1
|
Peng Y, Liang Z, Cai M, Wang J, Li D, Chen Q, Du X, Gu R, Wang G, Schnable PS, Wang J, Li L. ZmPTOX1, a plastid terminal oxidase, contributes to redox homeostasis during seed development and germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:460-477. [PMID: 38678554 DOI: 10.1111/tpj.16776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/24/2024] [Accepted: 03/31/2024] [Indexed: 05/01/2024]
Abstract
Maize plastid terminal oxidase1 (ZmPTOX1) plays a pivotal role in seed development by upholding redox balance within seed plastids. This study focuses on characterizing the white kernel mutant 3735 (wk3735) mutant, which yields pale-yellow seeds characterized by heightened protein but reduced carotenoid levels, along with delayed germination compared to wild-type (WT) seeds. We successfully cloned and identified the target gene ZmPTOX1, responsible for encoding maize PTOX-a versatile plastoquinol oxidase and redox sensor located in plastid membranes. While PTOX's established role involves regulating redox states and participating in carotenoid metabolism in Arabidopsis leaves and tomato fruits, our investigation marks the first exploration of its function in storage organs lacking a photosynthetic system. Through our research, we validated the existence of plastid-localized ZmPTOX1, existing as a homomultimer, and established its interaction with ferredoxin-NADP+ oxidoreductase 1 (ZmFNR1), a crucial component of the electron transport chain (ETC). This interaction contributes to the maintenance of redox equilibrium within plastids. Our findings indicate a propensity for excessive accumulation of reactive oxygen species (ROS) in wk3735 seeds. Beyond its known role in carotenoids' antioxidant properties, ZmPTOX1 also impacts ROS homeostasis owing to its oxidizing function. Altogether, our results underscore the critical involvement of ZmPTOX1 in governing seed development and germination by preserving redox balance within the seed plastids.
Collapse
Affiliation(s)
- Yixuan Peng
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Zhi Liang
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Minghao Cai
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Jie Wang
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Delin Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Quanquan Chen
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Xuemei Du
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Riliang Gu
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Patrick S Schnable
- Department of Agronomy, Iowa State University, 2035 Roy J. Carver Co-Lab, Ames, 50011-3650, Iowa, USA
| | - Jianhua Wang
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Li Li
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| |
Collapse
|
2
|
Plessis A, Ravel C, Risacher T, Duchateau N, Dardevet M, Merlino M, Torney F, Martre P. Storage protein activator controls grain protein accumulation in bread wheat in a nitrogen dependent manner. Sci Rep 2023; 13:22736. [PMID: 38123623 PMCID: PMC10733432 DOI: 10.1038/s41598-023-49139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The expression of cereal grain storage protein (GSP) genes is controlled by a complex network of transcription factors (TFs). Storage protein activator (SPA) is a major TF acting in this network but its specific function in wheat (Triticum aestivum L.) remains to be determined. Here we generated an RNAi line in which expression of the three SPA homoeologs was reduced. In this line and its null segregant we analyzed GSP accumulation and expression of GSP and regulatory TF genes under two regimes of nitrogen availability. We show that down regulation of SPA decreases grain protein concentration at maturity under low but not high nitrogen supply. Under low nitrogen supply, the decrease in SPA expression also caused a reduction in the total quantity of GSP per grain and in the ratio of GSP to albumin-globulins, without significantly affecting GSP composition. The slight reduction in GSP gene expression measured in the SPA RNAi line under low nitrogen supply did not entirely account for the more significant decrease in GSP accumulation, suggesting that SPA regulates additional levels of GSP synthesis. Our results demonstrate a clear role of SPA in the regulation of grain nitrogen metabolism when nitrogen is a limiting resource.
Collapse
Affiliation(s)
- Anne Plessis
- Université Clermont Auvergne, INRAE, UMR1095 GDEC, 63000, Clermont Ferrand, France
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Catherine Ravel
- Université Clermont Auvergne, INRAE, UMR1095 GDEC, 63000, Clermont Ferrand, France.
| | | | - Nathalie Duchateau
- Université Clermont Auvergne, INRAE, UMR1095 GDEC, 63000, Clermont Ferrand, France
| | - Mireille Dardevet
- Université Clermont Auvergne, INRAE, UMR1095 GDEC, 63000, Clermont Ferrand, France
| | - Marielle Merlino
- Université Clermont Auvergne, INRAE, UMR1095 GDEC, 63000, Clermont Ferrand, France
| | - François Torney
- Centre de Recherche, Limagrain Europe, 63 720, Chappes, France
| | - Pierre Martre
- Université Clermont Auvergne, INRAE, UMR1095 GDEC, 63000, Clermont Ferrand, France
- LEPSE, Université de Montpellier, INRAE, Institut SupAgro Montpellier, 34000, Montpellier, France
| |
Collapse
|
3
|
Alseekh S, Karakas E, Zhu F, Wijesingha Ahchige M, Fernie AR. Plant biochemical genetics in the multiomics era. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4293-4307. [PMID: 37170864 PMCID: PMC10433942 DOI: 10.1093/jxb/erad177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
Our understanding of plant biology has been revolutionized by modern genetics and biochemistry. However, biochemical genetics can be traced back to the foundation of Mendelian genetics; indeed, one of Mendel's milestone discoveries of seven characteristics of pea plants later came to be ascribed to a mutation in a starch branching enzyme. Here, we review both current and historical strategies for the elucidation of plant metabolic pathways and the genes that encode their component enzymes and regulators. We use this historical review to discuss a range of classical genetic phenomena including epistasis, canalization, and heterosis as viewed through the lens of contemporary high-throughput data obtained via the array of approaches currently adopted in multiomics studies.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Esra Karakas
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070 Wuhan, China
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
4
|
Zhang G, Bi Z, Jiang J, Lu J, Li K, Bai D, Wang X, Zhao X, Li M, Zhao X, Wang W, Xu J, Li Z, Zhang F, Shi Y. Genome-wide association and epistasis studies reveal the genetic basis of saline-alkali tolerance at the germination stage in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1170641. [PMID: 37251777 PMCID: PMC10213895 DOI: 10.3389/fpls.2023.1170641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/10/2023] [Indexed: 05/31/2023]
Abstract
Introduction Saline-alkali stress is one of the main abiotic factors limiting rice production worldwide. With the widespread use of rice direct seeding technology, it has become increasingly important to improve rice saline-alkali tolerance at the germination stage. Methods To understand the genetic basis of saline-alkali tolerance and facilitate breeding efforts for developing saline-alkali tolerant rice varieties, the genetic basis of rice saline-alkali tolerance was dissected by phenotyping seven germination-related traits of 736 diverse rice accessions under the saline-alkali stress and control conditions using genome-wide association and epistasis analysis (GWAES). Results Totally, 165 main-effect quantitative trait nucleotides (QTNs) and 124 additional epistatic QTNs were identified as significantly associated with saline-alkali tolerance, which explained a significant portion of the total phenotypic variation of the saline-alkali tolerance traits in the 736 rice accessions. Most of these QTNs were located in genomic regions either harboring saline-alkali tolerance QTNs or known genes for saline-alkali tolerance reported previously. Epistasis as an important genetic basis of rice saline-alkali tolerance was validated by genomic best linear unbiased prediction in which inclusion of both main-effect and epistatic QTNs showed a consistently better prediction accuracy than either main-effect or epistatic QTNs alone. Candidate genes for two pairs of important epistatic QTNs were suggested based on combined evidence from the high-resolution mapping plus their reported molecular functions. The first pair included a glycosyltransferase gene LOC_Os02g51900 (UGT85E1) and an E3 ligase gene LOC_Os04g01490 (OsSIRP4), while the second pair comprised an ethylene-responsive transcriptional factor, AP59 (LOC_Os02g43790), and a Bcl-2-associated athanogene gene, OsBAG1 (LOC_Os09g35630) for salt tolerance. Detailed haplotype analyses at both gene promoter and CDS regions of these candidate genes for important QTNs identified favorable haplotype combinations with large effects on saline-alkali tolerance, which can be used to improve rice saline-alkali tolerance by selective introgression. Discussion Our findings provided saline-alkali tolerant germplasm resources and valuable genetic information to be used in future functional genomic and breeding efforts of rice saline-alkali tolerance at the germination stage.
Collapse
Affiliation(s)
- Guogen Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyuan Bi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Jiang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingbing Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Keyang Li
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Di Bai
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Xinchen Wang
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Xueyu Zhao
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Min Li
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiuqin Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensheng Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Jianlong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhikang Li
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Yingyao Shi
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
5
|
Chen S, Peng W, Ansah EO, Xiong F, Wu Y. Encoded C 4 homologue enzymes genes function under abiotic stresses in C3 plant. PLANT SIGNALING & BEHAVIOR 2022; 17:2115634. [PMID: 36102341 PMCID: PMC9481101 DOI: 10.1080/15592324.2022.2115634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Plant organisms assimilate CO2 through the photosynthetic pathway, which facilitates in the synthesis of sugar for plant development. As environmental elements including water level, CO2 concentration, temperature and soil characteristics change, the plants may recruit series of genes to help adapt the hostile environments and challenges. C4 photosynthesis plants are an excellent example of plant evolutionary adaptation to diverse condition. Compared with C3 photosynthesis plants, C4 photosynthesis plants have altered leaf anatomy and new metabolism for CO2 capture, with multiple related enzymes such as phosphoenolpyruvate carboxylase (PEPCase), pyruvate orthophosphate dikinase (PPDK), NAD(P)-malic enzyme (NAD(P)-ME), NAD(P) - malate dehydrogenase (NAD(P)-MDH) and carbonic anhydrases (CA), identified to participate in the carbon concentrating mechanism (CCM) pathway. Recently, great achievements about C4 CCM-related genes have been made in the dissection of C3 plant development processes involving various stresses. In this review, we describe the functions of C4 CCM-related homologous genes in carbon and nitrogen metabolism in C3 plants. We further summarize C4 CCM-related homologous genes' functions in response to stresses in C3 plants. The understanding of C4 CCM-related genes' function in response to abiotic stress in plant is important to modify the crop plants for climate diversification.
Collapse
Affiliation(s)
- Simin Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Wangmenghan Peng
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Ebenezer Ottopah Ansah
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Fei Xiong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Yunfei Wu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Kaur C, Singh A, Sethi M, Devi V, Chaudhary DP, Phagna RK, Langyan S, Bhushan B, Rakshit S. Optimization of Protein Quality Assay in Normal, opaque-2, and Quality Protein Maize. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.743019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The development of quality protein maize (QPM) was considered a significant leap toward improvement in the nutritional status of rural masses in developing countries. The nutritional quality of QPM is attributed to the higher concentration of essential amino acids, particularly lysine and tryptophan, in its kernel endosperm. However, the similarity in the grains of QPM and normal maize necessitates the development of a standard protocol to assess the protein quality of maize. The present study aimed at improving the protocol of protein quality assessment in QPM. For this purpose, endosperm defatting and protein estimation procedures were restandardized and optimized with respect to the protocol duration and its amenability for high-throughput analysis. Unlike normal maize, QPM and opaque-2 mutants were completely defatted within a 48 h period. It was observed that the tryptophan content, calculated at each defatting interval, increased in the samples defatted for a longer duration. No significant differences were observed in the tryptophan content analyzed in the samples defatted for 48 and 72 h. Moreover, the endosperm protein estimated by using the Bradford method with certain modifications strongly correlated with the micro-Kjeldahl method (r = 0.9). Relative to the micro-Kjeldahl method, the Bradford method was found to be precise, rapid, and hazard-free. The present findings enable a testing protocol of reduced time duration that can be used in resource-poor settings for the determination of a protein quality assay in QPM. Overall, the present study effectively helped in reducing the defatting time by 24 h and protein estimation by 3 h as compared to the already established International Maize and Wheat Improvement Center protocol. This is expected to enable the aggregation of high-protein-quality maize to facilitate its commercialization.
Collapse
|
7
|
Ahmed Z, Khalid M, Ghafoor A, Shah MKN, Raja GK, Rana RM, Mahmood T, Thompson AM. SNP-Based Genome-Wide Association Mapping of Pollen Viability Under Heat Stress in Tropical Zea mays L. Inbred Lines. Front Genet 2022; 13:819849. [PMID: 35368702 PMCID: PMC8966704 DOI: 10.3389/fgene.2022.819849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Global environmental changes with more extreme episodes of heat waves are major threats to agricultural productivity. Heat stress in spring affects the reproductive stage of maize, resulting in tassel blast, pollen abortion, poor pollination, reduced seed set, barren ears and ultimately yield loss. As an aneamophelous crop, maize has a propensity for pollen abortion under heat stress conditions. To overcome the existing challenges of heat stress and pollen abortion, this study utilized a broad genetic base of maize germplasm to identify superior alleles to be utilized in breeding programs. A panel of 375 inbred lines was morpho-physiologically screened under normal and heat stress conditions in two locations across two consecutive planting seasons, 2017 and 2018. The exposure of pollen to high temperature showed drastic decline in pollen germination percentage. The average pollen germination percentage (PGP) at 35 and 45°C was 40.3% and 9.7%, respectively, an average decline of 30.6%. A subset of 275 inbred lines were sequenced using tunable genotyping by sequencing, resulting in 170,098 single nucleotide polymorphisms (SNPs) after filtration. Genome wide association of PGP in a subset of 122 inbred lines resulted in ten SNPs associated with PGP35°C (p ≤ 10−5), nine with PGP45°C (p ≤ 10−6–10−8) and ten SNPs associated with PGP ratio (p ≤ 10−5). No SNPs were found to be in common across PGP traits. The number of favorable alleles possessed by each inbred line for PGP35°C, PGP45°C, and the PGP ratio ranged between 4 and 10, 3–13 and 5–13, respectively. In contrast, the number of negative alleles for these traits ranged between 2 and 8, 3–13 and 3–13, respectively. Genetic mapping of yield (adjusted weight per plant, AWP−1) and flowering time (anthesis-silking interval, ASI) in 275 lines revealed five common SNPs: three shared for AWP−1 between normal and heat stress conditions, one for ASI between conditions, and one SNP, CM007648.1-86615409, was associated with both ASI and AWP−1. Variety selection can be performed based on these favorable alleles for various traits. These marker trait associations identified in the diversity panel can be utilized in breeding programs to improve heat stress tolerance in maize.
Collapse
Affiliation(s)
- Zubair Ahmed
- Department of Plant Breeding and Genetics, Pir Mehar Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
- Crop Disease Research Institute, National Agricultural Research Center (Pakistan), Islamabad, Pakistan
| | - Maria Khalid
- Institute of Biochemistry and Biotechnology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Abdul Ghafoor
- Pakistan Agricultural Research Council, Islamabad, Pakistan
| | - Muhammad Kausar Nawaz Shah
- Department of Plant Breeding and Genetics, Pir Mehar Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Ghazala Kaukab Raja
- Institute of Biochemistry and Biotechnology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Rashid Mehmood Rana
- Department of Plant Breeding and Genetics, Pir Mehar Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Tahir Mahmood
- Department of Plant Breeding and Genetics, Pir Mehar Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Addie M Thompson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
8
|
Dai D, Ma Z, Song R. Maize endosperm development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:613-627. [PMID: 33448626 DOI: 10.1111/jipb.13069] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/12/2021] [Indexed: 05/22/2023]
Abstract
Recent breakthroughs in transcriptome analysis and gene characterization have provided valuable resources and information about the maize endosperm developmental program. The high temporal-resolution transcriptome analysis has yielded unprecedented access to information about the genetic control of seed development. Detailed spatial transcriptome analysis using laser-capture microdissection has revealed the expression patterns of specific populations of genes in the four major endosperm compartments: the basal endosperm transfer layer (BETL), aleurone layer (AL), starchy endosperm (SE), and embryo-surrounding region (ESR). Although the overall picture of the transcriptional regulatory network of endosperm development remains fragmentary, there have been some exciting advances, such as the identification of OPAQUE11 (O11) as a central hub of the maize endosperm regulatory network connecting endosperm development, nutrient metabolism, and stress responses, and the discovery that the endosperm adjacent to scutellum (EAS) serves as a dynamic interface for endosperm-embryo crosstalk. In addition, several genes that function in BETL development, AL differentiation, and the endosperm cell cycle have been identified, such as ZmSWEET4c, Thk1, and Dek15, respectively. Here, we focus on current advances in understanding the molecular factors involved in BETL, AL, SE, ESR, and EAS development, including the specific transcriptional regulatory networks that function in each compartment during endosperm development.
Collapse
Affiliation(s)
- Dawei Dai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
9
|
Longmei N, Gill GK, Zaidi PH, Kumar R, Nair SK, Hindu V, Vinayan MT, Vikal Y. Genome wide association mapping for heat tolerance in sub-tropical maize. BMC Genomics 2021; 22:154. [PMID: 33663389 PMCID: PMC7934507 DOI: 10.1186/s12864-021-07463-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/22/2021] [Indexed: 01/06/2023] Open
Abstract
Background Heat tolerance is becoming increasingly important where maize is grown under spring season in India which coincide with grain filling stage of crop resulting in tassel blast, reduced pollen viability, pollination failure and barren ears that causes devastating yield losses. So, there is need to identify the genomic regions associated with heat tolerance component traits which could be further employed in maize breeding program. Results An association mapping panel, consisting of 662 doubled haploid (DH) lines, was evaluated for yield contributing traits under normal and natural heat stress conditions. Genome wide association studies (GWAS) carried out using 187,000 SNPs and 130 SNPs significantly associated for grain yield (GY), days to 50% anthesis (AD), days to 50% silking (SD), anthesis-silking interval (ASI), plant height (PH), ear height (EH) and ear position (EPO) were identified under normal conditions. A total of 46 SNPs strongly associated with GY, ASI, EH and EPO were detected under heat stress conditions. Fifteen of the SNPs was found to have common association with more than one trait such as two SNPs viz. S10_1,905,273 and S10_1,905,274 showed colocalization with GY, PH and EH whereas S10_7,132,845 SNP associated with GY, AD and SD under normal conditions. No such colocalization of SNP markers with multiple traits was observed under heat stress conditions. Haplotypes trend regression analysis revealed 122 and 85 haplotype blocks, out of which, 20 and 6 haplotype blocks were associated with more than one trait under normal and heat stress conditions, respectively. Based on SNP association and haplotype mapping, nine and seven candidate genes were identified respectively, which belongs to different gene models having different biological functions in stress biology. Conclusions The present study identified significant SNPs and haplotype blocks associated with yield contributing traits that help in selection of donor lines with favorable alleles for multiple traits. These results provided insights of genetics of heat stress tolerance. The genomic regions detected in the present study need further validation before being applied in the breeding pipelines. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07463-y.
Collapse
Affiliation(s)
- Ningthaipuilu Longmei
- Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Gurjit Kaur Gill
- Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Pervez Haider Zaidi
- International Maize and Wheat Improvement Centre (CIMMYT), Asia Regional Office, Hyderabad, India
| | - Ramesh Kumar
- Indian Institutes of Maize, Ludhiana, Punjab, India
| | - Sudha Krishnan Nair
- International Maize and Wheat Improvement Centre (CIMMYT), Asia Regional Office, Hyderabad, India
| | - Vermuri Hindu
- International Maize and Wheat Improvement Centre (CIMMYT), Asia Regional Office, Hyderabad, India
| | - Madhumal Thayil Vinayan
- International Maize and Wheat Improvement Centre (CIMMYT), Asia Regional Office, Hyderabad, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India.
| |
Collapse
|
10
|
Chen Y, Fu Z, Zhang H, Tian R, Yang H, Sun C, Wang L, Zhang W, Guo Z, Zhang X, Tang J. Cytosolic malate dehydrogenase 4 modulates cellular energetics and storage reserve accumulation in maize endosperm. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2420-2435. [PMID: 32436613 PMCID: PMC7680550 DOI: 10.1111/pbi.13416] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/03/2020] [Indexed: 05/30/2023]
Abstract
Cytosolic malate dehydrogenase (MDH) is a key enzyme that regulates the interconversion between malate and oxaloacetate (OAA). However, its role in modulating storage compound accumulation in maize endosperm is largely unknown. Here, we characterized a novel naturally occurring maize mdh4-1 mutant, which produces small, opaque kernels and exhibits reduced starch but enhanced lysine content. Map-based cloning, functional complementation and allelism analyses identified ZmMdh4 as the causal gene. Enzymatic assays demonstrated that ZmMDH4 predominantly catalyses the conversion from OAA to malate. In comparison, the activity of the mutant enzyme, which lacks one glutamic acid (Glu), was completed abolished, demonstrating that the Glu residue was essential for ZmMDH4 function. Knocking down ZmMdh4 in vivo led to a substantial metabolic shift towards glycolysis and a dramatic disruption in the activity of the mitochondrial complex I, which was correlated with transcriptomic alterations. Taken together, these results demonstrate that ZmMdh4 regulates the balance between mitochondrial respiration and glycolysis, ATP production and endosperm development, through a yet unknown feedback regulatory mechanism in mitochondria.
Collapse
Affiliation(s)
- Yongqiang Chen
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Zhiyuan Fu
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Hui Zhang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Runmiao Tian
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Huili Yang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Canran Sun
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Lulin Wang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Wen Zhang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Zhanyong Guo
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
11
|
Guo D, Hou Q, Zhang R, Lou H, Li Y, Zhang Y, You M, Xie C, Liang R, Li B. Over-Expressing TaSPA-B Reduces Prolamin and Starch Accumulation in Wheat ( Triticum aestivum L.) Grains. Int J Mol Sci 2020; 21:E3257. [PMID: 32380646 PMCID: PMC7247331 DOI: 10.3390/ijms21093257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
Starch and prolamin composition and content are important indexes for determining the processing and nutritional quality of wheat (Triticum aestivum L.) grains. Several transcription factors (TFs) regulate gene expression during starch and protein biosynthesis in wheat. Storage protein activator (TaSPA), a member of the basic leucine zipper (bZIP) family, has been reported to activate glutenin genes and is correlated to starch synthesis related genes. In this study, we generated TaSPA-B overexpressing (OE) transgenic wheat lines. Compared with wild-type (WT) plants, the starch content was slightly reduced and starch granules exhibited a more polarized distribution in the TaSPA-B OE lines. Moreover, glutenin and ω- gliadin contents were significantly reduced, with lower expression levels of related genes (e.g., By15, Dx2, and ω-1,2 gliadin gene). RNA-seq analysis identified 2023 differentially expressed genes (DEGs). The low expression of some DEGs (e.g., SUSase, ADPase, Pho1, Waxy, SBE, SSI, and SS II a) might explain the reduction of starch contents. Some TFs involved in glutenin and starch synthesis might be regulated by TaSPA-B, for example, TaPBF was reduced in TaSPA-B OE-3 lines. In addition, dual-luciferase reporter assay indicated that both TaSPA-B and TaPBF could transactivate the promoter of ω-1,2 gliadin gene. These results suggest that TaSPA-B regulates a complex gene network and plays an important role in starch and protein biosynthesis in wheat.
Collapse
Affiliation(s)
- Dandan Guo
- Key Laboratory of Crop Heterosis and Utilization (MOE) of Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (D.G.); (Q.H.); (R.Z.); (H.L.); (Y.L.); (Y.Z.); (M.Y.); (C.X.); (R.L.)
| | - Qiling Hou
- Key Laboratory of Crop Heterosis and Utilization (MOE) of Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (D.G.); (Q.H.); (R.Z.); (H.L.); (Y.L.); (Y.Z.); (M.Y.); (C.X.); (R.L.)
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Runqi Zhang
- Key Laboratory of Crop Heterosis and Utilization (MOE) of Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (D.G.); (Q.H.); (R.Z.); (H.L.); (Y.L.); (Y.Z.); (M.Y.); (C.X.); (R.L.)
| | - Hongyao Lou
- Key Laboratory of Crop Heterosis and Utilization (MOE) of Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (D.G.); (Q.H.); (R.Z.); (H.L.); (Y.L.); (Y.Z.); (M.Y.); (C.X.); (R.L.)
| | - Yinghui Li
- Key Laboratory of Crop Heterosis and Utilization (MOE) of Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (D.G.); (Q.H.); (R.Z.); (H.L.); (Y.L.); (Y.Z.); (M.Y.); (C.X.); (R.L.)
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| | - Yufeng Zhang
- Key Laboratory of Crop Heterosis and Utilization (MOE) of Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (D.G.); (Q.H.); (R.Z.); (H.L.); (Y.L.); (Y.Z.); (M.Y.); (C.X.); (R.L.)
| | - Mingshan You
- Key Laboratory of Crop Heterosis and Utilization (MOE) of Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (D.G.); (Q.H.); (R.Z.); (H.L.); (Y.L.); (Y.Z.); (M.Y.); (C.X.); (R.L.)
| | - Chaojie Xie
- Key Laboratory of Crop Heterosis and Utilization (MOE) of Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (D.G.); (Q.H.); (R.Z.); (H.L.); (Y.L.); (Y.Z.); (M.Y.); (C.X.); (R.L.)
| | - Rongqi Liang
- Key Laboratory of Crop Heterosis and Utilization (MOE) of Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (D.G.); (Q.H.); (R.Z.); (H.L.); (Y.L.); (Y.Z.); (M.Y.); (C.X.); (R.L.)
| | - Baoyun Li
- Key Laboratory of Crop Heterosis and Utilization (MOE) of Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (D.G.); (Q.H.); (R.Z.); (H.L.); (Y.L.); (Y.Z.); (M.Y.); (C.X.); (R.L.)
| |
Collapse
|
12
|
Liu HJ, Yan J. Crop genome-wide association study: a harvest of biological relevance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:8-18. [PMID: 30368955 DOI: 10.1111/tpj.14139] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/13/2018] [Accepted: 10/22/2018] [Indexed: 05/20/2023]
Abstract
With the advent of rapid genotyping and next-generation sequencing technologies, genome-wide association study (GWAS) has become a routine strategy for decoding genotype-phenotype associations in many species. More than 1000 such studies over the last decade have revealed substantial genotype-phenotype associations in crops and provided unparalleled opportunities to probe functional genomics. Beyond the many 'hits' obtained, this review summarizes recent efforts to increase our understanding of the genetic architecture of complex traits by focusing on non-main effects including epistasis, pleiotropy, and phenotypic plasticity. We also discuss how these achievements and the remaining gaps in our knowledge will guide future studies. Synthetic association is highlighted as leading to false causality, which is prevalent but largely underestimated. Furthermore, validation evidence is appealing for future GWAS, especially in the context of emerging genome-editing technologies.
Collapse
Affiliation(s)
- Hai-Jun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
13
|
Zhang Y, Giuliani R, Zhang Y, Zhang Y, Araujo WL, Wang B, Liu P, Sun Q, Cousins A, Edwards G, Fernie A, Brutnell TP, Li P. Characterization of maize leaf pyruvate orthophosphate dikinase using high throughput sequencing. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:670-690. [PMID: 29664234 DOI: 10.1111/jipb.12656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
In C4 photosynthesis, pyruvate orthophosphate dikinase (PPDK) catalyzes the regeneration of phosphoenolpyruvate in the carbon shuttle pathway. Although the biochemical function of PPDK in maize is well characterized, a genetic analysis of PPDK has not been reported. In this study, we use the maize transposable elements Mutator and Ds to generate multiple mutant alleles of PPDK. Loss-of-function mutants are seedling lethal, even when plants were grown under 2% CO2 , and they show very low capacity for CO2 assimilation, indicating C4 photosynthesis is essential in maize. Using RNA-seq and GC-MS technologies, we examined the transcriptional and metabolic responses to a deficiency in PPDK activity. These results indicate loss of PPDK results in downregulation of gene expression of enzymes of the C4 cycle, the Calvin cycle, and components of photochemistry. Furthermore, the loss of PPDK did not change Kranz anatomy, indicating that this metabolic defect in the C4 cycle did not impinge on the morphological differentiation of C4 characters. However, sugar metabolism and nitrogen utilization were altered in the mutants. An interaction between light intensity and genotype was also detected from transcriptome profiling, suggesting altered transcriptional and metabolic responses to environmental and endogenous signals in the PPDK mutants.
Collapse
Affiliation(s)
- Yuling Zhang
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Rita Giuliani
- School of Biological Sciences, Molecular Plant Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Youjun Zhang
- Max-Planck-Insitut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm D-14476, Germany
| | - Yang Zhang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Nebraska, USA
| | - Wagner Luiz Araujo
- Max-Planck-Insitut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm D-14476, Germany
| | - Baichen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing 100093, China
| | - Peng Liu
- Department of Statistics, Iowa State University, Ames, Iowa 50011, USA
| | - Qi Sun
- Computational Biology Service Unit, Life Sciences Core Laboratories Center, Cornell University, Ithaca, New York 14850, USA
| | - Asaph Cousins
- School of Biological Sciences, Molecular Plant Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Gerald Edwards
- School of Biological Sciences, Molecular Plant Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Alisdair Fernie
- Max-Planck-Insitut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm D-14476, Germany
| | - Thomas P Brutnell
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Pinghua Li
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
14
|
Feng F, Qi W, Lv Y, Yan S, Xu L, Yang W, Yuan Y, Chen Y, Zhao H, Song R. OPAQUE11 Is a Central Hub of the Regulatory Network for Maize Endosperm Development and Nutrient Metabolism. THE PLANT CELL 2018; 30:375-396. [PMID: 29436476 PMCID: PMC5868688 DOI: 10.1105/tpc.17.00616] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/22/2018] [Accepted: 02/06/2018] [Indexed: 05/18/2023]
Abstract
Maize (Zea mays) endosperm is a primary tissue for nutrient storage and is highly differentiated during development. However, the regulatory networks of endosperm development and nutrient metabolism remain largely unknown. Maize opaque11 (o11) is a classic seed mutant with a small and opaque endosperm showing decreased starch and protein accumulation. We cloned O11 and found that it encodes an endosperm-specific bHLH transcription factor (TF). Loss of function of O11 significantly affected transcription of carbohydrate/amino acid metabolism and stress response genes. Genome-wide binding site analysis revealed 9885 O11 binding sites distributed over 6033 genes. Using chromatin immunoprecipitation sequencing (ChIP-seq) coupled with RNA sequencing (RNA-seq) assays, we identified 259 O11-modulated target genes. O11 was found to directly regulate key TFs in endosperm development (NKD2 and ZmDOF3) and nutrient metabolism (O2 and PBF). Moreover, O11 directly regulates cyPPDKs and multiple carbohydrate metabolic enzymes. O11 is an activator of ZmYoda, suggesting its regulatory function through the MAPK pathway in endosperm development. Many stress-response genes are also direct targets of O11. In addition, 11 O11-interacting proteins were identified, including ZmIce1, which coregulates stress response targets and ZmYoda with O11. Therefore, this study reveals an endosperm regulatory network centered around O11, which coordinates endosperm development, metabolism and stress responses.
Collapse
Affiliation(s)
- Fan Feng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yuanda Lv
- Institute of Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shumei Yan
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Liming Xu
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wenyao Yang
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yue Yuan
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yihan Chen
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Han Zhao
- Institute of Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
- National Maize Improvement Center of China, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
|
16
|
Larièpe A, Moreau L, Laborde J, Bauland C, Mezmouk S, Décousset L, Mary-Huard T, Fiévet JB, Gallais A, Dubreuil P, Charcosset A. General and specific combining abilities in a maize (Zea mays L.) test-cross hybrid panel: relative importance of population structure and genetic divergence between parents. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:403-417. [PMID: 27913832 DOI: 10.1007/s00122-016-2822-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/03/2016] [Indexed: 05/11/2023]
Abstract
General and specific combining abilities of maize hybrids between 288 inbred lines and three tester lines were highly related to population structure and genetic distance inferred from SNP data. Many studies have attempted to provide reliable and quick methods to identify promising parental lines and combinations in hybrid breeding programs. Since the 1950s, maize germplasm has been organized into heterotic groups to facilitate the exploitation of heterosis. Molecular markers have proven efficient tools to address the organization of genetic diversity and the relationship between lines or populations. The aim of the present work was to investigate to what extent marker-based evaluations of population structure and genetic distance may account for general (GCA) and specific (SCA) combining ability components in a population composed of 800 inter and intra-heterotic group hybrids obtained by crossing 288 inbred lines and three testers. Our results illustrate a strong effect of groups identified by population structure analysis on both GCA and SCA components. Including genetic distance between parental lines of hybrids in the model leads to a significant decrease of SCA variance component and an increase in GCA variance component for all the traits. The latter suggests that this approach can be efficient to better estimate the potential combining ability of inbred lines when crossed with unrelated lines, and limits the consequences of tester choice. Significant residual GCA and SCA variance components of models taking into account structure and/or genetic distance highlight the variation available for breeding programs within structure groups.
Collapse
Affiliation(s)
- A Larièpe
- UMR de Génétique Végétale, INRA-Univ-Paris-Sud-CNRS-AgroParisTech, Ferme du Moulon, 91190, Gif-Sur-Yvette, France
- BIOGEMMA, Genetics and Genomics in Cereals, 63720, Chappes, France
| | - L Moreau
- UMR de Génétique Végétale, INRA-Univ-Paris-Sud-CNRS-AgroParisTech, Ferme du Moulon, 91190, Gif-Sur-Yvette, France
| | - J Laborde
- INRA, UE 394-Unité expérimentale du maïs, 40590, St Martin De Hinx, France
| | - C Bauland
- UMR de Génétique Végétale, INRA-Univ-Paris-Sud-CNRS-AgroParisTech, Ferme du Moulon, 91190, Gif-Sur-Yvette, France
| | - S Mezmouk
- BIOGEMMA, Genetics and Genomics in Cereals, 63720, Chappes, France
| | - L Décousset
- BIOGEMMA, Genetics and Genomics in Cereals, 63720, Chappes, France
| | - T Mary-Huard
- UMR de Génétique Végétale, INRA-Univ-Paris-Sud-CNRS-AgroParisTech, Ferme du Moulon, 91190, Gif-Sur-Yvette, France
| | - J B Fiévet
- UMR de Génétique Végétale, INRA-Univ-Paris-Sud-CNRS-AgroParisTech, Ferme du Moulon, 91190, Gif-Sur-Yvette, France
| | - A Gallais
- UMR de Génétique Végétale, INRA-Univ-Paris-Sud-CNRS-AgroParisTech, Ferme du Moulon, 91190, Gif-Sur-Yvette, France
| | - P Dubreuil
- BIOGEMMA, Genetics and Genomics in Cereals, 63720, Chappes, France
| | - A Charcosset
- UMR de Génétique Végétale, INRA-Univ-Paris-Sud-CNRS-AgroParisTech, Ferme du Moulon, 91190, Gif-Sur-Yvette, France.
| |
Collapse
|
17
|
Bouchet S, Bertin P, Presterl T, Jamin P, Coubriche D, Gouesnard B, Laborde J, Charcosset A. Association mapping for phenology and plant architecture in maize shows higher power for developmental traits compared with growth influenced traits. Heredity (Edinb) 2016; 118:249-259. [PMID: 27876803 DOI: 10.1038/hdy.2016.88] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 06/28/2016] [Accepted: 07/04/2016] [Indexed: 11/10/2022] Open
Abstract
Plant architecture, phenology and yield components of cultivated plants have repeatedly been shaped by selection to meet human needs and adaptation to different environments. Here we assessed the genetic architecture of 24 correlated maize traits that interact during plant cycle. Overall, 336 lines were phenotyped in a network of 9 trials and genotyped with 50K single-nucleotide polymorphisms. Phenology was the main factor of differentiation between genetic groups. Then yield components distinguished dents from lower yielding genetic groups. However, most of trait variation occurred within group and we observed similar overall and within group correlations, suggesting a major effect of pleiotropy and/or linkage. We found 34 quantitative trait loci (QTLs) for individual traits and six for trait combinations corresponding to PCA coordinates. Among them, only five were pleiotropic. We found a cluster of QTLs in a 5 Mb region around Tb1 associated with tiller number, ear row number and the first PCA axis, the latter being positively correlated to flowering time and negatively correlated to yield. Kn1 and ZmNIP1 were candidate genes for tillering, ZCN8 for leaf number and Rubisco Activase 1 for kernel weight. Experimental repeatabilities, numbers of QTLs and proportion of explained variation were higher for traits related to plant development such as tillering, leaf number and flowering time, than for traits affected by growth such as yield components. This suggests a simpler genetic determinism with larger individual QTL effects for the first category.
Collapse
Affiliation(s)
- S Bouchet
- UMR Génétique Quantitative et Évolution-Le Moulon, INRA-Université Paris-Sud-CNRS-AgroParisTech, Ferme du Moulon, Gif-sur-Yvette, France
| | - P Bertin
- UMR Génétique Quantitative et Évolution-Le Moulon, INRA-Université Paris-Sud-CNRS-AgroParisTech, Ferme du Moulon, Gif-sur-Yvette, France
| | | | - P Jamin
- UMR Génétique Quantitative et Évolution-Le Moulon, INRA-Université Paris-Sud-CNRS-AgroParisTech, Ferme du Moulon, Gif-sur-Yvette, France
| | - D Coubriche
- UMR Génétique Quantitative et Évolution-Le Moulon, INRA-Université Paris-Sud-CNRS-AgroParisTech, Ferme du Moulon, Gif-sur-Yvette, France
| | - B Gouesnard
- INRA INRA, UMR AGAP 1334, Montpellier, France
| | - J Laborde
- INRA Stn Expt Mais, St Martin De Hinx, France
| | - A Charcosset
- UMR Génétique Quantitative et Évolution-Le Moulon, INRA-Université Paris-Sud-CNRS-AgroParisTech, Ferme du Moulon, Gif-sur-Yvette, France
| |
Collapse
|
18
|
Zaidi PH, Seetharam K, Krishna G, Krishnamurthy L, Gajanan S, Babu R, Zerka M, Vinayan MT, Vivek BS. Genomic Regions Associated with Root Traits under Drought Stress in Tropical Maize (Zea mays L.). PLoS One 2016; 11:e0164340. [PMID: 27768702 PMCID: PMC5074786 DOI: 10.1371/journal.pone.0164340] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/24/2016] [Indexed: 12/30/2022] Open
Abstract
An association mapping panel, named as CIMMYT Asia association mapping (CAAM) panel, involving 396 diverse tropical maize lines were phenotyped for various structural and functional traits of roots under drought and well-watered conditions. The experiment was conducted during Kharif (summer-rainy) season of 2012 and 2013 in root phenotyping facility at CIMMYT-Hyderabad, India. The CAAM panel was genotyped to generate 955, 690 SNPs through GBS v2.7 using Illumina Hi-seq 2000/2500 at Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA. GWAS analysis was carried out using 331,390 SNPs filtered from the entire set of SNPs revealed a total of 50 and 67 SNPs significantly associated for root functional (transpiration efficiency, flowering period water use) and structural traits (rooting depth, root dry weight, root length, root volume, root surface area and root length density), respectively. In addition to this, 37 SNPs were identified for grain yield and shoot biomass under well-watered and drought stress. Though many SNPs were found to have significant association with the traits under study, SNPs that were common for more than one trait were discussed in detail. A total 18 SNPs were found to have common association with more than one trait, out of which 12 SNPs were found within or near the various gene functional regions. In this study we attempted to identify the trait specific maize lines based on the presence of favorable alleles for the SNPs associated with multiple traits. Two SNPs S3_128533512 and S7_151238865 were associated with transpiration efficiency, shoot biomass and grain yield under well-watered condition. Based on favorable allele for these SNPs seven inbred lines were identified. Similarly, four lines were identified for transpiration efficiency and shoot biomass under drought stress based on the presence of favorable allele for the common SNPs S1_211520521, S2_20017716, S3_57210184 and S7_130878458 and three lines were identified for flowering period water-use, transpiration efficiency, root dry weight and root volume based on the presence of favorable allele for the common SNPs S3_162065732 and S3_225760139.
Collapse
Affiliation(s)
- P. H. Zaidi
- International Maize and Wheat Improvement Centre (CIMMYT), Asia regional office, Hyderabad, India
- * E-mail:
| | - K. Seetharam
- International Maize and Wheat Improvement Centre (CIMMYT), Asia regional office, Hyderabad, India
| | - Girish Krishna
- International Maize and Wheat Improvement Centre (CIMMYT), Asia regional office, Hyderabad, India
| | - L. Krishnamurthy
- International Crops research institute for semi-arid tropics (ICRISAT), Hyderabad, India
| | - S. Gajanan
- International Maize and Wheat Improvement Centre (CIMMYT), Asia regional office, Hyderabad, India
| | - Raman Babu
- International Maize and Wheat Improvement Centre (CIMMYT), Asia regional office, Hyderabad, India
| | - M. Zerka
- International Maize and Wheat Improvement Centre (CIMMYT), Asia regional office, Hyderabad, India
| | - M. T. Vinayan
- International Maize and Wheat Improvement Centre (CIMMYT), Asia regional office, Hyderabad, India
| | - B. S. Vivek
- International Maize and Wheat Improvement Centre (CIMMYT), Asia regional office, Hyderabad, India
| |
Collapse
|
19
|
Morton KJ, Jia S, Zhang C, Holding DR. Proteomic profiling of maize opaque endosperm mutants reveals selective accumulation of lysine-enriched proteins. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1381-96. [PMID: 26712829 PMCID: PMC4762381 DOI: 10.1093/jxb/erv532] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Reduced prolamin (zein) accumulation and defective endoplasmic reticulum (ER) body formation occurs in maize opaque endosperm mutants opaque2 (o2), floury2 (fl2), defective endosperm*B30 (DeB30), and Mucronate (Mc), whereas other opaque mutants such as opaque1 (o1) and floury1 (fl1) are normal in these regards. This suggests that other factors contribute to kernel texture. A liquid chromatography approach coupled with tandem mass spectrometry (LC-MS/MS) proteomics was used to compare non-zein proteins of nearly isogenic opaque endosperm mutants. In total, 2762 proteins were identified that were enriched for biological processes such as protein transport and folding, amino acid biosynthesis, and proteolysis. Principal component analysis and pathway enrichment suggested that the mutants partitioned into three groups: (i) Mc, DeB30, fl2 and o2; (ii) o1; and (iii) fl1. Indicator species analysis revealed mutant-specific proteins, and highlighted ER secretory pathway components that were enriched in selected groups of mutants. The most significantly changed proteins were related to stress or defense and zein partitioning into the soluble fraction for Mc, DeB30, o1, and fl1 specifically. In silico dissection of the most significantly changed proteins revealed novel qualitative changes in lysine abundance contributing to the overall lysine increase and the nutritional rebalancing of the o2 and fl2 endosperm.
Collapse
Affiliation(s)
- Kyla J Morton
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, Beadle Center for Biotechnology, 1901 Vine Street, PO Box 880665, University of Nebraska, Lincoln, NE 68588-0665, USA
| | - Shangang Jia
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, Beadle Center for Biotechnology, 1901 Vine Street, PO Box 880665, University of Nebraska, Lincoln, NE 68588-0665, USA
| | - Chi Zhang
- School of Biological Sciences, Center for Plant Science Innovation, Beadle Center for Biotechnology, 1901 Vine Street, PO Box 880665, University of Nebraska, Lincoln, NE 68588-0665, USA
| | - David R Holding
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, Beadle Center for Biotechnology, 1901 Vine Street, PO Box 880665, University of Nebraska, Lincoln, NE 68588-0665, USA
| |
Collapse
|
20
|
Thirunavukkarasu N, Hossain F, Arora K, Sharma R, Shiriga K, Mittal S, Mohan S, Namratha PM, Dogga S, Rani TS, Katragadda S, Rathore A, Shah T, Mohapatra T, Gupta HS. Functional mechanisms of drought tolerance in subtropical maize (Zea mays L.) identified using genome-wide association mapping. BMC Genomics 2014; 15:1182. [PMID: 25539911 PMCID: PMC4367829 DOI: 10.1186/1471-2164-15-1182] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/16/2014] [Indexed: 01/25/2023] Open
Abstract
Background Earlier studies were focused on the genetics of temperate and tropical maize under drought. We identified genetic loci and their association with functional mechanisms in 240 accessions of subtropical maize using a high-density marker set under water stress. Results Out of 61 significant SNPs (11 were false-discovery-rate-corrected associations), identified across agronomic traits, models, and locations by subjecting the accessions to water stress at flowering stage, 48% were associated with drought-tolerant genes. Maize gene models revealed that SNPs mapped for agronomic traits were in fact associated with number of functional traits as follows: stomatal closure, 28; flowering, 15; root development, 5; detoxification, 4; and reduced water potential, 2. Interactions of these SNPS through the functional traits could lead to drought tolerance. The SNPs associated with ABA-dependent signalling pathways played a major role in the plant’s response to stress by regulating a series of functions including flowering, root development, auxin metabolism, guard cell functions, and scavenging reactive oxygen species (ROS). ABA signalling genes regulate flowering through epigenetic changes in stress-responsive genes. ROS generated by ABA signalling are reduced by the interplay between ethylene, ABA, and detoxification signalling transductions. Integration of ABA-signalling genes with auxin-inducible genes regulates root development which in turn, maintains the water balance by regulating electrochemical gradient in plant. Conclusions Several genes are directly or indirectly involved in the functioning of agronomic traits related to water stress. Genes involved in these crucial biological functions interacted significantly in order to maintain the primary as well as exclusive functions related to coping with water stress. SNPs associated with drought-tolerant genes involved in strategic biological functions will be useful to understand the mechanisms of drought tolerance in subtropical maize. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1182) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Identification of promoter motifs regulating ZmeIF4E expression level involved in maize rough dwarf disease resistance in maize (Zea Mays L.). Mol Genet Genomics 2013; 288:89-99. [PMID: 23474695 DOI: 10.1007/s00438-013-0737-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 02/21/2013] [Indexed: 01/02/2023]
Abstract
Maize rough dwarf disease (MRDD, a viral disease) results in significant grain yield losses, while genetic basis of which is largely unknown. Based on comparative genomics, eukaryotic translation initiation factor 4E (eIF4E) was considered as a candidate gene for MRDD resistance, validation of which will help to understand the possible genetic mechanism of this disease. ZmeIF4E (orthologs of eIF4E gene in maize) encodes a protein of 218 amino acids, harboring five exons and no variation in the cDNA sequence is identified between the resistant inbred line, X178 and susceptible one, Ye478. ZmeIF4E expression was different in the two lines plants treated with three plant hormones, ethylene, salicylic acid, and jasmonates at V3 developmental stage, suggesting that ZmeIF4E is more likely to be involved in the regulation of defense gene expression and induction of local and systemic resistance. Moreover, four cis-acting elements related to plant defense responses, including DOFCOREZM, EECCRCAH1, GT1GAMSCAM4, and GT1CONSENSUS were detected in ZmeIF4E promoter for harboring sequence variation in the two lines. Association analysis with 163 inbred lines revealed that one SNP in EECCRCAH1 is significantly associated with CSI of MRDD in two environments, which explained 3.33 and 9.04 % of phenotypic variation, respectively. Meanwhile, one SNP in GT-1 motif was found to affect MRDD resistance only in one of the two environments, which explained 5.17 % of phenotypic variation. Collectively, regulatory motifs respectively harboring the two significant SNPs in ZmeIF4E promoter could be involved in the defense process of maize after viral infection. These results contribute to understand maize defense mechanisms against maize rough dwarf virus.
Collapse
|
22
|
Pérez-de-Castro AM, Vilanova S, Cañizares J, Pascual L, Blanca JM, Díez MJ, Prohens J, Picó B. Application of genomic tools in plant breeding. Curr Genomics 2012; 13:179-95. [PMID: 23115520 PMCID: PMC3382273 DOI: 10.2174/138920212800543084] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/16/2011] [Accepted: 10/11/2011] [Indexed: 02/08/2023] Open
Abstract
Plant breeding has been very successful in developing improved varieties using conventional tools and methodologies. Nowadays, the availability of genomic tools and resources is leading to a new revolution of plant breeding, as they facilitate the study of the genotype and its relationship with the phenotype, in particular for complex traits. Next Generation Sequencing (NGS) technologies are allowing the mass sequencing of genomes and transcriptomes, which is producing a vast array of genomic information. The analysis of NGS data by means of bioinformatics developments allows discovering new genes and regulatory sequences and their positions, and makes available large collections of molecular markers. Genome-wide expression studies provide breeders with an understanding of the molecular basis of complex traits. Genomic approaches include TILLING and EcoTILLING, which make possible to screen mutant and germplasm collections for allelic variants in target genes. Re-sequencing of genomes is very useful for the genome-wide discovery of markers amenable for high-throughput genotyping platforms, like SSRs and SNPs, or the construction of high density genetic maps. All these tools and resources facilitate studying the genetic diversity, which is important for germplasm management, enhancement and use. Also, they allow the identification of markers linked to genes and QTLs, using a diversity of techniques like bulked segregant analysis (BSA), fine genetic mapping, or association mapping. These new markers are used for marker assisted selection, including marker assisted backcross selection, ‘breeding by design’, or new strategies, like genomic selection. In conclusion, advances in genomics are providing breeders with new tools and methodologies that allow a great leap forward in plant breeding, including the ‘superdomestication’ of crops and the genetic dissection and breeding for complex traits.
Collapse
Affiliation(s)
- A M Pérez-de-Castro
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Zerjal T, Rousselet A, Mhiri C, Combes V, Madur D, Grandbastien MA, Charcosset A, Tenaillon MI. Maize genetic diversity and association mapping using transposable element insertion polymorphisms. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:1521-1537. [PMID: 22350086 DOI: 10.1007/s00122-012-1807-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 01/31/2012] [Indexed: 05/31/2023]
Abstract
Transposable elements are the major component of the maize genome and presumably highly polymorphic yet they have not been used in population genetics and association analyses. Using the Transposon Display method, we isolated and converted into PCR-based markers 33 Miniature Inverted Repeat Transposable Elements (MITE) polymorphic insertions. These polymorphisms were genotyped on a population-based sample of 26 American landraces for a total of 322 plants. Genetic diversity was high and partitioned within and among landraces. The genetic groups identified using Bayesian clustering were in agreement with published data based on SNPs and SSRs, indicating that MITE polymorphisms reflect maize genetic history. To explore the contribution of MITEs to phenotypic variation, we undertook an association mapping approach in a panel of 367 maize lines phenotyped for 26 traits. We found a highly significant association between the marker ZmV1-9, on chromosome 1, and male flowering time. The variance explained by this association is consistent with a flowering delay of +123 degree-days. This MITE insertion is located at only 289 nucleotides from the 3' end of a Cytochrome P450-like gene, a region that was never identified in previous association mapping or QTL surveys. Interestingly, we found (i) a non-synonymous mutation located in the exon 2 of the gene in strong linkage disequilibrium with the MITE polymorphism, and (ii) a perfect sequence homology between the MITE sequence and a maize siRNA that could therefore potentially interfere with the expression of the Cytochrome P450-like gene. Those two observations among others offer exciting perspectives to validate functionally the role of this region on phenotypic variation.
Collapse
Affiliation(s)
- Tatiana Zerjal
- CNRS, UMR 0320/UMR 8120 Génétique Végétale, Ferme Du Moulon, 91190 Gif sur Yvette, France.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Cook JP, McMullen MD, Holland JB, Tian F, Bradbury P, Ross-Ibarra J, Buckler ES, Flint-Garcia SA. Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. PLANT PHYSIOLOGY 2012; 158:824-34. [PMID: 22135431 PMCID: PMC3271770 DOI: 10.1104/pp.111.185033] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/28/2011] [Indexed: 05/18/2023]
Abstract
The maize (Zea mays) kernel plays a critical role in feeding humans and livestock around the world and in a wide array of industrial applications. An understanding of the regulation of kernel starch, protein, and oil is needed in order to manipulate composition to meet future needs. We conducted joint-linkage quantitative trait locus mapping and genome-wide association studies (GWAS) for kernel starch, protein, and oil in the maize nested association mapping population, composed of 25 recombinant inbred line families derived from diverse inbred lines. Joint-linkage mapping revealed that the genetic architecture of kernel composition traits is controlled by 21-26 quantitative trait loci. Numerous GWAS associations were detected, including several oil and starch associations in acyl-CoA:diacylglycerol acyltransferase1-2, a gene that regulates oil composition and quantity. Results from nested association mapping were verified in a 282 inbred association panel using both GWAS and candidate gene association approaches. We identified many beneficial alleles that will be useful for improving kernel starch, protein, and oil content.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sherry A. Flint-Garcia
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211 (J.P.C., M.D.M., S.A.F.-G.); United States Department of Agriculture-Agricultural Research Service, Columbia, Missouri 65211 (M.D.M., S.A.F.-G.); United States Department of Agriculture-Agricultural Research Service, Raleigh, North Carolina 27695 (J.B.H.); United States Department of Agriculture-Agricultural Research Service, Ithaca, New York 14853 (P.B., E.S.B.); Department of Crop Science, North Carolina State University, Raleigh, North Carolina 27695 (J.B.H.); Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853 (F.T., P.B., E.S.B.); Department of Plant Sciences, University of California, Davis, California 95616 (J.R.-I.)
| |
Collapse
|
25
|
Abstract
In a previous study, we identified a candidate fragment length polymorphism associated with flowering time variation after seven generations of selection for flowering time, starting from the maize inbred line F252. Here, we characterized the candidate region and identified underlying polymorphisms. Then, we combined QTL mapping, association mapping, and developmental characterization to dissect the genetic mechanisms responsible for the phenotypic variation. The candidate region contained the Eukaryotic Initiation Factor (eIF-4A) and revealed a high level of sequence and structural variation beyond the 3'-UTR of eIF-4A, including several insertions of truncated transposable elements. Using a biallelic single-nucleotide polymorphism (SNP) (C/T) in the candidate region, we confirmed its association with flowering time variation in a panel of 317 maize inbred lines. However, while the T allele was correlated with late flowering time within the F252 genetic background, it was correlated with early flowering time in the association panel with pervasive interactions between allelic variation and the genetic background, pointing to underlying epistasis. We also detected pleiotropic effects of the candidate polymorphism on various traits including flowering time, plant height, and leaf number. Finally, we were able to break down the correlation between flowering time and leaf number in the progeny of a heterozygote (C/T) within the F252 background consistent with causal loci in linkage disequilibrium. We therefore propose that both a cluster of tightly linked genes and epistasis contribute to the phenotypic variation for flowering time.
Collapse
|
26
|
Stich B, Gebhardt C. Detection of epistatic interactions in association mapping populations: an example from tetraploid potato. Heredity (Edinb) 2011; 107:537-47. [PMID: 21673745 PMCID: PMC3242626 DOI: 10.1038/hdy.2011.40] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 04/08/2011] [Accepted: 04/12/2011] [Indexed: 11/09/2022] Open
Abstract
Epistatic interactions among loci are expected to contribute substantially to variation of quantitative traits. The objectives of our research were to (i) compare a classical mixed-model approach with a combined mixed-model and analysis of variance approach for detecting epistatic interactions; (ii) examine using computer simulations the statistical power to detect additive-additive, additive-dominance and dominance-dominance epistatic interactions and (iii) detect epistatic interactions between candidate genes for resistance to leaf blight in a set of tetraploid potato clones. Our study was based on the genotypic and phenotypic data of 184 tetraploid potato cultivars as well as computer simulations. The number of significant (α* =1 × 10(-6)) epistatic interactions ranged for the three examined traits from 3 to 32. Our findings suggested that the combined mixed-model and analysis of variance approach leads in comparison with the classical mixed-model approach not to an increased rate of false-positives. The results of the computer simulations suggested that, if molecular markers are available that are in high LD (D'>0.9) with the trait-coding loci, the statistical power to detect epistatic interactions, which explain 5-10% of the phenotypic variance, was of a size that seems promising for their detection.
Collapse
Affiliation(s)
- B Stich
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, Köln, Germany.
| | | |
Collapse
|
27
|
Li Y, Böck A, Haseneyer G, Korzun V, Wilde P, Schön CC, Ankerst DP, Bauer E. Association analysis of frost tolerance in rye using candidate genes and phenotypic data from controlled, semi-controlled, and field phenotyping platforms. BMC PLANT BIOLOGY 2011; 11:146. [PMID: 22032693 PMCID: PMC3228716 DOI: 10.1186/1471-2229-11-146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 10/27/2011] [Indexed: 05/02/2023]
Abstract
BACKGROUND Frost is an important abiotic stress that limits cereal production in the temperate zone. As the most frost tolerant small grain cereal, rye (Secale cereale L.) is an ideal cereal model for investigating the genetic basis of frost tolerance (FT), a complex trait with polygenic inheritance. Using 201 genotypes from five Eastern and Middle European winter rye populations, this study reports a multi-platform candidate gene-based association analysis in rye using 161 single nucleotide polymorphisms (SNPs) and nine insertion-deletion (Indel) polymorphisms previously identified from twelve candidate genes with a putative role in the frost responsive network. RESULTS Phenotypic data analyses of FT in three different phenotyping platforms, controlled, semi-controlled and field, revealed significant genetic variations in the plant material under study. Statistically significant (P < 0.05) associations between FT and SNPs/haplotypes of candidate genes were identified. Two SNPs in ScCbf15 and one in ScCbf12, all leading to amino acid exchanges, were significantly associated with FT over all three phenotyping platforms. Distribution of SNP effect sizes expressed as percentage of the genetic variance explained by individual SNPs was highly skewed towards zero with a few SNPs obtaining large effects. Two-way epistasis was found between 14 pairs of candidate genes. Relatively low to medium empirical correlations of SNP-FT associations were observed across the three platforms underlining the need for multi-level experimentation for dissecting complex associations between genotypes and FT in rye. CONCLUSIONS Candidate gene based-association studies are a powerful tool for investigating the genetic basis of FT in rye. Results of this study support the findings of bi-parental linkage mapping and expression studies that the Cbf gene family plays an essential role in FT.
Collapse
Affiliation(s)
- Yongle Li
- Plant Breeding, Technische Universität München, Freising, Germany
| | - Andreas Böck
- Biostatistics Unit, Technische Universität München, Freising, Germany
| | - Grit Haseneyer
- Plant Breeding, Technische Universität München, Freising, Germany
| | | | | | | | - Donna P Ankerst
- Department of Mathematics, Technische Universität München, Garching, Germany
| | - Eva Bauer
- Plant Breeding, Technische Universität München, Freising, Germany
| |
Collapse
|
28
|
Vigouroux Y, Barnaud A, Scarcelli N, Thuillet AC. Biodiversity, evolution and adaptation of cultivated crops. C R Biol 2011; 334:450-7. [PMID: 21640954 DOI: 10.1016/j.crvi.2011.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The human diet depends on very few crops. Current diversity in these crops is the result of a long interaction between farmers and cultivated plants, and their environment. Man largely shaped crop biodiversity from the domestication period 12,000 B.P. to the development of improved varieties during the last century. We illustrate this process through a detailed analysis of the domestication and early diffusion of maize. In smallholder agricultural systems, farmers still have a major impact on crop diversity today. We review several examples of the major impact of man on current diversity. Finally, biodiversity is considered to be an asset for adaptation to current environmental changes. We describe the evolution of pearl millet in West Africa, where average rainfall has decreased over the last forty years. Diversity in cultivated varieties has certainly helped this crop to adapt to climate variation.
Collapse
Affiliation(s)
- Yves Vigouroux
- Institut de recherche pour le développement, BP 64501, 34394 Montpellier cedex 5, France.
| | | | | | | |
Collapse
|
29
|
Mezmouk S, Dubreuil P, Bosio M, Décousset L, Charcosset A, Praud S, Mangin B. Effect of population structure corrections on the results of association mapping tests in complex maize diversity panels. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:1149-60. [PMID: 21221527 PMCID: PMC3057001 DOI: 10.1007/s00122-010-1519-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 12/11/2010] [Indexed: 05/20/2023]
Abstract
Association mapping of sequence polymorphisms underlying the phenotypic variability of quantitative agronomical traits is now a widely used method in plant genetics. However, due to the common presence of a complex genetic structure within the plant diversity panels, spurious associations are expected to be highly frequent. Several methods have thus been suggested to control for panel structure. They mainly rely on ad hoc criteria for selecting the number of ancestral groups; which is often not evident for the complex panels that are commonly used in maize. It was thus necessary to evaluate the effect of the selected structure models on the association mapping results. A real maize data set (342 maize inbred lines and 12,000 SNPs) was used for this study. The panel structure was estimated using both Bayesian and dimensional reduction methods, considering an increasing number of ancestral groups. Effect on association tests depends in particular on the number of ancestral groups and on the trait analyzed. The results also show that using a high number of ancestral groups leads to an over-corrected model in which all causal loci vanish. Finally the results of all models tested were combined in a meta-analysis approach. In this way, robust associations were highlighted for each analyzed trait.
Collapse
Affiliation(s)
- Sofiane Mezmouk
- BIOGEMMA, Genetics and Genomics in Cereals, rue des Frères Lumière, 63028 Clermont-Ferrand Cedex 2, France
- BIA Unit, INRA, Chemin de Borde-Rouge, BP 52627, 31326 Castanet-Tolosan Cedex, France
| | - Pierre Dubreuil
- BIOGEMMA, Genetics and Genomics in Cereals, rue des Frères Lumière, 63028 Clermont-Ferrand Cedex 2, France
| | - Mickaël Bosio
- BIOGEMMA, Genetics and Genomics in Cereals, rue des Frères Lumière, 63028 Clermont-Ferrand Cedex 2, France
| | - Laurent Décousset
- BIOGEMMA, Genetics and Genomics in Cereals, rue des Frères Lumière, 63028 Clermont-Ferrand Cedex 2, France
| | - Alain Charcosset
- INRA, UMR de Génétique Végétale, Ferme du Moulon, 91190 Gif-sur-Yvette, France
| | - Sébastien Praud
- BIOGEMMA, Genetics and Genomics in Cereals, rue des Frères Lumière, 63028 Clermont-Ferrand Cedex 2, France
| | - Brigitte Mangin
- BIA Unit, INRA, Chemin de Borde-Rouge, BP 52627, 31326 Castanet-Tolosan Cedex, France
| |
Collapse
|
30
|
Corbi J, Debieu M, Rousselet A, Montalent P, Le Guilloux M, Manicacci D, Tenaillon MI. Contrasted patterns of selection since maize domestication on duplicated genes encoding a starch pathway enzyme. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:705-22. [PMID: 21060986 DOI: 10.1007/s00122-010-1480-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 10/22/2010] [Indexed: 05/08/2023]
Abstract
Maize domestication from teosinte (Zea mays ssp. parviglumis) was accompanied by an increase of kernel size in landraces. Subsequent breeding has led to a diversification of kernel size and starch content among major groups of inbred lines. We aim at investigating the effect of domestication on duplicated genes encoding a key enzyme of the starch pathway, the ADP-glucose pyrophosphorylase (AGPase). Three pairs of paralogs encode the AGPase small (SSU) and large (LSU) subunits mainly expressed in the endosperm, the embryo and the leaf. We first validated the putative sequence of LSU(leaf) through a comparative expression assay of the six genes. Second, we investigated the patterns of molecular evolution on a 2 kb coding region homologous among the six genes in three panels: teosintes, landraces, and inbred lines. We corrected for demographic effects by relying on empirical distributions built from 580 previously sequenced ESTs. We found contrasted patterns of selection among duplicates: three genes exhibit patterns of directional selection during domestication (SSU(end), LSU(emb)) or breeding (LSU(leaf)), two exhibit patterns consistent with diversifying (SSU(leaf)) and balancing selection (SSU(emb)) accompanying maize breeding. While patterns of linkage disequilibrium did not reveal sign of coevolution between genes expressed in the same organ, we detected an excess of non-synonymous substitutions in the small subunit functional domains highlighting their role in AGPase evolution. Our results offer a different picture on AGPase evolution than the one depicted at the Angiosperm level and reveal how genetic redundancy can provide flexibility in the response to selection.
Collapse
Affiliation(s)
- J Corbi
- CNRS, UMR 0320/UMR 8120 Génétique Végétale, Ferme du Moulon, Gif sur Yvette, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Yan J, Warburton M, Crouch J. Association Mapping for Enhancing Maize ( Zea maysL.) Genetic Improvement. CROP SCIENCE 2011; 51:433-449. [PMID: 0 DOI: 10.2135/cropsci2010.04.0233] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Affiliation(s)
- Jianbing Yan
- National Maize Improvement Center of China; China Agricultural Univ.; Beijing 100193 China
- International Maize and Wheat Improvement Center (CIMMYT); Apartado Postal 6-640 06600 Mexico DF Mexico
| | - Marilyn Warburton
- USDA-ARS; Corn Host Plant Resistance Research Unit; Box 9555 Mississippi State MS 39762
| | - Jonathan Crouch
- International Maize and Wheat Improvement Center (CIMMYT); Apartado Postal 6-640 06600 Mexico DF Mexico
| |
Collapse
|
32
|
Li L, Paulo MJ, van Eeuwijk F, Gebhardt C. Statistical epistasis between candidate gene alleles for complex tuber traits in an association mapping population of tetraploid potato. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:1303-10. [PMID: 20603706 PMCID: PMC2955219 DOI: 10.1007/s00122-010-1389-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 06/14/2010] [Indexed: 05/18/2023]
Abstract
Association mapping using DNA-based markers is a novel tool in plant genetics for the analysis of complex traits. Potato tuber yield, starch content, starch yield and chip color are complex traits of agronomic relevance, for which carbohydrate metabolism plays an important role. At the functional level, the genes and biochemical pathways involved in carbohydrate metabolism are among the best studied in plants. Quantitative traits such as tuber starch and sugar content are therefore models for association genetics in potato based on candidate genes. In an association mapping experiment conducted with a population of 243 tetraploid potato varieties and breeding clones, we previously identified associations between individual candidate gene alleles and tuber starch content, starch yield and chip quality. In the present paper, we tested 190 DNA markers at 36 loci scored in the same association mapping population for pairwise statistical epistatic interactions. Fifty marker pairs were associated mainly with tuber starch content and/or starch yield, at a cut-off value of q ≤ 0.20 for the experiment-wide false discovery rate (FDR). Thirteen marker pairs had an FDR of q ≤ 0.10. Alleles at loci encoding ribulose-bisphosphate carboxylase/oxygenase activase (Rca), sucrose phosphate synthase (Sps) and vacuolar invertase (Pain1) were most frequently involved in statistical epistatic interactions. The largest effect on tuber starch content and starch yield was observed for the paired alleles Pain1-8c and Rca-1a, explaining 9 and 10% of the total variance, respectively. The combination of these two alleles increased the means of tuber starch content and starch yield. Biological models to explain the observed statistical epistatic interactions are discussed.
Collapse
Affiliation(s)
- Li Li
- Department Plant Breeding and Genetics, MPI for Plant Breeding Research, Carl von Linné Weg 10, 50829 Cologne, Germany
| | - Maria-João Paulo
- Department Plant Breeding and Genetics, MPI for Plant Breeding Research, Carl von Linné Weg 10, 50829 Cologne, Germany
- Biometris, Wageningen University, 6700 AC Wageningen, The Netherlands
| | - Fred van Eeuwijk
- Biometris, Wageningen University, 6700 AC Wageningen, The Netherlands
| | - Christiane Gebhardt
- Department Plant Breeding and Genetics, MPI for Plant Breeding Research, Carl von Linné Weg 10, 50829 Cologne, Germany
| |
Collapse
|
33
|
Chen Y, Lübberstedt T. Molecular basis of trait correlations. TRENDS IN PLANT SCIENCE 2010; 15:454-61. [PMID: 20542719 DOI: 10.1016/j.tplants.2010.05.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 05/05/2010] [Accepted: 05/13/2010] [Indexed: 05/20/2023]
Abstract
Trait correlations are common phenomena in biology. Plant breeders need to consider trait correlations to either improve correlated traits simultaneously or to reduce undesirable side effects when improving only one of the correlated traits. Pleiotropy or close linkage are the two major reasons for genetic trait correlations and are often confounded at the level of quantitative trait loci or genes. With the progress of genetic and genomic approaches, discrimination of intragenic linkage from true pleiotropy is increasingly possible. This will substantially impact breeding strategies and will be helpful to understand the nature of trait correlations.
Collapse
Affiliation(s)
- Yongsheng Chen
- Department of Agronomy, Iowa State University, Ames, IA 50011-1010, USA
| | | |
Collapse
|
34
|
Li Q, Li L, Yang X, Warburton ML, Bai G, Dai J, Li J, Yan J. Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC PLANT BIOLOGY 2010; 10:143. [PMID: 20626916 PMCID: PMC3017803 DOI: 10.1186/1471-2229-10-143] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Accepted: 07/14/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND In rice, the GW2 gene, found on chromosome 2, controls grain width and weight. Two homologs of this gene, ZmGW2-CHR4 and ZmGW2-CHR5, have been found in maize. In this study, we investigated the relationship, evolutionary fate and putative function of these two maize genes. RESULTS The two genes are located on duplicated maize chromosomal regions that show co-orthologous relationships with the rice region containing GW2. ZmGW2-CHR5 is more closely related to the sorghum counterpart than to ZmGW2-CHR4. Sequence comparisons between the two genes in eight diverse maize inbred lines revealed that the functional protein domain of both genes is completely conserved, with no non-synonymous polymorphisms identified. This suggests that both genes may have conserved functions, a hypothesis that was further confirmed through linkage, association, and expression analyses. Linkage analysis showed that ZmGW2-CHR4 is located within a consistent quantitative trait locus (QTL) for one-hundred kernel weight (HKW). Association analysis with a diverse panel of 121 maize inbred lines identified one single nucleotide polymorphism (SNP) in the promoter region of ZmGW2-CHR4 that was significantly associated with kernel width (KW) and HKW across all three field experiments examined in this study. SNPs or insertion/deletion polymorphisms (InDels) in other regions of ZmGW2-CHR4 and ZmGW2-CHR5 were also found to be significantly associated with at least one of the four yield-related traits (kernel length (KL), kernel thickness (KT), KW and HKW). None of the polymorphisms in either maize gene are similar to each other or to the 1 bp InDel causing phenotypic variation in rice. Expression levels of both maize genes vary over ear and kernel developmental stages, and the expression level of ZmGW2-CHR4 is significantly negatively correlated with KW. CONCLUSIONS The sequence, linkage, association and expression analyses collectively showed that the two maize genes represent chromosomal duplicates, both of which function to control some of the phenotypic variation for kernel size and weight in maize, as does their counterpart in rice. However, the different polymorphisms identified in the two maize genes and in the rice gene indicate that they may cause phenotypic variation through different mechanisms.
Collapse
Affiliation(s)
- Qing Li
- National Maize Improvement Center of China, Key Laboratory of Crop Genomics and Genetic Improvement (Ministry of Agriculture), China Agricultural University, 100193 Beijing, China
| | - Lin Li
- National Maize Improvement Center of China, Key Laboratory of Crop Genomics and Genetic Improvement (Ministry of Agriculture), China Agricultural University, 100193 Beijing, China
| | - Xiaohong Yang
- National Maize Improvement Center of China, Key Laboratory of Crop Genomics and Genetic Improvement (Ministry of Agriculture), China Agricultural University, 100193 Beijing, China
| | - Marilyn L Warburton
- USDA-ARS Corn Host Plant Resistance Research Unit Box 9555 Mississippi State, MS 39762
| | - Guanghong Bai
- National Maize Improvement Center of China, Key Laboratory of Crop Genomics and Genetic Improvement (Ministry of Agriculture), China Agricultural University, 100193 Beijing, China
- College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052 Xinjiang, China
| | - Jingrui Dai
- National Maize Improvement Center of China, Key Laboratory of Crop Genomics and Genetic Improvement (Ministry of Agriculture), China Agricultural University, 100193 Beijing, China
| | - Jiansheng Li
- National Maize Improvement Center of China, Key Laboratory of Crop Genomics and Genetic Improvement (Ministry of Agriculture), China Agricultural University, 100193 Beijing, China
| | - Jianbing Yan
- National Maize Improvement Center of China, Key Laboratory of Crop Genomics and Genetic Improvement (Ministry of Agriculture), China Agricultural University, 100193 Beijing, China
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico, D.F., Mexico
| |
Collapse
|
35
|
Taylor L, Nunes-Nesi A, Parsley K, Leiss A, Leach G, Coates S, Wingler A, Fernie AR, Hibberd JM. Cytosolic pyruvate,orthophosphate dikinase functions in nitrogen remobilization during leaf senescence and limits individual seed growth and nitrogen content. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:641-52. [PMID: 20202167 DOI: 10.1111/j.1365-313x.2010.04179.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The protein content of seeds determines their nutritive value, downstream processing properties and market value. Up to 95% of seed protein is derived from amino acids that are exported to the seed after degradation of existing protein in leaves, but the pathways responsible for this nitrogen metabolism are poorly defined. The enzyme pyruvate,orthophosphate dikinase (PPDK) interconverts pyruvate and phosphoenolpyruvate, and is found in both plastids and the cytosol in plants. PPDK plays a cardinal role in C(4) photosynthesis, but its role in the leaves of C(3) species has remained unclear. We demonstrate that both the cytosolic and chloroplastic isoforms of PPDK are up-regulated in naturally senescing leaves. Cytosolic PPDK accumulates preferentially in the veins, while chloroplastic PPDK also accumulates in mesophyll cells. Analysis of microarrays and labelling patterns after feeding (13)C-labelled pyruvate indicated that PPDK functions in a pathway that generates the transport amino acid glutamine, which is then loaded into the phloem. In Arabidopsis thaliana, over-expression of PPDK during senescence can significantly accelerate nitrogen remobilization from leaves, and thereby increase rosette growth rate and the weight and nitrogen content of seeds. This indicates an important role for cytosolic PPDK in the leaves of C(3) plants, and allows us to propose a metabolic pathway that is responsible for production of transport amino acids during natural leaf senescence. Given that increased seed size and nitrogen content are desirable agronomic traits, and that efficient remobilization of nitrogen within the plant reduces the demand for fertiliser applications, PPDK and the pathway in which it operates are targets for crop improvement.
Collapse
Affiliation(s)
- Lucy Taylor
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, CB2 3EA, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Capelle V, Remoué C, Moreau L, Reyss A, Mahé A, Massonneau A, Falque M, Charcosset A, Thévenot C, Rogowsky P, Coursol S, Prioul JL. QTLs and candidate genes for desiccation and abscisic acid content in maize kernels. BMC PLANT BIOLOGY 2010; 10:2. [PMID: 20047666 PMCID: PMC2826337 DOI: 10.1186/1471-2229-10-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 01/04/2010] [Indexed: 05/17/2023]
Abstract
BACKGROUND Kernel moisture at harvest is an important trait since a low value is required to prevent unexpected early germination and ensure seed preservation. It is also well known that early germination occurs in viviparous mutants, which are impaired in abscisic acid (ABA) biosynthesis. To provide some insight into the genetic determinism of kernel desiccation in maize, quantitative trait loci (QTLs) were detected for traits related to kernel moisture and ABA content in both embryo and endosperm during kernel desiccation. In parallel, the expression and mapping of genes involved in kernel desiccation and ABA biosynthesis, were examined to detect candidate genes. RESULTS The use of an intermated recombinant inbred line population allowed for precise QTL mapping. For 29 traits examined in an unreplicated time course trial of days after pollination, a total of 78 QTLs were detected, 43 being related to kernel desiccation, 15 to kernel weight and 20 to ABA content. Multi QTL models explained 35 to 50% of the phenotypic variation for traits related to water status, indicating a large genetic control amenable to breeding. Ten of the 20 loci controlling ABA content colocated with previously detected QTLs controlling water status and ABA content in water stressed leaves. Mapping of candidate genes associated with kernel desiccation and ABA biosynthesis revealed several colocations between genes with putative functions and QTLs. Parallel investigation via RT-PCR experiments showed that the expression patterns of the ABA-responsive Rab17 and Rab28 genes as well as the late embryogenesis abundant Emb5 and aquaporin genes were related to desiccation rate and parental allele effect. Database searches led to the identification and mapping of two zeaxanthin epoxidase (ZEP) and five novel 9-cis-epoxycarotenoid dioxygenase (NCED) related genes, both gene families being involved in ABA biosynthesis. The expression of these genes appeared independent in the embryo and endosperm and not correlated with ABA content in either tissue. CONCLUSIONS A high resolution QTL map for kernel desiccation and ABA content in embryo and endosperm showed several precise colocations between desiccation and ABA traits. Five new members of the maize NCED gene family and another maize ZEP gene were identified and mapped. Among all the identified candidates, aquaporins and members of the Responsive to ABA gene family appeared better candidates than NCEDs and ZEPs.
Collapse
Affiliation(s)
- Valérie Capelle
- Univ Paris-Sud, Institut de Biotechnologie des Plantes, Bât 630, F-91405 Orsay, France
- CNRS, UMR 8618, F-91405 Orsay, France
| | - Carine Remoué
- CNRS, UMR 8618, F-91405 Orsay, France
- CNRS, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France
| | - Laurence Moreau
- INRA, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France
| | - Agnès Reyss
- Univ Paris-Sud, Institut de Biotechnologie des Plantes, Bât 630, F-91405 Orsay, France
- CNRS, UMR 8618, F-91405 Orsay, France
| | - Aline Mahé
- Univ Paris-Sud, Institut de Biotechnologie des Plantes, Bât 630, F-91405 Orsay, France
- CNRS, UMR 8618, F-91405 Orsay, France
| | - Agnès Massonneau
- INRA, Reproduction et Développement des Plantes, UMR 879 INRA-CNRS-ENSL-UCBL, IFR128 Biosciences Lyon-Gerland, F-69364 Lyon Cedex 07, France
- 52, Av de la Marjolaine, 34110 Frontigan, France
| | - Matthieu Falque
- INRA, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France
| | - Alain Charcosset
- INRA, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France
| | - Claudine Thévenot
- Univ Paris-Sud, Institut de Biotechnologie des Plantes, Bât 630, F-91405 Orsay, France
- CNRS, UMR 8618, F-91405 Orsay, France
| | - Peter Rogowsky
- INRA, Reproduction et Développement des Plantes, UMR 879 INRA-CNRS-ENSL-UCBL, IFR128 Biosciences Lyon-Gerland, F-69364 Lyon Cedex 07, France
| | - Sylvie Coursol
- INRA, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France
| | - Jean-Louis Prioul
- Univ Paris-Sud, Institut de Biotechnologie des Plantes, Bât 630, F-91405 Orsay, France
- CNRS, UMR 8618, F-91405 Orsay, France
| |
Collapse
|
37
|
Ravel C, Martre P, Romeuf I, Dardevet M, El-Malki R, Bordes J, Duchateau N, Brunel D, Balfourier F, Charmet G. Nucleotide polymorphism in the wheat transcriptional activator Spa influences its pattern of expression and has pleiotropic effects on grain protein composition, dough viscoelasticity, and grain hardness. PLANT PHYSIOLOGY 2009; 151:2133-44. [PMID: 19828671 PMCID: PMC2785959 DOI: 10.1104/pp.109.146076] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 10/10/2009] [Indexed: 05/19/2023]
Abstract
Storage protein activator (SPA) is a key regulator of the transcription of wheat (Triticum aestivum) grain storage protein genes and belongs to the Opaque2 transcription factor subfamily. We analyzed the sequence polymorphism of the three homoeologous Spa genes in hexaploid wheat. The level of polymorphism in these genes was high particularly in the promoter. The deduced protein sequences of each homoeolog and haplotype show greater than 93% identity. Two major haplotypes were studied for each Spa gene. The three Spa homoeologs have similar patterns of expression during grain development, with a peak in expression around 300 degree days after anthesis. On average, Spa-B is 10 and seven times more strongly expressed than Spa-A and Spa-D, respectively. The haplotypes are associated with significant quantitative differences in Spa expression, especially for Spa-A and Spa-D. Significant differences were found in the quantity of total grain nitrogen allocated to the gliadin protein fractions for the Spa-A haplotypes, whereas the synthesis of glutenins is not modified. Genetic association analysis between Spa and dough viscoelasticity revealed that Spa polymorphisms are associated with dough tenacity, extensibility, and strength. Except for Spa-A, these associations can be explained by differences in grain hardness. No association was found between Spa markers and the average single grain dry mass or grain protein concentration. These results demonstrate that in planta Spa is involved in the regulation of grain storage protein synthesis. The associations between Spa and dough viscoelasticity and grain hardness strongly suggest that Spa has complex pleiotropic functions during grain development.
Collapse
Affiliation(s)
- Catherine Ravel
- INRA, UMR1095, Genetics, Diversity, and Ecophysiology of Cereals, F-63100 Clermont-Ferrand, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|