1
|
Brünje A, Füßl M, Eirich J, Boyer JB, Heinkow P, Neumann U, Konert M, Ivanauskaite A, Seidel J, Ozawa SI, Sakamoto W, Meinnel T, Schwarzer D, Mulo P, Giglione C, Finkemeier I. The Plastidial Protein Acetyltransferase GNAT1 Forms a Complex With GNAT2, yet Their Interaction Is Dispensable for State Transitions. Mol Cell Proteomics 2024; 23:100850. [PMID: 39349166 DOI: 10.1016/j.mcpro.2024.100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/12/2024] [Accepted: 08/18/2024] [Indexed: 10/02/2024] Open
Abstract
Protein N-acetylation is one of the most abundant co- and post-translational modifications in eukaryotes, extending its occurrence to chloroplasts within vascular plants. Recently, a novel plastidial enzyme family comprising eight acetyltransferases that exhibit dual lysine and N-terminus acetylation activities was unveiled in Arabidopsis. Among these, GNAT1, GNAT2, and GNAT3 reveal notable phylogenetic proximity, forming a subgroup termed NAA90. Our study focused on characterizing GNAT1, closely related to the state transition acetyltransferase GNAT2. In contrast to GNAT2, GNAT1 did not prove essential for state transitions and displayed no discernible phenotypic difference compared to the wild type under high light conditions, while gnat2 mutants were severely affected. However, gnat1 mutants exhibited a tighter packing of the thylakoid membranes akin to gnat2 mutants. In vitro studies with recombinant GNAT1 demonstrated robust N-terminus acetylation activity on synthetic substrate peptides. This activity was confirmed in vivo through N-terminal acetylome profiling in two independent gnat1 knockout lines. This attributed several acetylation sites on plastidial proteins to GNAT1, reflecting a subset of GNAT2's substrate spectrum. Moreover, co-immunoprecipitation coupled with mass spectrometry revealed a robust interaction between GNAT1 and GNAT2, as well as a significant association of GNAT2 with GNAT3 - the third acetyltransferase within the NAA90 subfamily. This study unveils the existence of at least two acetyltransferase complexes within chloroplasts, whereby complex formation might have a critical effect on the fine-tuning of the overall acetyltransferase activities. These findings introduce a novel layer of regulation in acetylation-dependent adjustments in plastidial metabolism.
Collapse
Affiliation(s)
- Annika Brünje
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany
| | - Magdalena Füßl
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany
| | - Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany
| | - Jean-Baptiste Boyer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Paulina Heinkow
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany
| | - Ulla Neumann
- Central Microscopy, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Minna Konert
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Aiste Ivanauskaite
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Julian Seidel
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Shin-Ichiro Ozawa
- Institute of Plant Science and Resources (IPSR) Okayama University, Kurashiki, Okayama, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources (IPSR) Okayama University, Kurashiki, Okayama, Japan
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Paula Mulo
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany.
| |
Collapse
|
2
|
Müller C, Budnik N, Mirkin FG, Vater CF, Bravo-Almonacid FF, Perez-Castro C, Wirth SA, Segretin ME. Production of biologically active human basic fibroblast growth factor (hFGFb) using Nicotiana tabacum transplastomic plants. PLANTA 2024; 260:28. [PMID: 38878167 DOI: 10.1007/s00425-024-04456-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/02/2024] [Indexed: 06/29/2024]
Abstract
MAIN CONCLUSION We generated transplastomic tobacco lines that stably express a human Basic Fibroblast Growth Factor (hFGFb) in their chloroplasts stroma and purified a biologically active recombinant hFGFb. MAIN: The use of plants as biofactories presents as an attractive technology with the potential to efficiently produce high-value human recombinant proteins in a cost-effective manner. Plastid genome transformation stands out for its possibility to accumulate recombinant proteins at elevated levels. Of particular interest are recombinant growth factors, given their applications in animal cell culture and regenerative medicine. In this study, we produced recombinant human Fibroblast Growth Factor (rhFGFb), a crucial protein required for animal cell culture, in tobacco chloroplasts. We successfully generated two independent transplastomic lines that are homoplasmic and accumulate rhFGFb in their leaves. Furthermore, the produced rhFGFb demonstrated its biological activity by inducing proliferation in HEK293T cell lines. These results collectively underscore plastid genome transformation as a promising plant-based bioreactor for rhFGFb production.
Collapse
Affiliation(s)
- Carolina Müller
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma Buenos Aires, C1428ADN, Argentina
| | - Nicolás Budnik
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET)- Partner Institute of the Max Planck Society, Godoy Cruz 2390, Ciudad Autónoma Buenos Aires, C1425FQ, Argentina
| | - Federico Gabriel Mirkin
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma Buenos Aires, C1428ADN, Argentina
| | - Catalina Francisca Vater
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma Buenos Aires, C1428ADN, Argentina
| | - Fernando Félix Bravo-Almonacid
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma Buenos Aires, C1428ADN, Argentina
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, B1876BXD, Argentina
| | - Carolina Perez-Castro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET)- Partner Institute of the Max Planck Society, Godoy Cruz 2390, Ciudad Autónoma Buenos Aires, C1425FQ, Argentina
| | - Sonia Alejandra Wirth
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA-CONICET-UBA), Intendente Güiraldes 2160, Ciudad Autónoma Buenos Aires, C1428EGA, Argentina
- Laboratorio de Agrobiotecnología, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Autónoma Buenos Aires, C1428EGA, Argentina
| | - María Eugenia Segretin
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma Buenos Aires, C1428ADN, Argentina.
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Autónoma Buenos Aires, C1428EGA, Argentina.
| |
Collapse
|
3
|
Bélanger S, Kramer MC, Payne HA, Hui AY, Slotkin RK, Meyers BC, Staub JM. Plastid dsRNA transgenes trigger phased small RNA-based gene silencing of nuclear-encoded genes. THE PLANT CELL 2023; 35:3398-3412. [PMID: 37309669 PMCID: PMC10473229 DOI: 10.1093/plcell/koad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/16/2023] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
Plastid transformation technology has been widely used to express traits of potential commercial importance, though the technology has been limited to traits that function while sequestered in the organelle. Prior research indicates that plastid contents can escape from the organelle, suggesting a possible mechanism for engineering plastid transgenes to function in other cellular locations. To test this hypothesis, we created tobacco (Nicotiana tabacum cv. Petit Havana) plastid transformants that express a fragment of the nuclear-encoded Phytoene desaturase (PDS) gene capable of catalyzing post-transcriptional gene silencing if RNA escapes into the cytoplasm. We found multiple lines of direct evidence that plastid-encoded PDS transgenes affect nuclear PDS gene silencing: knockdown of the nuclear-encoded PDS mRNA and/or its apparent translational inhibition, biogenesis of 21-nucleotide (nt) phased small interfering RNAs (phasiRNAs), and pigment-deficient plants. Furthermore, plastid-expressed dsRNA with no cognate nuclear-encoded pairing partner also produced abundant 21-nt phasiRNAs in the cytoplasm, demonstrating that a nuclear-encoded template is not required for siRNA biogenesis. Our results indicate that RNA escape from plastids to the cytoplasm occurs generally, with functional consequences that include entry into the gene silencing pathway. Furthermore, we uncover a method to produce plastid-encoded traits with functions outside of the organelle and open additional fields of study in plastid development, compartmentalization, and small RNA biogenesis.
Collapse
Affiliation(s)
- Sébastien Bélanger
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Marianne C Kramer
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Hayden A Payne
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Alice Y Hui
- Plastomics Inc, 1100 Corporate Square Drive, St. Louis, MO 63132, USA
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Jeffrey M Staub
- Plastomics Inc, 1100 Corporate Square Drive, St. Louis, MO 63132, USA
| |
Collapse
|
4
|
Law SSY, Miyamoto T, Numata K. Organelle-targeted gene delivery in plants by nanomaterials. Chem Commun (Camb) 2023. [PMID: 37183975 DOI: 10.1039/d3cc00962a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Genetic engineering of plants has revolutionized agriculture and has had a significant impact on our everyday life. It has allowed for the production of crops with longer shelf lives, enhanced yields and resistance to pests and disease. The application of nanomaterials in plant genetic engineering has further augmented these programs with higher delivery efficiencies, biocompatibility and the potential for plant regeneration. In particular, subcellular targeting using nanomaterials has recently become possible with the cutting-edge developments within nanomaterials, but remains challenging despite the promise in organellar engineering for the introduction of useful traits and the elucidation of subcellular interactions. This feature article provides an overview of nanomaterial delivery within plants and highlights the application of recent progress in nanomaterials for subcellular organelle-targeted delivery.
Collapse
Affiliation(s)
- Simon Sau Yin Law
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan.
| | - Takaaki Miyamoto
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan.
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan.
- Department of Material Chemistry, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
5
|
Menon D, Singh R, Joshi KB, Gupta S, Bhatia D. Designer, Programmable DNA-peptide hybrid materials with emergent properties to probe and modulate biological systems. Chembiochem 2023; 24:e202200580. [PMID: 36468492 DOI: 10.1002/cbic.202200580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/07/2022]
Abstract
The chemistry of DNA endows it with certain functional properties that facilitate the generation of self-assembled nanostructures, offering precise control over their geometry and morphology, that can be exploited for advanced biological applications. Despite the structural promise of these materials, their applications are limited owing to lack of functional capability to interact favourably with biological systems, which has been achieved by functional proteins or peptides. Herein, we outline a strategy for functionalizing DNA structures with short-peptides, leading to the formation of DNA-peptide hybrid materials. This proposition offers the opportunity to leverage the unique advantages of each of these bio-molecules, that have far reaching emergent properties in terms of better cellular interactions and uptake, better stability in biological media, an acceptable and programmable immune response and high bioactive molecule loading capacities. We discuss the synthetic strategies for the formation of these materials, namely, solid-phase functionalization and solution-coupling functionalization. We then proceed to highlight selected biological applications of these materials in the domains of cell instruction & molecular recognition, gene delivery, drug delivery and bone & tissue regeneration. We conclude with discussions shedding light on the challenges that these materials pose and offer our insights on future directions of peptide-DNA research for targeted biomedical applications.
Collapse
Affiliation(s)
- Dhruv Menon
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
| | - Ramesh Singh
- Biological Engineering Discipline, Indian Institute of Technology, Gandhinagar, 382355, India
| | - Kashti B Joshi
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, India
| | - Sharad Gupta
- Biological Engineering Discipline, Indian Institute of Technology, Gandhinagar, 382355, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology, Gandhinagar, 382355, India
| |
Collapse
|
6
|
Kolotilin I. Plant-produced recombinant cytokines IL-37b and IL-38 modulate inflammatory response from stimulated human PBMCs. Sci Rep 2022; 12:19450. [PMID: 36376518 PMCID: PMC9663505 DOI: 10.1038/s41598-022-23828-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Affordable therapeutics are vitally needed for humans worldwide. Plant-based production of recombinant proteins can potentially enhance, back-up, or even substitute for the manufacturing capacity of the conventional, fermenter-based technologies. We plastome-engineered a tobacco cultivar to express high levels of two "plantakines" - recombinant human cytokines, interleukins IL-37b and IL-38, and confirmed their native conformation and folding. Assessment of their biological functionality was performed ex vivo by analyzing the effects exerted by the plantakines on levels of 11 cytokines secreted from human peripheral blood mononuclear cells (PBMCs) challenged with an inflammatory agent. Application of the plant-produced IL-37b and IL-38 in PBMCs stimulated with Lipopolysaccharide or Phytohaemagglutinin resulted in significant, and in particular cases-dose-dependent modulation of pro-inflammatory cytokines secretion, showing attenuation in two-thirds of significant level modulations observed. Plantakine treatments that increased inflammatory responses were associated with the higher dosage. Our results demonstrate feasibility of manufacturing functional recombinant human proteins using scalable, cost-effective and eco-friendly plant-based bioreactors.
Collapse
|
7
|
Philips JG, Martin-Avila E, Robold AV. Horizontal gene transfer from genetically modified plants - Regulatory considerations. Front Bioeng Biotechnol 2022; 10:971402. [PMID: 36118580 PMCID: PMC9471246 DOI: 10.3389/fbioe.2022.971402] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Gene technology regulators receive applications seeking permission for the environmental release of genetically modified (GM) plants, many of which possess beneficial traits such as improved production, enhanced nutrition and resistance to drought, pests and diseases. The regulators must assess the risks to human and animal health and to the environment from releasing these GM plants. One such consideration, of many, is the likelihood and potential consequence of the introduced or modified DNA being transferred to other organisms, including people. While such gene transfer is most likely to occur to sexually compatible relatives (vertical gene transfer), horizontal gene transfer (HGT), which is the acquisition of genetic material that has not been inherited from a parent, is also a possibility considered during these assessments. Advances in HGT detection, aided by next generation sequencing, have demonstrated that HGT occurrence may have been previously underestimated. In this review, we provide updated evidence on the likelihood, factors and the barriers for the introduced or modified DNA in GM plants to be horizontally transferred into a variety of recipients. We present the legislation and frameworks the Australian Gene Technology Regulator adheres to with respect to the consideration of risks posed by HGT. Such a perspective may generally be applicable to regulators in other jurisdictions as well as to commercial and research organisations who develop GM plants.
Collapse
|
8
|
Broz AK, Keene A, Fernandes Gyorfy M, Hodous M, Johnston IG, Sloan DB. Sorting of mitochondrial and plastid heteroplasmy in Arabidopsis is extremely rapid and depends on MSH1 activity. Proc Natl Acad Sci U S A 2022; 119:e2206973119. [PMID: 35969753 PMCID: PMC9407294 DOI: 10.1073/pnas.2206973119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/11/2022] [Indexed: 12/16/2022] Open
Abstract
The fate of new mitochondrial and plastid mutations depends on their ability to persist and spread among the numerous organellar genome copies within a cell (heteroplasmy). The extent to which heteroplasmies are transmitted across generations or eliminated through genetic bottlenecks is not well understood in plants, in part because their low mutation rates make these variants so infrequent. Disruption of MutS Homolog 1 (MSH1), a gene involved in plant organellar DNA repair, results in numerous de novo point mutations, which we used to quantitatively track the inheritance of single nucleotide variants in mitochondrial and plastid genomes in Arabidopsis. We found that heteroplasmic sorting (the fixation or loss of a variant) was rapid for both organelles, greatly exceeding rates observed in animals. In msh1 mutants, plastid variants sorted faster than those in mitochondria and were typically fixed or lost within a single generation. Effective transmission bottleneck sizes (N) for plastids and mitochondria were N ∼ 1 and 4, respectively. Restoring MSH1 function further increased the rate of heteroplasmic sorting in mitochondria (N ∼ 1.3), potentially because of its hypothesized role in promoting gene conversion as a mechanism of DNA repair, which is expected to homogenize genome copies within a cell. Heteroplasmic sorting also favored GC base pairs. Therefore, recombinational repair and gene conversion in plant organellar genomes can potentially accelerate the elimination of heteroplasmies and bias the outcome of this sorting process.
Collapse
Affiliation(s)
- Amanda K. Broz
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Alexandra Keene
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | | | - Mychaela Hodous
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Bergen, 5007, Norway
- Computational Biology Unit, University of Bergen, Bergen, 5007, Norway
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
9
|
Bock R. Transplastomic approaches for metabolic engineering. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102185. [PMID: 35183927 DOI: 10.1016/j.pbi.2022.102185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The plastid (chloroplast) genome of seed plants represents an attractive target of metabolic pathway engineering by genetic transformation. Although the plastid genome is relatively small, it can accommodate large amounts of foreign DNA that precisely integrates via homologous recombination, and is largely excluded from pollen transmission due to the maternal mode of plastid inheritance. Since the engineering of metabolic pathways often requires the expression of multiple transgenes, the possibility to conveniently stack transgenes in synthetic operons makes the transplastomic technology particularly appealing in the area of metabolic engineering. Absence of epigenetic gene silencing mechanisms from plastids and the possibility to achieve high transgene expression levels further add to the attractiveness of plastid genome transformation. This review focuses on engineering principles and available tools for the transplastomic expression of enzymes and pathways, and highlights selected recent applications in metabolic engineering.
Collapse
Affiliation(s)
- Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany.
| |
Collapse
|
10
|
De-la-Peña C, León P, Sharkey TD. Editorial: Chloroplast Biotechnology for Crop Improvement. FRONTIERS IN PLANT SCIENCE 2022; 13:848034. [PMID: 35178064 PMCID: PMC8843820 DOI: 10.3389/fpls.2022.848034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Patricia León
- Instituto de Biotecnología Universidad Nacional Autónoma de Mexico, Cuernavaca, Mexico
| | - Thomas D. Sharkey
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Plant Resilience Institute, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
11
|
Abstract
Cell penetrating peptides (CPPs) are short peptides that are able to translocate themselves and their cargo into cells. The progressive and continuous application of CPPs in various fields of basic and applied research shows that they are efficient delivery vectors for an assortment of biomolecules, including nucleic acids and proteins. This feature makes CPPs an excellent tool for modification of plant genomes through transgenesis and genome editing. In this review, we present the progress during the last three decades in application of CPPs for delivery of DNA, RNA, and proteins into plant cells and tissues. Moreover, we highlight the exploiting of CPPs as advantageous and beneficial tool for plant genome editing via delivery of nuclease proteins, and provide a practical example of genome alternation through CPP-delivered nucleases. Finally, the current exploitation of peptides in organelle-specific DNA delivery and modification of organellar genomes is discussed.
Collapse
|
12
|
Kaplanoglu E, Kolotilin I, Menassa R, Donly C. Transplastomic Tomato Plants Expressing Insect-Specific Double-Stranded RNAs: A Protocol Based on Biolistic Transformation. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2360:235-252. [PMID: 34495519 DOI: 10.1007/978-1-0716-1633-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Expressing insecticidal double-stranded RNA (dsRNA) molecules in plant plastids is a novel approach for in planta production of dsRNA that has enormous potential for developing improved plant-mediated RNA interference (RNAi) strategies for insect pest control. In this chapter, we describe the design of a transformation vector containing an expression cassette which can be used to stably transform plastids of tomato plants for production and accumulation of dsRNA . Such dsRNA can trigger the mechanisms of RNAi in pest insects and selectively suppress the expression of target genes, resulting in lethality. We also describe a protocol for detection of full-length dsRNA molecules in plastids using an RT-PCR-based method.
Collapse
Affiliation(s)
- Emine Kaplanoglu
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | | | - Rima Menassa
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Cam Donly
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.
- Department of Biology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
13
|
Su H, Yakovlev IA, van Eerde A, Su J, Clarke JL. Plant-Produced Vaccines: Future Applications in Aquaculture. FRONTIERS IN PLANT SCIENCE 2021; 12:718775. [PMID: 34456958 PMCID: PMC8397579 DOI: 10.3389/fpls.2021.718775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/07/2021] [Indexed: 05/19/2023]
Abstract
Aquaculture has undergone rapid development in the past decades. It provides a large part of high-quality protein food for humans, and thus, a sustainable aquaculture industry is of great importance for the worldwide food supply and economy. Along with the quick expansion of aquaculture, the high fish densities employed in fish farming increase the risks of outbreaks of a variety of aquatic diseases. Such diseases not only cause huge economic losses, but also lead to ecological hazards in terms of pathogen spread to marine ecosystems causing infection of wild fish and polluting the environment. Thus, fish health is essential for the aquaculture industry to be environmentally sustainable and a prerequisite for intensive aquaculture production globally. The wide use of antibiotics and drug residues has caused intensive pollution along with risks for food safety and increasing antimicrobial resistance. Vaccination is the most effective and environmentally friendly approach to battle infectious diseases in aquaculture with minimal ecological impact and is applicable to most species of farmed fish. However, there are only 34 fish vaccines commercially available globally to date, showing the urgent need for further development of fish vaccines to manage fish health and ensure food safety. Plant genetic engineering has been utilized to produce genetically modified crops with desirable characteristics and has also been used for vaccine production, with several advantages including cost-effectiveness, safety when compared with live virus vaccines, and plants being capable of carrying out posttranslational modifications that are similar to naturally occurring systems. So far, plant-derived vaccines, antibodies, and therapeutic proteins have been produced for human and animal health. However, the development of plant-made vaccines for animals, especially fish, is still lagging behind the development of human vaccines. The present review summarizes the development of fish vaccines currently utilized and the suitability of the plant-production platform for fish vaccine and then addresses considerations regarding fish vaccine production in plants. Developing fish vaccines by way of plant biotechnology are significant for the aquaculture industry, fish health management, food safety, and human health.
Collapse
Affiliation(s)
- Hang Su
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Igor A. Yakovlev
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - André van Eerde
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jihong Liu Clarke
- Division of Biotechnology and Plant Health, NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
14
|
Valkov VT, Gargano D, Cardi T, Scotti N. Plastid Transformation in Potato: An Important Source of Nutrition and Industrial Materials. Methods Mol Biol 2021; 2317:247-256. [PMID: 34028773 DOI: 10.1007/978-1-0716-1472-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
For a long time, plastid transformation has been a routine technology only in tobacco due to lack of effective selection and regeneration protocols, and, for some species, due to inefficient recombination using heterologous flanking regions in transformation vectors. Nevertheless, the availability of this technology to economically important crops offers new possibilities in plant breeding to manage pathogen resistance or improve nutritional value. Herein we describe an efficient plastid transformation protocol for potato (Solanum tuberosum subsp. tuberosum), achieved by the optimization of the tissue culture procedures and using transformation vectors carrying homologous potato flanking sequences. This protocol allowed to obtain up to one shoot per shot, an efficiency comparable to that usually accomplished in tobacco. Further, the method described in this chapter has been successfully used to regenerate potato transplastomic plants expressing recombinant GFP protein in chloroplasts and amyloplasts or long double-stranded RNAs for insect pest control.
Collapse
Affiliation(s)
- Vladimir T Valkov
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici, Portici (NA), Italy
| | - Daniela Gargano
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici, Portici (NA), Italy
| | - Teodoro Cardi
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici, Portici (NA), Italy.,CREA-OF, Research Centre for Vegetable and Ornamental Crops, Pontecagnano (SA), Italy
| | - Nunzia Scotti
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici, Portici (NA), Italy.
| |
Collapse
|
15
|
Abstract
Plastids (chloroplasts) are the defining organelles of plants and eukaryotic algae. In addition to performing photosynthesis, plastids harbor numerous other metabolic pathways and therefore are often referred to as the biosynthetic center of the plant cell. The chloroplasts of seed plants possess dozens of copies of a circular genome of ∼150 kb that contains a conserved set of 120 to 130 genes. The engineering of this genome by genetic transformation is technically challenging and currently only possible in a small number of species. In this article, we describe the methods involved in generating stable chloroplast-transformed (transplastomic) plants in the model species Arabidopsis (Arabidopsis thaliana). The protocols presented here can be applied to (1) target genes in the Arabidopsis chloroplast genome by reverse genetics and (2) express reporter genes or other foreign genes of interest in plastids of Arabidopsis plants. © 2021 The Authors. Basic Protocol 1: Generation of root-derived microcallus material for biolistic transformation Basic Protocol 2: Chloroplast transformation by biolistic bombardment of root-derived microcalli Basic Protocol 3: Regeneration of transplastomic lines and seed production.
Collapse
Affiliation(s)
- Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Xenia Kroop
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| |
Collapse
|
16
|
Lin MT, Orr DJ, Worrall D, Parry MAJ, Carmo-Silva E, Hanson MR. A procedure to introduce point mutations into the Rubisco large subunit gene in wild-type plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:876-887. [PMID: 33576096 DOI: 10.1111/tpj.15196] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 01/22/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Photosynthetic inefficiencies limit the productivity and sustainability of crop production and the resilience of agriculture to future societal and environmental challenges. Rubisco is a key target for improvement as it plays a central role in carbon fixation during photosynthesis and is remarkably inefficient. Introduction of mutations to the chloroplast-encoded Rubisco large subunit rbcL is of particular interest for improving the catalytic activity and efficiency of the enzyme. However, manipulation of rbcL is hampered by its location in the plastome, with many species recalcitrant to plastome transformation, and by the plastid's efficient repair system, which can prevent effective maintenance of mutations introduced with homologous recombination. Here we present a system where the introduction of a number of silent mutations into rbcL within the model plant Nicotiana tabacum facilitates simplified screening via additional restriction enzyme sites. This system was used to successfully generate a range of transplastomic lines from wild-type N. tabacum with stable point mutations within rbcL in 40% of the transformants, allowing assessment of the effect of these mutations on Rubisco assembly and activity. With further optimization the approach offers a viable way forward for mutagenic testing of Rubisco function in planta within tobacco and modification of rbcL in other crops where chloroplast transformation is feasible. The transformation strategy could also be applied to introduce point mutations in other chloroplast-encoded genes.
Collapse
Affiliation(s)
- Myat T Lin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster, LA1 4YQ, UK
| | - Dawn Worrall
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster, LA1 4YQ, UK
| | - Martin A J Parry
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster, LA1 4YQ, UK
| | - Elizabete Carmo-Silva
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster, LA1 4YQ, UK
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
17
|
Tian Z, Wang JW, Li J, Han B. Designing future crops: challenges and strategies for sustainable agriculture. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1165-1178. [PMID: 33258137 DOI: 10.1111/tpj.15107] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 05/26/2023]
Abstract
Crop production is facing unprecedented challenges. Despite the fact that the food supply has significantly increased over the past half-century, ~8.9 and 14.3% people are still suffering from hunger and malnutrition, respectively. Agricultural environments are continuously threatened by a booming world population, a shortage of arable land, and rapid changes in climate. To ensure food and ecosystem security, there is a need to design future crops for sustainable agriculture development by maximizing net production and minimalizing undesirable effects on the environment. The future crops design projects, recently launched by the National Natural Science Foundation of China and Chinese Academy of Sciences (CAS), aim to develop a roadmap for rapid design of customized future crops using cutting-edge technologies in the Breeding 4.0 era. In this perspective, we first introduce the background and missions of these projects. We then outline strategies to design future crops, such as improvement of current well-cultivated crops, de novo domestication of wild species and redomestication of current cultivated crops. We further discuss how these ambitious goals can be achieved by the recent development of new integrative omics tools, advanced genome-editing tools and synthetic biology approaches. Finally, we summarize related opportunities and challenges in these projects.
Collapse
Affiliation(s)
- Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- ShanghaiTech University, Shanghai, 200031, China
| | - Jiayang Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, 100101, China
| | - Bin Han
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- ShanghaiTech University, Shanghai, 200031, China
- National Center for Gene Research, Shanghai, 200233, China
| |
Collapse
|
18
|
Schmidt JA, Richter LV, Condoluci LA, Ahner BA. Mitigation of deleterious phenotypes in chloroplast-engineered plants accumulating high levels of foreign proteins. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:42. [PMID: 33568217 PMCID: PMC7877051 DOI: 10.1186/s13068-021-01893-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/28/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND The global demand for functional proteins is extensive, diverse, and constantly increasing. Medicine, agriculture, and industrial manufacturing all rely on high-quality proteins as major active components or process additives. Historically, these demands have been met by microbial bioreactors that are expensive to operate and maintain, prone to contamination, and relatively inflexible to changing market demands. Well-established crop cultivation techniques coupled with new advancements in genetic engineering may offer a cheaper and more versatile protein production platform. Chloroplast-engineered plants, like tobacco, have the potential to produce large quantities of high-value proteins, but often result in engineered plants with mutant phenotypes. This technology needs to be fine-tuned for commercial applications to maximize target protein yield while maintaining robust plant growth. RESULTS Here, we show that a previously developed Nicotiana tabacum line, TetC-cel6A, can produce an industrial cellulase at levels of up to 28% of total soluble protein (TSP) with a slight dwarf phenotype but no loss in biomass. In seedlings, the dwarf phenotype is recovered by exogenous application of gibberellic acid. We also demonstrate that accumulating foreign protein represents an added burden to the plants' metabolism that can make them more sensitive to limiting growth conditions such as low nitrogen. The biomass of nitrogen-limited TetC-cel6A plants was found to be as much as 40% lower than wildtype (WT) tobacco, although heterologous cellulase production was not greatly reduced compared to well-fertilized TetC-cel6A plants. Furthermore, cultivation at elevated carbon dioxide (1600 ppm CO2) restored biomass accumulation in TetC-cel6A plants to that of WT, while also increasing total heterologous protein yield (mg Cel6A plant-1) by 50-70%. CONCLUSIONS The work reported here demonstrates that well-fertilized tobacco plants have a substantial degree of flexibility in protein metabolism and can accommodate considerable levels of some recombinant proteins without exhibiting deleterious mutant phenotypes. Furthermore, we show that the alterations to protein expression triggered by growth at elevated CO2 can help rebalance endogenous protein expression and/or increase foreign protein production in chloroplast-engineered tobacco.
Collapse
Affiliation(s)
- Jennifer A Schmidt
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - Lubna V Richter
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Lisa A Condoluci
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Beth A Ahner
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
19
|
Oikawa K, Tateishi A, Odahara M, Kodama Y, Numata K. Imaging of the Entry Pathway of a Cell-Penetrating Peptide-DNA Complex From the Extracellular Space to Chloroplast Nucleoids Across Multiple Membranes in Arabidopsis Leaves. FRONTIERS IN PLANT SCIENCE 2021; 12:759871. [PMID: 34925409 PMCID: PMC8678410 DOI: 10.3389/fpls.2021.759871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/01/2021] [Indexed: 05/14/2023]
Abstract
Each plant cell has hundreds of copies of the chloroplast genome and chloroplast transgenes do not undergo silencing. Therefore, chloroplast transformation has many powerful potential agricultural and industrial applications. We previously succeeded in integrating exogenous genes into the chloroplast genome using peptide-DNA complexes composed of plasmid DNA and a fusion peptide consisting of a cell-penetrating peptide (CPP) and a chloroplast transit peptide (cpPD complex). However, how cpPD complexes are transported into the chloroplast from outside the cell remains unclear. Here, to characterize the route by which these cpPD complexes move into chloroplasts, we tracked their movement from the extracellular space to the chloroplast stroma using a fluorescent label and confocal laser scanning microscopy (CLSM). Upon infiltration of cpPD complexes into the extracellular space of Arabidopsis thaliana leaves, the complexes reached the chloroplast surface within 6h. The cpPD complexes reached were engulfed by the chloroplast outer envelope membrane and gradually integrated into the chloroplast. We detected several cpPD complexes localized around chloroplast nucleoids and observed the release of DNA from the cpPD. Our results thus define the route taken by the cpPD complexes for gene delivery from the extracellular space to the chloroplast stroma.
Collapse
Affiliation(s)
- Kazusato Oikawa
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Ayaka Tateishi
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Masaki Odahara
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Yutaka Kodama
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Japan
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
- Yutaka Kodama,
| | - Keiji Numata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Japan
- *Correspondence: Keiji Numata,
| |
Collapse
|
20
|
Staub JM. Transformation of the Plastid Genome in Tobacco Suspension Cell Cultures. Methods Mol Biol 2021; 2317:167-175. [PMID: 34028768 DOI: 10.1007/978-1-0716-1472-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Chloroplast transformation has been extremely valuable for the study of plastid biology and gene expression, but the tissue culture methodology involved can be laborious and it can take several months to obtain homoplasmic regenerated plants useful for molecular or physiological studies. In contrast, transformation of tobacco suspension cell plastids provides an easy and efficient system to rapidly evaluate the efficacy of multiple constructs prior to plant regeneration. Suspension cell cultures can be initiated from many cell types, and once established, can be maintained by subculture for more than a year with no loss of transformation efficiency. Using antibiotic selection, homoplasmy is readily achieved in uniform cell colonies useful for comparative gene expression analyses, with the added flexibility to subsequently regenerate plants for in planta studies. Plastids from suspension cells grown in the dark are similar in size and cellular morphology to those in embryogenic culture systems of monocot species, thus providing a useful model for understanding the steps leading to plastid transformation in those recalcitrant species.
Collapse
|
21
|
Tungsuchat-Huang T, Maliga P. Plastid Marker Gene Excision in the Tobacco Shoot Apex by Agrobacterium-Delivered Cre Recombinase. Methods Mol Biol 2021; 2317:177-193. [PMID: 34028769 DOI: 10.1007/978-1-0716-1472-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Here we describe a protocol for the excision of plastid marker genes directly in tobacco (Nicotiana tabacum) plants by the Cre recombinase. The example of the marker gene is the barau gene flanked by loxP sites in the plastid genome. For marker excision Agrobacterium encoding the recombinase on its T-DNA is injected at an axillary bud site of a decapitated plant, forcing shoot regeneration at the injection site. The excised plastid marker, the barau gene, confers a visual aurea leaf phenotype, thus marker excision via the flanking recombinase target sites is recognized by the restoration of normal green color of the leaves. The success of in planta plastid marker excision proves that manipulation of the plastid genomes is feasible within an intact plant. Extension of the protocol to in planta plastid transformation depends on the development of new protocols for the delivery of transforming DNA and the availability of visual marker genes.
Collapse
Affiliation(s)
| | - Pal Maliga
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
22
|
Newkirk GM, de Allende P, Jinkerson RE, Giraldo JP. Nanotechnology Approaches for Chloroplast Biotechnology Advancements. FRONTIERS IN PLANT SCIENCE 2021; 12:691295. [PMID: 34381480 PMCID: PMC8351593 DOI: 10.3389/fpls.2021.691295] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/28/2021] [Indexed: 05/17/2023]
Abstract
Photosynthetic organisms are sources of sustainable foods, renewable biofuels, novel biopharmaceuticals, and next-generation biomaterials essential for modern society. Efforts to improve the yield, variety, and sustainability of products dependent on chloroplasts are limited by the need for biotechnological approaches for high-throughput chloroplast transformation, monitoring chloroplast function, and engineering photosynthesis across diverse plant species. The use of nanotechnology has emerged as a novel approach to overcome some of these limitations. Nanotechnology is enabling advances in the targeted delivery of chemicals and genetic elements to chloroplasts, nanosensors for chloroplast biomolecules, and nanotherapeutics for enhancing chloroplast performance. Nanotechnology-mediated delivery of DNA to the chloroplast has the potential to revolutionize chloroplast synthetic biology by allowing transgenes, or even synthesized DNA libraries, to be delivered to a variety of photosynthetic species. Crop yield improvements could be enabled by nanomaterials that enhance photosynthesis, increase tolerance to stresses, and act as nanosensors for biomolecules associated with chloroplast function. Engineering isolated chloroplasts through nanotechnology and synthetic biology approaches are leading to a new generation of plant-based biomaterials able to self-repair using abundant CO2 and water sources and are powered by renewable sunlight energy. Current knowledge gaps of nanotechnology-enabled approaches for chloroplast biotechnology include precise mechanisms for entry into plant cells and organelles, limited understanding about nanoparticle-based chloroplast transformations, and the translation of lab-based nanotechnology tools to the agricultural field with crop plants. Future research in chloroplast biotechnology mediated by the merging of synthetic biology and nanotechnology approaches can yield tools for precise control and monitoring of chloroplast function in vivo and ex vivo across diverse plant species, allowing increased plant productivity and turning plants into widely available sustainable technologies.
Collapse
Affiliation(s)
- Gregory M. Newkirk
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Pedro de Allende
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Robert E. Jinkerson
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, United States
| | - Juan Pablo Giraldo
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Juan Pablo Giraldo,
| |
Collapse
|
23
|
Generation, analysis, and transformation of macro-chloroplast Potato (Solanum tuberosum) lines for chloroplast biotechnology. Sci Rep 2020; 10:21144. [PMID: 33273600 PMCID: PMC7713401 DOI: 10.1038/s41598-020-78237-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Chloroplast biotechnology is a route for novel crop metabolic engineering. The potential bio-confinement of transgenes, the high protein expression and the possibility to organize genes into operons represent considerable advantages that make chloroplasts valuable targets in agricultural biotechnology. In the last 3 decades, chloroplast genomes from a few economically important crops have been successfully transformed. The main bottlenecks that prevent efficient transformation in a greater number of crops include the dearth of proven selectable marker gene-selection combinations and tissue culture methods for efficient regeneration of transplastomic plants. The prospects of increasing organelle size are attractive from several perspectives, including an increase in the surface area of potential targets. As a proof-of-concept, we generated Solanum tuberosum (potato) macro-chloroplast lines overexpressing the tubulin-like GTPase protein gene FtsZ1 from Arabidopsis thaliana. Macro-chloroplast lines exhibited delayed growth at anthesis; however, at the time of harvest there was no significant difference in height between macro-chloroplast and wild-type lines. Macro-chloroplasts were successfully transformed by biolistic DNA-delivery and efficiently regenerated into homoplasmic transplastomic lines. We also demonstrated that macro-chloroplasts accumulate the same amount of heterologous protein than wild-type organelles, confirming efficient usage in plastid engineering. Advantages and limitations of using enlarge compartments in chloroplast biotechnology are discussed.
Collapse
|
24
|
Okuzaki A, Tsuda M, Konagaya KI, Tabei Y. A novel strategy for promoting homoplasmic plastid transformant production using the barnase-barstar system. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:223-232. [PMID: 32821230 PMCID: PMC7434676 DOI: 10.5511/plantbiotechnology.20.0503a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Plastid transformants form biofactories that are able to produce extra proteins in plastids when they are in a homoplasmic state. To date, plastid transformation has been reported in about twenty plant species; however, the production of homoplasmic plastid transformants is not always successful or easy. Heteroplasmic plants that contain wild-type plastids produce fewer target proteins and do not always successfully transfer transgenes to progeny. In order to promote the generation of homoplasmic plants, we developed a novel system using barnase-barster to eliminate wild-type plastids from heteroplasmic cells systematically. In this system, a chemically inducible cytotoxic barnase under a plastid transit signal was introduced into nuclear DNA and barster, which inhibits barnase, was integrated into plastid DNA with the primary selection markers aminoglycoside 3'-adenylyltransferase (aadA) and green fluorescence protein (GFP) gene. As expected, the expression of the plastid barnase was lethal to cells as seen in leaf segments, but barster expression in plastids rescued them. We then investigated the regeneration frequency of homoplasmic shoots from heteroplasmic leaf segments with or without barnase expression. The regeneration frequency of homoplasmic-like shoots expressing barnase-barster system was higher than that of shoots not expressing this. We expect that the application of this novel strategy for transformation of plastids will be supportive to generate homoplasmic plastid transformants in other plant species.
Collapse
Affiliation(s)
- Ayako Okuzaki
- National Institute of Agricultural Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Mai Tsuda
- National Institute of Agricultural Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Ken-ichi Konagaya
- National Institute of Agricultural Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Yutaka Tabei
- National Institute of Agricultural Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
25
|
Morgenfeld MM, Vater CF, Alfano EF, Boccardo NA, Bravo-Almonacid FF. Translocation from the chloroplast stroma into the thylakoid lumen allows expression of recombinant epidermal growth factor in transplastomic tobacco plants. Transgenic Res 2020; 29:295-305. [PMID: 32318934 DOI: 10.1007/s11248-020-00199-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
Abstract
Chloroplast transformation has many potential advantages for the production of recombinant proteins in plants. However, it has been reported that chloroplast expression of many proteins, such as human epidermal growth factor (hEGF), results hindered by post-transcriptional mechanisms. hEGF degradation has been related to the redox potential of the stroma and protein misfolding. To solve this problem, we proposed the redirection of hEGF into the thylakoid lumen where the environment could improve disulfide bonds formation stabilizing the functional conformation of the protein. We generated transplastomic tobacco plants targeting hEGF protein to the thylakoid lumen by adding a transit peptide (Str). Following this approach, we could detect thylakoid lumen-targeted hEGF by western blotting while stromal accumulation of hEGF remained undetectable. Southern blot analysis confirmed the integration of the transgene through homologous recombination into the plastome. Northern blot analysis showed similar levels of egf transcripts in the EGF and StrEGF lines. These results suggest that higher stability of the hEGF peptide in the thylakoid lumen is the primary cause of the increased accumulation of the recombinant protein observed in StrEGF lines. They also highlight the necessity of exploring different sub-organellar destinations to improve the accumulation levels of a specific recombinant protein in plastids.
Collapse
Affiliation(s)
- Mauro M Morgenfeld
- Instituto de Ingeniería Genética y Biología Molecular "Dr, Héctor Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular (FCEN-UBA), Buenos Aires, Argentina
| | - Catalina F Vater
- Instituto de Ingeniería Genética y Biología Molecular "Dr, Héctor Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina
| | - E Federico Alfano
- Instituto de Ingeniería Genética y Biología Molecular "Dr, Héctor Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina
| | - Noelia A Boccardo
- Instituto de Ingeniería Genética y Biología Molecular "Dr, Héctor Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando F Bravo-Almonacid
- Instituto de Ingeniería Genética y Biología Molecular "Dr, Héctor Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina.
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.
| |
Collapse
|
26
|
Ancín M, Sanz-Barrio R, Santamaría E, Fernández-San Millán A, Larraya L, Veramendi J, Farran I. Functional Improvement of Human Cardiotrophin 1 Produced in Tobacco Chloroplasts by Co-expression with Plastid Thioredoxin m. PLANTS 2020; 9:plants9020183. [PMID: 32024318 PMCID: PMC7076529 DOI: 10.3390/plants9020183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 12/24/2022]
Abstract
Human cardiotrophin 1 (CT1), a cytokine with excellent therapeutic potential, was previously expressed in tobacco chloroplasts. However, the growth conditions required to reach the highest expression levels resulted in an impairment of its bioactivity. In the present study, we have examined new strategies to modulate the expression of this recombinant protein in chloroplasts so as to enhance its production and bioactivity. In particular, we assessed the effect of both the fusion and co-expression of Trx m with CT1 on the production of a functional CT1 by using plastid transformation. Our data revealed that the Trx m fusion strategy was useful to increase the expression levels of CT1 inside the chloroplasts, although CT1 bioactivity was significantly impaired, and this was likely due to steric hindrance between both proteins. By contrast, the expression of functional CT1 was increased when co-expressed with Trx m, because we demonstrated that recombinant CT1 was functionally active during an in vitro signaling assay. While Trx m/CT1 co-expression did not increase the amount of CT1 in young leaves, our results revealed an increase in CT1 protein stability as the leaves aged in this genotype, which also improved the recombinant protein's overall production. This strategy might be useful to produce other functional biopharmaceuticals in chloroplasts.
Collapse
Affiliation(s)
- María Ancín
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (A.F.-S.M.); (L.L.); (J.V.)
| | - Ruth Sanz-Barrio
- National Centre for Biotechnology, Plant Molecular Genetics Department, CSIC, 28049 Madrid, Spain
| | - Eva Santamaría
- Hepatology Program, University of Navarra, CIMA, E-31008 Pamplona, Spain;
- CIBERehd, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Alicia Fernández-San Millán
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (A.F.-S.M.); (L.L.); (J.V.)
| | - Luis Larraya
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (A.F.-S.M.); (L.L.); (J.V.)
| | - Jon Veramendi
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (A.F.-S.M.); (L.L.); (J.V.)
| | - Inmaculada Farran
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (A.F.-S.M.); (L.L.); (J.V.)
- Correspondence: ; Tel.: +34-948-168034
| |
Collapse
|
27
|
Singer SD, Soolanayakanahally RY, Foroud NA, Kroebel R. Biotechnological strategies for improved photosynthesis in a future of elevated atmospheric CO 2. PLANTA 2019; 251:24. [PMID: 31784816 DOI: 10.1007/s00425-019-03301-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
The improvement of photosynthesis using biotechnological approaches has been the focus of much research. It is now vital that these strategies be assessed under future atmospheric conditions. The demand for crop products is expanding at an alarming rate due to population growth, enhanced affluence, increased per capita calorie consumption, and an escalating need for plant-based bioproducts. While solving this issue will undoubtedly involve a multifaceted approach, improving crop productivity will almost certainly provide one piece of the puzzle. The improvement of photosynthetic efficiency has been a long-standing goal of plant biotechnologists as possibly one of the last remaining means of achieving higher yielding crops. However, the vast majority of these studies have not taken into consideration possible outcomes when these plants are grown long-term under the elevated CO2 concentrations (e[CO2]) that will be evident in the not too distant future. Due to the considerable effect that CO2 levels have on the photosynthetic process, these assessments should become commonplace as a means of ensuring that research in this field focuses on the most effective approaches for our future climate scenarios. In this review, we discuss the main biotechnological research strategies that are currently underway with the aim of improving photosynthetic efficiency and biomass production/yields in the context of a future of e[CO2], as well as alternative approaches that may provide further photosynthetic benefits under these conditions.
Collapse
Affiliation(s)
- Stacy D Singer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada.
| | - Raju Y Soolanayakanahally
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Nora A Foroud
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| | - Roland Kroebel
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| |
Collapse
|
28
|
Learning from transgenics: Advanced gene editing technologies should also bridge the gap with traditional genetic selection. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
29
|
van Eerde A, Gottschamel J, Bock R, Hansen KEA, Munang'andu HM, Daniell H, Liu Clarke J. Production of tetravalent dengue virus envelope protein domain III based antigens in lettuce chloroplasts and immunologic analysis for future oral vaccine development. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1408-1417. [PMID: 30578710 PMCID: PMC6576073 DOI: 10.1111/pbi.13065] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 05/19/2023]
Abstract
Dengue fever is a mosquito (Aedes aegypti) -transmitted viral disease that is endemic in more than 125 countries around the world. There are four serotypes of the dengue virus (DENV 1-4) and a safe and effective dengue vaccine must provide protection against all four serotypes. To date, the first vaccine, Dengvaxia (CYD-TDV), is available after many decades' efforts, but only has moderate efficacy. More effective and affordable vaccines are hence required. Plants offer promising vaccine production platforms and food crops offer additional advantages for the production of edible human and animal vaccines, thus eliminating the need for expensive fermentation, purification, cold storage and sterile delivery. Oral vaccines can elicit humoural and cellular immunity via both the mucosal and humoral immune systems. Here, we report the production of tetravalent EDIII antigen (EDIII-1-4) in stably transformed lettuce chloroplasts. Transplastomic EDIII-1-4-expressing lettuce lines were obtained and homoplasmy was verified by Southern blot analysis. Expression of EDIII-1-4 antigens was demonstrated by immunoblotting, with the EDIII-1-4 antigen accumulating to 3.45% of the total protein content. Immunological assays in rabbits showed immunogenicity of EDIII-1-4. Our in vitro gastrointestinal digestion analysis revealed that EDIII-1-4 antigens are well protected when passing through the oral and gastric digestion phases but underwent degradation during the intestinal phase. Our results demonstrate that lettuce chloroplast engineering is a promising approach for future production of an affordable oral dengue vaccine.
Collapse
Affiliation(s)
- André van Eerde
- NIBIO – Norwegian Institute of Bioeconomy ResearchDivision of Biotechnology and Plant HealthÅsNorway
| | - Johanna Gottschamel
- NIBIO – Norwegian Institute of Bioeconomy ResearchDivision of Biotechnology and Plant HealthÅsNorway
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | | | | | - Henry Daniell
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Jihong Liu Clarke
- NIBIO – Norwegian Institute of Bioeconomy ResearchDivision of Biotechnology and Plant HealthÅsNorway
| |
Collapse
|
30
|
Yu Q, Barkan A, Maliga P. Engineered RNA-binding protein for transgene activation in non-green plastids. NATURE PLANTS 2019; 5:486-490. [PMID: 31036913 DOI: 10.1038/s41477-019-0413-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Non-green plastids are desirable for the expression of recombinant proteins in edible plant parts to enhance the nutritional value of tubers or fruits, or to deliver pharmaceuticals. However, plastid transgenes are expressed at extremely low levels in the amyloplasts of storage organs such as tubers1-3. Here, we report a regulatory system comprising a variant of the maize RNA-binding protein PPR10 and a cognate binding site upstream of a plastid transgene that encodes green fluorescent protein (GFP). The binding site is not recognized by the resident potato PPR10 protein, restricting GFP protein accumulation to low levels in leaves. When the PPR10 variant is expressed from the tuber-specific patatin promoter, GFP accumulates up to 1.3% of the total soluble protein, a 60-fold increase compared with previous studies2 (0.02%). This regulatory system enables an increase in transgene expression in non-photosynthetic plastids without interfering with chloroplast gene expression in leaves.
Collapse
Affiliation(s)
- Qiguo Yu
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, USA
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - Pal Maliga
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, USA.
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
31
|
Occhialini A, Piatek AA, Pfotenhauer AC, Frazier TP, Stewart CN, Lenaghan SC. MoChlo: A Versatile, Modular Cloning Toolbox for Chloroplast Biotechnology. PLANT PHYSIOLOGY 2019; 179:943-957. [PMID: 30679266 PMCID: PMC6393787 DOI: 10.1104/pp.18.01220] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/16/2019] [Indexed: 05/19/2023]
Abstract
Plant synthetic biology is a rapidly evolving field with new tools constantly emerging to drive innovation. Of particular interest is the application of synthetic biology to chloroplast biotechnology to generate plants capable of producing new metabolites, vaccines, biofuels, and high-value chemicals. Progress made in the assembly of large DNA molecules, composing multiple transcriptional units, has significantly aided in the ability to rapidly construct novel vectors for genetic engineering. In particular, Golden Gate assembly has provided a facile molecular tool for standardized assembly of synthetic genetic elements into larger DNA constructs. In this work, a complete modular chloroplast cloning system, MoChlo, was developed and validated for fast and flexible chloroplast engineering in plants. A library of 128 standardized chloroplast-specific parts (47 promoters, 38 5' untranslated regions [5'UTRs], nine promoter:5'UTR fusions, 10 3'UTRs, 14 genes of interest, and 10 chloroplast-specific destination vectors) were mined from the literature and modified for use in MoChlo assembly, along with chloroplast-specific destination vectors. The strategy was validated by assembling synthetic operons of various sizes and determining the efficiency of assembly. This method was successfully used to generate chloroplast transformation vectors containing up to seven transcriptional units in a single vector (∼10.6-kb synthetic operon). To enable researchers with limited resources to engage in chloroplast biotechnology, and to accelerate progress in the field, the entire kit, as described, is available through Addgene at minimal cost. Thus, the MoChlo kit represents a valuable tool for fast and flexible design of heterologous metabolic pathways for plastid metabolic engineering.
Collapse
Affiliation(s)
- Alessandro Occhialini
- Department of Food Science, University of Tennessee, Knoxville, Tennessee 37996
- Center for Agricultural Synthetic Biology, Institute of Agriculture, University of Tennessee, Knoxville, Tennessee 37996
| | - Agnieszka A Piatek
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996
| | - Alexander C Pfotenhauer
- Department of Food Science, University of Tennessee, Knoxville, Tennessee 37996
- Center for Agricultural Synthetic Biology, Institute of Agriculture, University of Tennessee, Knoxville, Tennessee 37996
| | - Taylor P Frazier
- Center for Agricultural Synthetic Biology, Institute of Agriculture, University of Tennessee, Knoxville, Tennessee 37996
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996
- Elo Life Systems, Durham, North Carolina 27709
| | - C Neal Stewart
- Center for Agricultural Synthetic Biology, Institute of Agriculture, University of Tennessee, Knoxville, Tennessee 37996
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996
| | - Scott C Lenaghan
- Department of Food Science, University of Tennessee, Knoxville, Tennessee 37996
- Center for Agricultural Synthetic Biology, Institute of Agriculture, University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
32
|
Ruf S, Forner J, Hasse C, Kroop X, Seeger S, Schollbach L, Schadach A, Bock R. High-efficiency generation of fertile transplastomic Arabidopsis plants. NATURE PLANTS 2019; 5:282-289. [PMID: 30778165 PMCID: PMC6420123 DOI: 10.1038/s41477-019-0359-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/07/2019] [Indexed: 05/20/2023]
Abstract
The development of technologies for the stable genetic transformation of plastid (chloroplast) genomes has been a boon to both basic and applied research. However, extension of the transplastomic technology to major crops and model plants has proven extremely challenging, and the species range of plastid transformation is still very much limited in that most species currently remain recalcitrant to plastid genome engineering. Here, we report an efficient plastid transformation technology for the model plant Arabidopsis thaliana that relies on root-derived microcalli as a source tissue for biolistic transformation. The method produces fertile transplastomic plants at high frequency when combined with a clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-generated knockout allele of a nuclear locus that enhances sensitivity to the selection agent used for isolation of transplastomic events. Our work makes the model organism of plant biology amenable to routine engineering of the plastid genome, facilitates the combination of plastid engineering with the power of Arabidopsis nuclear genetics, and informs the future development of plastid transformation protocols for other recalcitrant species.
Collapse
Affiliation(s)
- Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Joachim Forner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Claudia Hasse
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Xenia Kroop
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Stefanie Seeger
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Laura Schollbach
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Anne Schadach
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany.
| |
Collapse
|
33
|
Kim DS, Kim SW, Song JM, Kim SY, Kwon KC. A new prokaryotic expression vector for the expression of antimicrobial peptide abaecin using SUMO fusion tag. BMC Biotechnol 2019; 19:13. [PMID: 30770741 PMCID: PMC6377777 DOI: 10.1186/s12896-019-0506-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/07/2019] [Indexed: 12/23/2022] Open
Abstract
Background Despite the growing demand for antimicrobial peptides (AMPs) for clinical use as an alternative approach against antibiotic-resistant bacteria, the manufacture of AMPs relies on expensive, small-scale chemical methods. The small ubiquitin-related modifier (SUMO) tag is industrially practical for increasing the yield of recombinant proteins by increasing solubility and preventing degradation in expression systems. Results A new vector system, pKSEC1, was designed to produce AMPs, which can work in prokaryotic systems such as Escherichia coli and plant chloroplasts. 6xHis was tagged to SUMO for purification of SUMO-fused AMPs. Abaecin, a 34-aa-long antimicrobial peptide from honeybees, was expressed in a fusion form to 6xHis-SUMO in a new vector system to evaluate the prokaryotic expression platform of the antimicrobial peptides. The fusion sequences were codon-optimized in three different combinations and expressed in E. coli. The combination of the native SUMO sequence with codon-optimized abaecin showed the highest expression level among the three combinations, and most of the expressed fusion proteins were detected in soluble fractions. Cleavage of the SUMO tag by sumoase produced a 29-aa-long abaecin derivative with a C-terminal deletion. However, this abaecin derivative still retained the binding sequence for its target protein, DnaK. Antibacterial activity of the 29-aa long abaecin was tested against Bacillus subtilis alone or in combination with cecropin B. The combined treatment of the abaecin derivative and cecropin B showed bacteriolytic activity 2 to 3 times greater than that of abaecin alone. Conclusions Using a SUMO-tag with an appropriate codon-optimization strategy could be an approach for the production of antimicrobial peptides in E.coli without affecting the viability of the host cell. Electronic supplementary material The online version of this article (10.1186/s12896-019-0506-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Da Sol Kim
- Department of Biological Sciences, Andong National University, Andong, South Korea
| | - Seon Woong Kim
- Department of Biological Sciences, Andong National University, Andong, South Korea
| | - Jae Min Song
- Department of Global Medical Science, Health & Wellness College, Sungshin University, Seoul, South Korea
| | - Soon Young Kim
- Department of Biological Sciences, Andong National University, Andong, South Korea.
| | - Kwang-Chul Kwon
- MicroSynbiotiX Ltd, 11011 N Torrey Pines Rd Ste. #135, La Jolla, CA, 92037, USA.
| |
Collapse
|
34
|
Sathishkumar R, Kumar SR, Hema J, Baskar V. Green Biotechnology: A Brief Update on Plastid Genome Engineering. ADVANCES IN PLANT TRANSGENICS: METHODS AND APPLICATIONS 2019. [PMCID: PMC7120283 DOI: 10.1007/978-981-13-9624-3_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plant genetic engineering has become an inevitable tool in the molecular breeding of crops. Significant progress has been made in the generation of novel plastid transformation vectors and optimized transformation protocols. There are several advantages of plastid genome engineering over conventional nuclear transformation. Some of the advantages include multigene engineering by expression of biosynthetic pathway genes as operons, extremely high-level expression of protein accumulation, lack of transgene silencing, etc. Transgene containment owing to maternal inheritance is another important advantage of plastid genome engineering. Chloroplast genome modification usually results in alteration of several thousand plastid genome copies in a cell. Several therapeutic proteins, edible vaccines, antimicrobial peptides, and industrially important enzymes have been successfully expressed in chloroplasts so far. Here, we critically recapitulate the latest developments in plastid genome engineering. Latest advancements in plastid genome sequencing are briefed. In addition, advancement of extending the toolbox for plastid engineering for selected applications in the area of molecular farming and production of industrially important enzyme is briefed.
Collapse
Affiliation(s)
- Ramalingam Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu India
| | | | - Jagadeesan Hema
- Department of Biotechnology, PSG College of Technology, Coimbatore, Tamil Nadu India
| | - Venkidasamy Baskar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu India
| |
Collapse
|
35
|
Niu S, Zhang G, Li X, Haroon M, Si H, Fan G, Li XQ. Organelle DNA contents and starch accumulation in potato tubers. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:205-216. [PMID: 30390131 DOI: 10.1007/s00122-018-3208-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
Starch contents were found to be positively correlated with organelle/nuclear DNA ratios, suggesting that these ratios are involved in starch accumulation and may serve as a target trait in genetic engineering and a biomarker in breeding for improving the dry matter and starch production in potato. Starch is the main dry matter component of various staple food crops, including potato. Starch synthesis and accumulation is in plastids, uses sugar, consumes cellular energy, and requires active expression of starch synthesis genes. We hypothesized that the plastid/nuclear DNA ratios and mitochondrial/nuclear DNA ratios are involved in this accumulation. We analyzed the dry mater, starch, plastid DNA, mitochondrial DNA, and nuclear DNA in tuber stem ends and tuber bud ends in two potato cultivars and verified the results using whole tubers in nine potato cultivars. Dry matter contents (DMC) and organelle/nuclear DNA ratios increased rapidly during tuber bulking. DMC and starch contents were greater at the tuber stem ends than at the tuber bud ends. Both the comparisons between tuber ends and among whole tubers indicated that DMC and starch contents were positively correlated with both plastid/nuclear DNA ratios and mitochondrial/nuclear DNA ratios. The results suggest that pt/nuc and mt/nuc DNA ratios are important and may serve as a biomarker in selection, genetic engineering, and cytoplasm manipulation, for dry matter and starch accumulation in potato.
Collapse
Affiliation(s)
- Suyan Niu
- Institute of Bioengineering, Zhengzhou Normal University, Zhengzhou, 450044, China
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, E3B 4Z7, Canada
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guodong Zhang
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, E3B 4Z7, Canada
- Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiubao Li
- Rizhao Academy of Agricultural Sciences, Rizhao, 276500, Shandong, China
| | - Muhammad Haroon
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, E3B 4Z7, Canada
| | - Huaijun Si
- Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Guoqiang Fan
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xiu-Qing Li
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, E3B 4Z7, Canada.
| |
Collapse
|
36
|
Schindel HS, Piatek AA, Stewart CN, Lenaghan SC. The plastid genome as a chassis for synthetic biology-enabled metabolic engineering: players in gene expression. PLANT CELL REPORTS 2018; 37:1419-1429. [PMID: 30039465 DOI: 10.1007/s00299-018-2323-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/10/2018] [Indexed: 05/21/2023]
Abstract
Owing to its small size, prokaryotic-like molecular genetics, and potential for very high transgene expression, the plastid genome (plastome) is an attractive plant synthetic biology chassis for metabolic engineering. The plastome exists as a homogenous, compact, multicopy genome within multiple-specialized differentiated plastid compartments. Because of this multiplicity, transgenes can be highly expressed. For coordinated gene expression, it is the prokaryotic molecular genetics that is an especially attractive feature. Multiple genes in a metabolic pathway can be expressed in a series of operons, which are regulated at the transcriptional and translational levels with cross talk from the plant's nuclear genome. Key features of each regulatory level are reviewed, as well as some examples of plastome-enabled metabolic engineering. We also speculate about the transformative future of plastid-based synthetic biology to enable metabolic engineering in plants as well as the problems that must be solved before routine plastome-enabled synthetic circuits can be installed.
Collapse
Affiliation(s)
- Heidi S Schindel
- Department of Food Science, University of Tennessee, 2600 River Dr., Knoxville, TN, 37996-4561, USA
| | - Agnieszka A Piatek
- Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Dr., Knoxville, TN, 37996-4561, USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Dr., Knoxville, TN, 37996-4561, USA.
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA.
| | - Scott C Lenaghan
- Department of Food Science, University of Tennessee, 2600 River Dr., Knoxville, TN, 37996-4561, USA.
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA.
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
37
|
Wang Y, Wei Z, Xing S. Stable plastid transformation of rice, a monocot cereal crop. Biochem Biophys Res Commun 2018; 503:2376-2379. [DOI: 10.1016/j.bbrc.2018.06.164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 10/28/2022]
|
38
|
Yoshizumi T, Oikawa K, Chuah JA, Kodama Y, Numata K. Selective Gene Delivery for Integrating Exogenous DNA into Plastid and Mitochondrial Genomes Using Peptide-DNA Complexes. Biomacromolecules 2018; 19:1582-1591. [PMID: 29601191 DOI: 10.1021/acs.biomac.8b00323] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Selective gene delivery into organellar genomes (mitochondrial and plastid genomes) has been limited because of a lack of appropriate platform technology, even though these organelles are essential for metabolite and energy production. Techniques for selective organellar modification are needed to functionally improve organelles and produce transplastomic/transmitochondrial plants. However, no method for mitochondrial genome modification has yet been established for multicellular organisms including plants. Likewise, modification of plastid genomes has been limited to a few plant species and algae. In the present study, we developed ionic complexes of fusion peptides containing organellar targeting signal and plasmid DNA for selective delivery of exogenous DNA into the plastid and mitochondrial genomes of intact plants. This is the first report of exogenous DNA being integrated into the mitochondrial genomes of not only plants, but also multicellular organisms in general. This fusion peptide-mediated gene delivery system is a breakthrough platform for both plant organellar biotechnology and gene therapy for mitochondrial diseases in animals.
Collapse
Affiliation(s)
- Takeshi Yoshizumi
- Biomacromolecules Research Team , RIKEN Center for Sustainable Resource Science , 2-1 Hirosawa , Wako-shi , Saitama 351-0198 , Japan
| | - Kazusato Oikawa
- Biomacromolecules Research Team , RIKEN Center for Sustainable Resource Science , 2-1 Hirosawa , Wako-shi , Saitama 351-0198 , Japan
| | - Jo-Ann Chuah
- Biomacromolecules Research Team , RIKEN Center for Sustainable Resource Science , 2-1 Hirosawa , Wako-shi , Saitama 351-0198 , Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education , Utsunomiya University , 350 mine-machi , Utsunomiya , Tochigi 321-8505 , Japan
| | - Keiji Numata
- Biomacromolecules Research Team , RIKEN Center for Sustainable Resource Science , 2-1 Hirosawa , Wako-shi , Saitama 351-0198 , Japan
| |
Collapse
|
39
|
Mirzaee M, Jalali-Javaran M, Moieni A, Zeinali S, Behdani M. Expression of VGRNb-PE immunotoxin in transplastomic lettuce (Lactuca sativa L.). PLANT MOLECULAR BIOLOGY 2018; 97:103-112. [PMID: 29633168 DOI: 10.1007/s11103-018-0726-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/03/2018] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE This research has shown, for the first time, that plant chloroplasts are a suitable compartment for synthesizing recombinant immunotoxins and the transgenic immunotoxin efficiently causes the inhibition of VEGFR2 overexpression, cell growth and proliferation. Angiogenesis refers to the formation of new blood vessels, which resulted in the growth, invasion and metastasis of cancer. The vascular endothelial growth factor receptor 2 (VEGFR2) plays a major role in angiogenesis and blocking of its signaling inhibits neovascularization and tumor metastasis. Immunotoxins are promising therapeutics for targeted cancer therapy. They consist of an antibody linked to a protein toxin and are designed to specifically kill the tumor cells. In our previous study, VGRNb-PE immunotoxin protein containing anti-VEGFR2 nanobody fused to the truncated form of Pseudomonas exotoxin A has been established. Here, we expressed this immunotoxin in lettuce chloroplasts. Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, multigene engineering in a single transformation event and maternal inheritance of the transgenes. Site specific integration of transgene into chloroplast genomes, and homoplasmy were confirmed. Immunotoxin levels reached up to 1.1% of total soluble protein or 33.7 µg per 100 mg of leaf tissue (fresh weight). We demonstrated that transgenic immunotoxin efficiently causes the inhibition of VEGFR2 overexpression, cell growth and proliferation. These results indicate that plant chloroplasts are a suitable compartment for synthesizing recombinant immunotoxins.
Collapse
Affiliation(s)
- Malihe Mirzaee
- Department of Plant Breeding & Biotechnology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box 1497713111, Tehran, Iran
| | - Mokhtar Jalali-Javaran
- Department of Plant Breeding & Biotechnology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box 1497713111, Tehran, Iran.
| | - Ahmad Moieni
- Department of Plant Breeding & Biotechnology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box 1497713111, Tehran, Iran
| | - Sirous Zeinali
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Behdani
- Biotechnology Research Center, Biotechnology Department, Venom & Biotherapeutics Molecules Lab., Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
40
|
Narra M, Kota S, Velivela Y, Ellendula R, Allini VR, Abbagani S. Construction of chloroplast transformation vector and its functional evaluation in Momordica charantia L. 3 Biotech 2018; 8:140. [PMID: 29484279 PMCID: PMC5817051 DOI: 10.1007/s13205-018-1160-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/06/2018] [Indexed: 12/20/2022] Open
Abstract
Chloroplast transformation vectors require an expression cassette flanked by homologous plastid sequences to drive plastome recombination. The rrn16-rrn23 plastome region was selected and using this region, a new species-specific plastid transformation vector CuIA was developed with pKS+II as a backbone by inserting the rrn16-trnI and trnA-rrn23 sequences from Cucumis sativus L. An independent expression cassette with aadA gene encoding aminoglycoside 3'-adenylyltransferase with psbA controlling elements is added into the trnI-trnA intergenic region that confers resistance to spectinomycin. An efficient plastid transformation in bitter melon (Momordica charantia L.) was achieved by bombardment of petiole segments. The frequency of transplastomic plants yielded using standardized biolistic parameters with CuIA vector was two per 15 bombarded plates, each containing 20 petiole explants. Integration of aadA gene was verified by PCR analysis in transplastomes. Transplastomic technology developed may be a novel approach for high level expression of pharmaceutical traits.
Collapse
Affiliation(s)
| | - Srinivas Kota
- Department of Biotechnology, Kakatiya University, Warangal, 506009 India
| | | | - Raghu Ellendula
- Department of Biotechnology, Kakatiya University, Warangal, 506009 India
| | - V. Rao Allini
- Department of Biotechnology, Kakatiya University, Warangal, 506009 India
| | | |
Collapse
|
41
|
CHO HS, SEO JY, PARK SI, KIM TG, KIM TJ. Oral immunization with recombinant protein antigen expressed in tobacco against fish nervous necrosis virus. J Vet Med Sci 2018; 80:272-279. [PMID: 29249747 PMCID: PMC5836763 DOI: 10.1292/jvms.16-0408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/04/2017] [Indexed: 01/19/2023] Open
Abstract
Nervous necrosis virus (NNV), also known as betanodavirus, has been recently implicated in mass mortalities of cultured marine fish. An effective vaccine is urgently needed to protect fish against this virus. However, parenteral immunization methods are very stressful. Individual immunization for thousands of fish is very labor intensive and expensive. Therefore, we expressed NNV coat protein in tobacco chloroplasts and used it as an oral vaccine to induce immunities in fish followed by challenges with NNV. Our results revealed that mice (IgG and IgA) and fish (IgM) immunized with the oral vaccine developed significantly higher antibody titers against the NNV coat protein. Fish were partially protected against viral challenge. Taken together, our results demonstrated that a plant-based vaccine could effectively induce immune response and protect groupers against NNV. The present method could be used to develop oral fish vaccine in the future.
Collapse
Affiliation(s)
- Ho Seong CHO
- College of Veterinary Medicine and Bio-safety Research
Center, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Ja Young SEO
- College of Veterinary Medicine, Chonnam National University,
Gwangju 61186, Republic of Korea
| | - Sang Ik PARK
- College of Veterinary Medicine, Chonnam National University,
Gwangju 61186, Republic of Korea
| | - Tae Geum KIM
- Center for Jeongup Industry-Academy-Institute Cooperation,
Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Tae Jung KIM
- College of Veterinary Medicine, Chonnam National University,
Gwangju 61186, Republic of Korea
| |
Collapse
|
42
|
Gan Q, Jiang J, Han X, Wang S, Lu Y. Engineering the Chloroplast Genome of Oleaginous Marine Microalga Nannochloropsis oceanica. FRONTIERS IN PLANT SCIENCE 2018; 9:439. [PMID: 29696028 PMCID: PMC5904192 DOI: 10.3389/fpls.2018.00439] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/21/2018] [Indexed: 05/21/2023]
Abstract
Plastid engineering offers an important tool to fill the gap between the technical and the enormous potential of microalgal photosynthetic cell factory. However, to date, few reports on plastid engineering in industrial microalgae have been documented. This is largely due to the small cell sizes and complex cell-wall structures which make these species intractable to current plastid transformation methods (i.e., biolistic transformation and polyethylene glycol-mediated transformation). Here, employing the industrial oleaginous microalga Nannochloropsis oceanica as a model, an electroporation-mediated chloroplast transformation approach was established. Fluorescent microscopy and laser confocal scanning microscopy confirmed the expression of the green fluorescence protein, driven by the endogenous plastid promoter and terminator. Zeocin-resistance selection led to an acquisition of homoplasmic strains of which a stable and site-specific recombination within the chloroplast genome was revealed by sequencing and DNA gel blotting. This demonstration of electroporation-mediated chloroplast transformation opens many doors for plastid genome editing in industrial microalgae, particularly species of which the chloroplasts are recalcitrant to chemical and microparticle bombardment transformation.
Collapse
Affiliation(s)
- Qinhua Gan
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Jiaoyun Jiang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Xiao Han
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Shifan Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou, China
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou, China
- *Correspondence: Yandu Lu
| |
Collapse
|
43
|
Orr DJ, Pereira AM, da Fonseca Pereira P, Pereira-Lima ÍA, Zsögön A, Araújo WL. Engineering photosynthesis: progress and perspectives. F1000Res 2017; 6:1891. [PMID: 29263782 PMCID: PMC5658708 DOI: 10.12688/f1000research.12181.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2017] [Indexed: 12/11/2022] Open
Abstract
Photosynthesis is the basis of primary productivity on the planet. Crop breeding has sustained steady improvements in yield to keep pace with population growth increases. Yet these advances have not resulted from improving the photosynthetic process
per se but rather of altering the way carbon is partitioned within the plant. Mounting evidence suggests that the rate at which crop yields can be boosted by traditional plant breeding approaches is wavering, and they may reach a “yield ceiling” in the foreseeable future. Further increases in yield will likely depend on the targeted manipulation of plant metabolism. Improving photosynthesis poses one such route, with simulations indicating it could have a significant transformative influence on enhancing crop productivity. Here, we summarize recent advances of alternative approaches for the manipulation and enhancement of photosynthesis and their possible application for crop improvement.
Collapse
Affiliation(s)
- Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Auderlan M Pereira
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.,Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Paula da Fonseca Pereira
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.,Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Ítalo A Pereira-Lima
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.,Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.,Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
44
|
Lu Y, Stegemann S, Agrawal S, Karcher D, Ruf S, Bock R. Horizontal Transfer of a Synthetic Metabolic Pathway between Plant Species. Curr Biol 2017; 27:3034-3041.e3. [PMID: 28943084 DOI: 10.1016/j.cub.2017.08.044] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/01/2017] [Accepted: 08/18/2017] [Indexed: 12/22/2022]
Abstract
Transgene expression from the plastid (chloroplast) genome provides unique advantages, including high levels of foreign protein accumulation, convenient transgene stacking in operons, and increased biosafety due to exclusion of plastids from pollen transmission [1, 2]. However, applications in biotechnology and synthetic biology are severely restricted by the very small number of plant species whose plastid genomes currently can be transformed [3, 4]. Here we report a simple method for the introduction of useful plastid transgenes into non-transformable species. The transgenes tested comprised a synthetic operon encoding three components of a biosynthetic pathway for producing the high-value ketocarotenoid astaxanthin in the plastids of the cigarette tobacco, Nicotiana tabacum. Transplastomic N. tabacum plants accumulated astaxanthin to up to 1% of the plants' dry weight. We then used grafting, a procedure recently shown to facilitate horizontal genome transfer between plants [5-7], to let the transgenic chloroplast genome move across the graft junction from N. tabacum plants into plants of the nicotine-free tree species Nicotiana glauca. Transplastomic N. glauca trees expressing the synthetic pathway were recovered at high frequency, thus providing a straightforward method for extension of the transplastomic technology to new species.
Collapse
Affiliation(s)
- Yinghong Lu
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Sandra Stegemann
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Shreya Agrawal
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
45
|
Yurina NP, Sharapova LS, Odintsova MS. Structure of Plastid Genomes of Photosynthetic Eukaryotes. BIOCHEMISTRY (MOSCOW) 2017; 82:678-691. [PMID: 28601077 DOI: 10.1134/s0006297917060049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This review presents current views on the plastid genomes of higher plants and summarizes data on the size, structural organization, gene content, and other features of plastid DNAs. Special emphasis is placed on the properties of organization of land plant plastid genomes (nucleoids) that distinguish them from bacterial genomes. The prospects of genetic engineering of chloroplast genomes are discussed.
Collapse
Affiliation(s)
- N P Yurina
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | |
Collapse
|
46
|
Moreno JC, Tiller N, Diez M, Karcher D, Tillich M, Schöttler MA, Bock R. Generation and characterization of a collection of knock-down lines for the chloroplast Clp protease complex in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2199-2218. [PMID: 28369470 PMCID: PMC5447895 DOI: 10.1093/jxb/erx066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Protein degradation in chloroplasts is carried out by a set of proteases that eliminate misfolded, damaged, or superfluous proteins. The ATP-dependent caseinolytic protease (Clp) is the most complex protease in plastids and has been implicated mainly in stromal protein degradation. In contrast, FtsH, a thylakoid membrane-associated metalloprotease, is believed to participate mainly in the degradation of thylakoidal proteins. To determine the role of specific Clp and FtsH subunits in plant growth and development, RNAi lines targeting at least one subunit of each Clp ring and FtsH were generated in tobacco. In addition, mutation of the translation initiation codon was employed to down-regulate expression of the plastid-encoded ClpP1 subunit. These protease lines cover a broad range of reductions at the transcript and protein levels of the targeted genes. A wide spectrum of phenotypes was obtained, including pigment deficiency, alterations in leaf development, leaf variegations, and impaired photosynthesis. When knock-down lines for the different protease subunits were compared, both common and specific phenotypes were observed, suggesting distinct functions of at least some subunits. Our work provides a well-characterized collection of knock-down lines for plastid proteases in tobacco and reveals the importance of the Clp protease in physiology and plant development.
Collapse
Affiliation(s)
- Juan C Moreno
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Nadine Tiller
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mercedes Diez
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Michael Tillich
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mark A Schöttler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
47
|
Wu Y, You L, Li S, Ma M, Wu M, Ma L, Bock R, Chang L, Zhang J. In vivo Assembly in Escherichia coli of Transformation Vectors for Plastid Genome Engineering. FRONTIERS IN PLANT SCIENCE 2017; 8:1454. [PMID: 28871270 PMCID: PMC5566966 DOI: 10.3389/fpls.2017.01454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/04/2017] [Indexed: 05/03/2023]
Abstract
Plastid transformation for the expression of recombinant proteins and entire metabolic pathways has become a promising tool for plant biotechnology. However, large-scale application of this technology has been hindered by some technical bottlenecks, including lack of routine transformation protocols for agronomically important crop plants like rice or maize. Currently, there are no standard or commercial plastid transformation vectors available for the scientific community. Construction of a plastid transformation vector usually requires tedious and time-consuming cloning steps. In this study, we describe the adoption of an in vivo Escherichia coli cloning (iVEC) technology to quickly assemble a plastid transformation vector. The method enables simple and seamless build-up of a complete plastid transformation vector from five DNA fragments in a single step. The vector assembled for demonstration purposes contains an enhanced green fluorescent protein (GFP) expression cassette, in which the gfp transgene is driven by the tobacco plastid ribosomal RNA operon promoter fused to the 5' untranslated region (UTR) from gene10 of bacteriophage T7 and the transcript-stabilizing 3'UTR from the E. coli ribosomal RNA operon rrnB. Successful transformation of the tobacco plastid genome was verified by Southern blot analysis and seed assays. High-level expression of the GFP reporter in the transplastomic plants was visualized by confocal microscopy and Coomassie staining, and GFP accumulation was ~9% of the total soluble protein. The iVEC method represents a simple and efficient approach for construction of plastid transformation vector, and offers great potential for the assembly of increasingly complex vectors for synthetic biology applications in plastids.
Collapse
Affiliation(s)
- Yuyong Wu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei UniversityWuhan, China
| | - Lili You
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei UniversityWuhan, China
| | - Shengchun Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei UniversityWuhan, China
| | - Meiqi Ma
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei UniversityWuhan, China
| | - Mengting Wu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei UniversityWuhan, China
| | - Lixin Ma
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei UniversityWuhan, China
- Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei UniversityWuhan, China
| | - Ralph Bock
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei UniversityWuhan, China
- Department III, Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam, Germany
| | - Ling Chang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei UniversityWuhan, China
- Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei UniversityWuhan, China
- *Correspondence: Ling Chang
| | - Jiang Zhang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei UniversityWuhan, China
- Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei UniversityWuhan, China
- Jiang Zhang
| |
Collapse
|
48
|
Shmakov NA, Vasiliev GV, Shatskaya NV, Doroshkov AV, Gordeeva EI, Afonnikov DA, Khlestkina EK. Identification of nuclear genes controlling chlorophyll synthesis in barley by RNA-seq. BMC PLANT BIOLOGY 2016; 16:245. [PMID: 28105957 PMCID: PMC5123340 DOI: 10.1186/s12870-016-0926-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND Albinism in plants is characterized by lack of chlorophyll and results in photosynthesis impairment, abnormal plant development and premature death. These abnormalities are frequently encountered in interspecific crosses and tissue culture experiments. Analysis of albino mutant phenotypes with full or partial chlorophyll deficiency can shed light on genetic determinants and molecular mechanisms of albinism. Here we report analysis of RNA-seq transcription profiling of barley (Hordeum vulgare L.) near-isogenic lines, one of which is a carrier of mutant allele of the Alm gene for albino lemma and pericarp phenotype (line i:BwAlm). RESULTS 1221 genome fragments have statistically significant changes in expression levels between lines i:BwAlm and Bowman, with 148 fragments having increased expression levels in line i:BwAlm, and 1073 genome fragments, including 42 plastid operons, having decreased levels of expression in line i:BwAlm. We detected functional dissimilarity between genes with higher and lower levels of expression in i:BwAlm line. Genes with lower level of expression in the i:BwAlm line are mostly associated with photosynthesis and chlorophyll synthesis, while genes with higher expression level are functionally associated with vesicle transport. Differentially expressed genes are shown to be involved in several metabolic pathways; the largest fraction of such genes was observed for the Calvin-Benson-Bassham cycle. Finally, de novo assembly of transcriptome contains several transcripts, not annotated in current H. vulgare genome version. CONCLUSIONS Our results provide the new information about genes which could be involved in formation of albino lemma and pericarp phenotype. They demonstrate the interplay between nuclear and chloroplast genomes in this physiological process.
Collapse
Affiliation(s)
- Nickolay A. Shmakov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | | | | | | | - Dmitry A. Afonnikov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Elena K. Khlestkina
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
49
|
Ahmad N, Michoux F, Lössl AG, Nixon PJ. Challenges and perspectives in commercializing plastid transformation technology. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5945-5960. [PMID: 27697788 DOI: 10.1093/jxb/erw360] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Plastid transformation has emerged as an alternative platform to generate transgenic plants. Attractive features of this technology include specific integration of transgenes-either individually or as operons-into the plastid genome through homologous recombination, the potential for high-level protein expression, and transgene containment because of the maternal inheritance of plastids. Several issues associated with nuclear transformation such as gene silencing, variable gene expression due to the Mendelian laws of inheritance, and epigenetic regulation have not been observed in the plastid genome. Plastid transformation has been successfully used for the production of therapeutics, vaccines, antigens, and commercial enzymes, and for engineering various agronomic traits including resistance to biotic and abiotic stresses. However, these demonstrations have usually focused on model systems such as tobacco, and the technology per se has not yet reached the market. Technical factors limiting this technology include the lack of efficient protocols for the transformation of cereals, poor transgene expression in non-green plastids, a limited number of selection markers, and the lengthy procedures required to recover fully segregated plants. This article discusses the technology of transforming the plastid genome, the positive and negative features compared with nuclear transformation, and the current challenges that need to be addressed for successful commercialization.
Collapse
Affiliation(s)
- Niaz Ahmad
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| | - Franck Michoux
- Alkion Biopharma SAS, 4 rue Pierre Fontaine, 91058 Evry, France
| | - Andreas G Lössl
- Department of Applied Plant Sciences and Plant Biotechnology, University of Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
50
|
Olejniczak SA, Łojewska E, Kowalczyk T, Sakowicz T. Chloroplasts: state of research and practical applications of plastome sequencing. PLANTA 2016; 244:517-27. [PMID: 27259501 PMCID: PMC4983300 DOI: 10.1007/s00425-016-2551-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/29/2016] [Indexed: 05/07/2023]
Abstract
This review presents origins, structure and expression of chloroplast genomes. It also describes their sequencing, analysis and modification, focusing on potential practical uses and biggest challenges of chloroplast genome modification. During the evolution of eukaryotes, cyanobacteria are believed to have merged with host heterotrophic cell. Afterward, most of cyanobacterial genes from cyanobacteria were transferred to cell nucleus or lost in the process of endosymbiosis. As a result of these changes, a primary plastid was established. Nowadays, plastid genome (plastome) is almost always circular, has a size of 100-200 kbp (120-160 in land plants), and harbors 100-120 highly conserved unique genes. Plastids have their own gene expression system, which is similar to one of their cyanobacterial ancestors. Two different polymerases, plastid-derived PEP and nucleus-derived NEP, participate in transcription. Translation is similar to the one observed in cyanobacteria, but it also utilizes protein translation factors and positive regulatory mRNA elements absent from bacteria. Plastoms play an important role in genetic transformation. Transgenes are introduced into them either via gene gun (in undamaged tissues) or polyethylene glycol treatment (when protoplasts are targeted). Antibiotic resistance markers are the most common tool used for selection of transformed plants. In recent years, plastome transformation emerged as a promising alternative to nuclear transformation because of (1) high yield of target protein, (2) removing the risk of outcrossing with weeds, (3) lack of silencing mechanisms, and (4) ability to engineer the entire metabolic pathways rather than single gene traits. Currently, the main directions of such research regard: developing efficient enzyme, vaccine antigen, and biopharmaceutical protein production methods in plant cells and improving crops by increasing their resistance to a wide array of biotic and abiotic stresses. Because of that, the detailed knowledge of plastome structure and mechanism of functioning started to play a major role.
Collapse
Affiliation(s)
- Szymon Adam Olejniczak
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland.
| | - Ewelina Łojewska
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Tomasz Kowalczyk
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Tomasz Sakowicz
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| |
Collapse
|