1
|
Ramos-Alvelo M, Molinero-Rosales N, Tamayo-Navarrete MI, Ćavar Zeljković S, Tarkowski P, García-Garrido JM, Ho-Plágaro T. The SlDLK2 receptor, involved in the control of arbuscular mycorrhizal symbiosis, regulates hormonal balance in roots. Front Microbiol 2024; 15:1472449. [PMID: 39723137 PMCID: PMC11668738 DOI: 10.3389/fmicb.2024.1472449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Arbuscular mycorrhiza (AM) represents a symbiotic mutualistic association between most land plants and Glomeromycota fungi. AM fungi develops specialized intraradical and highly branched structures, called arbuscules, where bidirectional exchange of nutrients between plant and fungi partners occurs, improving plant growth and fitness. Transcriptional reprogramming and hormonal regulation are necessary for the formation of the arbuscules. SlDLK2, a member of the third clade from the DWARF14 family of α, β-hydrolases closely related to the strigolactone receptor D14, is a negative regulator of arbuscule branching in tomato, but the underlying mechanisms are unknown. We explored the possible role of SlDLK2 on the regulation of hormonal balance. RNA-seq analysis was performed on roots from composite tomato plants overexpressing SlDLK2 and in control plants transformed with the empty vector. Analysis of transcriptomic data predicted that significantly repressed genes were enriched for genes related to hormone biosynthesis pathways, with a special relevance of carotenoid/apocarotenoid biosynthesis genes. Stable transgenic SlDLK2 overexpressing (OE) tomato lines were obtained, and hormone contents were analyzed in their roots and leaves. Interesting significant hormonal changes were found in roots of SlDLK2 OE lines with respect to the control lines, with a strong decrease on jasmonic acid and ABA. In addition, SlDLK2 OE roots showed a slight reduction in auxin contents and in one of the major strigolactones in tomato, solanacol. Overall, our results suggest that the negative regulation of AM symbiosis by SlDLK2 is associated with the repression of genes involved in the biosynthesis of AM-promoting hormones.
Collapse
Affiliation(s)
- Martín Ramos-Alvelo
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Granada, Spain
| | - Nuria Molinero-Rosales
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Granada, Spain
| | | | - Sanja Ćavar Zeljković
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czechia
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czechia
| | | | - Tania Ho-Plágaro
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Granada, Spain
| |
Collapse
|
2
|
Rong M, Gao SX, Huang PC, Guo YW, Wen D, Jiang JM, Xu YH, Wei JH. Genome-wide identification of the histone modification gene family in Aquilaria sinensis and functional analysis of several HMs in response to MeJA and NaCl stress. Int J Biol Macromol 2024; 281:135871. [PMID: 39357718 DOI: 10.1016/j.ijbiomac.2024.135871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Histone modifications (HMs) play various roles in growth, development, and resistance to abiotic stress. However, HMs have been systematically identified in a few plants, and identification of HMs in medicinal plants is very rare. Aquilaria sinensis is a typical stress-induced medicinal plant, in which HMs remain unexplored. We conducted a comprehensive study to identify HMs and obtained 123 HMs. To conduct evolutionary analysis, we constructed phylogenetic trees and analyzed gene structures. To conduct functional analysis, we performed promoter, GO, and KEGG analyses and ortholog analyses against AtHMs. Based on the expression profiles of different tissues and different layers of Agar-Wit, some HMs of A. sinensis (AsHMs) were predicted to be involved in the formation of agarwood, and their response to MeJA and NaCl stress was tested by qRT-PCR analysis. By analyzing the enrichment of H3K4me3, H3K27me3, and H4K5ac in the promoter regions of two key sesquiterpene synthase genes, AsTPS13/18, we hypothesized that AsHMs play important roles in the synthesis of agarwood sesquiterpenes. We confirmed this hypothesis by conducting RNAi transgenic interference experiments. This study provided valuable information and important biological theories for studying epigenetic regulation in the formation of agarwood. It also provided a framework for conducting further studies on the biological functions of HMs.
Collapse
Affiliation(s)
- Mei Rong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Shi-Xi Gao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Peng-Cheng Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yu-Wei Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Dong Wen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jie-Mei Jiang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yan-Hong Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Jian-He Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China.
| |
Collapse
|
3
|
Jinshi Z, Mei L, Jinjin L, Yizhengnan Z, Yannan J, Jing Y, Wenfan H, Weilin Z. Transcriptome profiling reveals ethylene production by reactive oxygen species in trichloroisocyanuric acid-treated rice seeds. PHYSIOLOGIA PLANTARUM 2024; 176:e14548. [PMID: 39318054 DOI: 10.1111/ppl.14548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024]
Abstract
Reactive oxygen species (ROS) have been extensively suggested to stimulate ethylene production. However, the molecular mechanism by which ROS stimulate ethylene production remains largely unclear. Here, transcriptome profiling was used to verify if ROS could stimulate ethylene production via direct formation of ethylene from ROS. Trichloroisocyanuric acid (TCICA) can stimulate seed germination in rice. When transcriptome profiling was performed to determine the molecular responsiveness of rice seeds to TCICA, TCICA was initially proven to be a ROS-generating reagent. A total of 300 genes potentially responsive to TCICA treatment were significantly annotated to cysteine, and the expression of these genes was significantly upregulated. Nonetheless, the levels of cystine did not exhibit significant changes upon TCICA exposure. Cystine was then proven to be a substrate that reacted with TCICA to form ethylene under FeSO4 conditions. Moreover, 7 of 22 genes responsive to TCICA were common with the hydrogen peroxide (H2O2)-responsive genes. Ethylene was then proven to be produced from cysteine or cystine by reacting with H2O2 under FeSO4 condition, and the hydroxyl radical (OH-) was proposed to be the free radical species responsible for ethylene formation under FeSO4 condition. These results provide the first line of evidence that ethylene can be produced from ROS in a non-enzymatic manner, thereby unveiling one new molecular mechanism by which ROS stimulate ethylene production and offering novel insights into the crosstalk between ethylene and ROS.
Collapse
Affiliation(s)
- Zhang Jinshi
- College of Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| | - Li Mei
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, P. R. China
| | - Lian Jinjin
- College of Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| | - Zhu Yizhengnan
- College of Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| | - Jin Yannan
- College of Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| | - Yang Jing
- College of Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| | - Hu Wenfan
- College of Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| | - Zhang Weilin
- College of Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| |
Collapse
|
4
|
Dou M, Li Y, Hao Y, Zhang K, Yin X, Feng Z, Xu X, Zhang Q, Bao W, Chen X, Liu G, Wang Y, Tian L, Xu Y. Histological and transcriptomic insights into the interaction between grapevine and Colletotrichum viniferum. FRONTIERS IN PLANT SCIENCE 2024; 15:1446288. [PMID: 39220012 PMCID: PMC11362058 DOI: 10.3389/fpls.2024.1446288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Introduction Grape is of high economic value. Colletotrichum viniferum, a pathogen causing grape ripe rot and leaf spot, threatens grape production and quality. Methods This study investigates the interplay between C. viniferum by Cytological study and transcriptome sequencing. Results Different grapevine germplasms, V. vinifera cv. Thompson Seedless (TS), V. labrusca accession Beaumont (B) and V. piasezkii Liuba-8 (LB-8) were classified as highly sensitive, moderate resistant and resistant to C. viniferum, respectively. Cytological study analysis reveals distinct differences between susceptible and resistant grapes post-inoculation, including faster pathogen development, longer germination tubes, normal appressoria of C. viniferum and absence of white secretions in the susceptible host grapevine. To understand the pathogenic mechanisms of C. viniferum, transcriptome sequencing was performed on the susceptible grapevine "TS" identifying 236 differentially expressed C. viniferum genes. These included 56 effectors, 36 carbohydrate genes, 5 P450 genes, and 10 genes involved in secondary metabolism. Fungal effectors are known as pivotal pathogenic factors that modulate plant immunity and affect disease development. Agrobacterium-mediated transient transformation in Nicotiana benthamiana screened 10 effectors (CvA13877, CvA01508, CvA05621, CvA00229, CvA07043, CvA05569, CvA12648, CvA02698, CvA14071 and CvA10999) that inhibited INF1 (infestans 1, P. infestans PAMP elicitor) induced cell death and 2 effectors (CvA02641 and CvA11478) that induced cell death. Additionally, transcriptome analysis of "TS" in response to C. viniferum identified differentially expressed grape genes related to plant hormone signaling (TGA, PR1, ETR, and ERF1/2), resveratrol biosynthesis genes (STS), phenylpropanoid biosynthesis genes (PAL and COMT), photosynthetic antenna proteins (Lhca and Lhcb), transcription factors (WRKY, NAC, MYB, ERF, GATA, bHLH and SBP), ROS (reactive oxygen species) clearance genes (CAT, GSH, POD and SOD), and disease-related genes (LRR, RPS2 and GST). Discussion This study highlights the potential functional diversity of C. viniferum effectors. Our findings lay a foundation for further research of infection mechanisms in Colletotrichum and identification of disease response targets in grape.
Collapse
Affiliation(s)
- Mengru Dou
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yuhang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yu Hao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Kangzhuang Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xiao Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Zinuo Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xi Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Qi Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Wenwu Bao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xi Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Guotian Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Ling Tian
- School of Management, Shenzhen Polytechnic University, Shenzhen, Guangdong, China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Zenzen I, Cassol D, Westhoff P, Kopriva S, Ristova D. Transcriptional and metabolic profiling of sulfur starvation response in two monocots. BMC PLANT BIOLOGY 2024; 24:257. [PMID: 38594609 PMCID: PMC11003109 DOI: 10.1186/s12870-024-04948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Sulfur (S) is a mineral nutrient essential for plant growth and development, which is incorporated into diverse molecules fundamental for primary and secondary metabolism, plant defense, signaling, and maintaining cellular homeostasis. Although, S starvation response is well documented in the dicot model Arabidopsis thaliana, it is not clear if the same transcriptional networks control the response also in the monocots. RESULTS We performed series of physiological, expression, and metabolite analyses in two model monocot species, one representing the C3 plants, Oryza sativa cv. kitaake, and second representing the C4 plants, Setaria viridis. Our comprehensive transcriptomic analysis revealed twice as many differentially expressed genes (DEGs) in S. viridis than in O. sativa under S-deficiency, consistent with a greater loss of sulfur and S-containing metabolites under these conditions. Surprisingly, most of the DEGs and enriched gene ontology terms were species-specific, with an intersect of only 58 common DEGs. The transcriptional networks were different in roots and shoots of both species, in particular no genes were down-regulated by S-deficiency in the roots of both species. CONCLUSIONS Our analysis shows that S-deficiency seems to have different physiological consequences in the two monocot species and their nutrient homeostasis might be under distinct control mechanisms.
Collapse
Affiliation(s)
- Ivan Zenzen
- Institute for Plant Sciences, Cluster of Excellence On Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| | - Daniela Cassol
- Institute for Integrative Genome Biology, University of California, Riverside, 92521, CA, USA
| | - Philipp Westhoff
- Plant Metabolism and Metabolomics Facility, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence On Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany.
| | - Daniela Ristova
- Institute for Plant Sciences, Cluster of Excellence On Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany.
| |
Collapse
|
6
|
Ianiri G, Barone G, Palmieri D, Quiquero M, Gaeta I, De Curtis F, Castoria R. Transcriptomic investigation of the interaction between a biocontrol yeast, Papiliotrema terrestris strain PT22AV, and the postharvest fungal pathogen Penicillium expansum on apple. Commun Biol 2024; 7:359. [PMID: 38519651 PMCID: PMC10960036 DOI: 10.1038/s42003-024-06031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Biocontrol strategies offer a promising alternative to control plant pathogens achieving food safety and security. In this study we apply a RNAseq analysis during interaction between the biocontrol agent (BCA) Papiliotrema terrestris, the pathogen Penicillium expansum, and the host Malus domestica. Analysis of the BCA finds overall 802 upregulated DEGs (differentially expressed genes) when grown in apple tissue, with the majority being involved in nutrients uptake and oxidative stress response. This suggests that these processes are crucial for the BCA to colonize the fruit wounds and outcompete the pathogen. As to P. expansum analysis, 1017 DEGs are upregulated when grown in apple tissue, with the most represented GO categories being transcription, oxidation reduction process, and transmembrane transport. Analysis of the host M. domestica finds a higher number of DEGs in response to the pathogen compared to the BCA, with overexpression of genes involved in host defense signaling pathways in the presence of both of them, and a prevalence of pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) only during interaction with P. expansum. This analysis contributes to advance the knowledge on the molecular mechanisms that underlie biocontrol activity and the tritrophic interaction of the BCA with the pathogen and the host.
Collapse
Affiliation(s)
- Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy.
| | - Giuseppe Barone
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Davide Palmieri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Michela Quiquero
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Ilenia Gaeta
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Filippo De Curtis
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Raffaello Castoria
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy.
| |
Collapse
|
7
|
Prasanna JA, Mandal VK, Kumar D, Chakraborty N, Raghuram N. Nitrate-responsive transcriptome analysis of rice RGA1 mutant reveals the role of G-protein alpha subunit in negative regulation of nitrogen-sensitivity and use efficiency. PLANT CELL REPORTS 2023; 42:1987-2010. [PMID: 37874341 DOI: 10.1007/s00299-023-03078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
KEY MESSAGE Nitrate-responsive transcriptomic, phenotypic and physiological analyses of rice RGA1 mutant revealed many novel RGA1-regulated genes/processes/traits related to nitrogen use efficiency, and provided robust genetic evidence of RGA1-regulation of NUE. Nitrogen (N) use efficiency (NUE) is important for sustainable agriculture. G-protein signalling was implicated in N-response/NUE in rice, but needed firm genetic characterization of the role of alpha subunit (RGA1). The knock-out mutant of RGA1 in japonica rice exhibited lesser nitrate-dose sensitivity than the wild type (WT), in yield and NUE. We, therefore, investigated its genomewide nitrate-response relative to WT. It revealed 3416 differentially expressed genes (DEGs), including 719 associated with development, grain yield and phenotypic traits for NUE. The upregulated DEGs were related to photosynthesis, chlorophyll, tetrapyrrole and porphyrin biosynthesis, while the downregulated DEGs belonged to cellular protein metabolism and transport, small GTPase signalling, cell redox homeostasis, etc. We validated 26 nitrate-responsive DEGs across functional categories by RT-qPCR. Physiological validation of nitrate-response in the mutant and the WT at 1.5 and 15 mM doses revealed higher chlorophyll and stomatal length but decreased stomatal density, conductance and transpiration. The consequent increase in photosynthesis and water use efficiency may have contributed to better yield and NUE in the mutant, whereas the WT was N-dose sensitive. The mutant was not as N-dose-responsive as the WT in shoot/root growth, productive tillers and heading date, but equally responsive as WT in total N and protein content. The RGA1 mutant was less impacted by higher N-dose or salt stress in terms of yield, protein content, photosynthetic performance, relative water content, water use efficiency and catalase activity. PPI network analyses revealed known NUE-related proteins as RGA1 interactors. Therefore, RGA1 negatively regulates N-dose sensitivity and NUE in rice.
Collapse
Affiliation(s)
- Jangam Annie Prasanna
- Centre for Sustainable Nitrogen and Nutrient Management, School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India
| | - Vikas Kumar Mandal
- Centre for Sustainable Nitrogen and Nutrient Management, School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India
- Prof. H.S. Srivastava Foundation for Science and Society, 10B/7, Madan Mohan Malviya Marg, Lucknow, India
| | - Dinesh Kumar
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, India
| | - Navjyoti Chakraborty
- Centre for Sustainable Nitrogen and Nutrient Management, School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India.
| | - Nandula Raghuram
- Centre for Sustainable Nitrogen and Nutrient Management, School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
8
|
Ling Y, Jinshi Z, Yilu Q, Jinjin L, Mei L, Weilin Z. Transcriptome profiling reveals ethylene formation in rice seeds by trichloroisocyanuric acid. PLANT CELL REPORTS 2023; 42:1721-1732. [PMID: 37594528 DOI: 10.1007/s00299-023-03058-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
KEY MESSAGE Ethylene formation via methionine reacting with trichloroisocyanuric acid under FeSO4 condition in a non-enzymatical manner provides one economically and efficiently novel ethylene-forming approach in planta. Rice seed germination can be stimulated by trichloroisocyanuric acid (TCICA). However, the molecular basis of TCICA in stimulating rice seed germination remains unclear. In this study, the molecular mechanism on how TCICA stimulated rice seed germination was examined via comparative transcriptome. Results showed that clustering of transcripts of TCICA-treated seeds, water-treated seeds, and dry seeds was clearly separated. Twenty-two and three hundred differentially expressed genes were identified as TCICA treatment responsive genes and TCICA treatment potentially responsive genes, respectively. Two and one TCICA treatment responsive genes were involved in ethylene signal transduction and iron homeostasis, respectively. Seventeen of the three hundred TCICA treatment potentially responsive genes were significantly annotated to iron ion binding. Meanwhile, level of methionine (ethylene precursor) showed a 73.9% decrease in response to TCICA treatment. Ethylene was then proved to produce via methionine reacting with TCICA under FeSO4 condition in vitro. Revealing ethylene formation by TCICA not only may bring novel insights into crosstalk between ethylene and other phytohormones during rice seed germination, but also may provide one economically and efficiently novel approach to producing ethylene in planta independently of the ethylene biosynthesis in plants and thereby may broaden its applications in investigational and applied purposes.
Collapse
Affiliation(s)
- Yang Ling
- College of Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Zhang Jinshi
- College of Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Qian Yilu
- College of Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Lian Jinjin
- College of Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Li Mei
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Zhang Weilin
- College of Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| |
Collapse
|
9
|
Sen MK, Bhattacharya S, Bharati R, Hamouzová K, Soukup J. Comprehensive insights into herbicide resistance mechanisms in weeds: a synergistic integration of transcriptomic and metabolomic analyses. FRONTIERS IN PLANT SCIENCE 2023; 14:1280118. [PMID: 37885667 PMCID: PMC10598704 DOI: 10.3389/fpls.2023.1280118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
Omics techniques, including genomics, transcriptomics, proteomics, and metabolomics have smoothed the researcher's ability to generate hypotheses and discover various agronomically relevant functions and mechanisms, as well as their implications and associations. With a significant increase in the number of cases with resistance to multiple herbicide modes of action, studies on herbicide resistance are currently one of the predominant areas of research within the field of weed science. High-throughput technologies have already started revolutionizing the current molecular weed biology studies. The evolution of herbicide resistance in weeds (particularly via non-target site resistance mechanism) is a perfect example of a complex, multi-pathway integration-induced response. To date, functional genomics, including transcriptomic and metabolomic studies have been used separately in herbicide resistance research, however there is a substantial lack of integrated approach. Hence, despite the ability of omics technologies to provide significant insights into the molecular functioning of weeds, using a single omics can sometimes be misleading. This mini-review will aim to discuss the current progress of transcriptome-based and metabolome-based approaches in herbicide resistance research, along with their systematic integration.
Collapse
Affiliation(s)
- Madhab Kumar Sen
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Suchdol, Czechia
| | - Soham Bhattacharya
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Suchdol, Czechia
| | - Rohit Bharati
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Suchdol, Czechia
| | - Katerina Hamouzová
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Suchdol, Czechia
| | - Josef Soukup
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Suchdol, Czechia
| |
Collapse
|
10
|
Baldwin A, Dhorajiwala R, Roberts C, Dimitrova S, Tu S, Jones S, Ludlow RA, Cammarisano L, Davoli D, Andrews R, Kent NA, Spadafora ND, Müller CT, Rogers HJ. Storage of halved strawberry fruits affects aroma, phytochemical content and gene expression, and is affected by pre-harvest factors. FRONTIERS IN PLANT SCIENCE 2023; 14:1165056. [PMID: 37324675 PMCID: PMC10264638 DOI: 10.3389/fpls.2023.1165056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/02/2023] [Indexed: 06/17/2023]
Abstract
Introduction Strawberry fruit are highly valued for their aroma which develops during ripening. However, they have a short shelf-life. Low temperature storage is routinely used to extend shelf-life for transport and storage in the supply chain, however cold storage can also affect fruit aroma. Some fruit continue to ripen during chilled storage; however, strawberries are a non-climacteric fruit and hence ripening postharvest is limited. Although most strawberry fruit is sold whole, halved fruit is also used in ready to eat fresh fruit salads which are of increasing consumer demand and pose additional challenges to fresh fruit storage. Methods To better understand the effects of cold storage, volatilomic and transcriptomic analyses were applied to halved Fragaria x ananassa cv. Elsanta fruit stored at 4 or 8°C for up to 12 days over two growing seasons. Results and discussion The volatile organic compound (VOC) profile differed between 4 or 8°C on most days of storage. Major differences were detected between the two different years of harvest indicating that aroma change at harvest and during storage is highly dependent on environmental factors during growth. The major component of the aroma profile in both years was esters. Over 3000 genes changed in expression over 5 days of storage at 8°C in transcriptome analysis. Overall, phenylpropanoid metabolism, which may also affect VOCs, and starch metabolism were the most significantly affected pathways. Genes involved in autophagy were also differentially expressed. Expression of genes from 43 different transcription factor (TF) families changed in expression: mostly they were down-regulated but NAC and WRKY family genes were mainly up-regulated. Given the high ester representation amongst VOCs, the down-regulation of an alcohol acyl transferase (AAT) during storage is significant. A total of 113 differentially expressed genes were co-regulated with the AAT gene, including seven TFs. These may be potential AAT regulators.
Collapse
Affiliation(s)
- Ashley Baldwin
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | - Callum Roberts
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Simone Dimitrova
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Sarah Tu
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Stephanie Jones
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | | | - Daniela Davoli
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Robert Andrews
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Nicholas A. Kent
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Natasha D. Spadafora
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | | | - Hilary J. Rogers
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
11
|
Chia JC, Yan J, Rahmati Ishka M, Faulkner MM, Simons E, Huang R, Smieska L, Woll A, Tappero R, Kiss A, Jiao C, Fei Z, Kochian LV, Walker E, Piñeros M, Vatamaniuk OK. Loss of OPT3 function decreases phloem copper levels and impairs crosstalk between copper and iron homeostasis and shoot-to-root signaling in Arabidopsis thaliana. THE PLANT CELL 2023; 35:2157-2185. [PMID: 36814393 PMCID: PMC10226573 DOI: 10.1093/plcell/koad053] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/16/2022] [Accepted: 02/17/2023] [Indexed: 05/30/2023]
Abstract
Copper (Cu) and iron (Fe) are essential micronutrients that are toxic when accumulating in excess in cells. Thus, their uptake by roots is tightly regulated. While plants sense and respond to local Cu availability, the systemic regulation of Cu uptake has not been documented in contrast to local and systemic control of Fe uptake. Fe abundance in the phloem has been suggested to act systemically, regulating the expression of Fe uptake genes in roots. Consistently, shoot-to-root Fe signaling is disrupted in Arabidopsis thaliana mutants lacking the phloem companion cell-localized Fe transporter, OLIGOPEPTIDE TRANSPORTER 3 (AtOPT3). We report that AtOPT3 also transports Cu in heterologous systems and contributes to its delivery from sources to sinks in planta. The opt3 mutant contained less Cu in the phloem, was sensitive to Cu deficiency and mounted a transcriptional Cu deficiency response in roots and young leaves. Feeding the opt3 mutant and Cu- or Fe-deficient wild-type seedlings with Cu or Fe via the phloem in leaves downregulated the expression of both Cu- and Fe-deficiency marker genes in roots. These data suggest the existence of shoot-to-root Cu signaling, highlight the complexity of Cu/Fe interactions, and the role of AtOPT3 in fine-tuning root transcriptional responses to the plant Cu and Fe needs.
Collapse
Affiliation(s)
- Ju-Chen Chia
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Jiapei Yan
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Maryam Rahmati Ishka
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Marta Marie Faulkner
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Eli Simons
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Rong Huang
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
| | - Louisa Smieska
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
| | - Arthur Woll
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
| | - Ryan Tappero
- National Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Andrew Kiss
- National Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Chen Jiao
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, NY 14853, USA
| | - Leon V Kochian
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, NY 14853, USA
| | - Elsbeth Walker
- Department of Biology, University of Massachusetts, MA 01003, USA
| | - Miguel Piñeros
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, NY 14853, USA
| | - Olena K Vatamaniuk
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
12
|
Wang F, Das P, Pal N, Bhawal R, Zhang S, Bhattacharyya MK. A Phosphoproteomics Study of the Soybean root necrosis 1 Mutant Revealed Type II Metacaspases Involved in Cell Death Pathway. FRONTIERS IN PLANT SCIENCE 2022; 13:882561. [PMID: 35928708 PMCID: PMC9344878 DOI: 10.3389/fpls.2022.882561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The soybean root necrosis 1 (rn1) mutation causes progressive browning of the roots soon after germination and provides increased tolerance to the soil-borne oomycete pathogen Phytophthora sojae in soybean. Toward understanding the molecular basis of the rn1 mutant phenotypes, we conducted tandem mass tag (TMT)-labeling proteomics and phosphoproteomics analyses of the root tissues of the rn1 mutant and progenitor T322 line to identify potential proteins involved in manifestation of the mutant phenotype. We identified 3,160 proteins. When the p-value was set at ≤0.05 and the fold change of protein accumulation between rn1 and T322 at ≥1.5 or ≤0.67, we detected 118 proteins that showed increased levels and 32 proteins decreased levels in rn1 as compared to that in T322. The differentially accumulated proteins (DAPs) are involved in several pathways including cellular processes for processing environmental and genetic information, metabolism and organismal systems. Five pathogenesis-related proteins were accumulated to higher levels in the mutant as compared to that in T322. Several of the DAPs are involved in hormone signaling, redox reaction, signal transduction, and cell wall modification processes activated in plant-pathogen interactions. The phosphoproteomics analysis identified 22 phosphopeptides, the levels of phosphorylation of which were significantly different between rn1 and T322 lines. The phosphorylation levels of two type II metacaspases were reduced in rn1 as compared to T322. Type II metacaspase has been shown to be a negative regulator of hypersensitive cell death. In absence of the functional Rn1 protein, two type II metacaspases exhibited reduced phosphorylation levels and failed to show negative regulatory cell death function in the soybean rn1 mutant. We hypothesize that Rn1 directly or indirectly phosphorylates type II metacaspases to negatively regulate the cell death process in soybean roots.
Collapse
Affiliation(s)
- Feifei Wang
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Priyanka Das
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Narinder Pal
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Ruchika Bhawal
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, United States
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, United States
| | | |
Collapse
|
13
|
Dangol A, Shavit R, Yaakov B, Strickler SR, Jander G, Tzin V. Characterizing serotonin biosynthesis in Setaria viridis leaves and its effect on aphids. PLANT MOLECULAR BIOLOGY 2022; 109:533-549. [PMID: 35020104 DOI: 10.1007/s11103-021-01239-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
A combined transcriptomic and metabolic analysis of Setaria viridis leaves responding to aphid infestation was used to identify genes related to serotonin biosynthesis. Setaria viridis (green foxtail), a short life-cycle C4 plant in the Poaceae family, is the wild ancestor of Setaria italica (foxtail millet), a resilient crop that provides good yields in dry and marginal land. Although S. viridis has been studied extensively in the last decade, the molecular mechanisms of insect resistance in this species remain under-investigated. To address this issue, we performed a metabolic analysis of S. viridis and discovered that these plants accumulate the tryptophan-derived compounds tryptamine and serotonin. To elucidate the defensive functions of serotonin, Rhophalosiphum padi (bird cherry-oat aphids) were exposed to this compound, either by exogenous application to the plant medium or with artificial diet bioassays. In both cases, exposure to serotonin increased aphid mortality. To identify genes that are involved in serotonin biosynthesis, we conducted a transcriptome analysis and identified several predicted S. viridis tryptophan decarboxylase (TDC) and tryptamine 5-hydroxylase (T5H) genes. Two candidate genes were ectopically expressed in Nicotiana tabacum, where SvTDC1 (Sevir.6G066200) had tryptophan decarboxylase activity, and SvT5H1 (Sevir.8G219600) had tryptamine hydroxylase activity. Moreover, the function of the SvTDC1 gene was validated using virus-induced gene silencing in S. italica, which caused a reduction in serotonin levels. This study provides the first evidence of serotonin biosynthesis in Setaria leaves. The biosynthesis of serotonin may play an important role in defense responses and could prove to be useful for developing more pest-tolerant Setaria italica cultivars.
Collapse
Affiliation(s)
- Anuma Dangol
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Reut Shavit
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Beery Yaakov
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | | | - Georg Jander
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel.
| |
Collapse
|
14
|
Karniel U, Adler Berke N, Mann V, Hirschberg J. Perturbations in the Carotenoid Biosynthesis Pathway in Tomato Fruit Reactivate the Leaf-Specific Phytoene Synthase 2. FRONTIERS IN PLANT SCIENCE 2022; 13:844748. [PMID: 35283915 PMCID: PMC8914173 DOI: 10.3389/fpls.2022.844748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The accumulation of the red carotenoid pigment lycopene in tomato (Solanum lycopersicum) fruit is achieved by increased carotenoid synthesis during ripening. The first committed step that determines the flux in the carotenoid pathway is the synthesis of phytoene catalyzed by phytoene synthase (PSY). Tomato has three PSY genes that are differentially expressed. PSY1 is exclusively expressed in fruits, while PSY2 mostly functions in green tissues. It has been established that PSY1 is mostly responsible for phytoene synthesis in fruits. Although PSY2 is found in the chromoplasts, it is inactive because loss-of-function mutations in PSY1 in the locus yellow flesh (r) eliminate carotenoid biosynthesis in the fruit. Here we demonstrate that specific perturbations of carotenoid biosynthesis downstream to phytoene prior and during the transition from chloroplast to chromoplast cause the recovery of phytoene synthesis in yellow flesh (r) fruits without significant transcriptional changes of PSY1 and PSY2. The recovery of carotenoid biosynthesis was abolished when the expression of PSY2 was silenced, indicating that the perturbations of carotenoid biosynthesis reactivated the chloroplast-specific PSY2 in fruit chromoplasts. Furthermore, it is demonstrated that PSY2 can function in fruit chromoplasts under certain conditions, possibly due to alterations in the plastidial sub-organelle organization that affect its association with the carotenoid biosynthesis metabolon. This finding provides a plausible molecular explanation to the epistasis of the mutation tangerine in the gene carotenoid isomerase over yellow flesh.
Collapse
Affiliation(s)
| | | | | | - Joseph Hirschberg
- Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
15
|
Ntana F, Johnson SR, Hamberger B, Jensen B, Jørgensen HJL, Collinge DB. Regulation of Tomato Specialised Metabolism after Establishment of Symbiosis with the Endophytic Fungus Serendipita indica. Microorganisms 2022; 10:microorganisms10010194. [PMID: 35056642 PMCID: PMC8778627 DOI: 10.3390/microorganisms10010194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/09/2022] [Accepted: 01/09/2022] [Indexed: 12/17/2022] Open
Abstract
Specialised metabolites produced during plant-fungal associations often define how symbiosis between the plant and the fungus proceeds. They also play a role in the establishment of additional interactions between the symbionts and other organisms present in the niche. However, specialised metabolism and its products are sometimes overlooked when studying plant-microbe interactions. This limits our understanding of the specific symbiotic associations and potentially future perspectives of their application in agriculture. In this study, we used the interaction between the root endophyte Serendipita indica and tomato (Solanum lycopersicum) plants to explore how specialised metabolism of the host plant is regulated upon a mutualistic symbiotic association. To do so, tomato seedlings were inoculated with S. indica chlamydospores and subjected to RNAseq analysis. Gene expression of the main tomato specialised metabolism pathways was compared between roots and leaves of endophyte-colonised plants and tissues of endophyte-free plants. S. indica colonisation resulted in a strong transcriptional response in the leaves of colonised plants. Furthermore, the presence of the fungus in plant roots appears to induce expression of genes involved in the biosynthesis of lignin-derived compounds, polyacetylenes, and specific terpenes in both roots and leaves, whereas pathways producing glycoalkaloids and flavonoids were expressed in lower or basal levels.
Collapse
Affiliation(s)
- Fani Ntana
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (F.N.); (B.J.); (H.J.L.J.)
| | - Sean R. Johnson
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA;
| | - Björn Hamberger
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48824, USA;
| | - Birgit Jensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (F.N.); (B.J.); (H.J.L.J.)
| | - Hans J. L. Jørgensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (F.N.); (B.J.); (H.J.L.J.)
| | - David B. Collinge
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (F.N.); (B.J.); (H.J.L.J.)
- Correspondence: ; Tel.: +45-35333356
| |
Collapse
|
16
|
Potts J, Li H, Qin Y, Wu X, Hui D, Nasr KA, Zhou S, Yong Y, Fish T, Liu J, Thannhauser TW. Using single cell type proteomics to identify Al-induced proteomes in outer layer cells and interior tissues in the apical meristem/cell division regions of tomato root-tips. J Proteomics 2022; 255:104486. [DOI: 10.1016/j.jprot.2022.104486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/01/2022] [Accepted: 01/06/2022] [Indexed: 11/16/2022]
|
17
|
Trivedi K, Gopalakrishnan VAK, Kumar R, Ghosh A. Transcriptional Analysis of Maize Leaf Tissue Treated With Seaweed Extract Under Drought Stress. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.774978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Kappaphycus alvarezii seaweed extract (KSWE) has been known for its plant biostimulant and stress alleviation activities on various crops. However, very few reports are available depicting its impact at the molecular level, which is crucial in identifying the mechanism of action of KSWE on plants. Here, maize leaf tissue of control and KSWE-treated plants were analyzed for their transcriptional changes under drought stress. KSWE was applied foliarly at the V5 stage of maize crop under drought, and leaf transcriptome analysis was performed. It was found that a total of 380 and 631 genes were up- and downregulated, respectively, due to the application of KSWE. Genes involved in nitrate transportation, signal transmission, photosynthesis, transmembrane transport of various ions, glycogen, and starch biosynthetic processes were found upregulated in KSWE-treated plants, while genes involved in the catabolism of polysaccharide molecules such as starch as well as cell wall macromolecules like chitin and protein degradation were found downregulated. An overview of differentially expressed genes involved in metabolic as well as regulatory processes in KSWE-treated plants was also analyzed via Mapman tool. Phytohormone signaling genes such as cytokinin-independent 1 (involved in cytokine signal transduction), Ent-kaurene synthase and GA20 oxidase (involved in gibberellin synthesis), and gene of 2-oxoglutarate-dependent dioxygenase enzyme activity (involved in ethylene synthesis) were found upregulated while 9-cis-epoxycarotenoid dioxygenase (a gene involved in abscisic acid synthesis) was found downregulated due to the application of KSWE. Modulation of gene expression in maize leaf tissue in response to KSWE treatment elucidates mechanisms to ward off drought stress, which can be extended to understand similar phenomenon in other crops as well. This molecular knowledge can be utilized to make the use of KSWE more efficient and sustainable.
Collapse
|
18
|
Singer SD, Jayawardhane KN, Jiao C, Weselake RJ, Chen G. The effect of AINTEGUMENTA-LIKE 7 over-expression on seed fatty acid biosynthesis, storage oil accumulation and the transcriptome in Arabidopsis thaliana. PLANT CELL REPORTS 2021; 40:1647-1663. [PMID: 34215912 DOI: 10.1007/s00299-021-02715-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Abstract
AIL7 over-expression modulates fatty acid biosynthesis and triacylglycerol accumulation in Arabidopsis developing seeds through the transcriptional regulation of associated genes. Seed fatty acids (FAs) and triacylglycerol (TAG) contribute to many functions in plants, and seed lipids have broad food, feed and industrial applications. As a result, an enormous amount of attention has been dedicated towards uncovering the regulatory cascade responsible for the fine-tuning of the lipid biosynthetic pathway in seeds, which is regulated in part through the action of LEAFY COTYLEDON1, ABSCISSIC ACID INSENSITIVE 3, FUSCA3 and LEC2 (LAFL) transcription factors. Although AINTEGUMENTA-LIKE 7 (AIL7) is involved in meristematic function and shoot phyllotaxy, its effect in the context of lipid biosynthesis has yet to be assessed. Here, we generated AIL7 seed-specific over-expression lines and found that they exhibited significant alterations in FA composition and decreased total lipid accumulation in seeds. Seeds and seedlings from transgenic lines also exhibited morphological deviations compared to wild type. Correspondingly, RNA-Seq analysis demonstrated that the expression of many genes related to FA biosynthesis and TAG breakdown were significantly altered in developing siliques from transgenic lines compared to wild-type plants. The seed-specific over-expression of AIL7 also altered the expression profiles of many genes related to starch metabolism, photosynthesis and stress response, suggesting further roles for AIL7 in plants. These findings not only advance our understanding of the lipid biosynthetic pathway in seeds, but also provide evidence for additional functions of AIL7, which could prove valuable in downstream breeding and/or metabolic engineering endeavors.
Collapse
Affiliation(s)
- Stacy D Singer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada.
| | - Kethmi N Jayawardhane
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Chen Jiao
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
19
|
Pan C, Yang D, Zhao X, Liu Y, Li M, Ye L, Ali M, Yu F, Lamin-Samu AT, Fei Z, Lu G. PIF4 negatively modulates cold tolerance in tomato anthers via temperature-dependent regulation of tapetal cell death. THE PLANT CELL 2021; 33:2320-2339. [PMID: 34009394 PMCID: PMC8364245 DOI: 10.1093/plcell/koab120] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/28/2021] [Indexed: 05/30/2023]
Abstract
Extreme temperature conditions seriously impair male reproductive development in plants; however, the molecular mechanisms underlying the response of anthers to extreme temperatures remain poorly described. The transcription factor phytochrome-interacting factor4 (PIF4) acts as a hub that integrates multiple signaling pathways to regulate thermosensory growth and architectural adaptation in plants. Here, we report that SlPIF4 in tomato (Solanum lycopersicum) plays a pivotal role in regulating cold tolerance in anthers. CRISPR (clustered regularly interspaced short palindromic repeats)-associated nuclease Cas9-generated SlPIF4 knockout mutants showed enhanced cold tolerance in pollen due to reduced temperature sensitivity of the tapetum, while overexpressing SlPIF4 conferred pollen abortion by delaying tapetal programmed cell death (PCD). SlPIF4 directly interacts with SlDYT1, a direct upstream regulator of SlTDF1, both of which (SlDYT1 and SlTDF1) play important roles in regulating tapetum development and tapetal PCD. Moderately low temperature (MLT) promotes the transcriptional activation of SlTDF1 by the SlPIF4-SlDYT1 complex, resulting in pollen abortion, while knocking out SlPIF4 blocked the MLT-induced activation of SlTDF1. Furthermore, SlPIF4 directly binds to the canonical E-box sequence in the SlDYT1 promoter. Collectively, these findings suggest that SlPIF4 negatively regulates cold tolerance in anthers by directly interacting with the tapetal regulatory module in a temperature-dependent manner. Our results shed light on the molecular mechanisms underlying the adaptation of anthers to low temperatures.
Collapse
Affiliation(s)
- Changtian Pan
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Dandan Yang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Xiaolin Zhao
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Yue Liu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Mengzhuo Li
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Lei Ye
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Ali
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Fangjie Yu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | | | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
- USDA Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Gang Lu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agricultural, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
20
|
D'Esposito D, Manzo D, Ricciardi A, Garonna AP, De Natale A, Frusciante L, Pennacchio F, Ercolano MR. Tomato transcriptomic response to Tuta absoluta infestation. BMC PLANT BIOLOGY 2021; 21:358. [PMID: 34348650 PMCID: PMC8336066 DOI: 10.1186/s12870-021-03129-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The South America pinworm, Tuta absoluta, is a destructive pest of tomato that causes important losses worldwide. Breeding of resistant/tolerant tomato cultivars could be an effective strategy for T. absoluta management but, despite the economic importance of tomato, very limited information is available about its response to this treat. To elucidate the defense mechanisms to herbivore feeding a comparative analysis was performed between a tolerant and susceptible cultivated tomato at both morphological and transcriptome level to highlight constitutive leaf barriers, molecular and biochemical mechanisms to counter the effect of T. absoluta attack. RESULTS The tolerant genotype showed an enhanced constitutive barrier possibly as result of the higher density of trichomes and increased inducible reactions upon mild infestation thanks to the activation/repression of key transcription factors regulating genes involved in cuticle formation and cell wall strength as well as of antinutritive enzymes, and genes involved in the production of chemical toxins and bioactive secondary metabolites. CONCLUSIONS Overall, our findings suggest that tomato resilience to the South America pinworm is achieved by a combined strategy between constitutive and induced defense system. A well-orchestrated modulation of plant transcription regulation could ensure a trade-off between defense needs and fitness costs. Our finding can be further exploited for developing T. absoluta tolerant cultivars, acting as important component of integrated pest management strategy for more sustainable production.
Collapse
Affiliation(s)
- Daniela D'Esposito
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy
| | - Daniele Manzo
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy
| | - Alessandro Ricciardi
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy
| | - Antonio Pietro Garonna
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy
| | - Antonino De Natale
- Department of Biology, University of Naples "Federico II", Monte Sant' Angelo, Via Cinthia 26, 80126, Naples, Italy
| | - Luigi Frusciante
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy
| | - Maria Raffaella Ercolano
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy.
| |
Collapse
|
21
|
In Arabidopsis thaliana Cd differentially impacts on hormone genetic pathways in the methylation defective ddc mutant compared to wild type. Sci Rep 2021; 11:10965. [PMID: 34040101 PMCID: PMC8154917 DOI: 10.1038/s41598-021-90528-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
DNA methylation plays an important role in modulating plant growth plasticity in response to stress, but mechanisms involved in such control need further investigation. We used drm1 drm2 cmt3 mutant of Arabidopsis thaliana, defective in DNA methylation, to explore metabolic pathways downstream epigenetic modulation under cadmium (Cd) stress. To this aim, a transcriptomic analysis was performed on ddc and WT plants exposed to a long-lasting (21 d) Cd treatment (25/50 µM), focusing on hormone genetic pathways. Growth parameters and hormones amount were also estimated. Transcriptomic data and hormone quantification showed that, under prolonged Cd treatment, level and signalling of growth-sustaining hormones (auxins, CKs, GAs) were enhanced and/or maintained, while a decrease was detected for stress-related hormones (JA, ABA, SA), likely as a strategy to avoid the side effects of their long-lasting activation. Such picture was more effective in ddc than WT, already at 25 µM Cd, in line with its better growth performance. A tight relationship between methylation status and the modulation of hormone genetic pathways under Cd stress was assessed. We propose that the higher genome plasticity conferred to ddc by DNA hypomethylated status underlies its prompt response to modulate hormones genetic pathways and activity and assure a flexible growth.
Collapse
|
22
|
Wan R, Guo C, Hou X, Zhu Y, Gao M, Hu X, Zhang S, Jiao C, Guo R, Li Z, Wang X. Comparative transcriptomic analysis highlights contrasting levels of resistance of Vitis vinifera and Vitis amurensis to Botrytis cinerea. HORTICULTURE RESEARCH 2021; 8:103. [PMID: 33931625 PMCID: PMC8087793 DOI: 10.1038/s41438-021-00537-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 02/23/2021] [Accepted: 03/08/2021] [Indexed: 05/08/2023]
Abstract
Botrytis cinerea is a major grapevine (Vitis spp.) pathogen, but some genotypes differ in their degree of resistance. For example, the Vitis vinifera cultivar Red Globe (RG) is highly susceptible, but V. amurensis Rupr Shuangyou (SY) is highly resistant. Here, we used RNA sequencing analysis to characterize the transcriptome responses of these two genotypes to B. cinerea inoculation at an early infection stage. Approximately a quarter of the genes in RG presented significant changes in transcript levels during infection, the number of which was greater than that in the SY leaves. The genes differentially expressed between infected leaves of SY and RG included those associated with cell surface structure, oxidation, cell death and C/N metabolism. We found evidence that an imbalance in the levels of reactive oxygen species (ROS) and redox homeostasis probably contributed to the susceptibility of RG to B. cinerea. SY leaves had strong antioxidant capacities and improved ROS homeostasis following infection. Regulatory network prediction suggested that WRKY and MYB transcription factors are associated with the abscisic acid pathway. Weighted gene correlation network analysis highlighted preinfection features of SY that might contribute to its increased resistance. Moreover, overexpression of VaWRKY10 in Arabidopsis thaliana and V. vinifera Thompson Seedless enhanced resistance to B. cinerea. Collectively, our study provides a high-resolution view of the transcriptional changes of grapevine in response to B. cinerea infection and novel insights into the underlying resistance mechanisms.
Collapse
Affiliation(s)
- Ran Wan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
- College of Horticulture, Henan Agricultural University, 450002, Zhengzhou, Henan, China
| | - Chunlei Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, 066004, Qinhuangdao, Hebei, China
| | - Xiaoqing Hou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
| | - Yanxun Zhu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
| | - Min Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
| | - Xiaoyan Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, 066004, Qinhuangdao, Hebei, China
| | - Songlin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
| | - Chen Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
| | - Rongrong Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, 53000, Nanning, Guangxi, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China.
| |
Collapse
|
23
|
Li Z, Wang Y, Fan Y, Ahmad B, Wang X, Zhang S, Zhu Y, Gao L, Chang P, Wang X. Transcriptome Analysis of the Grape- Elsinoë ampelina Pathosystem Reveals Novel Effectors and a Robust Defense Response. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:110-121. [PMID: 33006532 DOI: 10.1094/mpmi-08-20-0227-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Elsinoë ampelina is an ascomycetous fungus that causes grape anthracnose, a potentially devastating disease worldwide. In this study, a dual RNA-seq analysis was used to simultaneously monitor the fungal genes related to pathogenesis and grape genes related to defense during the interaction at 2, 3, 4, and 5 days postinoculation. Consistent with their potential roles in pathogenicity, genes for carbohydrate-active enzymes, secondary metabolite synthesis, pathogen-host interaction, and those encoding secreted proteins are upregulated during infection. Based on Agrobacterium tumefaciens-mediated transient assays in Nicotiana benthamiana, we further showed that eight and nine candidate effectors, respectively, suppressed BAX- and INF1-mediated programmed cell death. The host response was characterized by the induction of multiple defense systems against E. ampelina, including synthesis of phenylpropanoids, stilbenes, and terpenoid biosynthesis, cell-wall modifications, regulation by phytohormones, and expression of defense-related genes. Together, these findings offer new insights into molecular mechanisms underlying the grape-E. ampelina interaction.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ya Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanchun Fan
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bilal Ahmad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianhang Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Songlin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanxun Zhu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linlin Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pingping Chang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
24
|
Gyan NM, Yaakov B, Weinblum N, Singh A, Cna’ani A, Ben-Zeev S, Saranga Y, Tzin V. Variation Between Three Eragrostis tef Accessions in Defense Responses to Rhopalosiphum padi Aphid Infestation. FRONTIERS IN PLANT SCIENCE 2020; 11:598483. [PMID: 33363559 PMCID: PMC7752923 DOI: 10.3389/fpls.2020.598483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/09/2020] [Indexed: 05/12/2023]
Abstract
Tef (Eragrostis tef), a staple crop that originated in the Horn of Africa, has been introduced to multiple countries over the last several decades. Crop cultivation in new geographic regions raises questions regarding the molecular basis for biotic stress responses. In this study, we aimed to classify the insect abundance on tef crop in Israel, and to elucidate its chemical and physical defense mechanisms in response to insect feeding. To discover the main pests of tef in the Mediterranean climate, we conducted an insect field survey on three selected accessions named RTC-144, RTC-405, and RTC-406, and discovered that the most abundant insect order is Hemiptera. We compared the differences in Rhopalosiphum padi (Hemiptera; Aphididae) aphid performance, preference, and feeding behavior between the three accessions. While the number of aphid progeny was lower on RTC-406 than on the other two, the aphid olfactory assay indicated that the aphids tended to be repelled from the RTC-144 accession. To highlight the variation in defense responses, we investigated the physical and chemical mechanisms. As a physical barrier, the density of non-granular trichomes was evaluated, in which a higher number of trichomes on the RTC-406 than on the other accessions was observed. This was negatively correlated with aphid performance. To determine chemical responses, the volatile and central metabolite profiles were measured upon aphid attack for 4 days. The volatile analysis exposed a rich and dynamic metabolic profile, and the central metabolism profile indicated that tef plants adjust their sugars and organic and amino acid levels. Overall, we found that the tef plants possess similar defense responses as other Poaceae family species, while the non-volatile deterrent compounds are yet to be characterized. A transcriptomic time-series analysis of a selected accession RTC-144 infested with aphids revealed a massive alteration of genes related to specialized metabolism that potentially synthesize non-volatile toxic compounds. This is the first report to reveal the variation in the defense mechanisms of tef plants. These findings can facilitate the discovery of insect-resistance genes leading to enhanced yield in tef and other cereal crops.
Collapse
Affiliation(s)
- Nathan M. Gyan
- The Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Beery Yaakov
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Nati Weinblum
- The Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Anuradha Singh
- Jacob Blaustein Center for Scientific Cooperation, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Alon Cna’ani
- Jacob Blaustein Center for Scientific Cooperation, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Shiran Ben-Zeev
- The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yehoshua Saranga
- The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| |
Collapse
|
25
|
Wang L, Ahmad B, Liang C, Shi X, Sun R, Zhang S, Du G. Bioinformatics and expression analysis of histone modification genes in grapevine predict their involvement in seed development, powdery mildew resistance, and hormonal signaling. BMC PLANT BIOLOGY 2020; 20:412. [PMID: 32887552 PMCID: PMC7473812 DOI: 10.1186/s12870-020-02618-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/23/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Histone modification genes (HMs) play potential roles in plant growth and development via influencing gene expression and chromatin structure. However, limited information is available about HMs genes in grapes (Vitis vinifera L.). RESULTS Here, we described detailed genome-wide identification of HMs gene families in grapevine. We identified 117 HMs genes in grapevine and classified these genes into 11 subfamilies based on conserved domains and phylogenetic relationships with Arabidopsis. We described the genes in terms of their chromosomal locations and exon-intron distribution. Further, we investigated the evolutionary history, gene ontology (GO) analysis, and syntenic relationships between grapes and Arabidopsis. According to results 21% HMs genes are the result of duplication (tandem and segmental) events and all the duplicated genes have negative mode of selection. GO analysis predicted the presence of HMs proteins in cytoplasm, nucleus, and intracellular organelles. According to seed development expression profiling, many HMs grapevine genes were differentially expressed in seeded and seedless cultivars, suggesting their roles in seed development. Moreover, we checked the response of HMs genes against powdery mildew infection at different time points. Results have suggested the involvement of some genes in disease resistance regulation mechanism. Furthermore, the expression profiles of HMs genes were analyzed in response to different plant hormones (Abscisic acid, Jasmonic acid, Salicylic acid, and Ethylene) at different time points. All of the genes showed differential expression against one or more hormones. CONCLUSION VvHMs genes might have potential roles in grapevine including seed development, disease resistance, and hormonal signaling pathways. Our study provides first detailed genome-wide identification and expression profiling of HMs genes in grapevine.
Collapse
Affiliation(s)
- Li Wang
- College of Horticulture, Hebei Agricultural University, Baoding, 071000 Hebei China
| | - Bilal Ahmad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Chen Liang
- College of Horticulture, Hebei Agricultural University, Baoding, 071000 Hebei China
| | - Xiaoxin Shi
- College of Horticulture, Hebei Agricultural University, Baoding, 071000 Hebei China
| | - Ruyi Sun
- College of Horticulture, Hebei Agricultural University, Baoding, 071000 Hebei China
| | - Songlin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Guoqiang Du
- College of Horticulture, Hebei Agricultural University, Baoding, 071000 Hebei China
| |
Collapse
|
26
|
Shangguan L, Chen M, Fang X, Xie Z, Gong P, Huang Y, Wang Z, Fang J. Comparative transcriptome analysis provides insight into regulation pathways and temporal and spatial expression characteristics of grapevine (Vitis vinifera) dormant buds in different nodes. BMC PLANT BIOLOGY 2020; 20:390. [PMID: 32842963 PMCID: PMC7449092 DOI: 10.1186/s12870-020-02583-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 07/29/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND Bud dormancy is a strategic mechanism plants developed as an adaptation to unfavorable environments. The grapevine (Vitis vinifera) is one of the most ancient fruit vine species and vines are planted all over the world due to their great economic benefits. To better understand the molecular mechanisms underlying bud dormancy between adjacent months, the transcriptomes of 'Rosario Bianco' grape buds of 6 months and three nodes were analyzed using RNA-sequencing technology and pair-wise comparison. From November to April of the following year, pairwise comparisons were conducted between adjacent months. RESULTS A total of 11,647 differentially expressed genes (DEGs) were obtained from five comparisons. According to the results of cluster analysis of the DEG profiles and the climatic status of the sampling period, the 6 months were divided into three key processes (November to January, January to March, and March to April). Pair-wise comparisons of DEG profiles of adjacent months and three main dormancy processes showed that the whole grapevine bud dormancy period was mainly regulated by the antioxidant system, secondary metabolism, cell cycle and division, cell wall metabolism, and carbohydrates metabolism. Additionally, several DEGs, such as VvGA2OX6 and VvSS3, showed temporally and spatially differential expression patterns, which normalized to a similar trend during or before April. CONCLUSION Considering these results, the molecular mechanisms underlying bud dormancy in the grapevine can be hypothesized, which lays the foundation for further research.
Collapse
Affiliation(s)
- Lingfei Shangguan
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China.
| | - Mengxia Chen
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Xiang Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Zhenqiang Xie
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
- Department of Agriculture and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212499, Jiangsu Province, China
| | - Peijie Gong
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Yuxiang Huang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Zicheng Wang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Jinggui Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| |
Collapse
|
27
|
Jaiswal AK, Alkan N, Elad Y, Sela N, Philosoph AM, Graber ER, Frenkel O. Molecular insights into biochar-mediated plant growth promotion and systemic resistance in tomato against Fusarium crown and root rot disease. Sci Rep 2020; 10:13934. [PMID: 32811849 PMCID: PMC7434890 DOI: 10.1038/s41598-020-70882-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/03/2020] [Indexed: 11/09/2022] Open
Abstract
Molecular mechanisms associated with biochar-elicited suppression of soilborne plant diseases and improved plant performance are not well understood. A stem base inoculation approach was used to explore the ability of biochar to induce systemic resistance in tomato plants against crown rot caused by a soilborne pathogen, Fusarium oxysporum f. sp. radicis lycopersici. RNA-seq transcriptome profiling of tomato, and experiments with jasmonic and salycilic acid deficient tomato mutants, were performed to elucidate the in planta molecular mechanisms involved in induced resistance. Biochar (produced from greenhouse plant wastes) was found to mediate systemic resistance against Fusarium crown rot and to simultaneously improve tomato plant growth and physiological parameters by up to 63%. Transcriptomic analysis (RNA-seq) of tomato demonstrated that biochar had a priming effect on gene expression and upregulated the pathways and genes associated with plant defense and growth such as jasmonic acid, brassinosteroids, cytokinins, auxin and synthesis of flavonoid, phenylpropanoids and cell wall. In contrast, biosynthesis and signaling of the salicylic acid pathway was downregulated. Upregulation of genes and pathways involved in plant defense and plant growth may partially explain the significant disease suppression and improvement in plant performance observed in the presence of biochar.
Collapse
Affiliation(s)
- Amit K Jaiswal
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, The Volcani Center (ARO), 7505101, Rishon Lezion, Israel.,Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Center (ARO), 7505101, Rishon Lezion, Israel.,Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 761001, Rehovot, Israel.,Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Noam Alkan
- Department of Postharvest Science of Fresh Produce, Institute of Plant Harvest and Food Sciences, The Volcani Center (ARO), 7505101, Rishon Lezion, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, The Volcani Center (ARO), 7505101, Rishon Lezion, Israel
| | - Noa Sela
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, The Volcani Center (ARO), 7505101, Rishon Lezion, Israel
| | - Amit M Philosoph
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, The Volcani Center (ARO), 7505101, Rishon Lezion, Israel.,Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 761001, Rehovot, Israel
| | - Ellen R Graber
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Center (ARO), 7505101, Rishon Lezion, Israel
| | - Omer Frenkel
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, The Volcani Center (ARO), 7505101, Rishon Lezion, Israel.
| |
Collapse
|
28
|
Kumar A, Dubey A. Rhizosphere microbiome: Engineering bacterial competitiveness for enhancing crop production. J Adv Res 2020; 24:337-352. [PMID: 32461810 PMCID: PMC7240055 DOI: 10.1016/j.jare.2020.04.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/15/2020] [Accepted: 04/25/2020] [Indexed: 12/29/2022] Open
Abstract
Plants in nature are constantly exposed to a variety of abiotic and biotic stresses which limits their growth and production. Enhancing crop yield and production to feed exponentially growing global population in a sustainable manner by reduced chemical fertilization and agrochemicals will be a big challenge. Recently, the targeted application of beneficial plant microbiome and their cocktails to counteract abiotic and biotic stress is gaining momentum and becomes an exciting frontier of research. Advances in next generation sequencing (NGS) platform, gene editing technologies, metagenomics and bioinformatics approaches allows us to unravel the entangled webs of interactions of holobionts and core microbiomes for efficiently deploying the microbiome to increase crops nutrient acquisition and resistance to abiotic and biotic stress. In this review, we focused on shaping rhizosphere microbiome of susceptible host plant from resistant plant which comprises of specific type of microbial community with multiple potential benefits and targeted CRISPR/Cas9 based strategies for the manipulation of susceptibility genes in crop plants for improving plant health. This review is significant in providing first-hand information to improve fundamental understanding of the process which helps in shaping rhizosphere microbiome.
Collapse
Affiliation(s)
- Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, M.P., India
| | - Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, M.P., India
| |
Collapse
|
29
|
Diretto G, Frusciante S, Fabbri C, Schauer N, Busta L, Wang Z, Matas AJ, Fiore A, K.C. Rose J, Fernie AR, Jetter R, Mattei B, Giovannoni J, Giuliano G. Manipulation of β-carotene levels in tomato fruits results in increased ABA content and extended shelf life. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1185-1199. [PMID: 31646753 PMCID: PMC7152610 DOI: 10.1111/pbi.13283] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/09/2019] [Accepted: 10/22/2019] [Indexed: 05/18/2023]
Abstract
Tomato fruit ripening is controlled by the hormone ethylene and by a group of transcription factors, acting upstream of ethylene. During ripening, the linear carotene lycopene accumulates at the expense of cyclic carotenoids. Fruit-specific overexpression of LYCOPENE β-CYCLASE (LCYb) resulted in increased β-carotene (provitamin A) content. Unexpectedly, LCYb-overexpressing fruits also exhibited a diverse array of ripening phenotypes, including delayed softening and extended shelf life. These phenotypes were accompanied, at the biochemical level, by an increase in abscisic acid (ABA) content, decreased ethylene production, increased density of cell wall material containing linear pectins with a low degree of methylation, and a thicker cuticle with a higher content of cutin monomers and triterpenoids. The levels of several primary metabolites and phenylpropanoid compounds were also altered in the transgenic fruits, which could be attributed to delayed fruit ripening and/or to ABA. Network correlation analysis and pharmacological experiments with the ABA biosynthesis inhibitor, abamine, indicated that altered ABA levels were a direct effect of the increased β-carotene content and were in turn responsible for the extended shelf life phenotype. Thus, manipulation of β-carotene levels results in an improvement not only of the nutritional value of tomato fruits, but also of their shelf life.
Collapse
Affiliation(s)
- Gianfranco Diretto
- Italian national Agency for New technologies, Energy, and Sustainable Development (ENEA)Casaccia Research CenterRomaItaly
| | - Sarah Frusciante
- Italian national Agency for New technologies, Energy, and Sustainable Development (ENEA)Casaccia Research CenterRomaItaly
| | - Claudia Fabbri
- Department of Biology and BiotechnologySapienza University of RomeRomeItaly
| | - Nicolas Schauer
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| | - Lucas Busta
- Department of ChemistryUniversity of British ColumbiaVancouverBCCanada
- Center for Plant Science Innovation and Department of BiochemistryUniversity of Nebraska–LincolnLincolnNEUSA
| | - Zhonghua Wang
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
- College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Antonio J. Matas
- Plant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
- Department of Plant BiologyInstitute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM‐UMA‐CSIC)University of MálagaMálagaSpain
| | - Alessia Fiore
- Italian national Agency for New technologies, Energy, and Sustainable Development (ENEA)Casaccia Research CenterRomaItaly
| | - Jocelyn K.C. Rose
- Plant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | - Alisdair R. Fernie
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| | - Reinhard Jetter
- Department of ChemistryUniversity of British ColumbiaVancouverBCCanada
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| | - Benedetta Mattei
- Department of Biology and BiotechnologySapienza University of RomeRomeItaly
- Department of Health, Life and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
| | - Jim Giovannoni
- U.S. Department of Agriculture–Agricultural Research ServiceRobert W. Holley Center for Agriculture and HealthIthacaNYUSA
- Boyce Thompson Institute for Plant ResearchCornell UniversityIthacaNYUSA
| | - Giovanni Giuliano
- Italian national Agency for New technologies, Energy, and Sustainable Development (ENEA)Casaccia Research CenterRomaItaly
| |
Collapse
|
30
|
Sun X, Li H, Thapa S, Reddy Sangireddy S, Pei X, Liu W, Jiang Y, Yang S, Hui D, Bhatti S, Zhou S, Yang Y, Fish T, Thannhauser TW. Al-induced proteomics changes in tomato plants over-expressing a glyoxalase I gene. HORTICULTURE RESEARCH 2020; 7:43. [PMID: 32257229 PMCID: PMC7109090 DOI: 10.1038/s41438-020-0264-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/12/2020] [Indexed: 06/11/2023]
Abstract
Glyoxalase I (Gly I) is the first enzyme in the glutathionine-dependent glyoxalase pathway for detoxification of methylglyoxal (MG) under stress conditions. Transgenic tomato 'Money Maker' plants overexpressing tomato SlGlyI gene (tomato unigene accession SGN-U582631/Solyc09g082120.3.1) were generated and homozygous lines were obtained after four generations of self-pollination. In this study, SlGlyI-overepxressing line (GlyI), wild type (WT, negative control) and plants transformed with empty vector (ECtr, positive control), were subjected to Al-treatment by growing in Magnavaca's nutrient solution (pH 4.5) supplemented with 20 µM Al3+ ion activity. After 30 days of treatments, the fresh and dry weight of shoots and roots of plants from Al-treated conditions decreased significantly compared to the non-treated conditions for all the three lines. When compared across the three lines, root fresh and dry weight of GlyI was significant higher than WT and ECtr, whereas there was no difference in shoot tissues. The basal 5 mm root-tips of GlyI plants expressed a significantly higher level of glyoxalase activity under both non-Al-treated and Al-treated conditions compared to the two control lines. Under Al-treated condition, there was a significant increase in MG content in ECtr and WT lines, but not in GlyI line. Quantitative proteomics analysis using tandem mass tags mass spectrometry identified 4080 quantifiable proteins and 201 Al-induced differentially expressed proteins (DEPs) in root-tip tissues from GlyI, and 4273 proteins and 230 DEPs from ECtr. The Al-down-regulated DEPs were classified into molecular pathways of gene transcription, RNA splicing and protein biosynthesis in both GlyI and ECtr lines. The Al-induced DEPs in GlyI associated with tolerance to Al3+ and MG toxicity are involved in callose degradation, cell wall components (xylan acetylation and pectin degradation), oxidative stress (antioxidants) and turnover of Al-damaged epidermal cells, repair of damaged DNA, epigenetics, gene transcription, and protein translation. A protein-protein association network was constructed to aid the selection of proteins in the same pathway but differentially regulated in GlyI or ECtr lines. Proteomics data are available via ProteomeXchange with identifiers PXD009456 under project title '25Dec2017_Suping_XSexp2_ITAG3.2' for SlGlyI-overexpressing tomato plants and PXD009848 under project title '25Dec2017_Suping_XSexp3_ITAG3.2' for positive control ECtr line transformed with empty vector.
Collapse
Affiliation(s)
- Xudong Sun
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
- College of Horticulture, Shandong Agricultural University, Taian, Shandong P.R. China
| | - Hui Li
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Santosh Thapa
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Sasikiran Reddy Sangireddy
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Xiaobo Pei
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Wei Liu
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Yuping Jiang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Shaolan Yang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Dafeng Hui
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Sarabjit Bhatti
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Suping Zhou
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Yong Yang
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| | - Tara Fish
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| | - Theodore W. Thannhauser
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
31
|
Batyrshina ZS, Yaakov B, Shavit R, Singh A, Tzin V. Comparative transcriptomic and metabolic analysis of wild and domesticated wheat genotypes reveals differences in chemical and physical defense responses against aphids. BMC PLANT BIOLOGY 2020; 20:19. [PMID: 31931716 PMCID: PMC6958765 DOI: 10.1186/s12870-019-2214-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/22/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Young wheat plants are continuously exposed to herbivorous insect attack. To reduce insect damage and maintain their growth, plants evolved different defense mechanisms, including the biosynthesis of deterrent compounds named benzoxazinoids, and/or trichome formation that provides physical barriers. It is unclear whether both of these mechanisms are equally critical in providing an efficient defense for wheat seedlings against aphids-an economically costly pest in cereal production. RESULTS In this study, we compared the transcriptome, metabolome, benzoxazinoids, and trichome density of three selected wheat genotypes, with a focus on differences related to defense mechanisms. We chose diverse wheat genotypes: two tetraploid wheat genotypes, domesticated durum 'Svevo' and wild emmer 'Zavitan,' and one hexaploid bread wheat, 'Chinese Spring.' The full transcriptomic analysis revealed a major difference between the three genotypes, while the clustering of significantly different genes suggested a higher similarity between the two domesticated wheats than between either and the wild wheat. A pathway enrichment analysis indicated that the genes associated with primary metabolism, as well as the pathways associated with defense such as phytohormones and specialized metabolites, were different between the three genotypes. Measurement of benzoxazinoid levels at the three time points (11, 15, and 18 days after germination) revealed high levels in the two domesticated genotypes, while in wild emmer wheat, they were below detection level. In contrast to the benzoxazinoid levels, the trichome density was dramatically higher in the wild emmer than in the domesticated wheat. Lastly, we tested the bird cherry-oat aphid's (Rhopalosiphum padi) performance and found that Chinese Spring is more resistant than the tetraploid genotypes. CONCLUSIONS Our results show that benzoxazinoids play a more significant defensive role than trichomes. Differences between the abundance of defense mechanisms in the wild and domesticated plants were observed in which wild emmer possesses high physical defenses while the domesticated wheat genotypes have high chemical defenses. These findings provide new insights into the defense adaptations of wheat plants against aphids.
Collapse
Affiliation(s)
- Zhaniya S Batyrshina
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreseht Ben Gurion, Beer-Sheva, Israel
| | - Beery Yaakov
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreseht Ben Gurion, Beer-Sheva, Israel
| | - Reut Shavit
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreseht Ben Gurion, Beer-Sheva, Israel
| | - Anuradha Singh
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreseht Ben Gurion, Beer-Sheva, Israel
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreseht Ben Gurion, Beer-Sheva, Israel.
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
32
|
Yang S, Li H, Bhatti S, Zhou S, Yang Y, Fish T, Thannhauser TW. The Al-induced proteomes of epidermal and outer cortical cells in root apex of cherry tomato ‘LA 2710’. J Proteomics 2020; 211:103560. [DOI: 10.1016/j.jprot.2019.103560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
|
33
|
Warming and elevated CO 2 alter the transcriptomic response of maize (Zea mays L.) at the silking stage. Sci Rep 2019; 9:17948. [PMID: 31784668 PMCID: PMC6884611 DOI: 10.1038/s41598-019-54325-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 11/04/2019] [Indexed: 11/21/2022] Open
Abstract
Exploring the transcriptome of crops in response to warming and elevated CO2 (eCO2) is important to gaining insights of botanical adaption and feedback to climate change. This study deployed Illumina sequencing technology to characterize transcriptomic profile of maize plants at the silking stage, which were grown under warming (2 °C higher than ambient temperature) and eCO2 (550 ppm) conditions. The treatment of ambient temperature and ambient CO2 concentration was considered as control (CK). Warming, eCO2 and warming plus eCO2 resulted in 2732, 1966 and 271 genes expressing differently (DEGs) compared to the CK, respectively. Among the DEGs, 48, 47 and 36 gene ontology (GO) terms were enriched in response to warming, eCO2 and warming plus eCO2 compared to the CK, respectively. The majority of genes were assigned to the biological process category and the cellular component category. Elevated CO2 significantly inhibited gene expressions in terms of photosynthesis and carbohydrate biosynthesis pathways. Warming not only negatively affected expressions of these genes, but also secondary pathways of nitrogen (N) metabolism, including key enzymes of GST30, GST7, GST26, GST15, GLUL and glnA. These results indicated the negative biochemical regulation and physiological functions in maize in response to warming and eCO2, highlighting the necessity to improve the genetic adaptability of plant to future climate change.
Collapse
|
34
|
Deciphering signalling network in broad spectrum Near Isogenic Lines of rice resistant to Magnaporthe oryzae. Sci Rep 2019; 9:16939. [PMID: 31729398 PMCID: PMC6858299 DOI: 10.1038/s41598-019-50990-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/27/2019] [Indexed: 01/21/2023] Open
Abstract
Disease resistance (R) genes like Pi9, Pita, Pi21, Pi54 are playing important role for broad spectrum blast resistance in rice. Development of near isogenic lines (NILs) using these type of broad spectrum genes and understanding their signalling networks is essential to cope up with highly evolving Magnaporthe oryzae strains for longer duration. Here, transcriptional-level changes were studied in three near-isogenic lines (PB1 + Pi1, PB1 + Pi9 and PB1 + Pi54) of rice resistant to blast infection, to find the loci that are unique to resistant lines developed in the background of Pusa Basmati 1 (PB1). The pathway analysis of loci, unique to resistant NILs compared to susceptible control revealed that plant secondary metabolite synthesis was the common mechanism among all NILs to counter against M. oryzae infection. Comparative transcriptome analysis helped to find out common clusters of co-expressed significant differentially expressed loci (SDEL) in both PB1 + Pi9 and PB1 + Pi54 NILs. SDELs from these clusters were involved in the synthesis and degradation of starch; synthesis and elongation of fatty acids; hydrolysis of phospholipids; synthesis of phenylpropanoid; and metabolism of ethylene and jasmonic acid. Through detailed analysis of loci specific to each resistant NIL, we identified a network of signalling pathways mediated by each blast resistance gene. The study also offers insights into transcriptomic dynamics, points to a set of important candidate genes that serve as module to regulate the changes in resistant NILs. We suggest that pyramiding of the blast resistance gene Pi9 with Pi54 will lead to maximum broad spectrum resistance to M. oryzae.
Collapse
|
35
|
Ogran A, Faigenboim A, Barazani O. Transcriptome responses to different herbivores reveal differences in defense strategies between populations of Eruca sativa. BMC Genomics 2019; 20:843. [PMID: 31718552 PMCID: PMC6852892 DOI: 10.1186/s12864-019-6217-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 10/23/2019] [Indexed: 01/01/2023] Open
Abstract
Background Intraspecific variations among induced responses might lead to understanding of adaptive variations in defense strategies against insects. We employed RNA-Seq transcriptome screening to elucidate the molecular basis for phenotypic differences between two populations of Eruca sativa (Brassicaceae), in defense against larvae of the generalist and specialist insects, Spodoptera littoralis and Pieris brassicae, respectively. The E. sativa populations originated from desert and Mediterranean sites, where the plants grow in distinct habitats. Results Responses to elicitation of the plants’ defenses against wounding and insect herbivory resulted in more upregulated transcripts in plants of the Mediterranean population than in those of the desert. PCA analysis differentiated between the two populations and between the elicitation treatments. Comprehensive analysis indicated that defense responses involved induction of the salicylic acid and jasmonic acid pathways in plants of the desert and Mediterranean populations, respectively. In general, the defense response involved upregulation of the aliphatic glucosinolates pathway in plants of the Mediterranean population, whereas herbivory caused downregulation of this pathway in desert plants. Further quantitative RT-PCR analysis indicated that defense response in the desert plants involved higher expression of nitrile-specifier protein (NSP) than in the Mediterranean plants, suggesting that in the desert plants glucosinolates breakdown products are directed to simple-nitriles rather than to the more toxic isothiocyanates. In addition, the defense response in plants of the desert population involved upregulation of flavonoid synthesis and sclerophylly. Conclusions The results indicated that differing defense responses in plants of the two populations are governed by different signaling cascades. We suggest that adaptive ecotypic differentiation in defense strategies could result from generalist and specialist herbivore pressures in the Mediterranean and desert populations, respectively. Moreover, the defense responses in plants of the desert habitat, which include upregulation of mechanical defenses, also could be associated with their dual role in defense against both biotic and abiotic stresses.
Collapse
Affiliation(s)
- Ariel Ogran
- Institute of Plant Science, Agricultural Research Organization - the Volcani Center, 7505101, Rishon LeZion, Israel
| | - Adi Faigenboim
- Institute of Plant Science, Agricultural Research Organization - the Volcani Center, 7505101, Rishon LeZion, Israel
| | - Oz Barazani
- Institute of Plant Science, Agricultural Research Organization - the Volcani Center, 7505101, Rishon LeZion, Israel.
| |
Collapse
|
36
|
D'Esposito D, Cappetta E, Andolfo G, Ferriello F, Borgonuovo C, Caruso G, De Natale A, Frusciante L, Ercolano MR. Deciphering the biological processes underlying tomato biomass production and composition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:50-60. [PMID: 31479882 DOI: 10.1016/j.plaphy.2019.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/19/2019] [Accepted: 08/13/2019] [Indexed: 05/20/2023]
Abstract
The huge amounts of biomass residues, remaining in the field after tomato fruits harvesting, can be utilized to produce bioenergy. A multiple level approach aimed to characterize two Solanum pennellii introgression lines (ILs), with contrasting phenotypes for plant architecture and biomass was carried out. The study of gene expression dynamics, microscopy cell traits and qualitative and quantitative cell wall chemical compounds variation enabled the discovery of key genes and cell processes involved biomass accumulation and composition. Enhanced biomass production observed in IL2-6 line is due to a more effective coordination of chloroplasts and mitochondria energy fluxes. Microscopy analysis revealed a higher number of cells and chloroplasts in leaf epidermis in the high biomass line whilst chemical measurements on the two lines pointed out striking differences in the cell wall composition and organization. Taken together, our findings shed light on the mechanisms underlying the tomato biomass production and processability.
Collapse
Affiliation(s)
- Daniela D'Esposito
- Department of Agricultural Sciences, University of Naples 'Federico II', Via Università 100, 80055, Portici, Naples, Italy.
| | - Elisa Cappetta
- Department of Agricultural Sciences, University of Naples 'Federico II', Via Università 100, 80055, Portici, Naples, Italy.
| | - Giuseppe Andolfo
- Department of Agricultural Sciences, University of Naples 'Federico II', Via Università 100, 80055, Portici, Naples, Italy.
| | - Francesca Ferriello
- Department of Agricultural Sciences, University of Naples 'Federico II', Via Università 100, 80055, Portici, Naples, Italy.
| | - Camilla Borgonuovo
- Department of Agricultural Sciences, University of Naples 'Federico II', Via Università 100, 80055, Portici, Naples, Italy.
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples 'Federico II', Via Università 100, 80055, Portici, Naples, Italy.
| | - Antonino De Natale
- Department of Biology, University of Naples 'Federico II', Via Cinthia, Monte Sant'Angelo, Building 7, 80126, Naples, Italy.
| | - Luigi Frusciante
- Department of Agricultural Sciences, University of Naples 'Federico II', Via Università 100, 80055, Portici, Naples, Italy.
| | - Maria Raffaella Ercolano
- Department of Agricultural Sciences, University of Naples 'Federico II', Via Università 100, 80055, Portici, Naples, Italy.
| |
Collapse
|
37
|
Padmanabhan C, Ma Q, Shekasteband R, Stewart KS, Hutton SF, Scott JW, Fei Z, Ling KS. Comprehensive transcriptome analysis and functional characterization of PR-5 for its involvement in tomato Sw-7 resistance to tomato spotted wilt tospovirus. Sci Rep 2019; 9:7673. [PMID: 31114006 PMCID: PMC6529424 DOI: 10.1038/s41598-019-44100-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
Tomato spotted wilt tospovirus (TSWV), one of the most important plant viruses, causes yield losses to many crops including tomato. The current disease management for TSWV is based mainly on breeding tomato cultivars containing the Sw-5 locus. Unfortunately, several Sw-5 resistance-breaking strains of TSWV have been identified. Sw-7 is an alternative locus conferring resistance to a broad range of TSWV strains. In an effort to uncover gene networks that are associated with the Sw-7 resistance, we performed a comparative transcriptome profiling and gene expression analysis between a nearly-isogenic Sw-7 line and its susceptible recurrent parent (Fla. 8059) upon infection by TSWV. A total of 1,244 differentially expressed genes were identified throughout a disease progression process involving networks of host resistance genes, RNA silencing/antiviral defense genes, and crucial transcriptional and translational regulators. Notable induced genes in Sw-7 include those involved in callose accumulation, lignin deposition, proteolysis process, transcriptional activation/repression, and phosphorylation. Finally, we investigated potential involvement of PR-5 in the Sw-7 resistance. Interestingly, PR-5 overexpressed plants conferred enhanced resistance, resulting in delay in virus accumulation and symptom expression. These findings will facilitate breeding and genetic engineering efforts to incorporate this new source of resistance in tomato for protection against TSWV.
Collapse
Affiliation(s)
- Chellappan Padmanabhan
- USDA-Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, South Carolina, USA
| | - Qiyue Ma
- Boyce Thompson Institute, Cornell University, Ithaca, New York, USA
| | - Reza Shekasteband
- University of Florida, IFAS, Gulf Coast Research and Education Center, Wimauma, FL, USA
| | - Kevin S Stewart
- USDA-Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, South Carolina, USA
| | - Samuel F Hutton
- University of Florida, IFAS, Gulf Coast Research and Education Center, Wimauma, FL, USA
| | - John W Scott
- University of Florida, IFAS, Gulf Coast Research and Education Center, Wimauma, FL, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, New York, USA.
- USDA-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, USA.
| | - Kai-Shu Ling
- USDA-Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, South Carolina, USA.
| |
Collapse
|
38
|
Brizzolara S, Cukrov D, Mercadini M, Martinelli F, Ruperti B, Tonutti P. Short-Term Responses of Apple Fruit to Partial Reoxygenation during Extreme Hypoxic Storage Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4754-4763. [PMID: 30965000 DOI: 10.1021/acs.jafc.9b00036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The short-term (24 h) responses of apple fruit (cv. 'Granny Smith') to a shift in the oxygen concentration from 0.4 to 0.8 kPa, a protocol applied in the dynamic controlled atmosphere (DCA) storage technique, have been studied. Metabolomics and transcriptomics analyses of cortex tissue showed an immediate down-regulation of fermentative metabolism and of the GABA shunt in parallel with the activation of several 2-oxoglutarate-dependent dioxygenase genes. Down-regulation of the free phenylpropanoid pathway genes and the diversion of propanoid synthesis toward the methyl-erythritol phosphate route were also observed. Partial reoxygenation induced increases of glyceric, palmitic, and stearic acids and of several phosphatidylcholines and phosphatidylethanolamines and decreases of specific amino acids (valine, methionine, glycine, phenylalanine, and GABA), organic acids (arachidic and citric acids), and secondary metabolites (catechin and epicatechin). The oxygen shift also resulted in transcriptional rewiring of several components of IAA and ABA regulation and signaling. These results provide novel insights on the complexity of the short-term physiological responses of apple fruit to partial reoxygenation applied during DCA storage.
Collapse
Affiliation(s)
- Stefano Brizzolara
- Life Sciences Institute , Scuola Superiore Sant'Anna , Piazza Martiri della Libertà, 33 , 56127 Pisa , Italy
| | - Dubravka Cukrov
- Life Sciences Institute , Scuola Superiore Sant'Anna , Piazza Martiri della Libertà, 33 , 56127 Pisa , Italy
| | - Massimo Mercadini
- Marvil Engineering , Zona Produttiva SCHWEMM, 8 , 39040 Magrè Sulla Strada del Vino, Bolzano , Italy
| | - Federico Martinelli
- Department of Biology , University of Florence , Sesto Fiorentino, Via Madonna del Piano, 6 , 50019 Sesto Fiorentino, Firenze , Italy
| | - Benedetto Ruperti
- Department of Agronomy, Food, Natural Resources, Animals and Environment , University of Padova , Viale dell'Università, 16 , 35020 Legnaro, Padova , Italy
| | - Pietro Tonutti
- Life Sciences Institute , Scuola Superiore Sant'Anna , Piazza Martiri della Libertà, 33 , 56127 Pisa , Italy
| |
Collapse
|
39
|
Metabolomic and transcriptomic changes underlying cold and anaerobic stresses after storage of table grapes. Sci Rep 2019; 9:2917. [PMID: 30814549 PMCID: PMC6393478 DOI: 10.1038/s41598-019-39253-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/21/2019] [Indexed: 12/16/2022] Open
Abstract
The currently accepted paradigm is that fruits and vegetables should be consumed fresh and that their quality deteriorates during storage; however, there are indications that some metabolic properties can, in fact, be improved. We examined the effects of low temperature and high-CO2 conditions on table grapes, Vitis vinifera L. cv. 'Superior Seedless'. Berries were sampled at harvest (T0) and after low-temperature storage for 6 weeks under either normal atmosphere conditions (TC) or under an O2 level of 5 kPa and elevated CO2 levels of 5, 10 or 15 kPa (T5, T10, T15). Accumulation of 10 stilbenes, including E-ε-viniferin, E-miyabenol C and piceatannol, significantly increased under TC treatment as compared to T0 or T15. Sensory analysis demonstrated that elevated CO2 elicited dose-dependent off-flavor accumulation. These changes were accompanied by an accumulation of 12 volatile metabolites, e.g., ethyl acetate and diacetyl, that imparted disagreeable flavors to fresh fruit. Transcriptome analysis revealed enrichment of genes involved in pyruvate metabolism and the phenylpropanoid pathway. One of the transcription factors induced at low temperature but not under high CO2 was VvMYB14, which regulates stilbene biosynthesis. Our findings reveal the potential to alter the levels of targeted metabolites in stored produce through understanding the effects of postharvest treatments.
Collapse
|
40
|
Arro J, Yang Y, Song GQ, Zhong GY. RNA-Seq reveals new DELLA targets and regulation in transgenic GA-insensitive grapevines. BMC PLANT BIOLOGY 2019; 19:80. [PMID: 30777012 PMCID: PMC6379989 DOI: 10.1186/s12870-019-1675-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/07/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Gibberellins (GAs) and their regulator DELLA are involved in many aspects of plant growth and development and most of our current knowledge in the DELLA-facilitated GA signaling was obtained from the studies of annual species. To understand GA-DELLA signaling in perennial species, we created ten GA-insensitive transgenic grapevines carrying a DELLA mutant allele (Vvgai1) in the background of Vitis vinifera 'Thompson Seedless' and conducted comprehensive analysis of their RNA expression profiles in the shoot, leaf and root tissues. RESULTS The transgenic lines showed varying degrees of dwarf stature and other typical DELLA mutant phenotypes tightly correlated with the levels of Vvgai1 expression. A large number of differentially expressed genes (DEGs) were identified in the shoot, leaf and root tissues of the transgenic lines and these DEGs were involved in diverse biological processes; many of the DEGs showed strong tissue specificity and about 30% them carried a DELLA motif. We further discovered unexpected expression patterns of several key flowering induction genes VvCO, VvCOL1 and VvTFL1. CONCLUSIONS Our results not only confirmed many previous DELLA study findings in annual species, but also revealed new DELLA targets and responses in grapevine, including the roles of homeodomain transcription factors as potential co-regulators with DELLA in controlling the development of grapevine which uniquely possess both vegetative and reproductive meristems at the same time. The contrasting responses of some key flowering induction pathway genes provides new insights into the divergence of GA-DELLA regulations between annual and perennial species in GA-DELLA signaling.
Collapse
Affiliation(s)
- Jie Arro
- USDA-ARS Grape Genetics Research Unit, Geneva, NY 14456 USA
| | - Yingzhen Yang
- USDA-ARS Grape Genetics Research Unit, Geneva, NY 14456 USA
| | - Guo-Qing Song
- Department of Horticulture, Michigan State University, East Lansing, MI 48823 USA
| | - Gan-Yuan Zhong
- USDA-ARS Grape Genetics Research Unit, Geneva, NY 14456 USA
| |
Collapse
|
41
|
Wang A, Chen D, Ma Q, Rose JKC, Fei Z, Liu Y, Giovannoni JJ. The tomato HIGH PIGMENT1/DAMAGED DNA BINDING PROTEIN 1 gene contributes to regulation of fruit ripening. HORTICULTURE RESEARCH 2019; 6:15. [PMID: 30729005 PMCID: PMC6355878 DOI: 10.1038/s41438-018-0093-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/22/2018] [Accepted: 09/26/2018] [Indexed: 05/07/2023]
Abstract
Fleshy fruit ripening is governed by multiple external and internal cues and accompanied by changes in color, texture, volatiles, and nutritional quality traits. While extended shelf-life and increased phytonutrients are desired, delaying ripening via genetic or postharvest means can be accompanied by reduced nutritional value. Here we report that the high pigment 1 (hp1) mutation at the UV-DAMAGED DNA BINDING PROTEIN 1 (DDB1) locus, previously shown to influence carotenoid and additional phytonutrient accumulation via altered light signal transduction, also results in delayed ripening and firmer texture, resulting at least in part from decreased ethylene evolution. Transcriptome analysis revealed multiple ethylene biosynthesis and signaling-associated genes downregulated in hp1. Furthermore, the hp1 mutation impedes softening of the pericarp, placenta, columella as well as the whole fruit, in addition to reduced expression of the FRUITFUL2 (FUL2) MADS-box transcription factor and xyloglucan endotransglucosylase/hydrolase 5 (XTH5). These results indicate that DDB1 influences a broader range of fruit development and ripening processes than previously thought and present an additional genetic target for increasing fruit quality and shelf-life.
Collapse
Affiliation(s)
- Anquan Wang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009 China
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853 USA
| | - Danyang Chen
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009 China
| | - Qiyue Ma
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853 USA
| | - Jocelyn K. C. Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853 USA
- United States Department of Agriculture, Robert W. Holley Center, Cornell University, Ithaca, NY 14853 USA
| | - Yongsheng Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009 China
| | - James J. Giovannoni
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853 USA
- United States Department of Agriculture, Robert W. Holley Center, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
42
|
Jegadeesan S, Chaturvedi P, Ghatak A, Pressman E, Meir S, Faigenboim A, Rutley N, Beery A, Harel A, Weckwerth W, Firon N. Proteomics of Heat-Stress and Ethylene-Mediated Thermotolerance Mechanisms in Tomato Pollen Grains. FRONTIERS IN PLANT SCIENCE 2018; 9:1558. [PMID: 30483278 PMCID: PMC6240657 DOI: 10.3389/fpls.2018.01558] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/04/2018] [Indexed: 05/19/2023]
Abstract
Heat stress is a major cause for yield loss in many crops, including vegetable crops. Even short waves of high temperature, becoming more frequent during recent years, can be detrimental. Pollen development is most heat-sensitive, being the main cause for reduced productivity under heat-stress across a wide range of crops. The molecular mechanisms involved in pollen heat-stress response and thermotolerance are however, not fully understood. Recently, we have demonstrated that ethylene, a gaseous plant hormone, plays a role in tomato (Solanum lycopersicum) pollen thermotolerance. These results were substantiated in the current work showing that increasing ethylene levels by using an ethylene-releasing substance, ethephon, prior to heat-stress exposure, increased pollen quality. A proteomic approach was undertaken, to unravel the mechanisms underlying pollen heat-stress response and ethylene-mediated pollen thermotolerance in developing pollen grains. Proteins were extracted and analyzed by means of a gel LC-MS fractionation protocol, and a total of 1,355 proteins were identified. A dataset of 721 proteins, detected in three biological replicates of at least one of the applied treatments, was used for all analyses. Quantitative analysis was performed based on peptide count. The analysis revealed that heat-stress affected the developmental program of pollen, including protein homeostasis (components of the translational and degradation machinery), carbohydrate, and energy metabolism. Ethephon-pre-treatment shifted the heat-stressed pollen proteome closer to the proteome under non-stressful conditions, namely, by showing higher abundance of proteins involved in protein synthesis, degradation, tricarboxylic acid cycle, and RNA regulation. Furthermore, up-regulation of protective mechanisms against oxidative stress was observed following ethephon-treatment (including higher abundance of glutathione-disulfide reductase, glutaredoxin, and protein disulfide isomerase). Taken together, the findings identified systemic and fundamental components of pollen thermotolerance, and serve as a valuable quantitative protein database for further research.
Collapse
Affiliation(s)
- Sridharan Jegadeesan
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture of The Hebrew University of Jerusalem, Rehovot, Israel
| | - Palak Chaturvedi
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Arindam Ghatak
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Etan Pressman
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Shimon Meir
- Institute of Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Adi Faigenboim
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Nicholas Rutley
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Avital Beery
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Arye Harel
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Nurit Firon
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
43
|
Abdelrahman M, Burritt DJ, Tran LSP. The use of metabolomic quantitative trait locus mapping and osmotic adjustment traits for the improvement of crop yields under environmental stresses. Semin Cell Dev Biol 2018; 83:86-94. [DOI: 10.1016/j.semcdb.2017.06.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/26/2017] [Indexed: 11/25/2022]
|
44
|
Zhuang H, Li J, Song J, Hettenhausen C, Schuman MC, Sun G, Zhang C, Li J, Song D, Wu J. Aphid (Myzus persicae) feeding on the parasitic plant dodder (Cuscuta australis) activates defense responses in both the parasite and soybean host. THE NEW PHYTOLOGIST 2018; 218:1586-1596. [PMID: 29575001 DOI: 10.1111/nph.15083] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/05/2018] [Indexed: 05/20/2023]
Abstract
Dodders (Cuscuta spp.) are shoot holoparasites, whose haustoria penetrate host tissues to enable fusion between the parasite and host vascular systems, allowing Cuscuta to extract water, nutrients and other molecules from hosts. Aphids are piercing-sucking herbivores that use specialized stylets to feed on phloem sap. Aphids are known to feed on Cuscuta, but how Cuscuta and its host plant respond to aphids attacking the parasite was unknown. Phytohormone quantification, transcriptomic analysis and bioassays were performed to determine the responses of Cuscuta australis and its soybean (Glycine max) hosts to the feeding of green peach aphid (GPA; Myzus persicae) on C. australis. Decreased salicylic acid levels and 172 differentially expressed genes (DEGs) were found in GPA-attacked C. australis, and the soybean hosts exhibited increased jasmonic acid contents and 1015 DEGs, including > 100 transcription factor genes. Importantly, GPA feeding on C. australis increased the resistance of the soybean host to subsequent feeding by the leafworm Spodoptera litura and soybean aphid Aphis glycines, resulting in 21% decreased leafworm mass and 41% reduced aphid survival rate. These data strongly suggest that GPA feeding on Cuscuta induces a systemic signal, which is translocated to hosts and activates defense against herbivores.
Collapse
Affiliation(s)
- Huifu Zhuang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Juan Song
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Christian Hettenhausen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| | - Guiling Sun
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Cuiping Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dunlun Song
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
45
|
Ibort P, Molina S, Ruiz-Lozano JM, Aroca R. Molecular Insights into the Involvement of a Never Ripe Receptor in the Interaction Between Two Beneficial Soil Bacteria and Tomato Plants Under Well-Watered and Drought Conditions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:633-650. [PMID: 29384430 DOI: 10.1094/mpmi-12-17-0292-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Management of plant growth-promoting bacteria (PGPB) can be implemented to deal with sustainable intensification of agriculture. Ethylene is an essential component for plant growth and development and in response to drought. However, little is known about the effects of bacterial inoculation on ethylene transduction pathway. Thus, the present study sought to establish whether ethylene perception is critical for growth induction by two different PGPB strains under drought conditions and the analysis of bacterial effects on ethylene production and gene expression in tomatoes (Solanum lycopersicum). The ethylene-insensitive never ripe (nr) and its isogenic wild-type (wt) cv. Pearson line were inoculated with either Bacillus megaterium or Enterobacter sp. strain C7 and grown until the attainment of maturity under both well-watered and drought conditions. Ethylene perception is crucial for B. megaterium. However, it is not of prime importance for Enterobacter sp. strain C7 PGPB activity under drought conditions. Both PGPB decreased the expression of ethylene-related genes in wt plants, resulting in stress alleviation, while only B. megaterium induced their expression in nr plants. Furthermore, PGPB inoculation affected transcriptomic profile dependency on strain, genotype, and drought. Ethylene sensitivity determines plant interaction with PGPB strains. Enterobacter sp. strain C7 could modulate amino-acid metabolism, while nr mutation causes a partially functional interaction with B. megaterium, resulting in higher oxidative stress and loss of PGPB activity.
Collapse
Affiliation(s)
- Pablo Ibort
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Sonia Molina
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Juan Manuel Ruiz-Lozano
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
46
|
Bezrutczyk M, Hartwig T, Horschman M, Char SN, Yang J, Yang B, Frommer WB, Sosso D. Impaired phloem loading in zmsweet13a,b,c sucrose transporter triple knock-out mutants in Zea mays. THE NEW PHYTOLOGIST 2018; 218:594-603. [PMID: 29451311 DOI: 10.1111/nph.15021] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/28/2017] [Indexed: 05/02/2023]
Abstract
Crop yield depends on efficient allocation of sucrose from leaves to seeds. In Arabidopsis, phloem loading is mediated by a combination of SWEET sucrose effluxers and subsequent uptake by SUT1/SUC2 sucrose/H+ symporters. ZmSUT1 is essential for carbon allocation in maize, but the relative contribution to apoplasmic phloem loading and retrieval of sucrose leaking from the translocation path is not known. Here we analysed the contribution of SWEETs to phloem loading in maize. We identified three leaf-expressed SWEET sucrose transporters as key components of apoplasmic phloem loading in Zea mays L. ZmSWEET13 paralogues (a, b, c) are among the most highly expressed genes in the leaf vasculature. Genome-edited triple knock-out mutants were severely stunted. Photosynthesis of mutants was impaired and leaves accumulated high levels of soluble sugars and starch. RNA-seq revealed profound transcriptional deregulation of genes associated with photosynthesis and carbohydrate metabolism. Genome-wide association study (GWAS) analyses may indicate that variability in ZmSWEET13s correlates with agronomical traits, especifically flowering time and leaf angle. This work provides support for cooperation of three ZmSWEET13s with ZmSUT1 in phloem loading in Z. mays.
Collapse
Affiliation(s)
- Margaret Bezrutczyk
- Institute for Molecular Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Department of Plant Biology, Carnegie Science, 260 Panama St, Stanford, CA, 94305, USA
| | - Thomas Hartwig
- Institute for Molecular Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Department of Plant Biology, Carnegie Science, 260 Panama St, Stanford, CA, 94305, USA
| | - Marc Horschman
- Department of Plant Biology, Carnegie Science, 260 Panama St, Stanford, CA, 94305, USA
| | - Si Nian Char
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jinliang Yang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Bing Yang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Wolf B Frommer
- Institute for Molecular Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Department of Plant Biology, Carnegie Science, 260 Panama St, Stanford, CA, 94305, USA
| | - Davide Sosso
- Department of Plant Biology, Carnegie Science, 260 Panama St, Stanford, CA, 94305, USA
| |
Collapse
|
47
|
Woldesemayat AA, Modise DM, Gemeildien J, Ndimba BK, Christoffels A. Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species. PLoS One 2018; 13:e0192678. [PMID: 29590108 PMCID: PMC5873934 DOI: 10.1371/journal.pone.0192678] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/29/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Crop response to the changing climate and unpredictable effects of global warming with adverse conditions such as drought stress has brought concerns about food security to the fore; crop yield loss is a major cause of concern in this regard. Identification of genes with multiple responses across environmental stresses is the genetic foundation that leads to crop adaptation to environmental perturbations. METHODS In this paper, we introduce an integrated approach to assess candidate genes for multiple stress responses across-species. The approach combines ontology based semantic data integration with expression profiling, comparative genomics, phylogenomics, functional gene enrichment and gene enrichment network analysis to identify genes associated with plant stress phenotypes. Five different ontologies, viz., Gene Ontology (GO), Trait Ontology (TO), Plant Ontology (PO), Growth Ontology (GRO) and Environment Ontology (EO) were used to semantically integrate drought related information. RESULTS Target genes linked to Quantitative Trait Loci (QTLs) controlling yield and stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and closely related species were identified. Based on the enriched GO terms of the biological processes, 1116 sorghum genes with potential responses to 5 different stresses, such as drought (18%), salt (32%), cold (20%), heat (8%) and oxidative stress (25%) were identified to be over-expressed. Out of 169 sorghum drought responsive QTLs associated genes that were identified based on expression datasets, 56% were shown to have multiple stress responses. On the other hand, out of 168 additional genes that have been evaluated for orthologous pairs, 90% were conserved across species for drought tolerance. Over 50% of identified maize and rice genes were responsive to drought and salt stresses and were co-located within multifunctional QTLs. Among the total identified multi-stress responsive genes, 272 targets were shown to be co-localized within QTLs associated with different traits that are responsive to multiple stresses. Ontology mapping was used to validate the identified genes, while reconstruction of the phylogenetic tree was instrumental to infer the evolutionary relationship of the sorghum orthologs. The results also show specific genes responsible for various interrelated components of drought response mechanism such as drought tolerance, drought avoidance and drought escape. CONCLUSIONS We submit that this approach is novel and to our knowledge, has not been used previously in any other research; it enables us to perform cross-species queries for genes that are likely to be associated with multiple stress tolerance, as a means to identify novel targets for engineering stress resistance in sorghum and possibly, in other crop species.
Collapse
Affiliation(s)
- Adugna Abdi Woldesemayat
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Belleville, South Africa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Florida, Johannesburg, South Africa
- * E-mail: ,
| | - David M. Modise
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Florida, Johannesburg, South Africa
| | - Junaid Gemeildien
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Belleville, South Africa
| | - Bongani K. Ndimba
- Department of Biotechnology, University of the Western Cape, Cape Town, Western Cape, South Africa
- Agricultural Research Council, Infruitech-Nietvoorbij, Stellenbosch, South Africa
| | - Alan Christoffels
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Belleville, South Africa
| |
Collapse
|
48
|
Borah P, Khurana JP. The OsFBK1 E3 Ligase Subunit Affects Anther and Root Secondary Cell Wall Thickenings by Mediating Turnover of a Cinnamoyl-CoA Reductase. PLANT PHYSIOLOGY 2018; 176:2148-2165. [PMID: 29295941 PMCID: PMC5841686 DOI: 10.1104/pp.17.01733] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/29/2017] [Indexed: 05/20/2023]
Abstract
Regulated proteolysis by the ubiquitin-26S proteasome system challenges transcription and phosphorylation in magnitude and is one of the most important regulatory mechanisms in plants. This article describes the characterization of a rice (Oryza sativa) auxin-responsive Kelch-domain-containing F-box protein, OsFBK1, found to be a component of an SCF E3 ligase by interaction studies in yeast. Rice transgenics of OsFBK1 displayed variations in anther and root secondary cell wall content; it could be corroborated by electron/confocal microscopy and lignification studies, with no apparent changes in auxin content/signaling pathway. The presence of U-shaped secondary wall thickenings (or lignin) in the anthers were remarkably less pronounced in plants overexpressing OsFBK1 as compared to wild-type and knockdown transgenics. The roots of the transgenics also displayed differential accumulation of lignin. Yeast two-hybrid anther library screening identified an OsCCR that is a homolog of the well-studied Arabidopsis (Arabidopsis thaliana) IRX4; OsFBK1-OsCCR interaction was confirmed by fluorescence and immunoprecipitation studies. Degradation of OsCCR mediated by SCFOsFBK1 and the 26S proteasome pathway was validated by cell-free experiments in the absence of auxin, indicating that the phenotype observed is due to the direct interaction between OsFBK1 and OsCCR. Interestingly, the OsCCR knockdown transgenics also displayed a decrease in root and anther lignin depositions, suggesting that OsFBK1 plays a role in the development of rice anthers and roots by regulating the cellular levels of a key enzyme controlling lignification.
Collapse
Affiliation(s)
- Pratikshya Borah
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
49
|
Burman N, Bhatnagar A, Khurana JP. OsbZIP48, a HY5 Transcription Factor Ortholog, Exerts Pleiotropic Effects in Light-Regulated Development. PLANT PHYSIOLOGY 2018; 176:1262-1285. [PMID: 28775143 PMCID: PMC5813549 DOI: 10.1104/pp.17.00478] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/27/2017] [Indexed: 05/04/2023]
Abstract
Plants have evolved an intricate network of sensory photoreceptors and signaling components to regulate their development. Among the light signaling components identified to date, HY5, a basic leucine zipper (bZIP) transcription factor, has been investigated extensively. However, most of the work on HY5 has been carried out in Arabidopsis (Arabidopsis thaliana), a dicot. In this study, based on homology search and phylogenetic analysis, we identified three homologs of AtHY5 in monocots; however, AtHYH (HY5 homolog) homologs are absent in the monocots analyzed. Out of the three homologs identified in rice (Oryza sativa), we have functionally characterized OsbZIP48OsbZIP48 was able to complement the Athy5 mutant. OsbZIP48 protein levels are developmentally regulated in rice. Moreover, the OsbZIP48 protein does not degrade in dark-grown rice and Athy5 seedlings complemented with OsbZIP48, which is in striking contrast to AtHY5. In comparison with AtHY5, which does not cause any change in hypocotyl length when overexpressed in Arabidopsis, the overexpression of full-length OsbZIP48 in rice transgenics reduced the plant height considerably. Microarray analysis revealed that OsKO2, which encodes ent-kaurene oxidase 2 of the gibberellin biosynthesis pathway, is down-regulated in OsbZIP48OE and up-regulated in OsbZIP48KD transgenics as compared with the wild type. Electrophoretic mobility shift assay showed that OsbZIP48 binds directly to the OsKO2 promoter. The RNA interference lines and the T-DNA insertional mutant of OsbZIP48 showed seedling-lethal phenotypes despite the fact that roots were more proliferative during early stages of development in the T-DNA insertional mutant. These data provide credible evidence that OsbZIP48 performs more diverse functions in a monocot system like rice in comparison with its Arabidopsis ortholog, HY5.
Collapse
Affiliation(s)
- Naini Burman
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi-110021, India
| | - Akanksha Bhatnagar
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi-110021, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi-110021, India
| |
Collapse
|
50
|
Ibort P, Imai H, Uemura M, Aroca R. Proteomic analysis reveals that tomato interaction with plant growth promoting bacteria is highly determined by ethylene perception. JOURNAL OF PLANT PHYSIOLOGY 2018; 220:43-59. [PMID: 29145071 DOI: 10.1016/j.jplph.2017.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Feeding an increasing global population as well as reducing environmental impact of crops is the challenge for the sustainable intensification of agriculture. Plant-growth-promoting bacteria (PGPB) management could represent a suitable method but elucidation of their action mechanisms is essential for a proper and effective utilization. Furthermore, ethylene is involved in growth and response to environmental stimuli but little is known about the implication of ethylene perception in PGPB activity. The ethylene-insensitive tomato never ripe and its isogenic wild-type cv. Pearson lines inoculated with Bacillus megaterium or Enterobacter sp. C7 strains were grown until mature stage to analyze growth promotion, and bacterial inoculation effects on root proteomic profiles. Enterobacter C7 promoted growth in both plant genotypes, meanwhile Bacillus megaterium PGPB activity was only noticed in wt plants. Moreover, PGPB inoculation affected proteomic profile in a strain- and genotype-dependent manner modifying levels of stress-related and interaction proteins, and showing bacterial inoculation effects on antioxidant content and phosphorus acquisition capacity. Ethylene perception is essential for properly recognition of Bacillus megaterium and growth promotion mediated in part by increased levels of reduced glutathione. In contrast, Enterobacter C7 inoculation improves phosphorus nutrition keeping plants on growth independently of ethylene sensitivity.
Collapse
Affiliation(s)
- Pablo Ibort
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| | - Hiroyuki Imai
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan; Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan.
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan; Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan.
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| |
Collapse
|