1
|
Thibault E, Brandizzi F. Post-translational modifications: emerging directors of cell-fate decisions during endoplasmic reticulum stress in Arabidopsis thaliana. Biochem Soc Trans 2024; 52:831-848. [PMID: 38600022 PMCID: PMC11088923 DOI: 10.1042/bst20231025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Homeostasis of the endoplasmic reticulum (ER) is critical for growth, development, and stress responses. Perturbations causing an imbalance in ER proteostasis lead to a potentially lethal condition known as ER stress. In ER stress situations, cell-fate decisions either activate pro-life pathways that reestablish homeostasis or initiate pro-death pathways to prevent further damage to the organism. Understanding the mechanisms underpinning cell-fate decisions in ER stress is critical for crop development and has the potential to enable translation of conserved components to ER stress-related diseases in metazoans. Post-translational modifications (PTMs) of proteins are emerging as key players in cell-fate decisions in situations of imbalanced ER proteostasis. In this review, we address PTMs orchestrating cell-fate decisions in ER stress in plants and provide evidence-based perspectives for where future studies may focus to identify additional PTMs involved in ER stress management.
Collapse
Affiliation(s)
- Ethan Thibault
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
- Department of Plant Biology, Michigan State University, East Lansing, MI, U.S.A
| | - Federica Brandizzi
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
- Department of Plant Biology, Michigan State University, East Lansing, MI, U.S.A
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
2
|
Kohli M, Bansal H, Mishra GP, Dikshit HK, Reddappa SB, Roy A, Sinha SK, Shivaprasad K, Kumari N, Kumar A, Kumar RR, Nair RM, Aski M. Genome-wide association studies for earliness, MYMIV resistance, and other associated traits in mungbean ( Vigna radiata L. Wilczek) using genotyping by sequencing approach. PeerJ 2024; 12:e16653. [PMID: 38288464 PMCID: PMC10823994 DOI: 10.7717/peerj.16653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/20/2023] [Indexed: 02/01/2024] Open
Abstract
Yellow mosaic disease (YMD) remains a major constraint in mungbean (Vigna radiata (L.)) production; while short-duration genotypes offer multiple crop cycles per year and help in escaping terminal heat stress, especially during summer cultivation. A comprehensive genotyping by sequencing (GBS)-based genome-wide association studies (GWAS) analysis was conducted using 132 diverse mungbean genotypes for traits like flowering time, YMD resistance, soil plant analysis development (SPAD) value, trichome density, and leaf area. The frequency distribution revealed a wide range of values for all the traits. GBS studies identified 31,953 high-quality single nucleotide polymorphism (SNPs) across all 11 mungbean chromosomes and were used for GWAS. Structure analysis revealed the presence of two genetically distinct populations based on ΔK. The linkage disequilibrium (LD) varied throughout the chromosomes and at r2 = 0.2, the mean LD decay was estimated as 39.59 kb. Two statistical models, mixed linear model (MLM) and Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) identified 44 shared SNPs linked with various candidate genes. Notable candidate genes identified include FPA for flowering time (VRADI10G01470; chr. 10), TIR-NBS-LRR for mungbean yellow mosaic India virus (MYMIV) resistance (VRADI09G06940; chr. 9), E3 ubiquitin-protein ligase RIE1 for SPAD value (VRADI07G28100; chr. 11), WRKY family transcription factor for leaf area (VRADI03G06560; chr. 3), and LOB domain-containing protein 21 for trichomes (VRADI06G04290; chr. 6). In-silico validation of candidate genes was done through digital gene expression analysis using Arabidopsis orthologous (compared with Vigna radiata genome). The findings provided valuable insight for marker-assisted breeding aiming for the development of YMD-resistant and early-maturing mungbean varieties.
Collapse
Affiliation(s)
- Manju Kohli
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
- Genetics, Indian Agricultural Research Institute, Delhi, Delhi, India
| | - Hina Bansal
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | | | | | | | - Anirban Roy
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - Subodh Kumar Sinha
- Biotechnology, National Institute of Plant Biotechnology, New Delhi, Delhi, India
| | - K.M. Shivaprasad
- Genetics, Indian Agricultural Research Institute, Delhi, Delhi, India
| | - Nikki Kumari
- Genetics, Indian Agricultural Research Institute, Delhi, Delhi, India
| | - Atul Kumar
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - Ranjeet R. Kumar
- Biochemistry, Indian Agricultural Research Institute, New Delhi, Delhi, India
| | | | - Muraleedhar Aski
- Genetics, Indian Agricultural Research Institute, Delhi, Delhi, India
| |
Collapse
|
3
|
Saidi A, Safaeizadeh M, Hajibarat Z. Differential expression of the genes encoding immune system components in response to Pseudomonas syringae and Pseudomonas aeruginosa in Arabidopsis thaliana. 3 Biotech 2024; 14:11. [PMID: 38098678 PMCID: PMC10716095 DOI: 10.1007/s13205-023-03852-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
In innate immunity, the first layer of defense against any microbial infection is triggered by the perception of pathogen-associated molecular patterns by highly specific pattern recognition receptors. The Pseudomonas syringae pv. tomato and Pseudomonas aeruginosa are plant-pathogenic bacterial species that include pathogenic strains in a wide range of different plant species. In the current study, extensive analysis including gene expression of 12 hub genes, gene ontology, protein-protein interaction, and cis-element prediction to dissect the Arabidopsis response to above-mentioned bacteria were performed. Further, we evaluated weighted co-expression network analysis (WGCNA) in the wild-type plants and coi-1 mutant line and determined changes in responsive genes at two time-points (4 and 8 h) of post-treatment with P. syringae and P. aeruginosa. Compared to the wild-type plants, coi-1 mutant showed significant expression in most of the genes involved, indicating that their protein products have important role in innate immunity and RNA silencing pathways. Our findings showed that 12 hub genes were co-expressed in response to P. syringae and P. aeruginosa infections. Based on the network analysis, transcription factors, receptors, protein kinase, and pathogenesis-related protein (PR1) were involved in the immunity system. Gene ontology related to each module was involved in defense response, protein serine kinase activity, and primary miRNA processing. Based on the cis-elements prediction, MYB, MYC, WRE3, W-box, STRE, and ARE contained the most number of cis-elements in co-expressed network genes. Also, in coi-1 mutant, most responsive genes against theses pathogens were up-regulated. The knowledge gained in the gene expression analysis in response to P. syringae and P. aeruginosa in the model plant, i.e., Arabidopsis, is essential to allow us to gain more insight about the innate immunity in other crops.
Collapse
Affiliation(s)
- Abbas Saidi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mehdi Safaeizadeh
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zohreh Hajibarat
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
4
|
Muñiz García MN, Baroli I, Cortelezzi JI, Zubillaga M, Capiati DA. Genetic manipulation of protein phosphatase 2A affects multiple agronomic traits and physiological parameters in potato ( Solanum tuberosum). FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:1117-1129. [PMID: 37899005 DOI: 10.1071/fp23163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/14/2023] [Indexed: 10/31/2023]
Abstract
In this study, agronomic and functional characteristics of potato (Solanum tuberosum ) plants constitutively overexpressing the protein phosphatase 2A (PP2A) catalytic subunit StPP2Ac2b (StPP2Ac2b-OE) were evaluated. StPP2Ac2b-OE plants display reduced vegetative growth, tuber yield and tuber weight under well-watered and drought conditions. Leaves of StPP2Ac2b-OE plants show an increased rate of water loss, associated with an impaired ability to close stomata in response to abscisic acid. StPP2Ac2b-OE lines exhibit larger stomatal size and reduced stomatal density. These altered stomatal characteristics might be responsible for the impaired stomatal closure and the elevated transpiration rates, ultimately leading to increased sensitivity to water-deficit stress and greater yield loss under drought conditions. Overexpression of StPP2Ac2b accelerates senescence in response to water-deficit stress, which could also contribute to the increased sensitivity to drought. Actively photosynthesising leaves of StPP2Ac2b-OE plants exhibit elevated levels of carbohydrates and a down-regulation of the sucrose transporter StSWEET11 , suggesting a reduced sucrose export from leaves to developing tubers. This effect, combined with the hindered vegetative development, may contribute to the reduced tuber weight and yield in StPP2Ac2b-OE plants. These findings offer novel insights into the physiological functions of PP2A in potato plants and provide valuable information for enhancing potato productivity by modulating the expression of StPP2Ac2b .
Collapse
Affiliation(s)
- María N Muñiz García
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular 'Dr. Héctor N. Torres' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - Irene Baroli
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental and Instituto de Biodiversidad y Biología Experimental Aplicada (IBBEA), Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Juan I Cortelezzi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular 'Dr. Héctor N. Torres' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - Martina Zubillaga
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular 'Dr. Héctor N. Torres' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - Daniela A Capiati
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular 'Dr. Héctor N. Torres' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Vuelta de Obligado 2490, Buenos Aires, Argentina
| |
Collapse
|
5
|
Heidari B, Nemie-Feyissa D, Lillo C. Distinct Clades of Protein Phosphatase 2A Regulatory B'/B56 Subunits Engage in Different Physiological Processes. Int J Mol Sci 2023; 24:12255. [PMID: 37569631 PMCID: PMC10418862 DOI: 10.3390/ijms241512255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is a strongly conserved and major protein phosphatase in all eukaryotes. The canonical PP2A complex consists of a catalytic (C), scaffolding (A), and regulatory (B) subunit. Plants have three groups of evolutionary distinct B subunits: B55, B' (B56), and B''. Here, the Arabidopsis B' group is reviewed and compared with other eukaryotes. Members of the B'α/B'β clade are especially important for chromatid cohesion, and dephosphorylation of transcription factors that mediate brassinosteroid (BR) signaling in the nucleus. Other B' subunits interact with proteins at the cell membrane to dampen BR signaling or harness immune responses. The transition from vegetative to reproductive phase is influenced differentially by distinct B' subunits; B'α and B'β being of little importance, whereas others (B'γ, B'ζ, B'η, B'θ, B'κ) promote transition to flowering. Interestingly, the latter B' subunits have three motifs in a conserved manner, i.e., two docking sites for protein phosphatase 1 (PP1), and a POLO consensus phosphorylation site between these motifs. This supports the view that a conserved PP1-PP2A dephosphorelay is important in a variety of signaling contexts throughout eukaryotes. A profound understanding of these regulators may help in designing future crops and understand environmental issues.
Collapse
Affiliation(s)
| | | | - Cathrine Lillo
- IKBM, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036 Stavanger, Norway; (B.H.); (D.N.-F.)
| |
Collapse
|
6
|
Elshobaky A, Lillo C, Hodén KP, Kataya ARA. Protein-Protein Interactions and Quantitative Phosphoproteomic Analysis Reveal Potential Mitochondrial Substrates of Protein Phosphatase 2A-B'ζ Holoenzyme. PLANTS (BASEL, SWITZERLAND) 2023; 12:2586. [PMID: 37447147 DOI: 10.3390/plants12132586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Protein phosphatase 2A (PP2A) is a heterotrimeric conserved serine/threonine phosphatase complex that includes catalytic, scaffolding, and regulatory subunits. The 3 A subunits, 17 B subunits, and 5 C subunits that are encoded by the Arabidopsis genome allow 255 possible PP2A holoenzyme combinations. The regulatory subunits are crucial for substrate specificity and PP2A complex localization and are classified into the B, B', and B" non-related families in land plants. In Arabidopsis, the close homologs B'η, B'θ, B'γ, and B'ζ are further classified into a subfamily of B' called B'η. Previous studies have suggested that mitochondrial targeted PP2A subunits (B'ζ) play a role in energy metabolism and plant innate immunity. Potentially, the PP2A-B'ζ holoenzyme is involved in the regulation of the mitochondrial succinate/fumarate translocator, and it may affect the enzymes involved in energy metabolism. To investigate this hypothesis, the interactions between PP2A-B'ζ and the enzymes involved in the mitochondrial energy flow were investigated using bimolecular fluorescence complementation in tobacco and onion cells. Interactions were confirmed between the B'ζ subunit and the Krebs cycle proteins succinate/fumarate translocator (mSFC1), malate dehydrogenase (mMDH2), and aconitase (ACO3). Additional putative interacting candidates were deduced by comparing the enriched phosphoproteomes of wild type and B'ζ mutants: the mitochondrial regulator Arabidopsis pentatricopeptide repeat 6 (PPR6) and the two metabolic enzymes phosphoenolpyruvate carboxylase (PPC3) and phosphoenolpyruvate carboxykinase (PCK1). Overall, this study identifies potential PP2A substrates and highlights the role of PP2A in regulating energy metabolism in mitochondria.
Collapse
Affiliation(s)
- Ahmed Elshobaky
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Cathrine Lillo
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
| | - Kristian Persson Hodén
- Department of Plant Biology, Uppsala BioCenter, Linnéan Center for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007 Uppsala, Sweden
| | - Amr R A Kataya
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
7
|
Li H, Wang J, Kuan TA, Tang B, Feng L, Wang J, Cheng Z, Skłenar J, Derbyshire P, Hulin M, Li Y, Zhai Y, Hou Y, Menke FLH, Wang Y, Ma W. Pathogen protein modularity enables elaborate mimicry of a host phosphatase. Cell 2023:S0092-8674(23)00640-2. [PMID: 37369204 DOI: 10.1016/j.cell.2023.05.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/18/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Pathogens produce diverse effector proteins to manipulate host cellular processes. However, how functional diversity is generated in an effector repertoire is poorly understood. Many effectors in the devastating plant pathogen Phytophthora contain tandem repeats of the "(L)WY" motif, which are structurally conserved but variable in sequences. Here, we discovered a functional module formed by a specific (L)WY-LWY combination in multiple Phytophthora effectors, which efficiently recruits the serine/threonine protein phosphatase 2A (PP2A) core enzyme in plant hosts. Crystal structure of an effector-PP2A complex shows that the (L)WY-LWY module enables hijacking of the host PP2A core enzyme to form functional holoenzymes. While sharing the PP2A-interacting module at the amino terminus, these effectors possess divergent C-terminal LWY units and regulate distinct sets of phosphoproteins in the host. Our results highlight the appropriation of an essential host phosphatase through molecular mimicry by pathogens and diversification promoted by protein modularity in an effector repertoire.
Collapse
Affiliation(s)
- Hui Li
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jinlong Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tung Ariel Kuan
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Bozeng Tang
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Li Feng
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jiuyu Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi Cheng
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jan Skłenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Paul Derbyshire
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Michelle Hulin
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yufei Li
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yi Zhai
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Yingnan Hou
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA; School of Agriculture & Biology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yanli Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wenbo Ma
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK; Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
8
|
Ko KS, Yoo JY, Vu BN, Lee YE, Choi HN, Lee YN, Fanata WID, Harmoko R, Chung WS, Hong JC, Lee KO. The role of protein phosphatase 2A (PP2A) in the unfolded protein response (UPR) of plants. Biochem Biophys Res Commun 2023; 670:94-101. [PMID: 37290287 DOI: 10.1016/j.bbrc.2023.05.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Protein phosphatase 2A (PP2A) is a key regulator of plant growth and development, but its role in the endoplasmic reticulum (ER) stress response remains elusive. In this study, we investigated the function of PP2A under ER stress using loss-of-function mutants of ROOTS CURL of NAPHTHYLPHTHALAMIC ACID1 (RCN1), a regulatory A1 subunit isoform of Arabidopsis PP2A. RCN1 mutants (rcn1-1 and rcn1-2) exhibited reduced sensitivity to tunicamycin (TM), an inhibitor of N-linked glycosylation and inducer of unfolded protein response (UPR) gene expression, resulting in less severe effects compared to wild-type plants (Ws-2 and Col-0). TM negatively impacted PP2A activity in Col-0 plants but did not significantly affect rcn1-2 plants. Additionally, TM treatment did not influence the transcription levels of the PP2AA1(RCN1), 2, and 3 genes in Col-0 plants. Cantharidin, a PP2A inhibitor, exacerbated growth defects in rcn1 plants and alleviated TM-induced growth inhibition in Ws-2 and Col-0 plants. Furthermore, cantharidin treatment mitigated TM hypersensitivity in ire1a&b and bzip28&60 mutants. These findings suggest that PP2A activity is essential for an efficient UPR in Arabidopsis.
Collapse
Affiliation(s)
- Ki Seong Ko
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Jae Yong Yoo
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Bich Ngoc Vu
- Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Young Eun Lee
- Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Ha Na Choi
- Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Yoo Na Lee
- Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Wahyu Indra Duwi Fanata
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea; Department of Agrotechnology, Faculty of Agriculture, University of Jember, Jember, 68121, Indonesia
| | - Rikno Harmoko
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea; Research Center for Genetic Engineering, National Research and Innovation Agency, Jl. Raya Jakarta-Bogor, Cibinong, Bogor, 16911, Indonesia
| | - Woo Sik Chung
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea; Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Jong Chan Hong
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea; Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Kyun Oh Lee
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea; Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea.
| |
Collapse
|
9
|
Máthé C, Freytag C, Kelemen A, M-Hamvas M, Garda T. "B" Regulatory Subunits of PP2A: Their Roles in Plant Development and Stress Reactions. Int J Mol Sci 2023; 24:ijms24065147. [PMID: 36982222 PMCID: PMC10049431 DOI: 10.3390/ijms24065147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
Protein phosphatase PP2A is an enzyme complex consisting of C (catalytic), A (scaffold) and B (regulatory) subunits. B subunits are a large family of proteins that regulate activity, substrate specificity and subcellular localization of the holoenzyme. Knowledge on the molecular functions of PP2A in plants is less than for protein kinases, but it is rapidly increasing. B subunits are responsible for the large diversity of PP2A functioning. This paper intends to give a survey on their multiple regulatory mechanisms. Firstly, we give a short description on our current knowledge in terms of "B"-mediated regulation of metabolic pathways. Next, we present their subcellular localizations, which extend from the nucleus to the cytosol and membrane compartments. The next sections show how B subunits regulate cellular processes from mitotic division to signal transduction pathways, including hormone signaling, and then the emerging evidence for their regulatory (mostly modulatory) roles in both abiotic and biotic stress responses in plants. Knowledge on these issues should be increased in the near future, since it contributes to a better understanding of how plant cells work, it may have agricultural applications, and it may have new insights into how vascular plants including crops face diverse environmental challenges.
Collapse
Affiliation(s)
- Csaba Máthé
- Department of Botany, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Csongor Freytag
- Department of Botany, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Adrienn Kelemen
- Department of Botany, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Márta M-Hamvas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Tamás Garda
- Department of Botany, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
10
|
Freytag C, Garda T, Kónya Z, M-Hamvas M, Tóth-Várady B, Juhász GP, Ujlaky-Nagy L, Kelemen A, Vasas G, Máthé C. B" and C subunits of PP2A regulate the levels of reactive oxygen species and superoxide dismutase activities in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:182-192. [PMID: 36640685 DOI: 10.1016/j.plaphy.2022.12.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/14/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The serine-threonine protein phosphatases PP2A regulate many cellular processes, however their role in oxidative stress responses and defence is less known. We show the involvement of its C (catalytic) and B" (a regulatory) subunits. The c3c4 (C subunit) and fass (B") subunit mutants and Col wt of Arabidopsis were used. Controls and treatments with the PP2A inhibitor microcystin-LR (MCY-LR) and reactive oxygen species (ROS) inducer diquat (DQ) were employed. ROS levels of primary roots were largely genotype dependent and both C and B" subunit mutants had increased sensitivity to MCY-LR and DQ indicating the involvement of these subunits in oxidative stress induction. Superoxide dismutases (SOD), mainly the Cu/Zn-SOD isoform, as key enzymes involved in ROS scavenging are also showing altered (mostly increased) activities in both c3c4 and fass mutants and have opposite relations to ROS induction. This indicates that the two types of subunits involved have partially different regulatory roles. In relation to this, control and MCY-LR/DQ treated B" subunit mutants were proven to have altered levels of phosphorylation of histone H2AX. γH2AX, the phosphorylated form indicates double stranded DNA damage during oxidative stress. Overall we point out the probable pivotal role of several PP2A subunits in the regulation of oxidative stress responses in plants and pave the way for future research to reveal the signaling pathways involved.
Collapse
Affiliation(s)
- Csongor Freytag
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Tamás Garda
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Zoltán Kónya
- Department of Medical Chemisty, Faculty of Medicine, University of Debrecen, Hungary.
| | - Márta M-Hamvas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Balázs Tóth-Várady
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Gabriella Petra Juhász
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - László Ujlaky-Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary.
| | - Adrienn Kelemen
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Gábor Vasas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Csaba Máthé
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| |
Collapse
|
11
|
Chen L. Emerging roles of protein phosphorylation in regulation of stomatal development. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153882. [PMID: 36493667 DOI: 10.1016/j.jplph.2022.153882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Stomata, tiny epidermal spores, control gas exchange between plants and their external environment, thereby playing essential roles in plant development and physiology. Stomatal development requires rapid regulation of components in signaling pathways to respond flexibly to numerous intrinsic and extrinsic signals. In support of this, reversible phosphorylation, which is particularly suitable for rapid signal transduction, has been implicated in this process. This review highlights the current understanding of the essential roles of reversible phosphorylation in the regulation of stomatal development, most of which comes from the dicot Arabidopsis thaliana. Protein phosphorylation tightly controls the activity of SPEECHLESS (SPCH)-SCREAM (SCRM), the stomatal lineage switch, and the activity of several mitogen-activated protein kinases and receptor kinases upstream of SPCH-SCRM, thereby regulating stomatal cell differentiation and patterning. In addition, protein phosphorylation is involved in the establishment of cell polarity during stomatal asymmetric cell division. Finally, cyclin-dependent kinase-mediated protein phosphorylation plays essential roles in cell cycle control during stomatal development.
Collapse
Affiliation(s)
- Liang Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
12
|
Saini LK, Bheri M, Pandey GK. Protein phosphatases and their targets: Comprehending the interactions in plant signaling pathways. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:307-370. [PMID: 36858740 DOI: 10.1016/bs.apcsb.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Protein phosphorylation is a vital reversible post-translational modification. This process is established by two classes of enzymes: protein kinases and protein phosphatases. Protein kinases phosphorylate proteins while protein phosphatases dephosphorylate phosphorylated proteins, thus, functioning as 'critical regulators' in signaling pathways. The eukaryotic protein phosphatases are classified as phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine (Ser)/threonine (Thr) specific phosphatases (STPs) that dephosphorylate Ser and Thr residues. The PTP family dephosphorylates Tyr residues while dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. The composition of these enzymes as well as their substrate specificity are important determinants of their functional significance in a number of cellular processes and stress responses. Their role in animal systems is well-understood and characterized. The functional characterization of protein phosphatases has been extensively covered in plants, although the comprehension of their mechanistic basis is an ongoing pursuit. The nature of their interactions with other key players in the signaling process is vital to our understanding. The substrates or targets determine their potential as well as magnitude of the impact they have on signaling pathways. In this article, we exclusively overview the various substrates of protein phosphatases in plant signaling pathways, which are a critical determinant of the outcome of various developmental and stress stimuli.
Collapse
Affiliation(s)
- Lokesh K Saini
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
13
|
Creighton MT, Nemie-Feyissa D, Zaman N, Johansen SS, Dysjaland H, Heidari B, Lillo C. Loss of LEUCINE CARBOXYL METHYLTRANSFERASE 1 interferes with metal homeostasis in Arabidopsis and enhances susceptibility to environmental stresses. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153843. [PMID: 36265226 DOI: 10.1016/j.jplph.2022.153843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The biochemical function of LEUCINE CARBOXYL METHYLTRANSFERASE 1 (LCMT1) is to transfer a methyl group from the methyl donor S-adenosylmethionine (SAM) to the catalytic subunits of PROTEIN PHOSPHATASE 2A (PP2Ac), PP4 and PP6. This post-translational modification by LCMT1 is found throughout eukaryotes from yeast to animals and plants, indicating that its function is essential. However, Arabidopsis with knocked out LCMT1 still grows and develops almost normally, at least under optimal growth conditions. We therefore proposed that the presence of LCMT1 would be important under non-optimal growth conditions and favoured plant survival during evolution. To shed light on the physiological functions of plant LCMT1, phenotypes of the lcmt1 mutant and wild type Arabidopsis were compared under various conditions including exposure to heavy metals, variable chelator concentrations, and increased temperature. The lcmt1 mutant was found to be more susceptible to these environmental changes than wild type and resulted in poor growth of seedlings and rosette stage plants. Element analysis of rosette stage plants mainly showed a difference between the lcmt1 mutant and wild type regarding concentrations of sodium and boron, two-fold up or halved, respectively. In both lcmt1 and wild type, lack of EDTA in the growth medium resulted in enhanced concentration of copper, manganese, zinc and sulphur, and especially lcmt1 growth was hampered by these conditions. The altered phenotype in response to stress, the element and mRNA transcript analysis substantiate that LCMT1 has an important role in metal homeostasis and show that functional LCMT1 is necessary to prevent damages from heat, heavy metals or lack of chelator.
Collapse
Affiliation(s)
- Maria T Creighton
- IKBM, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036, Stavanger, Norway
| | - Dugassa Nemie-Feyissa
- IKBM, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036, Stavanger, Norway
| | - Nabeela Zaman
- IKBM, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036, Stavanger, Norway
| | - Sverre S Johansen
- IKBM, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036, Stavanger, Norway
| | - Hege Dysjaland
- IKBM, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036, Stavanger, Norway
| | - Behzad Heidari
- IKBM, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036, Stavanger, Norway
| | - Cathrine Lillo
- IKBM, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036, Stavanger, Norway.
| |
Collapse
|
14
|
Muñiz García MN, Grossi C, Ulloa RM, Capiati DA. The protein phosphatase 2A catalytic subunit StPP2Ac2b enhances susceptibility to Phytophthora infestans and senescence in potato. PLoS One 2022; 17:e0275844. [PMID: 36215282 PMCID: PMC9550054 DOI: 10.1371/journal.pone.0275844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/25/2022] [Indexed: 11/11/2022] Open
Abstract
The serine/threonine protein phosphatases type 2A (PP2A) are involved in several physiological responses in plants, playing important roles in developmental programs, stress responses and hormone signaling. Six PP2A catalytic subunits (StPP2Ac) were identified in cultivated potato. Transgenic potato plants constitutively overexpressing the catalytic subunit StPP2Ac2b (StPP2Ac2b-OE) were developed to determine its physiological roles. The response of StPP2Ac2b-OE plants to the oomycete Phytophthora infestans, the causal agent of late blight, was evaluated. We found that overexpression of StPP2Ac2b enhances susceptibility to the pathogen. Further bioinformatics, biochemical, and molecular analyses revealed that StPP2Ac2b positively regulates developmental and pathogen-induced senescence, and that P. infestans infection promotes senescence, most likely through induction of StPP2Ac2b expression.
Collapse
Affiliation(s)
- María N. Muñiz García
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cecilia Grossi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Rita M. Ulloa
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Daniela A. Capiati
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- * E-mail: ,
| |
Collapse
|
15
|
Systemic Signaling: A Role in Propelling Crop Yield. PLANTS 2022; 11:plants11111400. [PMID: 35684173 PMCID: PMC9182853 DOI: 10.3390/plants11111400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022]
Abstract
Food security has become a topic of great concern in many countries. Global food security depends heavily on agriculture that has access to proper resources and best practices to generate higher crop yields. Crops, as with other plants, have a variety of strategies to adapt their growth to external environments and internal needs. In plants, the distal organs are interconnected through the vascular system and intricate hierarchical signaling networks, to communicate and enhance survival within fluctuating environments. Photosynthesis and carbon allocation are fundamental to crop production and agricultural outputs. Despite tremendous progress achieved by analyzing local responses to environmental cues, and bioengineering of critical enzymatic processes, little is known about the regulatory mechanisms underlying carbon assimilation, allocation, and utilization. This review provides insights into vascular-based systemic regulation of photosynthesis and resource allocation, thereby opening the way for the engineering of source and sink activities to optimize the yield performance of major crops.
Collapse
|
16
|
Morón-García O, Garzón-Martínez GA, Martínez-Martín MJP, Brook J, Corke FMK, Doonan JH, Camargo Rodríguez AV. Genetic architecture of variation in Arabidopsis thaliana rosettes. PLoS One 2022; 17:e0263985. [PMID: 35171969 PMCID: PMC8849614 DOI: 10.1371/journal.pone.0263985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/01/2022] [Indexed: 12/04/2022] Open
Abstract
Rosette morphology across Arabidopsis accessions exhibits considerable variation. Here we report a high-throughput phenotyping approach based on automatic image analysis to quantify rosette shape and dissect the underlying genetic architecture. Shape measurements of the rosettes in a core set of Recombinant Inbred Lines from an advanced mapping population (Multiparent Advanced Generation Inter-Cross or MAGIC) derived from inter-crossing 19 natural accessions. Image acquisition and analysis was scaled to extract geometric descriptors from time stamped images of growing rosettes. Shape analyses revealed heritable morphological variation at early juvenile stages and QTL mapping resulted in over 116 chromosomal regions associated with trait variation within the population. Many QTL linked to variation in shape were located near genes related to hormonal signalling and signal transduction pathways while others are involved in shade avoidance and transition to flowering. Our results suggest rosette shape arises from modular integration of sub-organ morphologies and can be considered a functional trait subjected to selective pressures of subsequent morphological traits. On an applied aspect, QTLs found will be candidates for further research on plant architecture.
Collapse
Affiliation(s)
- Odín Morón-García
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Gina A. Garzón-Martínez
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - M. J. Pilar Martínez-Martín
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Jason Brook
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Fiona M. K. Corke
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - John H. Doonan
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
- * E-mail: (AVCR); (JHD)
| | - Anyela V. Camargo Rodríguez
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
- * E-mail: (AVCR); (JHD)
| |
Collapse
|
17
|
Lin QJ, Chu J, Kumar V, Yuan DP, Li ZM, Mei Q, Xuan YH. Protein Phosphatase 2A Catalytic Subunit PP2A-1 Enhances Rice Resistance to Sheath Blight Disease. Front Genome Ed 2021; 3:632136. [PMID: 34713255 PMCID: PMC8525387 DOI: 10.3389/fgeed.2021.632136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/08/2021] [Indexed: 11/22/2022] Open
Abstract
Rice (Oryza sativa) production is damaged to a great extent by sheath blight disease (ShB). However, the defense mechanism in rice against this disease is largely unknown. Previous transcriptome analysis identified a significantly induced eukaryotic protein phosphatase 2A catalytic subunit 1 (PP2A-1) after the inoculation of Rhizoctonia solani. Five genes encoding PP2A exist in rice genome, and these five genes are ubiquitously expressed in different tissues and stages. Inoculation of R. solani showed that the genome edited pp2a-1 mutants using the CRISPR/Cas9 were more susceptible to ShB than the wild-type control, but other PP2A gene mutants exhibited similar response to ShB compared to wild-type plants. In parallel, PP2A-1 expression level was higher in the activation tagging line, and PP2A-1 overexpression inhibited plant height and promoted the resistance to ShB. PP2A-1-GFP was localized in the cytoplasm and nucleus. In addition, R. solani-dependent induction kinetics of pathogen-related genes PBZ1 and PR1b was lower in pp2a-1 mutants but higher in PP2A-1 activation line compared to those in the wild-type. In conclusion, our analysis shows that PP2A-1 is a member of protein phosphatase, which regulates rice resistance to ShB. This result broadens the understanding of the defense mechanism against ShB and provides a potential target for rice breeding for disease resistance.
Collapse
Affiliation(s)
- Qiu Jun Lin
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Jin Chu
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Vikranth Kumar
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, South Korea
| | - De Peng Yuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Zhi Min Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Qiong Mei
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuan Hu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
18
|
Pascual J, Rahikainen M, Angeleri M, Alegre S, Gossens R, Shapiguzov A, Heinonen A, Trotta A, Durian G, Winter Z, Sinkkonen J, Kangasjärvi J, Whelan J, Kangasjärvi S. ACONITASE 3 is part of theANAC017 transcription factor-dependent mitochondrial dysfunction response. PLANT PHYSIOLOGY 2021; 186:1859-1877. [PMID: 34618107 PMCID: PMC8331168 DOI: 10.1093/plphys/kiab225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/21/2021] [Indexed: 05/26/2023]
Abstract
Mitochondria are tightly embedded within metabolic and regulatory networks that optimize plant performance in response to environmental challenges. The best-known mitochondrial retrograde signaling pathway involves stress-induced activation of the transcription factor NAC DOMAIN CONTAINING PROTEIN 17 (ANAC017), which initiates protective responses to stress-induced mitochondrial dysfunction in Arabidopsis (Arabidopsis thaliana). Posttranslational control of the elicited responses, however, remains poorly understood. Previous studies linked protein phosphatase 2A subunit PP2A-B'γ, a key negative regulator of stress responses, with reversible phosphorylation of ACONITASE 3 (ACO3). Here we report on ACO3 and its phosphorylation at Ser91 as key components of stress regulation that are induced by mitochondrial dysfunction. Targeted mass spectrometry-based proteomics revealed that the abundance and phosphorylation of ACO3 increased under stress, which required signaling through ANAC017. Phosphomimetic mutation at ACO3-Ser91 and accumulation of ACO3S91D-YFP promoted the expression of genes related to mitochondrial dysfunction. Furthermore, ACO3 contributed to plant tolerance against ultraviolet B (UV-B) or antimycin A-induced mitochondrial dysfunction. These findings demonstrate that ACO3 is both a target and mediator of mitochondrial dysfunction signaling, and critical for achieving stress tolerance in Arabidopsis leaves.
Collapse
Affiliation(s)
- Jesús Pascual
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku FI-20014, Finland
| | - Moona Rahikainen
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku FI-20014, Finland
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki FI-00014, Finland
| | - Martina Angeleri
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku FI-20014, Finland
| | - Sara Alegre
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku FI-20014, Finland
| | - Richard Gossens
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki FI-00014, Finland
- Viikki Plant Science Center, University of Helsinki, Helsinki FI-00014, Finland
| | - Alexey Shapiguzov
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki FI-00014, Finland
- Viikki Plant Science Center, University of Helsinki, Helsinki FI-00014, Finland
- Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia
| | - Arttu Heinonen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku FI-20520, Finland
| | - Andrea Trotta
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku FI-20014, Finland
- Institute of Biosciences and Bioresources, National Research Council of Italy, Sesto Fiorentino 50019, Italy
| | - Guido Durian
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku FI-20014, Finland
| | - Zsófia Winter
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku FI-20014, Finland
| | - Jari Sinkkonen
- Department of Chemistry, Instrument Centre, University of Turku, Turku FI-20014, Finland
| | - Jaakko Kangasjärvi
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki FI-00014, Finland
- Viikki Plant Science Center, University of Helsinki, Helsinki FI-00014, Finland
| | - James Whelan
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora 3086, Australia
| | - Saijaliisa Kangasjärvi
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki FI-00014, Finland
- Viikki Plant Science Center, University of Helsinki, Helsinki FI-00014, Finland
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki FI-00014, Finland
| |
Collapse
|
19
|
He H, Denecker J, Van Der Kelen K, Willems P, Pottie R, Phua SY, Hannah MA, Vertommen D, Van Breusegem F, Mhamdi A. The Arabidopsis mediator complex subunit 8 regulates oxidative stress responses. THE PLANT CELL 2021; 33:2032-2057. [PMID: 33713138 PMCID: PMC8290281 DOI: 10.1093/plcell/koab079] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/10/2021] [Indexed: 05/13/2023]
Abstract
Signaling events triggered by hydrogen peroxide (H2O2) regulate plant growth and defense by orchestrating a genome-wide transcriptional reprogramming. However, the specific mechanisms that govern H2O2-dependent gene expression are still poorly understood. Here, we identify the Arabidopsis Mediator complex subunit MED8 as a regulator of H2O2 responses. The introduction of the med8 mutation in a constitutive oxidative stress genetic background (catalase-deficient, cat2) was associated with enhanced activation of the salicylic acid pathway and accelerated cell death. Interestingly, med8 seedlings were more tolerant to oxidative stress generated by the herbicide methyl viologen (MV) and exhibited transcriptional hyperactivation of defense signaling, in particular salicylic acid- and jasmonic acid-related pathways. The med8-triggered tolerance to MV was manipulated by the introduction of secondary mutations in salicylic acid and jasmonic acid pathways. In addition, analysis of the Mediator interactome revealed interactions with components involved in mRNA processing and microRNA biogenesis, hence expanding the role of Mediator beyond transcription. Notably, MED8 interacted with the transcriptional regulator NEGATIVE ON TATA-LESS, NOT2, to control the expression of H2O2-inducible genes and stress responses. Our work establishes MED8 as a component regulating oxidative stress responses and demonstrates that it acts as a negative regulator of H2O2-driven activation of defense gene expression.
Collapse
Affiliation(s)
- Huaming He
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Jordi Denecker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
- Present address: Illumina Cambridge Ltd, Cambridge, CB21 6DF, UK; Present address: Sciensano, 1050 Brussels, Belgium
| | - Katrien Van Der Kelen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
- Present address: Illumina Cambridge Ltd, Cambridge, CB21 6DF, UK; Present address: Sciensano, 1050 Brussels, Belgium
| | - Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Robin Pottie
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Su Yin Phua
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Matthew A Hannah
- BASF Belgium Coordination Center, Innovation Center Gent, 9052 Gent, Belgium
| | - Didier Vertommen
- de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Amna Mhamdi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
- Author for correspondence: (A.M.)
| |
Collapse
|
20
|
Pang Q, Zhang T, Zhang A, Lin C, Kong W, Chen S. Proteomics and phosphoproteomics revealed molecular networks of stomatal immune responses. PLANTA 2020; 252:66. [PMID: 32979085 DOI: 10.1007/s00425-020-03474-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/15/2020] [Indexed: 05/20/2023]
Abstract
Dynamic protein and phosphoprotein profiles uncovered the overall regulation of stomata movement against pathogen invasion and phosphorylation states of proteins involved in ABA, SA, calcium and ROS signaling, which may modulate the stomatal immune response. Stomatal openings represent a major route of pathogen entry into the plant, and plants have evolved mechanisms to regulate stomatal aperture as innate immune response against bacterial invasion. However, the mechanisms underlying stomatal immunity are not fully understood. Taking advantage of high-throughput liquid chromatography mass spectrometry (LC-MS), we performed label-free proteomic and phosphoproteomic analyses of enriched guard cells in response to a bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. In total, 495 proteins and 1229 phosphoproteins were identified as differentially regulated. These proteins are involved in a variety of signaling pathways, including abscisic acid and salicylic acid hormone signaling, calcium and reactive oxygen species signaling. We also showed that dynamic changes of phosphoprotein WRKY transcription factors may play a crucial role in regulating stomata movement in plant immunity. The identified proteins/phosphoproteins and the pathways form interactive molecular networks to regulate stomatal immunity. This study has provided new insights into the multifaceted mechanisms of stomatal immunity. The differential proteins and phosphoproteins are potential targets for engineering or breeding of crops for enhanced pathogen defense.
Collapse
Affiliation(s)
- Qiuying Pang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Tong Zhang
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Aiqin Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Chuwei Lin
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Wenwen Kong
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA.
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA.
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
21
|
Alegre S, Pascual J, Trotta A, Angeleri M, Rahikainen M, Brosche M, Moffatt B, Kangasjärvi S. Evolutionary conservation and post-translational control of S-adenosyl-L-homocysteine hydrolase in land plants. PLoS One 2020; 15:e0227466. [PMID: 32678822 PMCID: PMC7367456 DOI: 10.1371/journal.pone.0227466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/30/2020] [Indexed: 02/01/2023] Open
Abstract
Trans-methylation reactions are intrinsic to cellular metabolism in all living organisms. In land plants, a range of substrate-specific methyltransferases catalyze the methylation of DNA, RNA, proteins, cell wall components and numerous species-specific metabolites, thereby providing means for growth and acclimation in various terrestrial habitats. Trans-methylation reactions consume vast amounts of S-adenosyl-L-methionine (SAM) as a methyl donor in several cellular compartments. The inhibitory reaction by-product, S-adenosyl-L-homocysteine (SAH), is continuously removed by SAH hydrolase (SAHH), which essentially maintains trans-methylation reactions in all living cells. Here we report on the evolutionary conservation and post-translational control of SAHH in land plants. We provide evidence suggesting that SAHH forms oligomeric protein complexes in phylogenetically divergent land plants and that the predominant protein complex is composed by a tetramer of the enzyme. Analysis of light-stress-induced adjustments of SAHH in Arabidopsis thaliana and Physcomitrella patens further suggests that regulatory actions may take place on the levels of protein complex formation and phosphorylation of this metabolically central enzyme. Collectively, these data suggest that plant adaptation to terrestrial environments involved evolution of regulatory mechanisms that adjust the trans-methylation machinery in response to environmental cues.
Collapse
Affiliation(s)
- Sara Alegre
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Jesús Pascual
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Andrea Trotta
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
- Institute of Biosciences and Bioresources, National Research Council of Italy, Sesto Fiorentino, Firenze, Italy
| | - Martina Angeleri
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Moona Rahikainen
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Mikael Brosche
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Barbara Moffatt
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Saijaliisa Kangasjärvi
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| |
Collapse
|
22
|
Mhamdi A. The Protein Phosphatase PP2A-B' γ Takes Control over Salicylic Acid to Suppress Defense and Premature Senescence. PLANT PHYSIOLOGY 2020; 182:681-682. [PMID: 32005741 PMCID: PMC6997698 DOI: 10.1104/pp.19.01466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Amna Mhamdi
- Ghent University, Department of Plant Biotechnology and Bioinformatics, and VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
23
|
Durian G, Jeschke V, Rahikainen M, Vuorinen K, Gollan PJ, Brosché M, Salojärvi J, Glawischnig E, Winter Z, Li S, Noctor G, Aro EM, Kangasjärvi J, Overmyer K, Burow M, Kangasjärvi S. PROTEIN PHOSPHATASE 2A-B' γ Controls Botrytis cinerea Resistance and Developmental Leaf Senescence. PLANT PHYSIOLOGY 2020; 182:1161-1181. [PMID: 31659127 PMCID: PMC6997707 DOI: 10.1104/pp.19.00893] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/14/2019] [Indexed: 05/22/2023]
Abstract
Plants optimize their growth and survival through highly integrated regulatory networks that coordinate defensive measures and developmental transitions in response to environmental cues. Protein phosphatase 2A (PP2A) is a key signaling component that controls stress reactions and growth at different stages of plant development, and the PP2A regulatory subunit PP2A-B'γ is required for negative regulation of pathogenesis responses and for maintenance of cell homeostasis in short-day conditions. Here, we report molecular mechanisms by which PP2A-B'γ regulates Botrytis cinerea resistance and leaf senescence in Arabidopsis (Arabidopsis thaliana). We extend the molecular functionality of PP2A-B'γ to a protein kinase-phosphatase interaction with the defense-associated calcium-dependent protein kinase CPK1 and present indications this interaction may function to control CPK1 activity. In presenescent leaf tissues, PP2A-B'γ is also required to negatively control the expression of salicylic acid-related defense genes, which have recently proven vital in plant resistance to necrotrophic fungal pathogens. In addition, we find the premature leaf yellowing of pp2a-b'γ depends on salicylic acid biosynthesis via SALICYLIC ACID INDUCTION DEFICIENT2 and bears the hallmarks of developmental leaf senescence. We propose PP2A-B'γ age-dependently controls salicylic acid-related signaling in plant immunity and developmental leaf senescence.
Collapse
Affiliation(s)
- Guido Durian
- Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Verena Jeschke
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Moona Rahikainen
- Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Katariina Vuorinen
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
| | - Peter J Gollan
- Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Mikael Brosché
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
| | - Erich Glawischnig
- Chair of Genetics, Department of Plant Sciences, Technical University of Munich, D-85354 Freising, Germany
| | - Zsófia Winter
- Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Shengchun Li
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, The Institut National de la Recherche Agronomique, Université Paris-sud 11, Université Paris-Saclay, 91405 Orsay, France
| | - Graham Noctor
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, The Institut National de la Recherche Agronomique, Université Paris-sud 11, Université Paris-Saclay, 91405 Orsay, France
| | - Eva-Mari Aro
- Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
| | - Kirk Overmyer
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
| | - Meike Burow
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | | |
Collapse
|
24
|
Rasool B, Karpinska B, Pascual J, Kangasjärvi S, Foyer CH. Catalase, glutathione, and protein phosphatase 2A-dependent organellar redox signalling regulate aphid fecundity under moderate and high irradiance. PLANT, CELL & ENVIRONMENT 2020; 43:209-222. [PMID: 31702837 DOI: 10.1111/pce.13669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 05/29/2023]
Abstract
Redox processes regulate plant/insect responses, but the precise roles of environmental triggers and specific molecular components remain poorly defined. Aphid fecundity and plant responses were therefore measured in Arabidopsis thaliana mutants deficient in either catalase 2 (cat2), different protein phosphatase 2A (PP2A) subunits or glutathione (cad2, pad2, and clt1) under either moderate (250 μmol m-2 s-1 ) or high (800 μmol m-2 s-1 ) light. Aphid fecundity was decreased in pp2a-b'γ, cat2 and the cat2 pp2a-b'γ double mutants relative to the wild type under moderate irradiance. High light decreased aphid numbers in all genotypes except for cat2. Aphid fecundity was similar in the cat2 and glutathione-, phytoalexin-, and glucosinolate-deficient cat2cad2 double mutants under both irradiances. Aphid-induced increases in transcripts encoding the abscisic acid-related ARABIDOPSIS ZINC-FINGER PROTEIN 1 transcription factor were observed only under moderate light. Conversely, aphid induced increases in transcripts encoding the jasmonate-synthesis enzyme ALLENE OXIDE CYCLASE 3 was observed in all genotypes only under high light. Aphid-induced increases in REDOX RESPONSIVE TRANSCRIPTION FACTOR 1 mRNAs were observed in all genotypes except pp2a-b'ζ1-1 under both irradiances. Aphid fecundity is therefore regulated by cellular redox signalling that is mediated, at least in part, through PP2A-dependent mitochondria to nucleus signalling pathways.
Collapse
Affiliation(s)
- Brwa Rasool
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
- Technical College of Applied Science, Sulaimani Polytechnic University, 46001, Sulaymaniyah, Iraq
| | - Barbara Karpinska
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Jesús Pascual
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20500, Turku, Finland
| | - Saijaliisa Kangasjärvi
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20500, Turku, Finland
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| |
Collapse
|
25
|
Mäkinen K, De S. The significance of methionine cycle enzymes in plant virus infections. CURRENT OPINION IN PLANT BIOLOGY 2019; 50:67-75. [PMID: 30959442 DOI: 10.1016/j.pbi.2019.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 05/22/2023]
Abstract
Both biotic and abiotic stresses cause changes in the activities of plant methionine cycle (MTC) enzymes. These changes contribute to the ability of the plant to manage stress. On the other hand, viruses utilize MTC enzymes to promote infection. Here, we review the growing but still limited knowledge of the interactions between plant viral proteins and MTC enzymes. Virus-induced changes in S-adenosyl methionine synthetase and S-adenosyl homocysteine hydrolase activities debilitate transcriptional and post-transcriptional RNA silencing and affect antiviral defense reactions connected to ethylene and polyamine biosynthesis pathways. Viral perturbations of host methionine homeostasis couple trans-sulfuration and gluthathione biosynthesis pathways to MTC functions. Large multiprotein complexes, which contain viral proteins and MTC enzymes, may represent metabolons assembled for specific viral functions or host defense responses. Proper understanding of the MTC-associated metabolic and regulatory interactions will reveal those with potential to create virus resistance in plants.
Collapse
Affiliation(s)
- Kristiina Mäkinen
- Faculty of Agriculture and Forestry, Department of Microbiology, Viikki Plant Sciences Center, P.O. Box 56, University of Helsinki, Finland.
| | - Swarnalok De
- Faculty of Agriculture and Forestry, Department of Microbiology, Viikki Plant Sciences Center, P.O. Box 56, University of Helsinki, Finland
| |
Collapse
|
26
|
Máthé C, Garda T, Freytag C, M-Hamvas M. The Role of Serine-Threonine Protein Phosphatase PP2A in Plant Oxidative Stress Signaling-Facts and Hypotheses. Int J Mol Sci 2019; 20:ijms20123028. [PMID: 31234298 PMCID: PMC6628354 DOI: 10.3390/ijms20123028] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022] Open
Abstract
Abiotic and biotic factors induce oxidative stress involving the production and scavenging of reactive oxygen species (ROS). This review is a survey of well-known and possible roles of serine-threonine protein phosphatases in plant oxidative stress signaling, with special emphasis on PP2A. ROS mediated signaling involves three interrelated pathways: (i) perception of extracellular ROS triggers signal transduction pathways, leading to DNA damage and/or the production of antioxidants; (ii) external signals induce intracellular ROS generation that triggers the relevant signaling pathways and (iii) external signals mediate protein phosphorylation dependent signaling pathway(s), leading to the expression of ROS producing enzymes like NADPH oxidases. All pathways involve inactivation of serine-threonine protein phosphatases. The metal dependent phosphatase PP2C has a negative regulatory function during ABA mediated ROS signaling. PP2A is the most abundant protein phosphatase in eukaryotic cells. Inhibitors of PP2A exert a ROS inducing activity as well and we suggest that there is a direct relationship between these two effects of drugs. We present current findings and hypotheses regarding PP2A-ROS signaling connections related to all three ROS signaling pathways and anticipate future research directions for this field. These mechanisms have implications in the understanding of stress tolerance of vascular plants, having applications regarding crop improvement.
Collapse
Affiliation(s)
- Csaba Máthé
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary.
| | - Tamás Garda
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary.
| | - Csongor Freytag
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary.
| | - Márta M-Hamvas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary.
| |
Collapse
|
27
|
Bheri M, Pandey GK. PP2A Phosphatases Take a Giant Leap in the Post-Genomics Era. Curr Genomics 2019; 20:154-171. [PMID: 31929724 PMCID: PMC6935955 DOI: 10.2174/1389202920666190517110605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Protein phosphorylation is an important reversible post-translational modifica-tion, which regulates a number of critical cellular processes. Phosphatases and kinases work in a con-certed manner to act as a "molecular switch" that turns-on or - off the regulatory processes driving the growth and development under normal circumstances, as well as responses to multiple stresses in plant system. The era of functional genomics has ushered huge amounts of information to the framework of plant systems. The comprehension of who's who in the signaling pathways is becoming clearer and the investigations challenging the conventional functions of signaling components are on a rise. Protein phosphatases have emerged as key regulators in the signaling cascades. PP2A phosphatases due to their diverse holoenzyme compositions are difficult to comprehend. CONCLUSION In this review, we highlight the functional versatility of PP2A members, deciphered through the advances in the post-genomic era.
Collapse
Affiliation(s)
- Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| |
Collapse
|
28
|
Barna B, Gémes K, Domoki M, Bernula D, Ferenc G, Bálint B, Nagy I, Fehér A. Arabidopsis NAP-related proteins (NRPs) contribute to the coordination of plant growth, developmental rate, and age-related pathogen resistance under short days. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 267:124-134. [PMID: 29362091 DOI: 10.1016/j.plantsci.2017.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/30/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
Plant nucleosome assembly protein-related proteins (NRPs) are histone chaperons involved in nucleosome turnover. Despite this basic cellular function, the Arabidopsis nrp1-1 nrp2-1 knock out mutant has been reported to exhibit only mild seedling root phenotypes and to significantly affect the expression of only few hundred genes Zhu et al. (2006). Here we report that NRP loss-of-function as well as the ectopic overexpression of At NRP1 significantly affected the growth, development, and the pathogen response of Arabidopsis plants under short day conditions. The nrp1-1 nrp2-1 mutant grew faster and flowered weeks earlier than the wild type and the overexpressor. The latter developed slower and flowered at a lower number of leaves than the mutant and the wild type. Moreover, the mutant was more sensitive, the overexpressor was more tolerant to pathogen-induced necrosis correlating with their more adult and juvenile character, respectively. Transcriptomic comparison of mature non-bolting plants agreed with the phenotypes. The presented and other published data indicate that although NRPs might not be absolutely required for normal plant growth and development, their level needs to be controlled to allow the epigenetic coordination of metabolic, growth, defence and developmental processes during the acclimation to unfavourable growth conditions such as short days.
Collapse
Affiliation(s)
- Balázs Barna
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary
| | - Katalin Gémes
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Hungary; Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Mónika Domoki
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Hungary
| | - Dóra Bernula
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Hungary
| | - Györgyi Ferenc
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Hungary
| | - Balázs Bálint
- SeqOmics Biotechnology Ltd, Vállalkozók útja 7, 6782 Mórahalom, Hungary
| | - István Nagy
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Hungary; SeqOmics Biotechnology Ltd, Vállalkozók útja 7, 6782 Mórahalom, Hungary
| | - Attila Fehér
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Hungary; Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| |
Collapse
|
29
|
Rahikainen M, Alegre S, Trotta A, Pascual J, Kangasjärvi S. Trans-methylation reactions in plants: focus on the activated methyl cycle. PHYSIOLOGIA PLANTARUM 2018; 162:162-176. [PMID: 28815615 DOI: 10.1111/ppl.12619] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/02/2017] [Accepted: 08/10/2017] [Indexed: 05/11/2023]
Abstract
Trans-methylation reactions are vital in basic metabolism, epigenetic regulation, RNA metabolism, and posttranslational control of protein function and therefore fundamental in determining the physiological processes in all living organisms. The plant kingdom is additionally characterized by the production of secondary metabolites that undergo specific hydroxylation, oxidation and methylation reactions to obtain a wide array of different chemical structures. Increasing research efforts have started to reveal the enzymatic pathways underlying the biosynthesis of complex metabolites in plants. Further engineering of these enzymatic machineries offers significant possibilities in the development of bio-based technologies, but necessitates deep understanding of their potential metabolic and regulatory interactions. Trans-methylation reactions are tightly coupled with the so-called activated methyl cycle (AMC), an essential metabolic circuit that maintains the trans-methylation capacity in all living cells. Tight regulation of the AMC is crucial in ensuring accurate trans-methylation reactions in different subcellular compartments, cell types, developmental stages and environmental conditions. This review addresses the organization and posttranslational regulation of the AMC and elaborates its critical role in determining metabolic regulation through modulation of methyl utilization in stress-exposed plants.
Collapse
Affiliation(s)
- Moona Rahikainen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Sara Alegre
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Andrea Trotta
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Jesús Pascual
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Saijaliisa Kangasjärvi
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
30
|
Zhu X, Wang Y, Su Z, Lv L, Zhang Z. Silencing of the Wheat Protein Phosphatase 2A Catalytic Subunit TaPP2Ac Enhances Host Resistance to the Necrotrophic Pathogen Rhizoctonia cerealis. FRONTIERS IN PLANT SCIENCE 2018; 9:1437. [PMID: 30429858 PMCID: PMC6220131 DOI: 10.3389/fpls.2018.01437] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/10/2018] [Indexed: 05/09/2023]
Abstract
Eukaryotic type 2A protein phosphatases (protein phosphatase 2A, PP2A) consist of a scaffold subunit A, a regulatory subunit B, and a catalytic subunit C. Little is known about the roles of PP2Ac proteins that are involved in plant responses to necrotrophic fungal pathogens. Sharp eyespot, caused by the necrotrophic fungus Rhizoctonia cerealis, is a destructive disease of wheat (Triticum aestivum), an important staple food crop. Here, we isolated TaPP2Ac-4D from wheat, which encodes a catalytic subunit of the heterotrimeric PP2A, and characterized its properties and role in plant defense response to R. cerealis. Based on the sequence alignment of TaPP2Ac-4D with the draft sequences of wheat chromosomes from the International Wheat Genome Sequencing Consortium (IWGSC), it was found that TaPP2Ac-4D gene is located on the long arm of the wheat chromosome 4D and has two homologs assigned on wheat chromosomes 4A and 4B. Sequence and phylogenetic tree analyses revealed that the TaPP2Ac protein is a typical member of the PP2Ac family and belongs to the subfamily II. TaPP2Ac-4B and TaPP2Ac-4D displayed higher transcriptional levels in the R. cerealis-susceptible wheat cultivar Wenmai 6 than those seen in the resistant wheat line CI12633. The transcriptional levels of TaPP2Ac-4B and TaPP2Ac-4D were significantly elevated in wheat R. cerealis after infection and upon H2O2 treatment. Virus-induced gene silencing results revealed that the transcriptional knockdown of TaPP2Ac-4D and TaPP2Ac-4B significantly increased wheat resistance to R. cerealis infection. Meanwhile, the transcriptional levels of certain pathogenesis-related (PR) and reactive oxygen species (ROS)-scavenging enzyme encoding genes were increased in TaPP2Ac-silenced wheat plants. These results suggest that TaPP2Ac-4B and TaPP2Ac-4D negatively regulate defense response to R. cerealis infection possibly through modulation of the expression of certain PR and ROS-scavenging enzyme genes in wheat. This study reveals a novel function of the plant PP2Ac genes in plant immune responses.
Collapse
Affiliation(s)
- Xiuliang Zhu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanyuan Wang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Zhenqi Su
- Institute for Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Liangjie Lv
- Institute for Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Zengyan Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Zengyan Zhang,
| |
Collapse
|
31
|
Creighton MT, Kolton A, Kataya ARA, Maple-Grødem J, Averkina IO, Heidari B, Lillo C. Methylation of protein phosphatase 2A-Influence of regulators and environmental stress factors. PLANT, CELL & ENVIRONMENT 2017; 40:2347-2358. [PMID: 28741704 DOI: 10.1111/pce.13038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/08/2017] [Accepted: 07/11/2017] [Indexed: 05/13/2023]
Abstract
Protein phosphatase 2A catalytic subunit (PP2A-C) has a terminal leucine subjected to methylation, a regulatory mechanism conserved from yeast to mammals and plants. Two enzymes, LCMT1 and PME1, methylate and demethylate PP2A-C, respectively. The physiological importance of these posttranslational modifications is still enigmatic. We investigated these processes in Arabidopsis thaliana by mutant phenotyping, by global expression analysis, and by monitoring methylation status of PP2A-C under different environmental conditions. The lcmt1 mutant, possessing essentially only unmethylated PP2A-C, had less dense rosettes, and earlier flowering than wild type (WT). The pme1 mutant, with 30% reduction in unmethylated PP2A-C, was phenotypically comparable with WT. Approximately 200 overlapping genes were twofold upregulated, and 200 overlapping genes were twofold downregulated in both lcmt1 and pme1 relative to WT. Differences between the 2 mutants were also striking; 97 genes were twofold upregulated in pme1 compared with lcmt1, indicating that PME1 acts as a negative regulator for these genes. Analysis of enriched GO terms revealed categories of both abiotic and biotic stress genes. Furthermore, methylation status of PP2A-C was influenced by environmental stress, especially by hypoxia and salt stress, which led to increased levels of unmethylated PP2A-C, and highlights the importance of PP2A-C methylation/demethylation in environmental responses.
Collapse
Affiliation(s)
- Maria T Creighton
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, N-4036, Norway
| | - Anna Kolton
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, N-4036, Norway
- Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, 31-425 Kraków, Poland
| | - Amr R A Kataya
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, N-4036, Norway
| | - Jodi Maple-Grødem
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, N-4036, Norway
| | - Irina O Averkina
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, N-4036, Norway
| | - Behzad Heidari
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, N-4036, Norway
| | - Cathrine Lillo
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, N-4036, Norway
| |
Collapse
|
32
|
Booker MA, DeLong A. Atypical Protein Phosphatase 2A Gene Families Do Not Expand via Paleopolyploidization. PLANT PHYSIOLOGY 2017; 173:1283-1300. [PMID: 28034953 PMCID: PMC5291013 DOI: 10.1104/pp.16.01768] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 12/23/2016] [Indexed: 05/22/2023]
Abstract
Protein phosphatase 2A (PP2A) presents unique opportunities for analyzing molecular mechanisms of functional divergence between gene family members. The canonical PP2A holoenzyme regulates multiple eukaryotic signaling pathways by dephosphorylating target proteins and contains a catalytic (C) subunit, a structural/scaffolding (A) subunit, and a regulatory (B) subunit. Genes encoding PP2A subunits have expanded into multigene families in both flowering plants and mammals, and the extent to which different isoform functions may overlap is not clearly understood. To gain insight into the diversification of PP2A subunits, we used phylogenetic analyses to reconstruct the evolutionary histories of PP2A gene families in Arabidopsis (Arabidopsis thaliana). Genes encoding PP2A subunits in mammals represent ancient lineages that expanded early in vertebrate evolution, while flowering plant PP2A subunit lineages evolved much more recently. Despite this temporal difference, our data indicate that the expansion of PP2A subunit gene families in both flowering plants and animals was driven by whole-genome duplications followed by nonrandom gene loss. Selection analysis suggests that the expansion of one B subunit gene family (B56/PPP2R5) was driven by functional diversification rather than by the maintenance of gene dosage. We also observed reduced expansion rates in three distinct B subunit subclades. One of these subclades plays a highly conserved role in cell division, while the distribution of a second subclade suggests a specialized function in supporting beneficial microbial associations. Thus, while whole-genome duplications have driven the expansion and diversification of most PP2A gene families, members of functionally specialized subclades quickly revert to singleton status after duplication events.
Collapse
Affiliation(s)
- Matthew A Booker
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Alison DeLong
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
33
|
Muñiz García MN, Muro MC, Mazzocchi LC, País SM, Stritzler M, Schlesinger M, Capiati DA. The protein phosphatase 2A catalytic subunit StPP2Ac2b acts as a positive regulator of tuberization induction in Solanum tuberosum L. PLANT MOLECULAR BIOLOGY 2017; 93:227-245. [PMID: 27812910 DOI: 10.1007/s11103-016-0555-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/27/2016] [Indexed: 05/25/2023]
Abstract
This study provides the first genetic evidence for the role of PP2A in tuberization, demonstrating that the catalytic subunit StPP2Ac2b positively modulates tuber induction, and that its function is related to the regulation of gibberellic acid metabolism. The results contribute to a better understanding of the molecular mechanism controlling tuberization induction, which remains largely unknown. The serine/threonine protein phosphatases type 2A (PP2A) are implicated in several physiological processes in plants, playing important roles in hormone responses. In cultivated potato (Solanum tuberosum), six PP2A catalytic subunits (StPP2Ac) were identified. The PP2Ac of the subfamily I (StPP2Ac1, 2a and 2b) were suggested to be involved in the tuberization signaling in leaves, where the environmental and hormonal signals are perceived and integrated. The aim of this study was to investigate the role of PP2A in the tuberization induction in stolons. We selected one of the catalytic subunits of the subfamily I, StPP2Ac2b, to develop transgenic plants overexpressing this gene (StPP2Ac2b-OE). Stolons from StPP2Ac2b-OE plants show higher tuber induction rates in vitro, as compared to wild type stolons, with no differences in the number of tubers obtained at the end of the process. This effect is accompanied by higher expression levels of the gibberellic acid (GA) catabolic enzyme StGA2ox1. GA up-regulates StPP2Ac2b expression in stolons, possibly as part of the feedback system by which the hormone regulates its own level. Sucrose, a tuber-promoting factor in vitro, increases StPP2Ac2b expression. We conclude that StPP2Ac2b acts in stolons as a positive regulator tuber induction, integrating different tuberization-related signals mainly though the modulation of GA metabolism.
Collapse
Affiliation(s)
- María Noelia Muñiz García
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - María Catalina Muro
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Luciana Carla Mazzocchi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Silvia Marina País
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Margarita Stritzler
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Mariana Schlesinger
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Daniela Andrea Capiati
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
| |
Collapse
|
34
|
Rahikainen M, Trotta A, Alegre S, Pascual J, Vuorinen K, Overmyer K, Moffatt B, Ravanel S, Glawischnig E, Kangasjärvi S. PP2A-B'γ modulates foliar trans-methylation capacity and the formation of 4-methoxy-indol-3-yl-methyl glucosinolate in Arabidopsis leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:112-127. [PMID: 27598402 DOI: 10.1111/tpj.13326] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 05/27/2023]
Abstract
Glucosinolates (GSL) of cruciferous plants comprise a major group of structurally diverse secondary compounds which act as deterrents against aphids and microbial pathogens and have large commercial and ecological impacts. While the transcriptional regulation governing the biosynthesis and modification of GSL is now relatively well understood, post-translational regulatory components that specifically determine the structural variation of indole glucosinolates have not been reported. We show that the cytoplasmic protein phosphatase 2A regulatory subunit B'γ (PP2A-B'γ) physically interacts with indole glucosinolate methyltransferases and controls the methoxylation of indole glucosinolates and the formation of 4-methoxy-indol-3-yl-methyl glucosinolate in Arabidopsis leaves. By taking advantage of proteomic approaches and metabolic analysis we further demonstrate that PP2A-B'γ is required to control the abundance of oligomeric protein complexes functionally linked with the activated methyl cycle and the trans-methylation capacity of leaf cells. These findings highlight the key regulatory role of PP2A-B'γ in methionine metabolism and provide a previously unrecognized perspective for metabolic engineering of glucosinolate metabolism in cruciferous plants.
Collapse
Affiliation(s)
- Moona Rahikainen
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Andrea Trotta
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Sara Alegre
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Jesús Pascual
- Plant Physiology Lab, Organisms and Systems Biology, Faculty of Biology, University of Oviedo, Oviedo, Asturias, Spain
| | - Katariina Vuorinen
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Kirk Overmyer
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Barbara Moffatt
- Department of Biology, University of Waterloo, 200 University Avenue, Ontario, N2L 3G1, Canada
| | - Stéphane Ravanel
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS UMR5168, INRA UMR1417, CEA, Université Grenoble Alpes, 38054, Grenoble, France
| | - Erich Glawischnig
- Department of Plant Sciences, Technische Universität München, Emil-Ramann-Str.4, 85354, Freising, Germany
| | - Saijaliisa Kangasjärvi
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| |
Collapse
|
35
|
Sztatelman O, Łabuz J, Hermanowicz P, Banaś AK, Bażant A, Zgłobicki P, Aggarwal C, Nadzieja M, Krzeszowiec W, Strzałka W, Gabryś H. Fine tuning chloroplast movements through physical interactions between phototropins. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4963-78. [PMID: 27406783 PMCID: PMC5014152 DOI: 10.1093/jxb/erw265] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phototropins are plant photoreceptors which regulate numerous responses to blue light, including chloroplast relocation. Weak blue light induces chloroplast accumulation, whereas strong light leads to an avoidance response. Two Arabidopsis phototropins are characterized by different light sensitivities. Under continuous light, both can elicit chloroplast accumulation, but the avoidance response is controlled solely by phot2. As well as continuous light, brief light pulses also induce chloroplast displacements. Pulses of 0.1s and 0.2s of fluence rate saturating the avoidance response lead to transient chloroplast accumulation. Longer pulses (up to 20s) trigger a biphasic response, namely transient avoidance followed by transient accumulation. This work presents a detailed study of transient chloroplast responses in Arabidopsis. Phototropin mutants display altered chloroplast movements as compared with the wild type: phot1 is characterized by weaker responses, while phot2 exhibits enhanced chloroplast accumulation, especially after 0.1s and 0.2s pulses. To determine the cause of these differences, the abundance and phosphorylation levels of both phototropins, as well as the interactions between phototropin molecules are examined. The formation of phototropin homo- and heterocomplexes is the most plausible explanation of the observed phenomena. The physiological consequences of this interplay are discussed, suggesting the universal character of this mechanism that fine-tunes plant reactions to blue light. Additionally, responses in mutants of different protein phosphatase 2A subunits are examined to assess the role of protein phosphorylation in signaling of chloroplast movements.
Collapse
Affiliation(s)
- Olga Sztatelman
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Justyna Łabuz
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Paweł Hermanowicz
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Aneta Bażant
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Piotr Zgłobicki
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Chhavi Aggarwal
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Marcin Nadzieja
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Weronika Krzeszowiec
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Wojciech Strzałka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Halina Gabryś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| |
Collapse
|
36
|
Jin L, Ham JH, Hage R, Zhao W, Soto-Hernández J, Lee SY, Paek SM, Kim MG, Boone C, Coplin DL, Mackey D. Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins. PLoS Pathog 2016; 12:e1005609. [PMID: 27191168 PMCID: PMC4871590 DOI: 10.1371/journal.ppat.1005609] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 04/12/2016] [Indexed: 11/19/2022] Open
Abstract
Bacterial AvrE-family Type-III effector proteins (T3Es) contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, we employed a yeast-two-hybrid screen with non-lethal fragments of WtsE and a synthetic genetic array with full-length WtsE. Together these screens indicate that WtsE targets maize protein phosphatase 2A (PP2A) heterotrimeric enzyme complexes via direct interaction with B' regulatory subunits. AvrE1, another AvrE-family T3E from Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000), associates with specific PP2A B' subunit proteins from its susceptible host Arabidopsis that are homologous to the maize B' subunits shown to interact with WtsE. Additionally, AvrE1 was observed to associate with the WtsE-interacting maize proteins, indicating that PP2A B' subunits are likely conserved targets of AvrE-family T3Es. Notably, the ability of AvrE1 to promote bacterial growth and/or suppress callose deposition was compromised in Arabidopsis plants with mutations of PP2A genes. Also, chemical inhibition of PP2A activity blocked the virulence activity of both WtsE and AvrE1 in planta. The function of HopM1, a Pto DC3000 T3E that is functionally redundant to AvrE1, was also impaired in specific PP2A mutant lines, although no direct interaction with B' subunits was observed. These results indicate that sub-component specific PP2A complexes are targeted by bacterial T3Es, including direct targeting by members of the widely conserved AvrE-family.
Collapse
Affiliation(s)
- Lin Jin
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
| | - Jong Hyun Ham
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| | - Rosemary Hage
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
| | - Wanying Zhao
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
| | - Jaricelis Soto-Hernández
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21Plus), PMBBRC, Gyeongsang National University, Jinju daero, Jinju, Republic of Korea
| | - Seung-Mann Paek
- College of Pharmacy, Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University, Jinju daero, Jinju, Republic of Korea
| | - Min Gab Kim
- College of Pharmacy, Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University, Jinju daero, Jinju, Republic of Korea
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - David L. Coplin
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - David Mackey
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
37
|
PP2A Phosphatase as a Regulator of ROS Signaling in Plants. Antioxidants (Basel) 2016; 5:antiox5010008. [PMID: 26950157 PMCID: PMC4808757 DOI: 10.3390/antiox5010008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/21/2016] [Accepted: 02/29/2016] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) carry out vital functions in determining appropriate stress reactions in plants, but the molecular mechanisms underlying the sensing, signaling and response to ROS as signaling molecules are not yet fully understood. Recent studies have underscored the role of Protein Phosphatase 2A (PP2A) in ROS-dependent responses involved in light acclimation and pathogenesis responses in Arabidopsis thaliana. Genetic, proteomic and metabolomic studies have demonstrated that trimeric PP2A phosphatases control metabolic changes and cell death elicited by intracellular and extracellular ROS signals. Associated with this, PP2A subunits contribute to transcriptional and post-translational regulation of pro-oxidant and antioxidant enzymes. This review highlights the emerging role of PP2A phosphatases in the regulatory ROS signaling networks in plants.
Collapse
|
38
|
Foyer CH, Rasool B, Davey JW, Hancock RD. Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2025-37. [PMID: 26936830 DOI: 10.1093/jxb/erw079] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plants co-evolved with an enormous variety of microbial pathogens and insect herbivores under daily and seasonal variations in abiotic environmental conditions. Hence, plant cells display a high capacity to respond to diverse stresses through a flexible and finely balanced response network that involves components such as reduction-oxidation (redox) signalling pathways, stress hormones and growth regulators, as well as calcium and protein kinase cascades. Biotic and abiotic stress responses use common signals, pathways and triggers leading to cross-tolerance phenomena, whereby exposure to one type of stress can activate plant responses that facilitate tolerance to several different types of stress. While the acclimation mechanisms and adaptive responses that facilitate responses to single biotic and abiotic stresses have been extensively characterized, relatively little information is available on the dynamic aspects of combined biotic/abiotic stress response. In this review, we consider how the abiotic environment influences plant responses to attack by phloem-feeding aphids. Unravelling the signalling cascades that underpin cross-tolerance to biotic and abiotic stresses will allow the identification of new targets for increasing environmental resilience in crops.
Collapse
Affiliation(s)
- Christine H Foyer
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK
| | - Brwa Rasool
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK
| | - Jack W Davey
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Robert D Hancock
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| |
Collapse
|
39
|
Champagne A, Boutry M. Proteomics of terpenoid biosynthesis and secretion in trichomes of higher plant species. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1039-49. [PMID: 26873244 DOI: 10.1016/j.bbapap.2016.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/12/2016] [Accepted: 02/04/2016] [Indexed: 10/22/2022]
Abstract
Among the specialized (secondary) plant metabolites, terpenoids represent the most diverse family and are often involved in the defense against pathogens and herbivores. Terpenoids can be produced both constitutively and in response to the environment. At the front line of this defense strategy are the glandular trichomes, which are organs dedicated primarily to the production of specialized metabolites. Mass spectrometry-based proteomics is a powerful tool, which is very useful to investigate enzymes involved in metabolic pathways, such as the synthesis and secretion of terpenoids in glandular trichomes. Here we review the strategies used to investigate the specific roles of these particular organs from non-model plant species, mainly belonging to the Lamiaceae, Solanaceae, and Cannabaceae families. We discuss how proteomics helps to accurately pinpoint candidate proteins to be functionally characterized, and how technological progresses create opportunities for studying low-abundance proteins, such as the ones related to the synthesis and transport of specialized metabolites. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Antoine Champagne
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Marc Boutry
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
40
|
Durian G, Rahikainen M, Alegre S, Brosché M, Kangasjärvi S. Protein Phosphatase 2A in the Regulatory Network Underlying Biotic Stress Resistance in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:812. [PMID: 27375664 PMCID: PMC4901049 DOI: 10.3389/fpls.2016.00812] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/25/2016] [Indexed: 05/20/2023]
Abstract
Biotic stress factors pose a major threat to plant health and can significantly deteriorate plant productivity by impairing the physiological functions of the plant. To combat the wide range of pathogens and insect herbivores, plants deploy converging signaling pathways, where counteracting activities of protein kinases and phosphatases form a basic mechanism for determining appropriate defensive measures. Recent studies have identified Protein Phosphatase 2A (PP2A) as a crucial component that controls pathogenesis responses in various plant species. Genetic, proteomic and metabolomic approaches have underscored the versatile nature of PP2A, which contributes to the regulation of receptor signaling, organellar signaling, gene expression, metabolic pathways, and cell death, all of which essentially impact plant immunity. Associated with this, various PP2A subunits mediate post-translational regulation of metabolic enzymes and signaling components. Here we provide an overview of protein kinase/phosphatase functions in plant immunity signaling, and position the multifaceted functions of PP2A in the tightly inter-connected regulatory network that controls the perception, signaling and responding to biotic stress agents in plants.
Collapse
Affiliation(s)
- Guido Durian
- Department of Biochemistry, Molecular Plant Biology, University of TurkuTurku, Finland
| | - Moona Rahikainen
- Department of Biochemistry, Molecular Plant Biology, University of TurkuTurku, Finland
| | - Sara Alegre
- Department of Biochemistry, Molecular Plant Biology, University of TurkuTurku, Finland
| | - Mikael Brosché
- Department of Biochemistry, Molecular Plant Biology, University of TurkuTurku, Finland
| | - Saijaliisa Kangasjärvi
- Department of Biochemistry, Molecular Plant Biology, University of TurkuTurku, Finland
- *Correspondence: Saijaliisa Kangasjärvi,
| |
Collapse
|
41
|
Durian G, Rahikainen M, Alegre S, Brosché M, Kangasjärvi S. Protein Phosphatase 2A in the Regulatory Network Underlying Biotic Stress Resistance in Plants. FRONTIERS IN PLANT SCIENCE 2016. [PMID: 27375664 DOI: 10.3389/fpls.2016.00812/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Biotic stress factors pose a major threat to plant health and can significantly deteriorate plant productivity by impairing the physiological functions of the plant. To combat the wide range of pathogens and insect herbivores, plants deploy converging signaling pathways, where counteracting activities of protein kinases and phosphatases form a basic mechanism for determining appropriate defensive measures. Recent studies have identified Protein Phosphatase 2A (PP2A) as a crucial component that controls pathogenesis responses in various plant species. Genetic, proteomic and metabolomic approaches have underscored the versatile nature of PP2A, which contributes to the regulation of receptor signaling, organellar signaling, gene expression, metabolic pathways, and cell death, all of which essentially impact plant immunity. Associated with this, various PP2A subunits mediate post-translational regulation of metabolic enzymes and signaling components. Here we provide an overview of protein kinase/phosphatase functions in plant immunity signaling, and position the multifaceted functions of PP2A in the tightly inter-connected regulatory network that controls the perception, signaling and responding to biotic stress agents in plants.
Collapse
Affiliation(s)
- Guido Durian
- Department of Biochemistry, Molecular Plant Biology, University of Turku Turku, Finland
| | - Moona Rahikainen
- Department of Biochemistry, Molecular Plant Biology, University of Turku Turku, Finland
| | - Sara Alegre
- Department of Biochemistry, Molecular Plant Biology, University of Turku Turku, Finland
| | - Mikael Brosché
- Department of Biochemistry, Molecular Plant Biology, University of Turku Turku, Finland
| | | |
Collapse
|
42
|
Konert G, Rahikainen M, Trotta A, Durian G, Salojärvi J, Khorobrykh S, Tyystjärvi E, Kangasjärvi S. Subunits B'γ and B'ζ of protein phosphatase 2A regulate photo-oxidative stress responses and growth in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2015; 38:2641-51. [PMID: 26012558 DOI: 10.1111/pce.12575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 05/09/2023]
Abstract
Plants survive periods of unfavourable conditions with the help of sensory mechanisms that respond to reactive oxygen species (ROS) as signalling molecules in different cellular compartments. We have previously demonstrated that protein phosphatase 2A (PP2A) impacts on organellar cross-talk and associated pathogenesis responses in Arabidopsis thaliana. This was evidenced by drastically enhanced pathogenesis responses and cell death in cat2 pp2a-b'γ double mutants, deficient in the main peroxisomal antioxidant enzyme CATALASE 2 and PP2A regulatory subunit B'γ (PP2A-B'γ). In the present paper, we explored the impacts of PP2A-B'γ and a highly similar regulatory subunit PP2A-B'ζ in growth regulation and light stress tolerance in Arabidopsis. PP2A-B'γ and PP2A-B'ζ display high promoter activities in rapidly growing tissues and are required for optimal growth under favourable conditions. Upon acclimation to a combination of high light, elevated temperature and reduced availability of water, however, pp2a-b'γζ double mutants grow similarly to the wild type and show enhanced tolerance against photo-oxidative stress. We conclude that by controlling ROS homeostasis and signalling, PP2A-B'γ and PP2A-B'ζ may direct acclimation strategies upon environmental perturbations, hence acting as important determinants of defence responses and light acclimation in plants.
Collapse
Affiliation(s)
- Grzegorz Konert
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014, Turku, Finland
| | - Moona Rahikainen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014, Turku, Finland
| | - Andrea Trotta
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014, Turku, Finland
| | - Guido Durian
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014, Turku, Finland
| | - Jarkko Salojärvi
- Department of Biosciences, University of Helsinki, FI-00014, Helsinki, Finland
| | - Sergey Khorobrykh
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014, Turku, Finland
| | - Esa Tyystjärvi
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014, Turku, Finland
| | - Saijaliisa Kangasjärvi
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014, Turku, Finland
| |
Collapse
|
43
|
Degrave A, Siamer S, Boureau T, Barny MA. The AvrE superfamily: ancestral type III effectors involved in suppression of pathogen-associated molecular pattern-triggered immunity. MOLECULAR PLANT PATHOLOGY 2015; 16:899-905. [PMID: 25640649 PMCID: PMC6638435 DOI: 10.1111/mpp.12237] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The AvrE superfamily of type III effectors (T3Es) is widespread among type III-dependent phytobacteria and plays a crucial role during bacterial pathogenesis. Members of the AvrE superfamily are vertically inherited core effectors, indicating an ancestral acquisition of these effectors in bacterial plant pathogens. AvrE-T3Es contribute significantly to virulence by suppressing pathogen-associated molecular pattern (PAMP)-triggered immunity. They inhibit salicylic acid-mediated plant defences, interfere with vesicular trafficking and promote bacterial growth in planta. AvrE-T3Es elicit cell death in both host and non-host plants independent of any known plant resistance protein, suggesting an original interaction with the plant immune system. Recent studies in yeast have indicated that they activate protein phosphatase 2A and inhibit serine palmitoyl transferase, the first enzyme of the sphingolipid biosynthesis pathway. In this review, we describe the current picture that has emerged from studies of the different members of this fascinating large family.
Collapse
Affiliation(s)
- Alexandre Degrave
- AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences (IRHS), 49045, Angers, France
- UMR1345, IRHS, Institut National de la Recherche Agronomique (INRA), 49071, Beaucouzé, France
| | - Sabrina Siamer
- Focal Area Infection Biology, Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | - Tristan Boureau
- UMR1345, IRHS, Institut National de la Recherche Agronomique (INRA), 49071, Beaucouzé, France
- UMR1345, IRHS, Université d'Angers, SFR 4207 QUASAV, PRES l'UNAM, 49045, Angers, France
| | - Marie-Anne Barny
- UMR1392, INRA, Institut d'Ecologie et des Sciences de l'Environnement, Université Pierre et Marie Curie (UPMC), Bât á 7ème Etage Case 237, 7 Quai St.-Bernard, 75252, Paris, France
| |
Collapse
|
44
|
Waadt R, Manalansan B, Rauniyar N, Munemasa S, Booker MA, Brandt B, Waadt C, Nusinow DA, Kay SA, Kunz HH, Schumacher K, DeLong A, Yates JR, Schroeder JI. Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses. PLANT PHYSIOLOGY 2015; 169:760-79. [PMID: 26175513 PMCID: PMC4577397 DOI: 10.1104/pp.15.00575] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 07/13/2015] [Indexed: 05/06/2023]
Abstract
The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases.
Collapse
Affiliation(s)
- Rainer Waadt
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Bianca Manalansan
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Navin Rauniyar
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Shintaro Munemasa
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Matthew A Booker
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Benjamin Brandt
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Christian Waadt
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Dmitri A Nusinow
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Steve A Kay
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Hans-Henning Kunz
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Karin Schumacher
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Alison DeLong
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - John R Yates
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| |
Collapse
|
45
|
Noctor G, Lelarge-Trouverie C, Mhamdi A. The metabolomics of oxidative stress. PHYTOCHEMISTRY 2015; 112:33-53. [PMID: 25306398 DOI: 10.1016/j.phytochem.2014.09.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 05/20/2023]
Abstract
Oxidative stress resulting from increased availability of reactive oxygen species (ROS) is a key component of many responses of plants to challenging environmental conditions. The consequences for plant metabolism are complex and manifold. We review data on small compounds involved in oxidative stress, including ROS themselves and antioxidants and redox buffers in the membrane and soluble phases, and we discuss the wider consequences for plant primary and secondary metabolism. While metabolomics has been exploited in many studies on stress, there have been relatively few non-targeted studies focused on how metabolite signatures respond specifically to oxidative stress. As part of the discussion, we present results and reanalyze published datasets on metabolite profiles in catalase-deficient plants, which can be considered to be model oxidative stress systems. We emphasize the roles of ROS-triggered changes in metabolites as potential oxidative signals, and discuss responses that might be useful as markers for oxidative stress. Particular attention is paid to lipid-derived compounds, the status of antioxidants and antioxidant breakdown products, altered metabolism of amino acids, and the roles of phytohormone pathways.
Collapse
Affiliation(s)
- Graham Noctor
- Institut de Biologie des Plantes, UMR8618 CNRS, Université de Paris sud, 91405 Orsay Cedex, France.
| | | | - Amna Mhamdi
- Institut de Biologie des Plantes, UMR8618 CNRS, Université de Paris sud, 91405 Orsay Cedex, France
| |
Collapse
|
46
|
Konert G, Trotta A, Kouvonen P, Rahikainen M, Durian G, Blokhina O, Fagerstedt K, Muth D, Corthals GL, Kangasjärvi S. Protein phosphatase 2A (PP2A) regulatory subunit B'γ interacts with cytoplasmic ACONITASE 3 and modulates the abundance of AOX1A and AOX1D in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2015; 205:1250-1263. [PMID: 25307043 DOI: 10.1111/nph.13097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/11/2014] [Indexed: 05/09/2023]
Abstract
Organellar reactive oxygen species (ROS) signalling is a key mechanism that promotes the onset of defensive measures in stress-exposed plants. The underlying molecular mechanisms and feedback regulation loops, however, still remain poorly understood. Our previous work has shown that a specific regulatory B'γ subunit of protein phosphatase 2A (PP2A) is required to control organellar ROS signalling and associated metabolic adjustments in Arabidopsis thaliana. Here, we addressed the mechanisms through which PP2A-B'γ impacts on organellar metabolic crosstalk and ROS homeostasis in leaves. Genetic, biochemical and pharmacological approaches, together with a combination of data-dependent acquisition (DDA) and selected reaction monitoring (SRM) MS techniques, were utilized to assess PP2A-B'γ-dependent adjustments in Arabidopsis thaliana. We show that PP2A-B'γ physically interacts with the cytoplasmic form of aconitase, a central metabolic enzyme functionally connected with mitochondrial respiration, oxidative stress responses and regulation of cell death in plants. Furthermore, PP2A-B'γ impacts ROS homeostasis by controlling the abundance of specific alternative oxidase isoforms, AOX1A and AOX1D, in leaf mitochondria. We conclude that PP2A-B'γ-dependent regulatory actions modulate the functional status of metabolic enzymes that essentially contribute to intracellular ROS signalling and metabolic homeostasis in plants.
Collapse
Affiliation(s)
- Grzegorz Konert
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Andrea Trotta
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Petri Kouvonen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20014, Turku, Finland
| | - Moona Rahikainen
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Guido Durian
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Olga Blokhina
- Department of Biosciences, University of Helsinki, FI-00014, Helsinki, Finland
| | - Kurt Fagerstedt
- Department of Biosciences, University of Helsinki, FI-00014, Helsinki, Finland
| | - Dorota Muth
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20014, Turku, Finland
| | - Garry L Corthals
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20014, Turku, Finland
| | - Saijaliisa Kangasjärvi
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| |
Collapse
|
47
|
Kataya ARA, Heidari B, Hagen L, Kommedal R, Slupphaug G, Lillo C. Protein phosphatase 2A holoenzyme is targeted to peroxisomes by piggybacking and positively affects peroxisomal β-oxidation. PLANT PHYSIOLOGY 2015; 167:493-506. [PMID: 25489022 PMCID: PMC4326747 DOI: 10.1104/pp.114.254409] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The eukaryotic, highly conserved serine (Ser)/threonine-specific protein phosphatase 2A (PP2A) functions as a heterotrimeric complex composed of a catalytic (C), scaffolding (A), and regulatory (B) subunit. In Arabidopsis (Arabidopsis thaliana), five, three, and 17 genes encode different C, A, and B subunits, respectively. We previously found that a B subunit, B'θ, localized to peroxisomes due to its C-terminal targeting signal Ser-Ser-leucine. This work shows that PP2A C2, C5, andA2 subunits interact and colocalize with B'θ in peroxisomes. C and A subunits lack peroxisomal targeting signals, and their peroxisomal import depends on B'θ and appears to occur by piggybacking transport. B'θ knockout mutants were impaired in peroxisomal β-oxidation as shown by developmental arrest of seedlings germinated without sucrose, accumulation of eicosenoic acid, and resistance to protoauxins indole-butyric acid and 2,4-dichlorophenoxybutyric acid. All of these observations strongly substantiate that a full PP2A complex is present in peroxisomes and positively affects β-oxidation of fatty acids and protoauxins.
Collapse
Affiliation(s)
- Amr R A Kataya
- Centre for Organelle Research (A.R.A.K., B.H., C.L.) and Department of Mathematics and Natural Sciences, Faculty of Science and Technology (R.K.), University of Stavanger, N-4036 Stavanger, Norway; andDepartment of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway (L.H., G.S.)
| | - Behzad Heidari
- Centre for Organelle Research (A.R.A.K., B.H., C.L.) and Department of Mathematics and Natural Sciences, Faculty of Science and Technology (R.K.), University of Stavanger, N-4036 Stavanger, Norway; andDepartment of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway (L.H., G.S.)
| | - Lars Hagen
- Centre for Organelle Research (A.R.A.K., B.H., C.L.) and Department of Mathematics and Natural Sciences, Faculty of Science and Technology (R.K.), University of Stavanger, N-4036 Stavanger, Norway; andDepartment of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway (L.H., G.S.)
| | - Roald Kommedal
- Centre for Organelle Research (A.R.A.K., B.H., C.L.) and Department of Mathematics and Natural Sciences, Faculty of Science and Technology (R.K.), University of Stavanger, N-4036 Stavanger, Norway; andDepartment of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway (L.H., G.S.)
| | - Geir Slupphaug
- Centre for Organelle Research (A.R.A.K., B.H., C.L.) and Department of Mathematics and Natural Sciences, Faculty of Science and Technology (R.K.), University of Stavanger, N-4036 Stavanger, Norway; andDepartment of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway (L.H., G.S.)
| | - Cathrine Lillo
- Centre for Organelle Research (A.R.A.K., B.H., C.L.) and Department of Mathematics and Natural Sciences, Faculty of Science and Technology (R.K.), University of Stavanger, N-4036 Stavanger, Norway; andDepartment of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway (L.H., G.S.)
| |
Collapse
|
48
|
Bajsa J, Pan Z, Duke SO. Cantharidin, a protein phosphatase inhibitor, strongly upregulates detoxification enzymes in the Arabidopsis proteome. JOURNAL OF PLANT PHYSIOLOGY 2015; 173:33-40. [PMID: 25462076 DOI: 10.1016/j.jplph.2014.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/19/2014] [Accepted: 09/07/2014] [Indexed: 06/04/2023]
Abstract
Cantharidin, a potent inhibitor of plant serine/threonine protein phosphatases (PPPs), is highly phytotoxic and dramatically affects the transcriptome in Arabidopsis. To investigate the effect of cantharidin on the Arabidopsis proteome, a combination of two-dimensional difference gel electrophoresis (2-D DIGE) and matrix-assisted laser desorption ionization time-of-flight (MALDI/TOF) mass spectrometry was employed for protein profiling. Multivariate statistical analysis identified 75 significant differential spots corresponding to 59 distinct cantharidin-responsive proteins, which were representative of different biological processes, cellular components, and molecular functions categories. The majority of identified proteins localized in the chloroplast had a significantly decreased presence, especially proteins involved in photosynthesis. Detoxification enzymes, especially glutathione-S-transferases (GSTs), were the most upregulated group (ca. 1.5- to 3.3-fold). Given that the primary role of GSTs is involved in the process of detoxification of both xenobiotic and endobiotic compounds, the induction of GSTs suggests that cantharidin promoted inhibition of PPPs may lead to defense-like responses through regulation of GST enzymes as well as other metabolic pathways.
Collapse
Affiliation(s)
- Joanna Bajsa
- USDA, ARS, Natural Products Utilization Research Unit, Cochran Research Center, University, MS 38677, USA
| | - Zhiqiang Pan
- USDA, ARS, Natural Products Utilization Research Unit, Cochran Research Center, University, MS 38677, USA
| | - Stephen O Duke
- USDA, ARS, Natural Products Utilization Research Unit, Cochran Research Center, University, MS 38677, USA.
| |
Collapse
|
49
|
Abstract
Reversible protein phosphorylation is an essential posttranslational modification mechanism executed by opposing actions of protein phosphatases and protein kinases. About 1,000 predicted kinases in Arabidopsis thaliana kinome predominate the number of protein phosphatases, of which there are only ~150 members in Arabidopsis. Protein phosphatases were often referred to as "housekeeping" enzymes, which act to keep eukaryotic systems in balance by counteracting the activity of protein kinases. However, recent investigations reveal the crucial and specific regulatory functions of phosphatases in cell signaling. Phosphatases operate in a coordinated manner with the protein kinases, to execute their important function in determining the cellular response to a physiological stimulus. Closer examination has established high specificity of phosphatases in substrate recognition and important roles in plant signaling pathways, such as pathogen defense and stress regulation, light and hormonal signaling, cell cycle and differentiation, metabolism, and plant growth. In this minireview we provide a compact overview about Arabidopsis protein phosphatase families, as well as members of phosphoglucan and lipid phosphatases, and highlight the recent discoveries in phosphatase research.
Collapse
Affiliation(s)
- Alois Schweighofer
- Institute of Biotechnology, University of Vilnius, V. Graičiūno 8, 02241, Vilnius, Lithuania,
| | | |
Collapse
|
50
|
Kataya ARA, Heidari B, Lillo C. Protein phosphatase 2A regulatory subunits affecting plant innate immunity, energy metabolism, and flowering time--joint functions among B'η subfamily members. PLANT SIGNALING & BEHAVIOR 2015; 10:e1026024. [PMID: 26039486 PMCID: PMC4623507 DOI: 10.1080/15592324.2015.1026024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Protein phosphatase 2A (PP2A) is a heterotrimeric complex comprising a catalytic, scaffolding, and regulatory subunit. The regulatory subunits are essential for substrate specificity and localization of the complex and are classified into B/B55, B', and B" non-related families in higher plants. In Arabidopsis thaliana, the close paralogs B'η, B'θ, B'γ, and B'ζ were further classified into a subfamily of B' called B'η. Here we present results that consolidate the evidence for a role of the B'η subfamily in regulation of innate immunity, energy metabolism and flowering time. Proliferation of the virulent Pseudomonas syringae in B'θ knockout mutant decreased in comparison with wild type plants. Additionally, B'θ knockout plants were delayed in flowering, and this phenotype was supported by high expression of FLC (FLOWERING LOCUS C). B'ζ knockout seedlings showed growth retardation on sucrose-free medium, indicating a role for B'ζ in energy metabolism. This work provides insight into functions of the B'η subfamily members, highlighting their regulation of shared physiological traits while localizing to distinct cellular compartments.
Collapse
Affiliation(s)
- Amr RA Kataya
- University of Stavanger; Center for Organelle Research; Faculty of Science and Technology; Stavanger, Norway
| | - Behzad Heidari
- University of Stavanger; Center for Organelle Research; Faculty of Science and Technology; Stavanger, Norway
| | - Cathrine Lillo
- University of Stavanger; Center for Organelle Research; Faculty of Science and Technology; Stavanger, Norway
- Correspondence to: Cathrine Lillo;
| |
Collapse
|