is very scarce because of the current focus on deciphering the fundamental principles of protein transport at the molecular level. Here we review the significance of protein transport machineries for pollen development on the basis of pollen-specific organellar proteins as well as of genetic studies utilizing mutants of known organellar proteins. In many cases these mutants exhibit morphological alterations highlighting the requirement of efficient protein transport and translocation in pollen. Furthermore, expression patterns of genes coding for translocon subunits and vesicle transport factors in Arabidopsis thaliana are summarized. We conclude that with the exception of the translocation systems in plastids-the composition and significance of the individual transport systems are equally important in pollen as in other cell types. Apparently for plastids only a minimal translocon, composed of only few subunits, exists in the envelope membranes during maturation of pollen. However, only one of the various transport systems known from thylakoids seems to be required for the function of the "simple thylakoid system" existing in pollen plastids. In turn, the vesicle transport system is as complex as seen for other cell types as it is essential, e.g., for pollen tube formation.
Collapse
Affiliation(s)
- Puneet Paul
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany
| | - Sascha Röth
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany.
- Cluster of Excellence Frankfurt, Goethe University, 60438, Frankfurt Am Main, Germany.
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, 60438, Frankfurt Am Main, Germany.
| |
Collapse
|
10
|
Heilmann I, Ischebeck T. Male functions and malfunctions: the impact of phosphoinositides on pollen development and pollen tube growth. PLANT REPRODUCTION 2016; 29:3-20. [PMID: 26676144 DOI: 10.1007/s00497-015-0270-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/17/2015] [Indexed: 05/12/2023]
Abstract
Phosphoinositides in pollen. In angiosperms, sexual reproduction is a series of complex biological events that facilitate the distribution of male generative cells for double fertilization. Angiosperms have no motile gametes, and the distribution units of generative cells are pollen grains, passively mobile desiccated structures, capable of delivering genetic material to compatible flowers over long distances and in an adverse environment. The development of pollen (male gametogenesis) and the formation of a pollen tube after a pollen grain has reached a compatible flower (pollen tube growth) are important aspects of plant developmental biology. In recent years, a wealth of information has been gathered about the molecular control of cell polarity, membrane trafficking and cytoskeletal dynamics underlying these developmental processes. In particular, it has been found that regulatory membrane phospholipids, such as phosphoinositides (PIs), are critical regulatory players, controlling key steps of trafficking and polarization. Characteristic features of PIs are the inositol phosphate headgroups of the lipids, which protrude from the cytosolic surfaces of membranes, enabling specific binding and recruitment of numerous protein partners containing specific PI-binding domains. Such recruitment is globally an early event in polarization processes of eukaryotic cells and also of key importance to pollen development and tube growth. Additionally, PIs serve as precursors of other signaling factors with importance to male gametogenesis. This review highlights the recent advances about the roles of PIs in pollen development and pollen function.
Collapse
Affiliation(s)
- Ingo Heilmann
- Department of Cellular Biochemistry, Institute for Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany.
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
11
|
Pereira AM, Pereira LG, Coimbra S. Arabinogalactan proteins: rising attention from plant biologists. PLANT REPRODUCTION 2015; 28:1-15. [PMID: 25656950 DOI: 10.1007/s00497-015-0254-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/09/2015] [Indexed: 05/21/2023]
Abstract
Key message: AGP update: plant reproduction. Arabinogalactan proteins (AGPs) are a large family of hydroxyproline-rich proteins, heavily glycosylated, ubiquitous in land plants, including basal angiosperms and also in many algae. They have been shown to serve as important molecules in several steps of the reproductive process in plants. Due to their special characteristics, such as high sugar content and their means of association with the membrane, they are often perceived as likely candidates for many different aspects of the reproductive process such as signalling molecules, cell identity determinants, morphogens, nutrient sources and support for pollen tube growth, among others. Nevertheless, the study of these proteins pose many difficulties when it comes to studying them individually. Most of the work done involved the use of the β-glucosyl Yariv reagent and antibodies that recognize the carbohydrate epitopes only. Recently, new approaches have been used to study AGPs largely based in the remarkable growing volume of microarray data made available. Either using older techniques or the most recent ones, a clearer picture is emerging for the functions and mode of action of these molecules in the plant reproductive processes. Here, we present an overview about the most important studies made in this area, focusing on the latest advances and the possibilities for future studies in the field.
Collapse
Affiliation(s)
- Ana Marta Pereira
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | | | | |
Collapse
|
12
|
Onelli E, Idilli AI, Moscatelli A. Emerging roles for microtubules in angiosperm pollen tube growth highlight new research cues. FRONTIERS IN PLANT SCIENCE 2015; 6:51. [PMID: 25713579 PMCID: PMC4322846 DOI: 10.3389/fpls.2015.00051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/20/2015] [Indexed: 05/21/2023]
Abstract
In plants, actin filaments have an important role in organelle movement and cytoplasmic streaming. Otherwise microtubules (MTs) have a role in restricting organelles to specific areas of the cell and in maintaining organelle morphology. In somatic plant cells, MTs also participate in cell division and morphogenesis, allowing cells to take their definitive shape in order to perform specific functions. In the latter case, MTs influence assembly of the cell wall, controlling the delivery of enzymes involved in cellulose synthesis and of wall modulation material to the proper sites. In angiosperm pollen tubes, organelle movement is generally attributed to the acto-myosin system, the main role of which is in distributing organelles in the cytoplasm and in carrying secretory vesicles to the apex for polarized growth. Recent data on membrane trafficking suggests a role of MTs in fine delivery and repositioning of vesicles to sustain pollen tube growth. This review examines the role of MTs in secretion and endocytosis, highlighting new research cues regarding cell wall construction and pollen tube-pistil crosstalk, that help unravel the role of MTs in polarized growth.
Collapse
Affiliation(s)
| | - Aurora I. Idilli
- Institute of Biophysics, National Research Council and Fondazione Bruno Kessler, Trento, Italy
| | - Alessandra Moscatelli
- Department of Biosciences, University of Milan, Milan, Italy
- *Correspondence: Alessandra Moscatelli, Department of Biosciences, University of Milan, Via Celoria, 26, 20113 Milano, Italy e-mail:
| |
Collapse
|
13
|
Meng D, Gu Z, Yuan H, Wang A, Li W, Yang Q, Zhu Y, Li T. The microtubule cytoskeleton and pollen tube Golgi vesicle system are required for in vitro S-RNase internalization and gametic self-incompatibility in apple. PLANT & CELL PHYSIOLOGY 2014; 55:977-89. [PMID: 24503865 DOI: 10.1093/pcp/pcu031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
S-RNase is the female determinant of gametophytic self-incompatibility in apple and is usually considered to be the reason for rejection of pollen. In this study, we investigated the role of microtubules (MTs) in internalization of S-RNases by pollen tubes cultured in vitro. The results showed that S-RNase was imported into the pollen tube where it inhibits pollen tube growth, and that S-RNase is co-localized with the Golgi vesicle during the internalization process. Moreover, MT depolymerization is observed following accumulation of S-RNases in the pollen cytosol. On the other hand, S-RNase was prevented from entering the pollen tube when the pollen was treated with the actin filament (AF) inhibitor latrunculin A (LatA), the MT inhibitor oryzalin, or the MT stabilizer taxol at subtoxic concentrations. These hindered the construction of the MT, with pollen tubes capable of growth under these conditions. Pollen tubes showed improved growth in self-pollinated styles that were pre-treated with taxol. This suggests that cytoskeleton antagonists can prevent S-RNase-mediated inhibition of pollen tubes in vivo by blocking S-RNase internalization. These results suggest that an intact and dynamic cytoskeleton is required for the in vitro internalization of S-RNase, as shown by the effects of various cytoskeleton inhibitors. S-RNase internalization takes place via a membrane/cytoskeleton-based Golgi vesicle system, which can also affect self-incompatibility in apple.
Collapse
Affiliation(s)
- Dong Meng
- Laboratory of Fruit Cell and Molecular Breeding, College of Agronomy and Bio-tech, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Lin S, Dong H, Zhang F, Qiu L, Wang F, Cao J, Huang L. BcMF8, a putative arabinogalactan protein-encoding gene, contributes to pollen wall development, aperture formation and pollen tube growth in Brassica campestris. ANNALS OF BOTANY 2014; 113:777-88. [PMID: 24489019 PMCID: PMC3962243 DOI: 10.1093/aob/mct315] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS The arabinogalactan protein (AGP) gene family is involved in plant reproduction. However, little is known about the function of individual AGP genes in pollen development and pollen tube growth. In this study, Brassica campestris male fertility 8 (BcMF8), a putative AGP-encoding gene previously found to be pollen specific in Chinese cabbage (B. campestris ssp. chinensis), was investigated. METHODS Real-time reverse transcription-PCR and in situ hybridization were used to analyse the expression pattern of BcMF8 in pistils. Prokaryotic expression and western blots were used to ensure that BcMF8 could encode a protein. Antisense RNA technology was applied to silence gene expression, and morphological and cytological approaches (e.g. scanning electron microscopy and transmission electron microscopy) were used to reveal abnormal phenotypes caused by gene silencing. KEY RESULTS The BcMF8 gene encoded a putative AGP protein that was located in the cell wall, and was expressed in pollen grains and pollen tubes. The functional interruption of BcMF8 by antisense RNA technology resulted in slipper-shaped and bilaterally sunken pollen with abnormal intine development and aperture formation. The inhibition of BcMF8 led to a decrease in the percentage of in vitro pollen germination. In pollen that did germinate, the pollen tubes were unstable, abnormally shaped and burst more frequently relative to controls, which corresponded to an in vivo arrest of pollen germination at the stigma surface and retarded pollen tube growth in the stylar transmitting tissues. CONCLUSIONS The phenotypic defects of antisense BcMF8 RNA lines (bcmf8) suggest a crucial function of BcMF8 in modulating the physical nature of the pollen wall and in helping in maintaining the integrity of the pollen tube wall matrix.
Collapse
Affiliation(s)
- Sue Lin
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Heng Dong
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Fang Zhang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Lin Qiu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Fangzhan Wang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Jiashu Cao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
- For correspondence. E-mail
| |
Collapse
|
15
|
Jiménez-Durán K, McClure B, García-Campusano F, Rodríguez-Sotres R, Cisneros J, Busot G, Cruz-García F. NaStEP: a proteinase inhibitor essential to self-incompatibility and a positive regulator of HT-B stability in Nicotiana alata pollen tubes. PLANT PHYSIOLOGY 2013; 161:97-107. [PMID: 23150644 PMCID: PMC3532289 DOI: 10.1104/pp.112.198440] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 11/12/2012] [Indexed: 05/26/2023]
Abstract
In Solanaceae, the self-incompatibility S-RNase and S-locus F-box interactions define self-pollen recognition and rejection in an S-specific manner. This interaction triggers a cascade of events involving other gene products unlinked to the S-locus that are crucial to the self-incompatibility response. To date, two essential pistil-modifier genes, 120K and High Top-Band (HT-B), have been identified in Nicotiana species. However, biochemistry and genetics indicate that additional modifier genes are required. We recently reported a Kunitz-type proteinase inhibitor, named NaStEP (for Nicotiana alata Stigma-Expressed Protein), that is highly expressed in the stigmas of self-incompatible Nicotiana species. Here, we report the proteinase inhibitor activity of NaStEP. NaStEP is taken up by both compatible and incompatible pollen tubes, but its suppression in Nicotiana spp. transgenic plants disrupts S-specific pollen rejection; therefore, NaStEP is a novel pistil-modifier gene. Furthermore, HT-B levels within the pollen tubes are reduced when NaStEP-suppressed pistils are pollinated with either compatible or incompatible pollen. In wild-type self-incompatible N. alata, in contrast, HT-B degradation occurs preferentially in compatible pollinations. Taken together, these data show that the presence of NaStEP is required for the stability of HT-B inside pollen tubes during the rejection response, but the underlying mechanism is currently unknown.
Collapse
Affiliation(s)
- Karina Jiménez-Durán
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City DF 04510, Mexico (K.J.-D., F.G.-C., R.R.-S., J.C., G.B., F.C.-G.); and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 (B.M.)
| | - Bruce McClure
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City DF 04510, Mexico (K.J.-D., F.G.-C., R.R.-S., J.C., G.B., F.C.-G.); and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 (B.M.)
| | - Florencia García-Campusano
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City DF 04510, Mexico (K.J.-D., F.G.-C., R.R.-S., J.C., G.B., F.C.-G.); and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 (B.M.)
| | - Rogelio Rodríguez-Sotres
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City DF 04510, Mexico (K.J.-D., F.G.-C., R.R.-S., J.C., G.B., F.C.-G.); and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 (B.M.)
| | - Jesús Cisneros
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City DF 04510, Mexico (K.J.-D., F.G.-C., R.R.-S., J.C., G.B., F.C.-G.); and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 (B.M.)
| | - Grethel Busot
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City DF 04510, Mexico (K.J.-D., F.G.-C., R.R.-S., J.C., G.B., F.C.-G.); and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 (B.M.)
| | - Felipe Cruz-García
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City DF 04510, Mexico (K.J.-D., F.G.-C., R.R.-S., J.C., G.B., F.C.-G.); and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 (B.M.)
| |
Collapse
|
16
|
Miao H, Qin Y, da Silva JAT, Ye Z, Hu G. Identification of differentially expressed genes in pistils from self-incompatible Citrus reticulata by suppression subtractive hybridization. Mol Biol Rep 2012; 40:159-69. [PMID: 23070907 DOI: 10.1007/s11033-012-2045-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 10/02/2012] [Indexed: 11/28/2022]
Abstract
Self-incompatibility (SI) is one important factor that can result in Citrus seedlessness. However, the molecular mechanism of SI in Citrus is not clear yet. To isolate the pistil's SI-related genes, a suppression subtractive hybridization library was constructed using mature pistils of 'Wuzishatangju' mandarin (SI) as the tester and mature pistils of 'Shatangju' mandarin (self-compatibility, SC) as the driver. 229 differentially expressed cDNA clones from 967 positive clones were sequenced and identified. Differentially expressed ESTs are possibly involved in the SI reaction of 'Wuzishatangju' through a regulating signaling pathway, serine/threonine phosphatase activity, receptor kinase, embryonic development, gibberellin stimulus, or transcription. 11 out of 36 SI candidate genes displayed different expression patterns in various tissues and stages after self- and cross-pollination of 'Wuzishatangju'. The expression of CaBP (WY65), a senescence-protease (WY372), an unknown gene (WY283), and a WRKY (WY17) were up-regulated in the styles of 'Wuzishatangju' while higher expression of WY190 was observed in styles of 'Shatangju'. Highest expression levels of WY65, WY372, an annexin (WY598), the zinc-finger protein (WY376), a C2-protein (WY291), and an unknown gene (WY318) were detected in styles at 3 days after self-pollination of 'Wuzishatangju' while lowest levels were observed in styles at 3 days after cross-pollination of 'Wuzishatangju' × 'Shatangju'. The potential involvement of these genes in the SI reaction is discussed.
Collapse
Affiliation(s)
- Hongxia Miao
- College of Horticulture, South China Agricultural University, Guangdong 510642, People's Republic of China.
| | | | | | | | | |
Collapse
|
17
|
Losada JM, Herrero M. Arabinogalactan-protein secretion is associated with the acquisition of stigmatic receptivity in the apple flower. ANNALS OF BOTANY 2012; 110:573-84. [PMID: 22652420 PMCID: PMC3400445 DOI: 10.1093/aob/mcs116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 04/12/2012] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS Stigmatic receptivity plays a clear role in pollination dynamics; however, little is known about the factors that confer to a stigma the competence to be receptive for the germination of pollen grains. In this work, a developmental approach is used to evaluate the acquisition of stigmatic receptivity and its relationship with a possible change in arabinogalactan-proteins (AGPs). METHODS Flowers of the domestic apple, Malus × domestica, were assessed for their capacity to support pollen germination at different developmental stages. Stigmas from these same stages were characterized morphologically and different AGP epitopes detected by immunocytochemistry. KEY RESULTS Acquisition of stigmatic receptivity and the secretion of classical AGPs from stigmatic cells occurred concurrently and following the same spatial distribution. While in unpollinated stigmas AGPs appeared unaltered, in cross-pollinated stigmas AGPs epitopes vanished as pollen tubes passed by. CONCLUSIONS The concurrent secretion of AGPs with the acquisition of stigmatic receptivity, together with the differential response in unpollinated and cross-pollinated pistils point out a role of AGPs in supporting pollen tube germination and strongly suggest that secretion of AGPs is associated with the acquisition of stigma receptivity.
Collapse
Affiliation(s)
- Juan M Losada
- Pomology Department, Aula Dei Experimental Station - CSIC, Zaragoza 50080, Spain.
| | | |
Collapse
|
18
|
Nguema-Ona E, Coimbra S, Vicré-Gibouin M, Mollet JC, Driouich A. Arabinogalactan proteins in root and pollen-tube cells: distribution and functional aspects. ANNALS OF BOTANY 2012; 110:383-404. [PMID: 22786747 PMCID: PMC3394660 DOI: 10.1093/aob/mcs143] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/22/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Arabinogalactan proteins (AGPs) are complex proteoglycans of the cell wall found in the entire plant kingdom and in almost all plant organs. AGPs encompass a large group of heavily glycosylated cell-wall proteins which share common features, including the presence of glycan chains especially enriched in arabinose and galactose and a protein backbone particularly rich in hydroxyproline residues. However, AGPs also exhibit strong heterogeneities among their members in various plant species. AGP ubiquity in plants suggests these proteoglycans are fundamental players for plant survival and development. SCOPE In this review, we first present an overview of current knowledge and specific features of AGPs. A section devoted to major tools used to study AGPs is also presented. We then discuss the distribution of AGPs as well as various aspects of their functional properties in root tissues and pollen tubes. This review also suggests novel directions of research on the role of AGPs in the biology of roots and pollen tubes.
Collapse
Affiliation(s)
- Eric Nguema-Ona
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Grand Réseau de Recherche VASI de Haute Normandie, PRES Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Sílvia Coimbra
- Sexual Plant Reproduction and Development Laboratory, Departamento de Biologia, F.C. Universidade do Porto, Rua do Campo Alegre 4169-007 Porto, Portugal
- Center for Biodiversity, Functional & Integrative Genomics (BioFIG), http://biofig.fc.ul.pt
| | - Maïté Vicré-Gibouin
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Grand Réseau de Recherche VASI de Haute Normandie, PRES Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Jean-Claude Mollet
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Grand Réseau de Recherche VASI de Haute Normandie, PRES Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Azeddine Driouich
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Grand Réseau de Recherche VASI de Haute Normandie, PRES Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| |
Collapse
|
19
|
Zuriaga E, Molina L, Badenes ML, Romero C. Physical mapping of a pollen modifier locus controlling self-incompatibility in apricot and synteny analysis within the Rosaceae. PLANT MOLECULAR BIOLOGY 2012; 79:229-242. [PMID: 22481163 DOI: 10.1007/s11103-012-9908-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 03/23/2012] [Indexed: 05/31/2023]
Abstract
S-locus products (S-RNase and F-box proteins) are essential for the gametophytic self-incompatibility (GSI) specific recognition in Prunus. However, accumulated genetic evidence suggests that other S-locus unlinked factors are also required for GSI. For instance, GSI breakdown was associated with a pollen-part mutation unlinked to the S-locus in the apricot (Prunus armeniaca L.) cv. 'Canino'. Fine-mapping of this mutated modifier gene (M-locus) and the synteny analysis of the M-locus within the Rosaceae are here reported. A segregation distortion loci mapping strategy, based on a selectively genotyped population, was used to map the M-locus. In addition, a bacterial artificial chromosome (BAC) contig was constructed for this region using overlapping oligonucleotides probes, and BAC-end sequences (BES) were blasted against Rosaceae genomes to perform micro-synteny analysis. The M-locus was mapped to the distal part of chr.3 flanked by two SSR markers within an interval of 1.8 cM corresponding to ~364 Kb in the peach (Prunus persica L. Batsch) genome. In the integrated genetic-physical map of this region, BES were mapped against the peach scaffold_3 and BACs were anchored to the apricot map. Micro-syntenic blocks were detected in apple (Malus × domestica Borkh.) LG17/9 and strawberry (Fragaria vesca L.) FG6 chromosomes. The M-locus fine-scale mapping provides a solid basis for self-compatibility marker-assisted selection and for positional cloning of the underlying gene, a necessary goal to elucidate the pollen rejection mechanism in Prunus. In a wider context, the syntenic regions identified in peach, apple and strawberry might be useful to interpret GSI evolution in Rosaceae.
Collapse
Affiliation(s)
- Elena Zuriaga
- Instituto Valenciano de Investigaciones Agrarias-IVIA, Apartado Oficial, 46113 Moncada, Valencia, Spain.
| | | | | | | |
Collapse
|
20
|
Aizat WM, Preuss JM, Johnson AAT, Tester MA, Schultz CJ. Investigation of a His-rich arabinogalactan-protein for micronutrient biofortification of cereal grain. PHYSIOLOGIA PLANTARUM 2011; 143:271-286. [PMID: 21707638 DOI: 10.1111/j.1399-3054.2011.01499.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The micronutrient content of most cereal grains is low and responsible for malnutrition deficiencies in millions of people who rely on grains as their primary food source. Any strategy that can increase the micronutrient content of grain will have significant benefits to world health. We identified a gene from barley encoding a cell wall protein with multiple histidine (His)-rich motifs interspersed with short arabinogalactan-protein (AGP) domains and have called it Hordeum vulgare His-rich AGP (HvHRA1). Sequence analysis shows that His-rich AGPs are rare in plants and that the number of His-rich and AGP domains differ between cereals and dicots. The barley and wheat encoded proteins have more than 13 His-rich domains, whereas the putative rice orthologue has only 5 His-rich regions. His-rich motifs are well-established metal-binding motifs; therefore, we developed transgenic (Tx) rice plants that constitutively overexpress barley HvHRA1. There was no significant effect on plant growth or grain yield in Tx plants. Purification of AGPs from wild-type and Tx plants showed that only Tx plants contained detectable levels of a His-rich AGP. Calcein assay shows that the AGP fraction from Tx plants had increased binding affinity for Cu(2+) . Micronutrient analysis of brown and white rice showed that the grain nutrient yield for Fe, Zn and Cu was higher in two Tx lines compared to their respective nulls, although the differences were not statistically significant. This approach highlights the potential of the plant apoplast (cell wall) for storage of key nutrients through overexpression of genes for metal-binding proteins.
Collapse
Affiliation(s)
- Wan M Aizat
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia
| | | | | | | | | |
Collapse
|
21
|
Munnik T, Nielsen E. Green light for polyphosphoinositide signals in plants. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:489-97. [PMID: 21775194 DOI: 10.1016/j.pbi.2011.06.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/21/2011] [Accepted: 06/23/2011] [Indexed: 05/04/2023]
Abstract
Plant genomes lack homologues of the inositol 1,4,5-trisphosphate receptor and protein kinase C, which are important components of the canonical phospholipase C signalling system in animals. Instead, plants seem to utilize alternative downstream signalling molecules, that is, InsP(6) and phosphatidic acid. Inositol lipids may also function as second messengers themselves. By reversible phosphorylation of the inositol headgroup, five biologically active plant polyphosphoinositides can be detected. Protein targets interact with specific polyphosphoinositide isomers via selective lipid-binding domains, thereby altering their intracellular localization and/or enzymatic activity. Such lipid-binding domains have also been used to create GFP based-lipid biosensors to visualize PPIs dynamics in vivo. Here, we highlight some recent advances and ideas on PPIs' role in plant signalling.
Collapse
Affiliation(s)
- Teun Munnik
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands.
| | | |
Collapse
|
22
|
McClure B, Cruz-García F, Romero C. Compatibility and incompatibility in S-RNase-based systems. ANNALS OF BOTANY 2011; 108:647-58. [PMID: 21803740 PMCID: PMC3170157 DOI: 10.1093/aob/mcr179] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 06/02/2011] [Indexed: 05/21/2023]
Abstract
BACKGROUND S-RNase-based self-incompatibility (SI) occurs in the Solanaceae, Rosaceae and Plantaginaceae. In all three families, compatibility is controlled by a polymorphic S-locus encoding at least two genes. S-RNases determine the specificity of pollen rejection in the pistil, and S-locus F-box proteins fulfill this function in pollen. S-RNases are thought to function as S-specific cytotoxins as well as recognition proteins. Thus, incompatibility results from the cytotoxic activity of S-RNase, while compatible pollen tubes evade S-RNase cytotoxicity. SCOPE The S-specificity determinants are known, but many questions remain. In this review, the genetics of SI are introduced and the characteristics of S-RNases and pollen F-box proteins are briefly described. A variety of modifier genes also required for SI are also reviewed. Mutations affecting compatibility in pollen are especially important for defining models of compatibility and incompatibility. In Solanaceae, pollen-side mutations causing breakdown in SI have been attributed to the heteroallelic pollen effect, but a mutation in Solanum chacoense may be an exception. This has been interpreted to mean that pollen incompatibility is the default condition unless the S-locus F-box protein confers resistance to S-RNase. In Prunus, however, S-locus F-box protein gene mutations clearly cause compatibility. CONCLUSIONS Two alternative mechanisms have been proposed to explain compatibility and incompatibility: compatibility is explained either as a result of either degradation of non-self S-RNase or by its compartmentalization so that it does not have access to the pollen tube cytoplasm. These models are not necessarily mutually exclusive, but each makes different predictions about whether pollen compatibility or incompatibility is the default. As more factors required for SI are identified and characterized, it will be possible to determine the role each process plays in S-RNase-based SI.
Collapse
Affiliation(s)
- Bruce McClure
- Department of Biochemistry, Interdisciplinary Plant Group, 117 Schweitzer Hall, University of Missouri, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
23
|
Interspecific reproductive barriers in the tomato clade: opportunities to decipher mechanisms of reproductive isolation. ACTA ACUST UNITED AC 2010; 24:171-87. [PMID: 21076968 DOI: 10.1007/s00497-010-0155-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 10/23/2010] [Indexed: 02/06/2023]
Abstract
The tomato clade within the genus Solanum has numerous advantages for mechanistic studies of reproductive isolation. Its thirteen closely related species, along with four closely allied Solanum species, provide a defined group with diverse mating systems that display complex interspecific reproductive barriers. Several kinds of pre- and postzygotic barriers have already been identified within this clade. Well-developed genetic maps, introgression lines, interspecific bridging lines, and the newly available draft genome sequence of the domesticated tomato (Solanum lycopersicum) are valuable tools for the genetic analysis of interspecific reproductive barriers. The excellent chromosome morphology of these diploid species allows detailed cytological analysis of interspecific hybrids. Transgenic methodologies, well developed in the Solanaceae, allow the functional testing of candidate reproductive barrier genes as well as live imaging of pollen rejection events through the use of fluorescently tagged proteins. Proteomic and transcriptomics approaches are also providing new insights into the molecular nature of interspecific barriers. Recent progress toward understanding reproductive isolation mechanisms using these molecular and genetic tools is assessed in this review.
Collapse
|
24
|
Ovecka M, Berson T, Beck M, Derksen J, Samaj J, Baluska F, Lichtscheidl IK. Structural sterols are involved in both the initiation and tip growth of root hairs in Arabidopsis thaliana. THE PLANT CELL 2010; 22:2999-3019. [PMID: 20841426 PMCID: PMC2965552 DOI: 10.1105/tpc.109.069880] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 07/21/2010] [Accepted: 08/18/2010] [Indexed: 05/22/2023]
Abstract
Structural sterols are abundant in the plasma membrane of root apex cells in Arabidopsis thaliana. They specifically accumulate in trichoblasts during the prebulging and bulge stages and show a polar accumulation in the tip during root hair elongation but are distributed evenly in mature root hairs. Thus, structural sterols may serve as a marker for root hair initiation and growth. In addition, they may predict branching events in mutants with branching root hairs. Structural sterols were detected using the sterol complexing fluorochrome filipin. Application of filipin caused a rapid, concentration-dependent decrease in tip growth. Filipin-complexed sterols accumulated in globular structures that fused to larger FM4-64-positive aggregates in the tip, so-called filipin-induced apical compartments, which were closely associated with the plasma membrane. The plasma membrane appeared malformed and the cytoarchitecture of the tip zone was affected. Trans-Golgi network/early endosomal compartments containing molecular markers, such as small Rab GTPase RabA1d and SNARE Wave line 13 (VTI12), locally accumulated in these filipin-induced apical compartments, while late endosomes, endoplasmic reticulum, mitochondria, plastids, and cytosol were excluded from them. These data suggest that the local distribution and apical accumulation of structural sterols may regulate vesicular trafficking and plasma membrane properties during both initiation and tip growth of root hairs in Arabidopsis.
Collapse
Affiliation(s)
- Miroslav Ovecka
- Core Facility of Cell Imaging and Ultrastructure Research, University of Viena, A-1090 Viena, Austria.
| | | | | | | | | | | | | |
Collapse
|
25
|
Ellis M, Egelund J, Schultz CJ, Bacic A. Arabinogalactan-proteins: key regulators at the cell surface? PLANT PHYSIOLOGY 2010; 153:403-19. [PMID: 20388666 PMCID: PMC2879789 DOI: 10.1104/pp.110.156000] [Citation(s) in RCA: 342] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 04/01/2010] [Indexed: 05/17/2023]
|
26
|
|
27
|
Kumar A, McClure B. Pollen-pistil interactions and the endomembrane system. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2001-13. [PMID: 20363870 DOI: 10.1093/jxb/erq065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The endomembrane system offers many potential points where plant mating can be effectively controlled. This results from two basic features of angiosperm reproduction: the requirement for pollen tubes to pass through sporophytic tissues to gain access to ovules and the physiology of pollen tube growth that provides it with the capacity to do so. Rapid pollen tube growth requires extravagant exocytosis and endocytosis activity as cell wall material is deposited and membrane is recovered from the actively growing tip. Moreover, recent results show that pollen tubes take up a great deal of material from the pistil extracellular matrix. Regarding the stigma and style as organs specialized for mate selection focuses attention on their complementary roles in secreting material to support the growth of compatible pollen tubes and discourage the growth of undesirable pollen. Since these processes also involve regulated activities of the endomembrane system, the potential for regulating mating by controlling endomembrane events exists in both pollen and pistil.
Collapse
Affiliation(s)
- Aruna Kumar
- Division of Biochemistry, Interdisciplinary Plant Group, 117 Schweitzer Hall, University of Missouri, Columbia, MO 65211-7310, USA
| | | |
Collapse
|
28
|
The regulation of vesicle trafficking by small GTPases and phospholipids during pollen tube growth. ACTA ACUST UNITED AC 2009; 23:87-93. [DOI: 10.1007/s00497-009-0118-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 10/22/2009] [Indexed: 01/01/2023]
|
29
|
McClure B. Darwin's foundation for investigating self-incompatibility and the progress toward a physiological model for S-RNase-based SI. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1069-1081. [PMID: 19297550 DOI: 10.1093/jxb/erp024] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Charles Darwin made extensive observations of the pollination biology of a wide variety of plants. He carefully documented the consequences of self-pollination and described species that were self-sterile but that could easily be crossed with other plants of the same species. He believed that compatibility was controlled by the 'mutual action' of pollen and pistil contents. A genetic model for self-sterility was developed in the early 1900 s based on studies of the compatibility relationships among, what are now referred to as, self-incompatible (SI) Nicotiana species. Today, it is believed that SI in these species is controlled by an interaction between S-RNases produced in the pistil and F-box proteins expressed in pollen and, moreover, that this S-RNase-based SI system is shared by a great diversity of other plant species. Current research is aimed at understanding how the mutual actions of these S-gene products function in the physiological context of pollen tube growth.
Collapse
Affiliation(s)
- Bruce McClure
- Division of Biochemistry, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310, USA.
| |
Collapse
|