1
|
Bao M, Yuan Y, Zang S, Yan F, Xu Z, Wu H. How warming impacts the photosynthetic physiology of the bloom-forming cyanobacterium, Microcystis aeruginosa, under UV exposure. Photochem Photobiol Sci 2025; 24:519-529. [PMID: 40122965 DOI: 10.1007/s43630-025-00705-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/06/2025] [Indexed: 03/25/2025]
Abstract
Microcystis aeruginosa is a common cyanobacterium leading to algal blooms. Coupled effects of temperature increase and UV radiation increase will affect its photosynthesis performance, which may in turn will affect its proliferation and distribution, and change the environmental health of the water body. In this study, M. aeruginosa FACHB 469 was incubated at 25 °C and 30 °C and subjected to photosynthetically active radiation (PAR) and UV radiation (PAR + UVR) to monitor the relevant physiological responses. Exposure to both PAR and PAR + UVR resulted in a decline in PSII maximum quantum yield of M. aeruginosa, with UVR having more significant inhibitory effect. Meanwhile, UVR significantly increased the PSII photoinactivation rate constant (Kpi) and decreased the PSII repair rate constant (Krec), whereas the warming did not have a significant effect on it, and no significant interaction effect between warming and UVR was observed. Further analysis of the strategies of algal cells to cope with UVR at different temperatures revealed that at 25 °C, algal cells mainly relied on the repair cycle of PSII, and reduced the content of phycocyanin to lower light energy capture, and increased superoxide dismutase (SOD) and catalase (CAT) activities to alleviate the damage of UVR; whereas under warming conditions, algal cells, while relying on PSII repair, mainly photoprotect by strengthening the NPQ mechanism, thus improving their tolerance to UVR. These findings suggest that the differential strategies employed by M. aeruginosa to cope with UVR under varying temperature conditions may influence the resilience of cyanobacterial blooms to environmental stressors in the future.
Collapse
Affiliation(s)
- Menglin Bao
- School of Life Science, Ludong University, Yantai, 264025, China
| | - Yingze Yuan
- School of Life Science, Ludong University, Yantai, 264025, China
| | - Shasha Zang
- School of Life Science, Ludong University, Yantai, 264025, China
| | - Fang Yan
- School of Life Science, Ludong University, Yantai, 264025, China
| | - Zhiguang Xu
- School of Life Science, Ludong University, Yantai, 264025, China
| | - Hongyan Wu
- School of Life Science, Ludong University, Yantai, 264025, China.
| |
Collapse
|
2
|
Ma X, Qin Z, Johnson KB, Sweat LH, Dai S, Li G, Li C. Transcriptomic responses to shifts in light and nitrogen in two congeneric diatom species. Front Microbiol 2024; 15:1437274. [PMID: 39206371 PMCID: PMC11349689 DOI: 10.3389/fmicb.2024.1437274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Light and nitrogen availability are basic requirements for photosynthesis. Changing in light intensity and nitrogen concentration may require adaptive physiological and life process changes in phytoplankton cells. Our previous study demonstrated that two Thalassiosira species exhibited, respectively, distinctive physiological responses to light and nitrogen stresses. Transcriptomic analyses were employed to investigate the mechanisms behind the different physiological responses observed in two diatom species of the genus Thalassiosira. The results indicate that the congeneric species are different in their cellular responses to the same shifting light and nitrogen conditions. When conditions changed to high light with low nitrate (HLLN), the large-celled T. punctigera was photodamaged. Thus, the photosynthesis pathway and carbon fixation related genes were significantly down-regulated. In contrast, the small-celled T. pseudonana sacrificed cellular processes, especially amino acid metabolisms, to overcome the photodamage. When changing to high light with high nitrate (HLHN) conditions, the additional nitrogen appeared to compensate for the photodamage in the large-celled T. punctigera, with the tricarboxylic acid cycle (TCA cycle) and carbon fixation significantly boosted. Consequently, the growth rate of T. punctigera increased, which suggest that the larger-celled species is adapted for forming post-storm algal blooms. The impact of high light stress on the small-celled T. pseudonana was not mitigated by elevated nitrate levels, and photodamage persisted.
Collapse
Affiliation(s)
- Xiao Ma
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Province Key Laboratory of Applied Marine Biology, Guangzhou, China
| | - Zhen Qin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Kevin B. Johnson
- Department of Biological Sciences, College of Science and Mathematics, Tarleton State University, Stephenville, TX, United States
| | - L. Holly Sweat
- Smithsonian Marine Station, Fort Pierce, FL, United States
| | - Sheng Dai
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Province Key Laboratory of Applied Marine Biology, Guangzhou, China
| | - Gang Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Province Key Laboratory of Applied Marine Biology, Guangzhou, China
- Daya Bay Marine Biology Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shenzhen, China
| | - Chaolun Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Province Key Laboratory of Applied Marine Biology, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Cao L, Bi D, Fan W, Xu J, Beardall J, Gao K, Wu Y. Warming exacerbates the impacts of ultraviolet radiation in temperate diatoms but alleviates the effect on polar species. Photochem Photobiol 2024; 100:491-498. [PMID: 37528525 DOI: 10.1111/php.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/03/2023]
Abstract
Under global change scenarios, the sea surface temperature is increasing steadily along with other changes to oceanic environments. Consequently, marine diatoms are influenced by multiple ocean global change drivers. We hypothesized that temperature rise mediates the responses of polar and temperate diatoms to UV radiation (UVR) to different extents, and exposed the temperate centric diatoms, Thalassiosira weissflogii and Skeletonema costatum, and a polar pennate diatom Entomoneis sp., to warming (+5°C) for 10 days, then performed short-term incubations under different radiation treatments with or without UVR. The effective quantum yields of the three diatoms were stable during exposure to PAR, but decreased when exposed to PAR + UVR, leading to significant UV-induced inhibition, which was 3% and 9%, respectively, for T. weissflogii and S. costatum under ambient temperature but increased to 12% and 17%, respectively, in the cells acclimated to the warming treatment. In contrast, UVR induced much higher inhibition, by about 45%, in the polar diatom Entomoneis sp. at ambient temperature, and the warming treatment alleviated the UV-induced inhibition, which dropped to 36%. The growth rates were significantly inhibited by UVR in S. costatum under the warming treatment and in Entomoneis sp. under ambient temperature, while there was no significant effect for T. weissflogii. Our results indicate that the polar diatom was more sensitive to UVR though warming could alleviate its impact, whereas the temperate diatoms were less sensitive to UVR but warming exacerbated its impacts, implying that diatoms living in different regions may exhibit differential responses to global changes.
Collapse
Affiliation(s)
- Lixin Cao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Dongquan Bi
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Wei Fan
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Juntian Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
- Key Laboratory of Coastal Salt Marsh Ecosystems and Resources Ministry of Natural Resources, Jiangsu Ocean University, Lianyungang, China
| | - John Beardall
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
| | - Yaping Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
- Key Laboratory of Coastal Salt Marsh Ecosystems and Resources Ministry of Natural Resources, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
4
|
Gong S, Pan P, Meng X, Zhang Y, Xu H, Hu H, Cheng X, Yan Q. Integrated Physiologic and Proteomic Analyses Reveal the Molecular Mechanism of Navicula sp. in Response to Ultraviolet Irradiation Stress. Int J Mol Sci 2024; 25:2747. [PMID: 38473996 DOI: 10.3390/ijms25052747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
With the continuous development of space station construction, space ecosystem research has attracted increasing attention. However, the complicated responses of different candidate plants and algae to radiation stress remain unclear. The present study, using integrated physiologic and proteomic analyses, was carried out to reveal the molecular mechanism of Navicula sp. in response to ultraviolet (UV) irradiation stress. Under 12~24 h of high-dose UV irradiation conditions, the contents of chlorophyll and soluble proteins in Navicula sp. cells were significantly higher than those in the control and 4~8 h of low-dose UV irradiation groups. The activity of catalase (CAT) increased with the extension of irradiation time, and the activity of superoxide dismutase (SOD) decreased first and then increased. Furthermore, differential volcano plot analysis of the proteomic data of Navicula sp. samples found only one protein with a significant difference. Differential protein GO analysis unveiled that UV irradiation can activate the antioxidant system of Navicula sp. and further impact photosynthesis by affecting the photoreaction and chlorophyll synthesis of Navicula sp. The most significant differences in KEGG pathway analysis were also associated with photosynthesis. The above results indicate that Navicula sp. has good UV radiation resistance ability by regulating its photosynthetic pigment content, photosynthetic activity, and antioxidant system, making it a potential candidate for the future development of space ecosystems.
Collapse
Affiliation(s)
- Siyu Gong
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Pan Pan
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Xiangying Meng
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Yuxin Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China
| | - Hanli Xu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Honggang Hu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Xiyu Cheng
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Qiong Yan
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
5
|
Yan F, Li M, Zang S, Xu Z, Bao M, Wu H. UV radiation and temperature increase alter the PSII function and defense mechanisms in a bloom-forming cyanobacterium Microcystis aeruginosa. Front Microbiol 2024; 15:1351796. [PMID: 38292251 PMCID: PMC10825000 DOI: 10.3389/fmicb.2024.1351796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
The aim was to determine the response of a bloom-forming Microcystis aeruginosa to climatic changes. Cultures of M. aeruginosa FACHB 905 were grown at two temperatures (25°C, 30°C) and exposed to high photosynthetically active radiation (PAR: 400-700 nm) alone or combined with UVR (PAR + UVR: 295-700 nm) for specified times. It was found that increased temperature enhanced M. aeruginosa sensitivity to both PAR and PAR + UVR as shown by reduced PSII quantum yields (Fv/Fm) in comparison with that at growth temperature (25°C), the presence of UVR significantly exacerbated the photoinhibition. M. aeruginosa cells grown at high temperature exhibited lower PSII repair rate (Krec) and sustained nonphotochemical quenching (NPQs) induction during the radiation exposure, particularly for PAR + UVR. Although high temperature alone or worked with UVR induced higher SOD and CAT activity and promoted the removal rate of PsbA, it seemed not enough to prevent the damage effect from them showing by the increased value of photoinactivation rate constant (Kpi). In addition, the energetic cost of microcystin synthesis at high temperature probably led to reduced materials and energy available for PsbA turnover, thus may partly account for the lower Krec and the declination of photosynthetic activity in cells following PAR and PAR + UVR exposure. Our findings suggest that increased temperature modulates the sensitivity of M. aeruginosa to UVR by affecting the PSII repair and defense capacity, thus influencing competitiveness and abundance in the future water environment.
Collapse
Affiliation(s)
- Fang Yan
- School of Life Science, Ludong University, Yantai, China
- Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University, Yantai, China
| | - Mingze Li
- School of Life Science, Ludong University, Yantai, China
- Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University, Yantai, China
| | - Shasha Zang
- School of Life Science, Ludong University, Yantai, China
- Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University, Yantai, China
| | - Zhiguang Xu
- School of Life Science, Ludong University, Yantai, China
- Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University, Yantai, China
| | - Menglin Bao
- School of Life Science, Ludong University, Yantai, China
- Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University, Yantai, China
| | - Hongyan Wu
- School of Life Science, Ludong University, Yantai, China
- Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University, Yantai, China
| |
Collapse
|
6
|
Su J, Jiao Q, Jia T, Hu X. The photosystem-II repair cycle: updates and open questions. PLANTA 2023; 259:20. [PMID: 38091081 DOI: 10.1007/s00425-023-04295-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION The photosystem-II (PSII) repair cycle is essential for the maintenance of photosynthesis in plants. A number of novel findings have illuminated the regulatory mechanisms of the PSII repair cycle. Photosystem II (PSII) is a large pigment-protein complex embedded in the thylakoid membrane. It plays a vital role in photosynthesis by absorbing light energy, splitting water, releasing molecular oxygen, and transferring electrons for plastoquinone reduction. However, PSII, especially the PsbA (D1) core subunit, is highly susceptible to oxidative damage. To prevent irreversible damage, plants have developed a repair cycle. The main objective of the PSII repair cycle is the degradation of photodamaged D1 and insertion of newly synthesized D1 into the PSII complex. While many factors are known to be involved in PSII repair, the exact mechanism is still under investigation. In this review, we discuss the primary steps of PSII repair, focusing on the proteolytic degradation of photodamaged D1 and the factors involved.
Collapse
Affiliation(s)
- Jinling Su
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Qingsong Jiao
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ting Jia
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Xueyun Hu
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
7
|
Xu Z, Yang S, Li M, Bao M, Wu H. Warming modulates the photosynthetic performance of Thalassiosira pseudonana in response to UV radiation. Front Microbiol 2023; 14:1284792. [PMID: 38029218 PMCID: PMC10644151 DOI: 10.3389/fmicb.2023.1284792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Diatoms form a major component of phytoplankton. These eukaryotic organisms are responsible for approximately 40% of primary productivity in the oceans and contribute significantly to the food web. Here, the influences of ultraviolet radiation (UVR) and ocean warming on diatom photosynthesis were investigated in Thalassiosira pseudonana. The organism was grown at two temperatures, namely, 18°C, the present surface water temperature in summer, and 24°C, an estimate of surface temperature in the year 2,100, under conditions of high photosynthetically active radiation (P, 400-700 nm) alone or in combination with UVR (P + UVR, 295-700 nm). It was found that the maximum photochemical yield of PSII (Fv/Fm) in T. pseudonana was significantly decreased by the radiation exposure with UVR at low temperature, while the rise of temperature alleviated the inhibition induced by UVR. The analysis of PSII subunits turnover showed that high temperature alone or worked synergistically with UVR provoking fast removal of PsbA protein (KPsbA), and also could maintain high PsbD pool in T. pseudonana cells. With the facilitation of PSII repair process, less non-photochemical quenching (NPQ) occurred at high temperature when cells were exposed to P or P + UVR. In addition, irrespective of radiation treatments, high temperature stimulated the induction of SOD activity, which partly contributed to the higher PSII repair rate constant (Krec) as compared to KPsbA. Our findings suggest that the rise in temperature could benefit the photosynthetic performance of T. pseudonana via modulation of its PSII repair cycle and protective capacity, affecting its abundance in phytoplankton in the future warming ocean.
Collapse
Affiliation(s)
- Zhiguang Xu
- School of Life Science, Ludong University, Yantai, China
- Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University, Yantai, China
| | - Shunda Yang
- School of Life Science, Ludong University, Yantai, China
- Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University, Yantai, China
| | - Mingze Li
- School of Life Science, Ludong University, Yantai, China
- Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University, Yantai, China
| | - Menglin Bao
- School of Life Science, Ludong University, Yantai, China
- Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University, Yantai, China
| | - Hongyan Wu
- School of Life Science, Ludong University, Yantai, China
- Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University, Yantai, China
| |
Collapse
|
8
|
Nymark M, Finazzi G, Volpe C, Serif M, Fonseca DDM, Sharma A, Sanchez N, Sharma AK, Ashcroft F, Kissen R, Winge P, Bones AM. Loss of CpFTSY Reduces Photosynthetic Performance and Affects Insertion of PsaC of PSI in Diatoms. PLANT & CELL PHYSIOLOGY 2023; 64:583-603. [PMID: 36852859 DOI: 10.1093/pcp/pcad014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 06/16/2023]
Abstract
The chloroplast signal recognition particle (CpSRP) receptor (CpFTSY) is a component of the CpSRP pathway that post-translationally targets light-harvesting complex proteins (LHCPs) to the thylakoid membranes in plants and green algae containing chloroplasts derived from primary endosymbiosis. In plants, CpFTSY also plays a major role in the co-translational incorporation of chloroplast-encoded subunits of photosynthetic complexes into the thylakoids. This role has not been demonstrated in green algae. So far, its function in organisms with chloroplasts derived from secondary endosymbiotic events has not been elucidated. Here, we report the generation and characterization of mutants lacking CpFTSY in the diatom Phaeodactylum tricornutum. We found that this protein is not involved in inserting LHCPs into thylakoid membranes, indicating that the post-translational part of the CpSRP pathway is not active in this group of microalgae. The lack of CpFTSY caused an increased level of photoprotection, low electron transport rates, inefficient repair of photosystem II (PSII), reduced growth, a strong decline in the PSI subunit PsaC and upregulation of proteins that might compensate for a non-functional co-translational CpSRP pathway during light stress conditions. The phenotype was highly similar to the one described for diatoms lacking another component of the co-translational CpSRP pathway, the CpSRP54 protein. However, in contrast to cpsrp54 mutants, only one thylakoid membrane protein, PetD of the Cytb6f complex, was downregulated in cpftsy. Our results point to a minor role for CpFTSY in the co-translational CpSRP pathway, suggesting that other mechanisms may partially compensate for the effect of a disrupted CpSRP pathway.
Collapse
Affiliation(s)
- Marianne Nymark
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim 7010, Norway
| | - Giovanni Finazzi
- Cell & Plant Physiology Laboratory, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble 38000, France
| | - Charlotte Volpe
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim 7010, Norway
| | - Manuel Serif
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Davi de Miranda Fonseca
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim N-7491, Norway
- Proteomics and Modomics Experimental Core Facility (PROMEC), NTNU and Central Administration, St. Olavs Hospital, The University Hospital in Trondheim, Trondheim N-7491, Norway
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim N-7491, Norway
- Proteomics and Modomics Experimental Core Facility (PROMEC), NTNU and Central Administration, St. Olavs Hospital, The University Hospital in Trondheim, Trondheim N-7491, Norway
| | - Nicolas Sanchez
- Department of Chemistry, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Amit Kumar Sharma
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Felicity Ashcroft
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Ralph Kissen
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Atle Magnar Bones
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| |
Collapse
|
9
|
Chai X, Zheng L, Liu J, Zhan J, Song L. Comparison of photosynthetic responses between haptophyte Phaeocystis globosa and diatom Skeletonema costatum under phosphorus limitation. Front Microbiol 2023; 14:1085176. [PMID: 36756351 PMCID: PMC9899818 DOI: 10.3389/fmicb.2023.1085176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
The diatom Skeletonema costatum and the haptophyte Phaeocystis globosa often form blooms in the coastal waters of the South China Sea. Skeletonema costatum commonly dominates in nutrient enrichment coastal waters, whereas P. globosa starts flourishing after the diatom blooms when phosphorus (P) is limited. Therefore, P limitation was proposed to be a critical factor affecting diatom-haptophyte transition. To elucidate the tolerance to P limitation in P. globosa compared with S. costatum, the effect of P limitation on their photosystem II (PSII) performance was investigated and their photosynthesis acclimation strategies in response to P limitation were evaluated. P limitation did not affect the growth of P. globosa over 7 days but decreased it for S. costatum. Correspondingly, the PSII activity of S. costatum was significantly inhibited by P limitation. The decline in PSII activity in S. costatum under P limitation was associated with the impairment of the oxygen-evolving complex (the donor side of PSII), the hindrance of electron transport from QA - to QB (the acceptor side of PSII), and the inhibition of electron transport to photosystem I (PSI). The 100% decrease in D1 protein level of S. costatum after P limitation for 6 days and PsbO protein level after 2 days of P limitation were attributed to its enhanced photoinhibition. In contrast, P. globosa maintained its photosynthetic activity with minor impairment of the function of PSII. With accelerated PSII repair and highly increased non-photochemical quenching (NPQ), P. globosa can avoid serious PSII damage under P limitation. On the contrary, S. costatum decreased its D1 restoration under P limitation, and the maximum NPQ value in S. costatum was only one-sixth of that in P. globosa. The present work provides extensive evidence that a close interaction exists between the tolerance to P limitation and photosynthetic responses of S. costatum and P. globosa.
Collapse
Affiliation(s)
- Xiaojie Chai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lingling Zheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jin Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiao Zhan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China,*Correspondence: Jiao Zhan, ✉
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
10
|
Zang S, Xu Z, Yan F, Wu H. Elevated CO 2 modulates the physiological responses of Thalassiosira pseudonana to ultraviolet radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 236:112572. [PMID: 36166913 DOI: 10.1016/j.jphotobiol.2022.112572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Diatoms account for a large proportion of marine primary productivity, they tend to be the predominant species in the phytoplankton communities in the surface ocean with frequent and large light fluctuations. To understand the impacts of increased CO2 on diatoms' capacity in exploitation of variable solar radiation, we cultured a model diatom Thalassiosira pseudonana with 400 or 1000ppmv CO2 and exposed it to high photosynthetically active radiation (PAR) alone or PAR plus ultraviolet radiation (UVR) to examine its physiological performances. The results showed that the maximum photochemical efficiency (Fv/fm) was significantly reduced by high PAR and PAR + UVR in T. pseudonana, UVR-induced inhibition on PSII activity was exacerbated by high CO2. PSII activity drops coincide approximately with PsbA content in the cells exposed to high PAR or PAR + UVR, which was pronounced at high CO2. The removal of PsbD in T. pseudonana cells declined under high CO2 during UVR exposure, limiting the repair capacity of PSII. In addition, high CO2 reversed the induction of energy-dependent form of NPQ by UVR to the increase of Y(No), indicating the severe damage of the photoprotective reactions. Our findings suggest that the adverse impacts of UVR on PSII function of T. pseudonana were aggravated by the elevated CO2 through modulating its capacity in repair and protection, which thereby would influence its abundance and competitiveness in phytoplankton communities.
Collapse
Affiliation(s)
- Shasha Zang
- School of Life Science, Ludong University, Yantai 264025, China; Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University, Yantai 264025, China
| | - Zhiguang Xu
- School of Life Science, Ludong University, Yantai 264025, China; Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University, Yantai 264025, China
| | - Fang Yan
- School of Life Science, Ludong University, Yantai 264025, China; Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University, Yantai 264025, China
| | - Hongyan Wu
- School of Life Science, Ludong University, Yantai 264025, China; Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University, Yantai 264025, China.
| |
Collapse
|
11
|
Yi X, Yao H, Fan D, Zhu X, Losciale P, Zhang Y, Zhang W, Chow WS. The energy cost of repairing photoinactivated photosystem II: an experimental determination in cotton leaf discs. THE NEW PHYTOLOGIST 2022; 235:446-456. [PMID: 35451127 PMCID: PMC9320836 DOI: 10.1111/nph.18165] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/31/2022] [Indexed: 05/12/2023]
Abstract
Photosystem II (PSII), which splits water molecules at minimal excess photochemical potential, is inevitably photoinactivated during photosynthesis, resulting in compromised photosynthetic efficiency unless it is repaired. The energy cost of PSII repair is currently uncertain, despite attempts to calculate it. We experimentally determined the energy cost of repairing each photoinactivated PSII in cotton (Gossypium hirsutum) leaves, which are capable of repairing PSII in darkness. As an upper limit, 24 000 adenosine triphosphate (ATP) molecules (including any guanosine triphosphate synthesized at the expense of ATP) were required to repair one entire PSII complex. Further, over a 7-h illumination period at 526-1953 μmol photons m-2 s-1 , the ATP requirement for PSII repair was on average up to 4.6% of the ATP required for the gross carbon assimilation. Each of these two measures of ATP requirement for PSII repair is two- to three-fold greater than the respective reported calculated value. Possible additional energy sinks in the PSII repair cycle are discussed.
Collapse
Affiliation(s)
- Xiao‐Ping Yi
- Key Laboratory of Oasis Eco‐agricultureXinjiang Production and Construction CorpsShihezi UniversityShihezi832003China
- College of Agronomy and BiotechnologySouthwest UniversityChongqing400715China
| | - He‐Sheng Yao
- Key Laboratory of Oasis Eco‐agricultureXinjiang Production and Construction CorpsShihezi UniversityShihezi832003China
- College of Agronomy and BiotechnologySouthwest UniversityChongqing400715China
| | - Da‐Yong Fan
- College of ForestryBeijing Forestry UniversityBeijing100083China
- Division of Plant Sciences, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Xin‐Guang Zhu
- State Key Laboratory of Plant Molecular GeneticsCentre of Excellence for Molecular Plant and Shanghai Institute of Plant Physiology and EcologyChinese Academy of Sciences300 Fenglin RoadShanghai200032China
| | - Pasquale Losciale
- Dipartimento di Scienze del Suolo della Pianta e degli AlimentiUnivarsità degli Studi di BariVia Amendola 165/A70126BariItaly
| | - Ya‐Li Zhang
- Key Laboratory of Oasis Eco‐agricultureXinjiang Production and Construction CorpsShihezi UniversityShihezi832003China
| | - Wang‐Feng Zhang
- Key Laboratory of Oasis Eco‐agricultureXinjiang Production and Construction CorpsShihezi UniversityShihezi832003China
| | - Wah Soon Chow
- Division of Plant Sciences, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| |
Collapse
|
12
|
Mai G, Song X, Xia X, Ma Z, Tan Y, Li G. Photosynthetic Characteristics of Smaller and Larger Cell Size-Fractioned Phytoplankton Assemblies in the Daya Bay, Northern South China Sea. Microorganisms 2021; 10:microorganisms10010016. [PMID: 35056465 PMCID: PMC8846320 DOI: 10.3390/microorganisms10010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Cell size of phytoplankton is known to influence their physiologies and, consequently, marine primary production. To characterize the cell size-dependent photophysiology of phytoplankton, we comparably explored the photosynthetic characteristics of piconano- (<20 µm) and micro-phytoplankton cell assemblies (>20 µm) in the Daya Bay, northern South China Sea, using a 36-h in situ high-temporal-resolution experiment. During the experimental periods, the phytoplankton biomass (Chl a) in the surface water ranged from 0.92 to 5.13 μg L-1, which was lower than that in bottom layer (i.e., 1.83-6.84 μg L-1). Piconano-Chl a accounted for 72% (mean value) of the total Chl a, with no significant difference between the surface and bottom layers. The maximum photochemical quantum yield (FV/FM) of Photosystem II (PS II) and functional absorption cross-section of PS II photochemistry (σPS II) of both piconano- and micro-cells assemblies varied inversely with solar radiation, but this occurred to a lesser extent in the former than in the latter ones. The σPS II of piconano- and micro-cell assemblies showed a similar change pattern to the FV/FM in daytime, but not in nighttime. Moreover, the fluorescence light curve (FLC)-derived light utilization efficiency (α) displayed the same daily change pattern as the FV/FM, and the saturation irradiance (EK) and maximal rETR (rETRmax) mirrored the change in the solar radiation. The FV/FM and σPS II of the piconano-cells were higher than their micro-counterparts under high solar light; while the EK and rETRmax were lower, no matter in what light regimes. In addition, our results indicate that the FV/FM of the micro-cell assembly varied quicker in regard to Chl a change than that of the piconano-cell assembly, indicating the larger phytoplankton cells are more suitable to grow than the smaller ones in the Daya Bay through timely modulating the PS II activity.
Collapse
Affiliation(s)
- Guangming Mai
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510530, China; (G.M.); (X.S.); (X.X.); (Y.T.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyu Song
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510530, China; (G.M.); (X.S.); (X.X.); (Y.T.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Nansha Marine Ecological and Environmental Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510530, China; (G.M.); (X.S.); (X.X.); (Y.T.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zengling Ma
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China;
| | - Yehui Tan
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510530, China; (G.M.); (X.S.); (X.X.); (Y.T.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510530, China; (G.M.); (X.S.); (X.X.); (Y.T.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
13
|
Hupp J, McCoy JI, Millgan AJ, Peers G. Simultaneously measuring carbon uptake capacity and chlorophyll a fluorescence dynamics in algae. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Six C, Ratin M, Marie D, Corre E. Marine Synechococcus picocyanobacteria: Light utilization across latitudes. Proc Natl Acad Sci U S A 2021; 118:e2111300118. [PMID: 34518213 PMCID: PMC8463805 DOI: 10.1073/pnas.2111300118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
The most ubiquitous cyanobacteria, Synechococcus, have colonized different marine thermal niches through the evolutionary specialization of lineages adapted to different ranges of temperature seawater. We used the strains of Synechococcus temperature ecotypes to study how light utilization has evolved in the function of temperature. The tropical Synechococcus (clade II) was unable to grow under 16 °C but, at temperatures >25 °C, induced very high growth rates that relied on a strong synthesis of the components of the photosynthetic machinery, leading to a large increase in photosystem cross-section and electron flux. By contrast, the Synechococcus adapted to subpolar habitats (clade I) grew more slowly but was able to cope with temperatures <10 °C. We show that growth at such temperatures was accompanied by a large increase of the photoprotection capacities using the orange carotenoid protein (OCP). Metagenomic analyzes revealed that Synechococcus natural communities show the highest prevalence of the ocp genes in low-temperature niches, whereas most tropical clade II Synechococcus have lost the gene. Moreover, bioinformatic analyzes suggested that the OCP variants of the two cold-adapted Synechococcus clades I and IV have undergone evolutionary convergence through the adaptation of the molecular flexibility. Our study points to an important role of temperature in the evolution of the OCP. We, furthermore, discuss the implications of the different metabolic cost of these physiological strategies on the competitiveness of Synechococcus in a warming ocean. This study can help improve the current hypotheses and models aimed at predicting the changes in ocean carbon fluxes in response to global warming.
Collapse
Affiliation(s)
- Christophe Six
- Centre National de la Recherche Scientifique, Sorbonne Université, UMR 7144, Adaptation et Diversité en Milieu Marin, group Ecology of Marine Plankton, Station Biologique de Roscoff, 29680 Roscoff, France;
| | - Morgane Ratin
- Centre National de la Recherche Scientifique, Sorbonne Université, UMR 7144, Adaptation et Diversité en Milieu Marin, group Ecology of Marine Plankton, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Dominique Marie
- Centre National de la Recherche Scientifique, Sorbonne Université, UMR 7144, Adaptation et Diversité en Milieu Marin, group Ecology of Marine Plankton, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Erwan Corre
- Department Analysis and Bioinformatics for Marine Science, Fédération de Recherche 2424, 29680 Roscoff, France
| |
Collapse
|
15
|
Qiao H, Zang S, Yan F, Xu Z, Wang L, Wu H. Physiological responses of the diatoms Thalassiosira weissflogii and Thalassiosira pseudonana to nitrogen starvation and high light. MARINE ENVIRONMENTAL RESEARCH 2021; 166:105276. [PMID: 33578138 DOI: 10.1016/j.marenvres.2021.105276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
As oceans warm, the depth of the upper mixed layer is predicted to decrease, resulting in insufficient nutrient supply and higher solar radiation for phytoplankton. In order to understand the photophysiological responses of the key eukaryotic phytoplankton diatoms to high light and nutrient limitation, we grew two diatoms, Thalassiosira weissflogii and Thalassiosira pseudonana under N starvation conditions and exposed them to high visible light. It showed that the large-sized diatom T. weissflogii can maintain photosynthetic activity for a longer period of time under nitrogen starvation as compared with the small-sized diatom T. pseudonana. The electron transfer reaction was inhibited in both diatoms and the fast closing of reaction centers promoted the development of QB non-reducing PSII centers, thus facilitated the rapid induction of NPQ, however, the induction of NPQ depended on the degree of N starvation. N starvation exacerbated the photoinhibition caused by high light. The smaller-sized T. pseudonana had a higher σi value and was more sensitive to high-light, but its PSII repair rate was also higher. In contrast, T. weissflogii was more tolerant to high light with a lower σi value, but the tolerance was severely reduced under N-starvation. This study provides helpful insight into how climate change variables impact diatom's photosynthetic physiology.
Collapse
Affiliation(s)
- Hongjin Qiao
- School of Life Science, Ludong University, Yantai, 264025, China; Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University,Yantai, 264025, China
| | - Shasha Zang
- School of Life Science, Ludong University, Yantai, 264025, China; Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University,Yantai, 264025, China
| | - Fang Yan
- School of Life Science, Ludong University, Yantai, 264025, China; Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University,Yantai, 264025, China
| | - Zhiguang Xu
- School of Life Science, Ludong University, Yantai, 264025, China; Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University,Yantai, 264025, China
| | - Lei Wang
- School of Life Science, Ludong University, Yantai, 264025, China; Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University,Yantai, 264025, China
| | - Hongyan Wu
- School of Life Science, Ludong University, Yantai, 264025, China; Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University,Yantai, 264025, China.
| |
Collapse
|
16
|
Nymark M, Grønbech Hafskjold MC, Volpe C, Fonseca DDM, Sharma A, Tsirvouli E, Serif M, Winge P, Finazzi G, Bones AM. Functional studies of CpSRP54 in diatoms show that the mechanism of thylakoid protein insertion differs from that in plants and green algae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:113-132. [PMID: 33372269 DOI: 10.1111/tpj.15149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
The chloroplast signal recognition particle 54 kDa (CpSRP54) protein is a member of the CpSRP pathway known to target proteins to thylakoid membranes in plants and green algae. Loss of CpSRP54 in the marine diatom Phaeodactylum tricornutum lowers the accumulation of a selection of chloroplast-encoded subunits of photosynthetic complexes, indicating a role in the co-translational part of the CpSRP pathway. In contrast to plants and green algae, absence of CpSRP54 does not have a negative effect on the content of light-harvesting antenna complex proteins and pigments in P. tricornutum, indicating that the diatom CpSRP54 protein has not evolved to function in the post-translational part of the CpSRP pathway. Cpsrp54 KO mutants display altered photophysiological responses, with a stronger induction of photoprotective mechanisms and lower growth rates compared to wild type when exposed to increased light intensities. Nonetheless, their phenotype is relatively mild, thanks to the activation of mechanisms alleviating the loss of CpSRP54, involving upregulation of chaperones. We conclude that plants, green algae, and diatoms have evolved differences in the pathways for co-translational and post-translational insertion of proteins into the thylakoid membranes.
Collapse
Affiliation(s)
- Marianne Nymark
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Marthe Caroline Grønbech Hafskjold
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Charlotte Volpe
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Davi de Miranda Fonseca
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, N-7491, Norway
- Proteomics and Modomics Experimental Core Facility (PROMEC), NTNU and Central Administration, St Olavs Hospital, The University Hospital in Trondheim, Trondheim, Norway
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, N-7491, Norway
- Proteomics and Modomics Experimental Core Facility (PROMEC), NTNU and Central Administration, St Olavs Hospital, The University Hospital in Trondheim, Trondheim, Norway
| | - Eirini Tsirvouli
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Manuel Serif
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Giovanni Finazzi
- Université Grenoble Alpes (UGA), Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institute of Grenoble (IRIG), CEA-Grenoble, Grenoble, 38000, France
| | - Atle Magnar Bones
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| |
Collapse
|
17
|
Li Z, Lan T, Zhang J, Gao K, Beardall J, Wu Y. Nitrogen Limitation Decreases the Repair Capacity and Enhances Photoinhibition of Photosystem II in a Diatom. Photochem Photobiol 2021; 97:745-752. [PMID: 33496343 DOI: 10.1111/php.13386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/30/2023]
Abstract
Macronutrient limitation and increased solar exposure coincide with ocean warming-enhanced stratification, with consequences for phytoplankton within the upper mixing layer. In this study, we grew a diatom, Thalassiosira punctigera, under nitrogen-limited and replete conditions for more than 14 generations and investigated both the biochemical composition of treated cells and their photochemical responses to high light and UV exposure. The photosynthetic pigment and the particulate organic nitrogen (PON) content significantly decreased in the low nitrate grown cells, with drastic decline of the absorption of UV absorbing compounds. Under an acute exposure to high light or UV radiation, we observed a significant decline in the photochemical yield along with an increase of nonphotosynthetic quenching (NPQ), with the former lowered and the latter raised in the low-nitrogen grown cells. The results reveal a decreased repair rate and enhanced photoinhibition of the diatom under nitrogen limitation when exposed to increased levels of light and UV radiation, suggesting a higher vulnerability of the diatom phytoplankton under influences of oceanic global change.
Collapse
Affiliation(s)
- Zhenzhen Li
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China.,The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ting Lan
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Jiaojiao Zhang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - John Beardall
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Yaping Wu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
18
|
Thangaraj S, Sun J. Transcriptomic reprogramming of the oceanic diatom Skeletonema dohrnii under warming ocean and acidification. Environ Microbiol 2020; 23:980-995. [PMID: 32975013 DOI: 10.1111/1462-2920.15248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 12/19/2022]
Abstract
Under ocean warming and acidification, diatoms use a unique acclimation and adaptation strategy by saving energy and utilizing it for other cellular processes. However, the molecular mechanisms that underlie this reprogramming of energy utilization are currently unknown. Here, we investigate the metabolic reprogramming of the ecologically important diatom Skeletonema dohrnii grown under two different temperature (21°C and 25°C) and pCO2 (400 and 1000 ppm) levels, utilizing global transcriptomic analysis. We find that evolutionary changes in the baseline gene expression, which we termed transcriptional up- and downregulation, is the primary mechanism used by diatoms to acclimate to the combined conditions of ocean warming and acidification. This transcriptional regulation shows that under higher temperature and pCO2 conditions, photosynthesis, electron transport and carboxylation were modified with increasing abundances of genes encoding ATP, NADPH and carbon gaining for the carbon-dioxide-concentrating mechanisms (CCMs). Our results also indicate that changes in the transcriptional regulation of CCMs led to a decrease in the metabolic cost to save energy by promoting amino acid synthesis and nitrogen assimilation for the active protein processing machinery to adapt to warming and ocean acidification. This study generated unique metabolic insights into diatoms and suggests that future climate change conditions will cause evolutionary changes in oceanic diatoms that will facilitate their acclimation strategy.
Collapse
Affiliation(s)
- Satheeswaran Thangaraj
- College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan, Hubei, 430074, China
| | - Jun Sun
- College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan, Hubei, 430074, China
| |
Collapse
|
19
|
|
20
|
Wu Y, Zhang M, Li Z, Xu J, Beardall J. Differential Responses of Growth and Photochemical Performance of Marine Diatoms to Ocean Warming and High Light Irradiance. Photochem Photobiol 2020; 96:1074-1082. [DOI: 10.1111/php.13268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/20/2020] [Indexed: 01/24/2023]
Affiliation(s)
- Yaping Wu
- College of Marine Life and Fisheries Jiangsu Ocean University Lianyungang China
- Co‐Innovation Center of Jiangsu Marine Bio‐industry Technology Jiangsu Ocean University Lianyungang China
| | - Mengjuan Zhang
- College of Marine Life and Fisheries Jiangsu Ocean University Lianyungang China
| | - Zhenzhen Li
- The Swire Institute of Marine Science and School of Biological Sciences The University of Hong Kong Hong Kong China
| | - Juntian Xu
- College of Marine Life and Fisheries Jiangsu Ocean University Lianyungang China
- Co‐Innovation Center of Jiangsu Marine Bio‐industry Technology Jiangsu Ocean University Lianyungang China
| | - John Beardall
- School of Biological Sciences Monash University Clayton Vic. Australia
| |
Collapse
|
21
|
Bonnanfant M, Jesus B, Pruvost J, Mouget JL, Campbell DA. Photosynthetic electron transport transients in Chlorella vulgaris under fluctuating light. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Molecular mechanisms of temperature acclimation and adaptation in marine diatoms. ISME JOURNAL 2019; 13:2415-2425. [PMID: 31127177 DOI: 10.1038/s41396-019-0441-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/16/2019] [Accepted: 05/03/2019] [Indexed: 12/21/2022]
Abstract
Diatoms are important contributors to marine primary production and the ocean carbon cycle, yet the molecular mechanisms that regulate their acclimation and adaptation to temperature are poorly understood. Here we use a transcriptomic approach to investigate the molecular mechanisms associated with temperature acclimation and adaptation in closely related colder- and warmer-adapted diatom species. We find evidence that evolutionary changes in baseline gene expression, which we termed transcriptional investment or divestment, is a key mechanism used by diatoms to adapt to different growth temperatures. Invested and divested pathways indicate that the maintenance of protein processing machinery and membrane structure, important short-term physiological mechanisms used to respond to temperature changes, are key elements associated with adaptation to different growth temperatures. Our results also indicate that evolutionary changes in the transcriptional regulation of acetyl-CoA associated pathways, including lipid and branched chain amino acid metabolism, are used by diatoms to balance photosynthetic light capture and metabolism with changes in growth temperature. Transcriptional investment and divestment can provide a framework to identify mechanisms of acclimation and adaption to temperature.
Collapse
|
23
|
Zhu Z, Wu Y, Xu J, Beardall J. High copper and UVR synergistically reduce the photochemical activity in the marine diatom Skeletonema costatum. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 192:97-102. [DOI: 10.1016/j.jphotobiol.2019.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/22/2019] [Accepted: 01/29/2019] [Indexed: 01/30/2023]
|
24
|
Ma J, Wang W, Qu L, Liu X, Wang Z, Qiao S, Wu H, Gao G, Xu J. Differential Photosynthetic Response of a Green Tide Alga Ulva linza to Ultraviolet Radiation, Under Short- and Long-term Ocean Acidification Regimes. Photochem Photobiol 2019; 95:990-998. [PMID: 30636002 DOI: 10.1111/php.13083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/04/2019] [Indexed: 11/29/2022]
Abstract
Both ocean acidification (OA) and solar ultraviolet (UV) radiation can bring about changes in macroalgal physiological performance. However, macroalgal responses to UV radiation when acclimatized to OA under different time scales are rare. Here, we investigate the response of Ulva linza, a green tide alga, to UV radiation in the form of photosynthetically active radiation (PAR) or PAB (PAR+UVA+UVB) radiation. Radiation exposures were assessed following long-term (from spore to adult stage, 1 month) and short-term (adult stage, 1 week) OA treatments. Results showed that increased CO2 decreased the damage rate (k) and repair rate (r) of thalli grown under short-term OA conditions with PAB treatment, the ratio of r:k was not altered. Following long-term OA conditions, r was not affected, although k was increased in thalli following PAB treatment, resulting in a reduced ratio of r:k. The relative level of UV inhibition increased and UV-absorbing compounds decreased when algae were cultured under long-term OA conditions. The recovery rate of thalli was enhanced when grown under long-term OA after UV radiation treatment. These results show that blooming algae may be more sensitive to UV radiation in marine environments, but it can develop effective mechanisms to offset the negative effects, reflecting acclimation to long-term OA conditions.
Collapse
Affiliation(s)
- Jing Ma
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology/Marine Resources Development Institute of Jiangsu, Huaihai Institute of Technology, Lianyungang, China
| | - Wen Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology/Marine Resources Development Institute of Jiangsu, Huaihai Institute of Technology, Lianyungang, China
| | - Liming Qu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology/Marine Resources Development Institute of Jiangsu, Huaihai Institute of Technology, Lianyungang, China
| | - Xiaoyan Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology/Marine Resources Development Institute of Jiangsu, Huaihai Institute of Technology, Lianyungang, China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology/Marine Resources Development Institute of Jiangsu, Huaihai Institute of Technology, Lianyungang, China
| | - Sen Qiao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology/Marine Resources Development Institute of Jiangsu, Huaihai Institute of Technology, Lianyungang, China
| | - Hailong Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology/Marine Resources Development Institute of Jiangsu, Huaihai Institute of Technology, Lianyungang, China
| | - Guang Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology/Marine Resources Development Institute of Jiangsu, Huaihai Institute of Technology, Lianyungang, China
| | - Juntian Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology/Marine Resources Development Institute of Jiangsu, Huaihai Institute of Technology, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, China
| |
Collapse
|
25
|
Bonisteel EM, Turner BE, Murphy CD, Melanson JR, Duff NM, Beardsall BD, Xu K, Campbell DA, Cockshutt AM. Strain specific differences in rates of Photosystem II repair in picocyanobacteria correlate to differences in FtsH protein levels and isoform expression patterns. PLoS One 2018; 13:e0209115. [PMID: 30566504 PMCID: PMC6300248 DOI: 10.1371/journal.pone.0209115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/29/2018] [Indexed: 12/23/2022] Open
Abstract
Picocyanobacteria are the numerically dominant photoautotrophs of the oligotrophic regions of Earth’s oceans. These organisms are characterized by their small size and highly reduced genomes. Strains partition to different light intensity and nutrient level niches, with differing photosynthetic apparatus stoichiometry, light harvesting machinery and susceptibility to photoinactivation. In this study, we grew three strains of picocyanobacteria: the low light, high nutrient strain Prochlorococcus marinus MIT 9313; the high light, low nutrient Prochlorococcus marinus MED 4; and the high light, high nutrient marine Synechococcus strain WH 8102; under low and high growth light levels. We then performed matched photophysiology, protein and transcript analyses. The strains differ significantly in their rates of Photosystem II repair under high light and in their capacity to remove the PsbA protein as the first step in the Photosystem II repair process. Notably, all strains remove the PsbD subunit at the same rate that they remove PsbA. When grown under low light, MIT 9313 loses active Photosystem II quickly when shifted to high light, but has no measurable capacity to remove PsbA. MED 4 and WH 8102 show less rapid loss of Photosystem II and considerable capacity to remove PsbA. MIT 9313 has less of the FtsH protease thought to be responsible for the removal of PsbA in other cyanobacteria. Furthermore, by transcript analysis the predominant FtsH isoform expressed in MIT 9313 is homologous to the FtsH 4 isoform characterized in the model strain Synechocystis PCC 6803, rather than the FtsH 2 and 3 isoforms thought to be responsible for PsbA degradation. MED 4 on the other hand shows high light inducible expression of the isoforms homologous to FtsH 2 and 3, consistent with its faster rate of PsbA removal. MIT 9313 has adapted to its low light environment by diverting resources away from Photosystem II content and repair.
Collapse
Affiliation(s)
- Erin M. Bonisteel
- Department of Chemistry & Biochemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - Brooke E. Turner
- Department of Chemistry & Biochemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - Cole D. Murphy
- Department of Chemistry & Biochemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - Jenna-Rose Melanson
- Department of Chemistry & Biochemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - Nicole M. Duff
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Brian D. Beardsall
- Department of Chemistry & Biochemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - Kui Xu
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Douglas A. Campbell
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Amanda M. Cockshutt
- Department of Chemistry & Biochemistry, Mount Allison University, Sackville, New Brunswick, Canada
- * E-mail:
| |
Collapse
|
26
|
Derks AK, Bruce D. Rapid regulation of excitation energy in two pennate diatoms from contrasting light climates. PHOTOSYNTHESIS RESEARCH 2018; 138:149-165. [PMID: 30008155 PMCID: PMC6208626 DOI: 10.1007/s11120-018-0558-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 07/09/2018] [Indexed: 05/26/2023]
Abstract
Non-photochemical quenching (NPQ) is a fast acting photoprotective response to high light stress triggered by over excitation of photosystem II. The mechanism for NPQ in the globally important diatom algae has been principally attributed to a xanthophyll cycle, analogous to the well-described qE quenching of higher plants. This study compared the short-term NPQ responses in two pennate, benthic diatom species cultured under identical conditions but which originate from unique light climates. Variable chlorophyll fluorescence was used to monitor photochemical and non-photochemical excitation energy dissipation during high light transitions; whereas whole cell steady state 77 K absorption and emission were used to measure high light elicited changes in the excited state landscapes of the thylakoid. The marine shoreline species Nitzschia curvilineata was found to have an antenna system capable of entering a deeply quenched, yet reversible state in response to high light, with NPQ being highly sensitive to dithiothreitol (a known inhibitor of the xanthophyll cycle). Conversely, the salt flat species Navicula sp. 110-1 exhibited a less robust NPQ that remained largely locked-in after the light stress was removed; however, a lower amplitude, but now highly reversible NPQ persisted in cells treated with dithiothreitol. Furthermore, dithiothreitol inhibition of NPQ had no functional effect on the ability of Navicula cells to balance PSII excitation/de-excitation. These different approaches for non-photochemical excitation energy dissipation are discussed in the context of native light climate.
Collapse
Affiliation(s)
- Allen K Derks
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, Saint Catharines, ON, L2S 3A1, Canada.
| | - Doug Bruce
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, Saint Catharines, ON, L2S 3A1, Canada
| |
Collapse
|
27
|
Sett S, Schulz KG, Bach LT, Riebesell U. Shift towards larger diatoms in a natural phytoplankton assemblage under combined high-CO 2 and warming conditions. JOURNAL OF PLANKTON RESEARCH 2018; 40:391-406. [PMID: 30046201 PMCID: PMC6055579 DOI: 10.1093/plankt/fby018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/07/2018] [Indexed: 05/23/2023]
Abstract
An indoor mesocosm experiment was carried out to investigate the combined effects of ocean acidification and warming on the species composition and biogeochemical element cycling during a winter/spring bloom with a natural phytoplankton assemblage from the Kiel fjord, Germany. The experimental setup consisted of a "Control" (ambient temperature of ~4.8 °C and ~535 ± 25 μatm pCO2), a "High-CO2" treatment (ambient temperature and initially 1020 ± 45 μatm pCO2) and a "Greenhouse" treatment (~8.5 °C and initially 990 ± 60 μatm pCO2). Nutrient replete conditions prevailed at the beginning of the experiment and light was provided at in situ levels upon reaching pCO2 target levels. A diatom-dominated bloom developed in all treatments with Skeletonema costatum as the dominant species but with an increased abundance and biomass contribution of larger diatom species in the Greenhouse treatment. Conditions in the Greenhouse treatment accelerated bloom development with faster utilization of inorganic nutrients and an earlier peak in phytoplankton biomass compared to the Control and High CO2 but no difference in maximum concentration of particulate organic matter (POM) between treatments. Loss of POM in the Greenhouse treatment, however, was twice as high as in the Control and High CO2 treatment at the end of the experiment, most likely due to an increased proportion of larger diatom species in that treatment. We hypothesize that the combination of warming and acidification can induce shifts in diatom species composition with potential feedbacks on biogeochemical element cycling.
Collapse
Affiliation(s)
- Scarlett Sett
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, Kiel, Germany
| | - Kai G Schulz
- Centre for Coastal Biogeochemistry, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Lismore, NSW, Australia
| | - Lennart T Bach
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, Kiel, Germany
| | - Ulf Riebesell
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, Kiel, Germany
| |
Collapse
|
28
|
Taddei L, Chukhutsina VU, Lepetit B, Stella GR, Bassi R, van Amerongen H, Bouly JP, Jaubert M, Finazzi G, Falciatore A. Dynamic Changes between Two LHCX-Related Energy Quenching Sites Control Diatom Photoacclimation. PLANT PHYSIOLOGY 2018; 177:953-965. [PMID: 29773581 PMCID: PMC6053010 DOI: 10.1104/pp.18.00448] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/04/2018] [Indexed: 05/20/2023]
Abstract
Marine diatoms are prominent phytoplankton organisms that perform photosynthesis in extremely variable environments. Diatoms possess a strong ability to dissipate excess absorbed energy as heat via nonphotochemical quenching (NPQ). This process relies on changes in carotenoid pigment composition (xanthophyll cycle) and on specific members of the light-harvesting complex family specialized in photoprotection (LHCXs), which potentially act as NPQ effectors. However, the link between light stress, NPQ, and the existence of different LHCX isoforms is not understood in these organisms. Using picosecond fluorescence analysis, we observed two types of NPQ in the pennate diatom Phaeodactylum tricornutum that were dependent on light conditions. Short exposure of low-light-acclimated cells to high light triggers the onset of energy quenching close to the core of photosystem II, while prolonged light stress activates NPQ in the antenna. Biochemical analysis indicated a link between the changes in the NPQ site/mechanism and the induction of different LHCX isoforms, which accumulate either in the antenna complexes or in the core complex. By comparing the responses of wild-type cells and transgenic lines with a reduced expression of the major LHCX isoform, LHCX1, we conclude that core complex-associated NPQ is more effective in photoprotection than is the antenna complex. Overall, our data clarify the complex molecular scenario of light responses in diatoms and provide a rationale for the existence of a degenerate family of LHCX proteins in these algae.
Collapse
Affiliation(s)
- Lucilla Taddei
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005 Paris, France
| | - Volha U Chukhutsina
- Laboratory of Biophysics and MicroSpectroscopy Research Facility, Wageningen University, 6700ET Wageningen, The Netherlands
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam and LaserLaB Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Bernard Lepetit
- Zukunftskolleg, Department of Plant Ecophysiology, University of Konstanz, 78457 Konstanz, Germany
| | - Giulio Rocco Stella
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005 Paris, France
- Department of Biotechnology, University of Verona, I-37134 Verona, Italy
| | - Roberto Bassi
- Department of Biotechnology, University of Verona, I-37134 Verona, Italy
| | - Herbert van Amerongen
- Laboratory of Biophysics and MicroSpectroscopy Research Facility, Wageningen University, 6700ET Wageningen, The Netherlands
| | - Jean-Pierre Bouly
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005 Paris, France
| | - Marianne Jaubert
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005 Paris, France
| | - Giovanni Finazzi
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte de Recherche 5168, Centre National de la Recherche Scientifique, Institut National Recherche Agronomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, CEA Grenoble, F-38054 Grenoble cedex 9, France
| | - Angela Falciatore
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005 Paris, France
| |
Collapse
|
29
|
Yuan W, Gao G, Shi Q, Xu Z, Wu H. Combined effects of ocean acidification and warming on physiological response of the diatom Thalassiosira pseudonana to light challenges. MARINE ENVIRONMENTAL RESEARCH 2018; 135:63-69. [PMID: 29397992 DOI: 10.1016/j.marenvres.2018.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 06/07/2023]
Abstract
Diatoms are one of the most important groups of phytoplankton in terms of abundance and ecological functionality in the ocean. They usually dominate the phytoplankton communities in coastal waters and experience frequent and large fluctuations in light. In order to evaluate the combined effects of ocean warming and acidification on the diatom's exploitation of variable light environments, we grew a globally abundant diatom Thalassiosira pseudonana under two levels of temperature (18, 24 °C) and pCO2 (400, 1000 μatm) to examine its physiological performance after light challenge. It showed that the higher temperature increased the photoinactivation rate in T. pseudonana at 400 μatm pCO2, while the higher pCO2 alleviated the negative effect of the higher temperature on PSII photoinactivation. Higher pCO2 stimulated much faster PsbA removal, but it still lagged behind the photoinactivation of PSII under high light. Although the sustained phase of nonphotochemical quenching (NPQs) and activity of superoxide dismutase (SOD) were provoked during the high light exposure in T. pseudonana under the combined pCO2 and temperature conditions, it could not offset the damage caused by these multiple environmental changes, leading to decreased maximum photochemical yield.
Collapse
Affiliation(s)
- Wubiao Yuan
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Guang Gao
- Marine Resources Development Institute of Jiangsu, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Qi Shi
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Zhiguang Xu
- College of Life Science, Ludong University, Yantai 264025, China
| | - Hongyan Wu
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China; College of Life Science, Ludong University, Yantai 264025, China.
| |
Collapse
|
30
|
Murata N, Nishiyama Y. ATP is a driving force in the repair of photosystem II during photoinhibition. PLANT, CELL & ENVIRONMENT 2018; 41:285-299. [PMID: 29210214 DOI: 10.1111/pce.13108] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 05/15/2023]
Abstract
Repair of photosystem II (PSII) during photoinhibition involves replacement of photodamaged D1 protein by newly synthesized D1 protein. In this review, we summarize evidence for the indispensability of ATP in the degradation and synthesis of D1 during the repair of PSII. Synthesis of one molecule of the D1 protein consumes more than 1,300 molecules of ATP equivalents. The degradation of photodamaged D1 by FtsH protease also consumes approximately 240 molecules of ATP. In addition, ATP is required for several other aspects of the repair of PSII, such as transcription of psbA genes. These requirements for ATP during the repair of PSII have been demonstrated by experiments showing that the synthesis of D1 and the repair of PSII are interrupted by inhibitors of ATP synthase and uncouplers of ATP synthesis, as well as by mutation of components of ATP synthase. We discuss the contribution of cyclic electron transport around photosystem I to the repair of PSII. Furthermore, we introduce new terms relevant to the regulation of the PSII repair, namely, "ATP-dependent regulation" and "redox-dependent regulation," and we discuss the possible contribution of the ATP-dependent regulation of PSII repair under environmental stress.
Collapse
Affiliation(s)
- Norio Murata
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Yoshitaka Nishiyama
- Department of Biochemistry and Molecular Biology and Institute for Environmental Science and Technology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| |
Collapse
|
31
|
Bernal-Bayard P, Puerto-Galán L, Yruela I, García-Rubio I, Castell C, Ortega JM, Alonso PJ, Roncel M, Martínez JI, Hervás M, Navarro JA. The photosynthetic cytochrome c 550 from the diatom Phaeodactylum tricornutum. PHOTOSYNTHESIS RESEARCH 2017; 133:273-287. [PMID: 28032235 DOI: 10.1007/s11120-016-0327-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
The photosynthetic cytochrome c 550 from the marine diatom Phaeodactylum tricornutum has been purified and characterized. Cytochrome c 550 is mostly obtained from the soluble cell extract in relatively large amounts. In addition, the protein appeared to be truncated in the last hydrophobic residues of the C-terminus, both in the soluble cytochrome c 550 and in the protein extracted from the membrane fraction, as deduced by mass spectrometry analysis and the comparison with the gene sequence. Interestingly, it has been described that the C-terminus of cytochrome c 550 forms a hydrophobic finger involved in the interaction with photosystem II in cyanobacteria. Cytochrome c 550 was almost absent in solubilized photosystem II complex samples, in contrast with the PsbO and Psb31 extrinsic subunits, thus suggesting a lower affinity of cytochrome c 550 for the photosystem II complex. Under iron-limiting conditions the amount of cytochrome c 550 decreases up to about 45% as compared to iron-replete cells, pointing to an iron-regulated synthesis. Oxidized cytochrome c 550 has been characterized using continuous wave EPR and pulse techniques, including HYSCORE, and the obtained results have been interpreted in terms of the electrostatic charge distribution in the surroundings of the heme centre.
Collapse
Affiliation(s)
- Pilar Bernal-Bayard
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Leonor Puerto-Galán
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092, Sevilla, Spain
| | | | - Inés García-Rubio
- Centro Universitario de la Defensa, Zaragoza, Spain
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Carmen Castell
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092, Sevilla, Spain
| | - José M Ortega
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Pablo J Alonso
- Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza & CSIC, Zaragoza, Spain
| | - Mercedes Roncel
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Jesús I Martínez
- Centro Universitario de la Defensa, Zaragoza, Spain
- Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza & CSIC, Zaragoza, Spain
| | - Manuel Hervás
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092, Sevilla, Spain
| | - José A Navarro
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092, Sevilla, Spain.
| |
Collapse
|
32
|
Lepetit B, Gélin G, Lepetit M, Sturm S, Vugrinec S, Rogato A, Kroth PG, Falciatore A, Lavaud J. The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis. THE NEW PHYTOLOGIST 2017; 214:205-218. [PMID: 27870063 DOI: 10.1111/nph.14337] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/17/2016] [Indexed: 05/24/2023]
Abstract
Diatoms contain a highly flexible capacity to dissipate excessively absorbed light by nonphotochemical fluorescence quenching (NPQ) based on the light-induced conversion of diadinoxanthin (Dd) into diatoxanthin (Dt) and the presence of Lhcx proteins. Their NPQ fine regulation on the molecular level upon a shift to dynamic light conditions is unknown. We investigated the regulation of Dd + Dt amount, Lhcx gene and protein synthesis and NPQ capacity in the diatom Phaeodactylum tricornutum after a change from continuous low light to 3 d of sine (SL) or fluctuating (FL) light conditions. Four P. tricornutum strains with different NPQ capacities due to different expression of Lhcx1 were included. All strains responded to dynamic light comparably, independently of initial NPQ capacity. During SL, NPQ capacity was strongly enhanced due to a gradual increase of Lhcx2 and Dd + Dt amount. During FL, cells enhanced their NPQ capacity on the first day due to increased Dd + Dt, Lhcx2 and Lhcx3; already by the second day light acclimation was accomplished. While quenching efficiency of Dt was strongly lowered during SL conditions, it remained high throughout the whole FL exposure. Our results highlight a more balanced and cost-effective photoacclimation strategy of P. tricornutum under FL than under SL conditions.
Collapse
Affiliation(s)
- Bernard Lepetit
- UMR7266 'LIENSs', CNRS Université de La Rochelle, Institut du Littoral et de l'Environnement, 2 rue Olympe de Gouges, La Rochelle, 17000, France
- Zukunftskolleg, Pflanzliche Ökophysiologie, Universität Konstanz, Konstanz, 78457, Germany
| | - Gautier Gélin
- UMR7266 'LIENSs', CNRS Université de La Rochelle, Institut du Littoral et de l'Environnement, 2 rue Olympe de Gouges, La Rochelle, 17000, France
| | - Mariana Lepetit
- UMR7266 'LIENSs', CNRS Université de La Rochelle, Institut du Littoral et de l'Environnement, 2 rue Olympe de Gouges, La Rochelle, 17000, France
| | - Sabine Sturm
- Zukunftskolleg, Pflanzliche Ökophysiologie, Universität Konstanz, Konstanz, 78457, Germany
| | - Sascha Vugrinec
- Zukunftskolleg, Pflanzliche Ökophysiologie, Universität Konstanz, Konstanz, 78457, Germany
| | - Alessandra Rogato
- Institute of Biosciences and BioResources, CNR, Via P. Castellino 111, Naples, 80131, Italy
- Stazione Zoologica Anton Dohrn Villa Comunale, Naples, 80121, Italy
| | - Peter G Kroth
- Zukunftskolleg, Pflanzliche Ökophysiologie, Universität Konstanz, Konstanz, 78457, Germany
| | - Angela Falciatore
- Laboratoire de Biologie Computationnelle et Quantitative, Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, 15 rue de l'Ecole de Médecine, Paris, 75006, France
| | - Johann Lavaud
- UMR7266 'LIENSs', CNRS Université de La Rochelle, Institut du Littoral et de l'Environnement, 2 rue Olympe de Gouges, La Rochelle, 17000, France
- Département de Biologie, UMI 3376 TAKUVIK, CNRS/Université Laval, Pavillon Alexandre-Vachon, 1045 avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
33
|
Li G, Talmy D, Campbell DA. Diatom growth responses to photoperiod and light are predictable from diel reductant generation. JOURNAL OF PHYCOLOGY 2017; 53:95-107. [PMID: 27754547 PMCID: PMC5363399 DOI: 10.1111/jpy.12483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 09/13/2016] [Indexed: 05/11/2023]
Abstract
Light drives phytoplankton productivity, so phytoplankton must exploit variable intensities and durations of light exposure, depending upon season, latitude, and depth. We analyzed the growth, photophysiology and composition of small, Thalassiosira pseudonana, and large, Thalassiosira punctigera, centric diatoms from temperate, coastal marine habitats, responding to a matrix of photoperiods and growth light intensities. T. pseudonana showed fastest growth rates under long photoperiods and low to moderate light intensities, while the larger T. punctigera showed fastest growth rates under short photoperiods and higher light intensities. Photosystem II function and content responded primarily to instantaneous growth light intensities during the photoperiod, while diel carbon fixation and RUBISCO content responded more to photoperiod duration than to instantaneous light intensity. Changing photoperiods caused species-specific changes in the responses of photochemical yield (e- /photon) to growth light intensity. These photophysiological variables showed complex responses to photoperiod and to growth light intensity. Growth rate also showed complex responses to photoperiod and growth light intensity. But these complex responses resolved into a close relation between growth rate and the cumulative daily generation of reductant, across the matrix of photoperiods and light intensities.
Collapse
Affiliation(s)
- Gang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - David Talmy
- Department of Earth, Atmosphere and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA
| | - Douglas A Campbell
- Department of Biology, Mount Allison University, 63B York St., Sackville, New Brunswick, Canada
| |
Collapse
|
34
|
Ni G, Zimbalatti G, Murphy CD, Barnett AB, Arsenault CM, Li G, Cockshutt AM, Campbell DA. Arctic Micromonas uses protein pools and non-photochemical quenching to cope with temperature restrictions on Photosystem II protein turnover. PHOTOSYNTHESIS RESEARCH 2017; 131:203-220. [PMID: 27639727 PMCID: PMC5247552 DOI: 10.1007/s11120-016-0310-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/08/2016] [Indexed: 05/12/2023]
Abstract
Micromonas strains of small prasinophyte green algae are found throughout the world's oceans, exploiting widely different niches. We grew arctic and temperate strains of Micromonas and compared their susceptibilities to photoinactivation of Photosystem II, their counteracting Photosystem II repair capacities, their Photosystem II content, and their induction and relaxation of non-photochemical quenching. In the arctic strain Micromonas NCMA 2099, the cellular content of active Photosystem II represents only about 50 % of total Photosystem II protein, as a slow rate constant for clearance of PsbA protein limits instantaneous repair. In contrast, the temperate strain NCMA 1646 shows a faster clearance of PsbA protein which allows it to maintain active Photosystem II content equivalent to total Photosystem II protein. Under growth at 2 °C, the arctic Micromonas maintains a constitutive induction of xanthophyll deepoxidation, shown by second-derivative whole-cell spectra, which supports strong induction of non-photochemical quenching under low to moderate light, even if xanthophyll cycling is blocked. This non-photochemical quenching, however, relaxes during subsequent darkness with kinetics nearly comparable to the temperate Micromonas NCMA 1646, thereby limiting the opportunity cost of sustained downregulation of PSII function after a decrease in light.
Collapse
Affiliation(s)
- Guangyan Ni
- Department of Chemistry & Biochemistry, Mount Allison University, 63B York St., Sackville, NB, E4L3M7, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, CAS, Guangzhou, 510160, China
| | - Gabrielle Zimbalatti
- Department of Chemistry & Biochemistry, Mount Allison University, 63B York St., Sackville, NB, E4L3M7, Canada
| | - Cole D Murphy
- Department of Chemistry & Biochemistry, Mount Allison University, 63B York St., Sackville, NB, E4L3M7, Canada
| | | | - Christopher M Arsenault
- Department of Chemistry & Biochemistry, Mount Allison University, 63B York St., Sackville, NB, E4L3M7, Canada
| | - Gang Li
- Department of Chemistry & Biochemistry, Mount Allison University, 63B York St., Sackville, NB, E4L3M7, Canada
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, CAS, Guangzhou, 510301, China
| | - Amanda M Cockshutt
- Department of Chemistry & Biochemistry, Mount Allison University, 63B York St., Sackville, NB, E4L3M7, Canada
| | - Douglas A Campbell
- Department of Chemistry & Biochemistry, Mount Allison University, 63B York St., Sackville, NB, E4L3M7, Canada.
| |
Collapse
|
35
|
Murphy CD, Roodvoets MS, Austen EJ, Dolan A, Barnett A, Campbell DA. Photoinactivation of Photosystem II in Prochlorococcus and Synechococcus. PLoS One 2017; 12:e0168991. [PMID: 28129341 PMCID: PMC5271679 DOI: 10.1371/journal.pone.0168991] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/10/2016] [Indexed: 01/15/2023] Open
Abstract
The marine picocyanobacteria Synechococcus and Prochlorococcus numerically dominate open ocean phytoplankton. Although evolutionarily related they are ecologically distinct, with different strategies to harvest, manage and exploit light. We grew representative strains of Synechococcus and Prochlorococcus and tracked their susceptibility to photoinactivation of Photosystem II under a range of light levels. As expected blue light provoked more rapid photoinactivation than did an equivalent level of red light. The previous growth light level altered the susceptibility of Synechococcus, but not Prochlorococcus, to this photoinactivation. We resolved a simple linear pattern when we expressed the yield of photoinactivation on the basis of photons delivered to Photosystem II photochemistry, plotted versus excitation pressure upon Photosystem II, the balance between excitation and downstream metabolism. A high excitation pressure increases the generation of reactive oxygen species, and thus increases the yield of photoinactivation of Photosystem II. Blue photons, however, retained a higher baseline photoinactivation across a wide range of excitation pressures. Our experiments thus uncovered the relative influences of the direct photoinactivation of Photosystem II by blue photons which dominates under low to moderate blue light, and photoinactivation as a side effect of reactive oxygen species which dominates under higher excitation pressure. Synechococcus enjoyed a positive metabolic return upon the repair or the synthesis of a Photosystem II, across the range of light levels we tested. In contrast Prochlorococcus only enjoyed a positive return upon synthesis of a Photosystem II up to 400 μmol photons m-2 s-1. These differential cost-benefits probably underlie the distinct photoacclimation strategies of the species.
Collapse
Affiliation(s)
- Cole D. Murphy
- Biochemistry and Chemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - Mitchell S. Roodvoets
- Biochemistry and Chemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - Emily J. Austen
- Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Allison Dolan
- Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Audrey Barnett
- Michigan Technological University, Houghton, Michigan, United States of America
| | | |
Collapse
|
36
|
Nagao R, Tomo T, Narikawa R, Enami I, Ikeuchi M. Conversion of photosystem II dimer to monomers during photoinhibition is tightly coupled with decrease in oxygen-evolving activity in the diatom Chaetoceros gracilis. PHOTOSYNTHESIS RESEARCH 2016; 130:83-91. [PMID: 26846772 DOI: 10.1007/s11120-016-0226-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
The rapid turnover of photosystem II (PSII) in diatoms is thought to be at an exceptionally high rate compared with other oxyphototrophs; however, its molecular mechanisms are largely unknown. In this study, we examined the photodamage and repair processes of PSII in the marine centric diatom Chaetoceros gracilis incubated at 30 or 300 μmol photons m-2 s-1 in the presence of a de novo protein-synthesis inhibitor. When de novo protein synthesis was blocked by chloramphenicol (Cm), oxygen-evolving activity gradually decreased even at 30 μmol photons m-2 s-1 and could not be detected at 12 h. PSII inactivation was enhanced by higher illumination. Using Cm-treated cells, the conversion of PSII dimer to monomers was observed by blue native PAGE. The rate of PSII monomerization was very similar to that of the decrease in oxygen-evolving activity under both light conditions. Immunological detection of D1 protein in the Cm-treated cells showed that the rate of D1 degradation was slower than that of the former two events, although it was more rapid than that observed in other oxyphototrophs. Thus, the three accelerated events, especially PSII monomerization, appear to cause the unusually high rate of PSII turnover in diatoms.
Collapse
Affiliation(s)
- Ryo Nagao
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
| | - Tatsuya Tomo
- Department of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo, 162-8601, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Rei Narikawa
- Department of Biological Science, Faculty of Science, Shizuoka University, Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Isao Enami
- Department of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Masahiko Ikeuchi
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
37
|
Jallet D, Caballero MA, Gallina AA, Youngblood M, Peers G. Photosynthetic physiology and biomass partitioning in the model diatom Phaeodactylum tricornutum grown in a sinusoidal light regime. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Cartaxana P, Cruz S, Gameiro C, Kühl M. Regulation of Intertidal Microphytobenthos Photosynthesis Over a Diel Emersion Period Is Strongly Affected by Diatom Migration Patterns. Front Microbiol 2016; 7:872. [PMID: 27375593 PMCID: PMC4894885 DOI: 10.3389/fmicb.2016.00872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/24/2016] [Indexed: 12/02/2022] Open
Abstract
Changes in biomass and photosynthesis of a diatom-dominated microphytobenthos (MPB) intertidal community were studied over a diel emersion period using a combination of O2 and scalar irradiance microprofiling, variable chlorophyll (Chl) fluorescence, and pigment analysis. The MPB biomass in the photic zone (0–0.5 mm) of the sediment exposed to low irradiance (150 μmol photons m-2 s-1) showed a >2-fold increase during the first hours of the emersion period, reaching >0.2 mg Chl a cm-3. Concentrations of Chl a started to decrease half-way through the emersion period, almost 2 h before tidal inundation. Similarly, O2 concentrations and volumetric gross photosynthesis in the photic zone increased during the first half of the emersion period and then decreased toward the timing of incoming tide/darkness. The results suggest that intertidal MPB community-level photosynthesis is mainly controlled by changes in the productive biomass of the photic zone determined by cell migration. A diel pattern in the photosynthesis vs. irradiance parameters α (photosynthetic efficiency at limiting irradiance) and ETRmax (photosynthetic capacity at saturating irradiance) was also observed, suggesting photoacclimation of MPB. Under high light exposure (2000 μmol photons m-2 s-1), lower α, ETRmax and sediment O2 concentrations were observed when cell migration was inhibited with the diatom motility inhibitor latrunculin A (Lat A), showing that migration is also used by MPB to maximize photosynthesis by reducing exposure to potentially photoinhibitory light levels. A higher de-epoxidation state in sediment treated with Lat A indicates that the involvement of the xanthophyll cycle in physiological photoprotection is more relevant in MPB when cells are inhibited from migrating. In the studied diatom-dominated MPB intertidal community, cell migration seems to be the key factor regulating photosynthesis over a diel emersion period and upon changes in light exposure.
Collapse
Affiliation(s)
- Paulo Cartaxana
- Marine Biological Section, Department of Biology, University of Copenhagen Helsingør, Denmark
| | - Sónia Cruz
- Marine Biological Section, Department of Biology, University of CopenhagenHelsingør, Denmark; Departamento de Biologia and Centro de Estudos do Ambiente e do Mar, Universidade de AveiroAveiro, Portugal
| | - Carla Gameiro
- Centro de Ciências do Mar e Ambiente, Faculdade de Ciências, Universidade de Lisboa Lisboa, Portugal
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of CopenhagenHelsingør, Denmark; Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, UltimoNSW, Australia
| |
Collapse
|
39
|
Lavaud J, Six C, Campbell DA. Photosystem II repair in marine diatoms with contrasting photophysiologies. PHOTOSYNTHESIS RESEARCH 2016; 127:189-99. [PMID: 26156125 DOI: 10.1007/s11120-015-0172-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/25/2015] [Indexed: 05/23/2023]
Abstract
Skeletonema costatum and Phaeodactylum tricornutum are model marine diatoms with differing strategies for non-photochemical dissipation of excess excitation energy within photosystem II (PSII). We showed that S. costatum, with connectivity across the pigment bed serving PSII, and limited capacity for induction of sustained non-photochemical quenching (NPQ), maintained a large ratio of [PSII(Total)]/[PSII(Active)] to buffer against fluctuations in light intensity. In contrast, P. tricornutum, with a larger capacity to induce sustained NPQ, could maintain a lower [PSII(Total)]/[PSII(Active)]. Induction of NPQ was correlated with an active PSII repair cycle in both species, and inhibition of chloroplastic protein synthesis with lincomycin leads to run away over-excitation of remaining PSII(Active), particularly in S. costatum. We discuss these distinctions in relation to the differing capacities, induction and relaxation rates for NPQ, and as strain adaptations to the differential light regimes of their originating habitats. The present work further confirms the important role for the light-dependent fast regulation of photochemistry by NPQ interacting with PSII repair cycle capacity in the ecophysiology of both pennate and centric diatoms.
Collapse
Affiliation(s)
- Johann Lavaud
- UMRi 7266 'LIENSs', Institut du Littoral et de l'Environnement (ILE), CNRS-University of La Rochelle, 2 rue Olympe de Gouges, 17000, La Rochelle Cedex, France.
| | - Christophe Six
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada
- UMR 7144 'Adaptation et Diversité en Milieu Marin', 'Marine Phototrophic Prokaryotes' group, Centre National pour la Recherche Scientifique (CNRS), Station Biologique de Roscoff, Place George Teissier, 29680, Roscoff, France
- UMR 7144 'Adaptation et Diversité en Milieu Marin', 'Marine Phototrophic Prokaryotes' group, Université Pierre et Marie Curie (Paris 06), Station Biologique de Roscoff, Place George Teissier, 29680, Roscoff, France
| | - Douglas A Campbell
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada
| |
Collapse
|
40
|
Vandenhecke JMR, Bastedo J, Cockshutt AM, Campbell DA, Huot Y. Changes in the Rubisco to photosystem ratio dominates photoacclimation across phytoplankton taxa. PHOTOSYNTHESIS RESEARCH 2015; 124:275-291. [PMID: 25862645 DOI: 10.1007/s11120-015-0137-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 03/31/2015] [Indexed: 06/04/2023]
Abstract
When growth irradiance changes, phytoplankton acclimates by changing allocations to cellular components to re-balance their capacity to absorb photons versus their capacity to use the electrons from the oxidation of water at photosystem II. Published changes in the cellular allocations resulting from photoacclimation across algal groups highlight that algae adopt different strategies. We examined the photoacclimation of the photosynthetic apparatus of six marine phytoplankters under near-natural diel irradiance patterns. For most of the phytoplankters, Chl a per structural photosystem II unit decreased with increasing growth irradiance, but a parallel decline in optical packaging effect allowed cells to maintain their functional absorption cross section serving active photosystem II units (σ PSII). Furthermore, no significant changes were observed in the ratio of Chl a per photosystem I. The diatom Skeletonema marinoi proved an exception to this pattern as Chl a per photosystem II is stable and Chl a per photosystem I slightly decreased with light intensity. A clear decrease in the photosystem content per cell was observed for all species except for Thalassiosira oceanica and S. marinoi. Rubisco content per cell showed little variation with irradiance for most algae, except for a 3-fold increase in S. marinoi. A ~700 % increase in the Rubisco:photosystem ratio across species with increasing growth irradiance indicates this is a key cellular stoichiometric adjustment to balance photon absorption capacity and the carbon reduction capacity. Increasing the Rubisco:photosystem ratio occurs through a decrease in the photosystems per cell for most of the phytoplankters in this study, except in the case of S. marinoi where Rubisco per cell increased.
Collapse
Affiliation(s)
- Jennifer Marie-Rose Vandenhecke
- Canada Research Chair in Earth Observation and Phytoplankton Ecophysiology, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada,
| | | | | | | | | |
Collapse
|
41
|
Li G, Brown CM, Jeans JA, Donaher NA, McCarthy A, Campbell DA. The nitrogen costs of photosynthesis in a diatom under current and future pCO2. THE NEW PHYTOLOGIST 2015; 205:533-43. [PMID: 25256155 DOI: 10.1111/nph.13037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/10/2014] [Indexed: 05/23/2023]
Abstract
With each cellular generation, oxygenic photoautotrophs must accumulate abundant protein complexes that mediate light capture, photosynthetic electron transport and carbon fixation. In addition to this net synthesis, oxygenic photoautotrophs must counter the light-dependent photoinactivation of Photosystem II (PSII), using metabolically expensive proteolysis, disassembly, resynthesis and re-assembly of protein subunits. We used growth rates, elemental analyses and protein quantitations to estimate the nitrogen (N) metabolism costs to both accumulate the photosynthetic system and to maintain PSII function in the diatom Thalassiosira pseudonana, growing at two pCO2 levels across a range of light levels. The photosynthetic system contains c. 15-25% of total cellular N. Under low growth light, N (re)cycling through PSII repair is only c. 1% of the cellular N assimilation rate. As growth light increases to inhibitory levels, N metabolite cycling through PSII repair increases to c. 14% of the cellular N assimilation rate. Cells growing under the assumed future 750 ppmv pCO2 show higher growth rates under optimal light, coinciding with a lowered N metabolic cost to maintain photosynthesis, but then suffer greater photoinhibition of growth under excess light, coincident with rising costs to maintain photosynthesis. We predict this quantitative trait response to light will vary across taxa.
Collapse
Affiliation(s)
- Gang Li
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, E4L 1G7, Canada; Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, CAS, Guangzhou, 510301, China
| | | | | | | | | | | |
Collapse
|
42
|
Valle KC, Nymark M, Aamot I, Hancke K, Winge P, Andresen K, Johnsen G, Brembu T, Bones AM. System responses to equal doses of photosynthetically usable radiation of blue, green, and red light in the marine diatom Phaeodactylum tricornutum. PLoS One 2014; 9:e114211. [PMID: 25470731 PMCID: PMC4254936 DOI: 10.1371/journal.pone.0114211] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/05/2014] [Indexed: 11/21/2022] Open
Abstract
Due to the selective attenuation of solar light and the absorption properties of seawater and seawater constituents, free-floating photosynthetic organisms have to cope with rapid and unpredictable changes in both intensity and spectral quality. We have studied the transcriptional, metabolic and photo-physiological responses to light of different spectral quality in the marine diatom Phaeodactylum tricornutum through time-series studies of cultures exposed to equal doses of photosynthetically usable radiation of blue, green and red light. The experiments showed that short-term differences in gene expression and profiles are mainly light quality-dependent. Transcription of photosynthesis-associated nuclear genes was activated mainly through a light quality-independent mechanism likely to rely on chloroplast-to-nucleus signaling. In contrast, genes encoding proteins important for photoprotection and PSII repair were highly dependent on a blue light receptor-mediated signal. Changes in energy transfer efficiency by light-harvesting pigments were spectrally dependent; furthermore, a declining trend in photosynthetic efficiency was observed in red light. The combined results suggest that diatoms possess a light quality-dependent ability to activate photoprotection and efficient repair of photodamaged PSII. In spite of approximately equal numbers of PSII-absorbed quanta in blue, green and red light, the spectral quality of light is important for diatom responses to ambient light conditions.
Collapse
Affiliation(s)
- Kristin Collier Valle
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Marianne Nymark
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Inga Aamot
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Kasper Hancke
- Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Kjersti Andresen
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Geir Johnsen
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Tore Brembu
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Atle M. Bones
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
- * E-mail:
| |
Collapse
|
43
|
Jungandreas A, Schellenberger Costa B, Jakob T, von Bergen M, Baumann S, Wilhelm C. The acclimation of Phaeodactylum tricornutum to blue and red light does not influence the photosynthetic light reaction but strongly disturbs the carbon allocation pattern. PLoS One 2014; 9:e99727. [PMID: 25111046 PMCID: PMC4128583 DOI: 10.1371/journal.pone.0099727] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/19/2014] [Indexed: 11/30/2022] Open
Abstract
Diatoms are major contributors to the aquatic primary productivity and show an efficient acclimation ability to changing light intensities. Here, we investigated the acclimation of Phaeodactylum tricornutum to different light quality with respect to growth rate, photosynthesis rate, macromolecular composition and the metabolic profile by shifting the light quality from red light (RL) to blue light (BL) and vice versa. Our results show that cultures pre-acclimated to BL and RL exhibited similar growth performance, photosynthesis rates and metabolite profiles. However, light shift experiments revealed rapid and severe changes in the metabolite profile within 15 min as the initial reaction of light acclimation. Thus, during the shift from RL to BL, increased concentrations of amino acids and TCA cycle intermediates were observed whereas during the BL to RL shift the levels of amino acids were decreased and intermediates of glycolysis accumulated. Accordingly, on the time scale of hours the RL to BL shift led to a redirection of carbon into the synthesis of proteins, whereas during the BL to RL shift an accumulation of carbohydrates occurred. Thus, a vast metabolic reorganization of the cells was observed as the initial reaction to changes in light quality. The results are discussed with respect to a putative direct regulation of cellular enzymes by light quality and by transcriptional regulation. Interestingly, the short-term changes in the metabolome were accompanied by changes in the degree of reduction of the plastoquinone pool. Surprisingly, the RL to BL shift led to a severe inhibition of growth within the first 48 h which was not observed during the BL to RL shift. Furthermore, during the phase of growth arrest the photosynthetic performance did not change. We propose arguments that the growth arrest could have been caused by the reorganization of intracellular carbon partitioning.
Collapse
Affiliation(s)
- Anne Jungandreas
- Department of Plant Physiology, Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
- Department of Computational Landscape Ecology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Benjamin Schellenberger Costa
- Department of Plant Physiology, Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Torsten Jakob
- Department of Plant Physiology, Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Martin von Bergen
- Department of Metabolomics, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Department of Proteomics, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Department of Biotechnology, Chemistry and Environmental Engineering, University of Aalborg, Aalborg, Denmark
| | - Sven Baumann
- Department of Metabolomics, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Institute of Pharmacy, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Christian Wilhelm
- Department of Plant Physiology, Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
44
|
Gao K, Campbell DA. Photophysiological responses of marine diatoms to elevated CO 2 and decreased pH: a review. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:449-459. [PMID: 32481004 DOI: 10.1071/fp13247] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/24/2013] [Indexed: 05/19/2023]
Abstract
Diatoms dominate nearly half of current oceanic productivity, so their responses to ocean acidification are of general concern regarding future oceanic carbon sequestration. Community, mesocosm and laboratory studies show a range of diatom growth and photophysiological responses to increasing pCO2. Nearly 20 studies on effects of elevated pCO2 on diatoms have shown stimulations, no effects or inhibitions of growth rates. These differential responses could result from differences in experimental setups, cell densities, levels of light and temperature, but also from taxon-specific physiology. Generally, ocean acidification treatments of lowered pH with elevated CO2 stimulate diatom growth under low to moderate levels of light, but lead to growth inhibition when combined with excess light. Additionally, diatom cell sizes and their co-varying metabolic rates can influence responses to increasing pCO2 and decreasing pH, although cell size effects are confounded with taxonomic specificities in cell structures and metabolism. Here we summarise known diatom growth and photophysiological responses to increasing pCO2 and decreasing pH, and discuss some reasons for the diverse responses observed across studies.
Collapse
Affiliation(s)
- Kunshan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University, 361005 Xiamen, China
| | - Douglas A Campbell
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada
| |
Collapse
|
45
|
Jeans J, Campbell DA, Hoogenboom MO. Increased reliance upon photosystem II repair following acclimation to high-light by coral-dinoflagellate symbioses. PHOTOSYNTHESIS RESEARCH 2013; 118:219-29. [PMID: 24062202 DOI: 10.1007/s11120-013-9918-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/26/2013] [Indexed: 05/22/2023]
Abstract
Changing light environments force photoautotroph cells, including coral symbionts, to acclimate to maintain photosynthesis. Photosystem II (PSII) is subjected to photoinactivation at a rate proportional to the incident light, and cells must adjust their rates of protein repair to counter this photoinactivation. We examined PSII function in the coral symbiont Symbiodinium to determine the effect of photoacclimation on their capacity for PSII repair. Colonies of the coral Stylophora pistillata were collected from moderate light environments on the Lizard Island reef (Queensland, Australia) and transported to a local field station, where they were assigned to lower or higher light regimes and allowed to acclimate for 2 weeks. Following this photoacclimation period, the low-light acclimated corals showed greater symbiont density, higher chlorophyll per symbiont cell, and higher photosystem II protein than high-light acclimated corals did. Subsequently, we treated the corals with lincomycin, an inhibitor of chloroplastic protein synthesis, and exposed them to a high-light treatment to separate the effect of de novo protein synthesis in PSII repair from intrinsic susceptibility to photoinactivation. Low-light acclimated corals showed a sharp initial drop in PSII function but inhibition of PSII repair provoked only a modest additional drop in PSII function, compared to uninhibited corals. In high-light acclimated corals inhibition of PSII repair provoked a larger drop in PSII function, compared to uninhibited high-light corals. The greater lincomycin effects in the corals pre-acclimated to high-light show that high-light leads to an increased reliance on the PSII repair cycle.
Collapse
Affiliation(s)
- Jennifer Jeans
- Biology and Biochemistry, Mount Allison University, Sackville, NB, E4L 3G7, Canada
| | | | | |
Collapse
|
46
|
Jin P, Gao K, Villafañe VE, Campbell DA, Helbling EW. Ocean acidification alters the photosynthetic responses of a coccolithophorid to fluctuating ultraviolet and visible radiation. PLANT PHYSIOLOGY 2013; 162:2084-94. [PMID: 23749851 PMCID: PMC3729784 DOI: 10.1104/pp.113.219543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/03/2013] [Indexed: 05/03/2023]
Abstract
Mixing of seawater subjects phytoplankton to fluctuations in photosynthetically active radiation (400-700 nm) and ultraviolet radiation (UVR; 280-400 nm). These irradiance fluctuations are now superimposed upon ocean acidification and thinning of the upper mixing layer through stratification, which alters mixing regimes. Therefore, we examined the photosynthetic carbon fixation and photochemical performance of a coccolithophore, Gephyrocapsa oceanica, grown under high, future (1,000 μatm) and low, current (390 μatm) CO₂ levels, under regimes of fluctuating irradiances with or without UVR. Under both CO₂ levels, fluctuating irradiances, as compared with constant irradiance, led to lower nonphotochemical quenching and less UVR-induced inhibition of carbon fixation and photosystem II electron transport. The cells grown under high CO₂ showed a lower photosynthetic carbon fixation rate but lower nonphotochemical quenching and less ultraviolet B (280-315 nm)-induced inhibition. Ultraviolet A (315-400 nm) led to less enhancement of the photosynthetic carbon fixation in the high-CO₂-grown cells under fluctuating irradiance. Our data suggest that ocean acidification and fast mixing or fluctuation of solar radiation will act synergistically to lower carbon fixation by G. oceanica, although ocean acidification may decrease ultraviolet B-related photochemical inhibition.
Collapse
Affiliation(s)
- Peng Jin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China (P.J., K.G.)
- Estación de Fotobiología Playa Unión and Consejo Nacional de Investigaciones Científicas y Técnicas, Chubut 9103, Argentina (V.E.V., E.W.H.); and
- Biology Department, Mount Allison University, Sackville, New Brunswick, Canada E4L 1G7 (D.A.C.)
| | | | - Virginia E. Villafañe
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China (P.J., K.G.)
- Estación de Fotobiología Playa Unión and Consejo Nacional de Investigaciones Científicas y Técnicas, Chubut 9103, Argentina (V.E.V., E.W.H.); and
- Biology Department, Mount Allison University, Sackville, New Brunswick, Canada E4L 1G7 (D.A.C.)
| | - Douglas A. Campbell
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China (P.J., K.G.)
- Estación de Fotobiología Playa Unión and Consejo Nacional de Investigaciones Científicas y Técnicas, Chubut 9103, Argentina (V.E.V., E.W.H.); and
- Biology Department, Mount Allison University, Sackville, New Brunswick, Canada E4L 1G7 (D.A.C.)
| | - E. Walter Helbling
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China (P.J., K.G.)
- Estación de Fotobiología Playa Unión and Consejo Nacional de Investigaciones Científicas y Técnicas, Chubut 9103, Argentina (V.E.V., E.W.H.); and
- Biology Department, Mount Allison University, Sackville, New Brunswick, Canada E4L 1G7 (D.A.C.)
| |
Collapse
|
47
|
The central carbon and energy metabolism of marine diatoms. Metabolites 2013; 3:325-46. [PMID: 24957995 PMCID: PMC3901268 DOI: 10.3390/metabo3020325] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/25/2013] [Accepted: 04/25/2013] [Indexed: 01/27/2023] Open
Abstract
Diatoms are heterokont algae derived from a secondary symbiotic event in which a eukaryotic host cell acquired an eukaryotic red alga as plastid. The multiple endosymbiosis and horizontal gene transfer processes provide diatoms unusual opportunities for gene mixing to establish distinctive biosynthetic pathways and metabolic control structures. Diatoms are also known to have significant impact on global ecosystems as one of the most dominant phytoplankton species in the contemporary ocean. As such their metabolism and growth regulating factors have been of particular interest for many years. The publication of the genomic sequences of two independent species of diatoms and the advent of an enhanced experimental toolbox for molecular biological investigations have afforded far greater opportunities than were previously apparent for these species and re-invigorated studies regarding the central carbon metabolism of diatoms. In this review we discuss distinctive features of the central carbon metabolism of diatoms and its response to forthcoming environmental changes and recent advances facilitating the possibility of industrial use of diatoms for oil production. Although the operation and importance of several key pathways of diatom metabolism have already been demonstrated and determined, we will also highlight other potentially important pathways wherein this has yet to be achieved.
Collapse
|
48
|
Campbell DA, Hossain Z, Cockshutt AM, Zhaxybayeva O, Wu H, Li G. Photosystem II protein clearance and FtsH function in the diatom Thalassiosira pseudonana. PHOTOSYNTHESIS RESEARCH 2013; 115:43-54. [PMID: 23504483 DOI: 10.1007/s11120-013-9809-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/01/2013] [Indexed: 05/13/2023]
Abstract
All oxygenic photoautotrophs suffer photoinactivation of their Photosystem II complexes, at a rate driven by the instantaneous light level. To maintain photosynthesis, PsbA subunits are proteolytically removed from photoinactivated Photosystem II complexes, primarily by a membrane-bound FtsH protease. Diatoms thrive in environments with fluctuating light, such as coastal regions, in part because they enjoy a low susceptibility to photoinactivation of Photosystem II. In a coastal strain of the diatom Thalassiosira pseudonana growing across a range of light levels, active Photosystem II represents only about 42 % of the total Photosystem II protein, with the remainder attributable to photoinactivated Photosystem II awaiting recycling. The rate constant for removal of PsbA protein increases with growth light, in parallel with an increasing content of the FtsH protease relative to the substrate PsbA. An offshore strain of Thalassiosira pseudonana, originating from a more stable light environment, had a lower content of FtsH and slower rate constants for removal of PsbA. We used this data to generate the first estimates for in vivo proteolytic degradation of photoinactivated PsbA per FtsH6 protease, at ~3.9 × 10(-2) s(-1), which proved consistent across growth lights and across the onshore and offshore strains.
Collapse
Affiliation(s)
- Douglas A Campbell
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G7, Canada.
| | | | | | | | | | | |
Collapse
|
49
|
Losh JL, Young JN, Morel FMM. Rubisco is a small fraction of total protein in marine phytoplankton. THE NEW PHYTOLOGIST 2013; 198:52-58. [PMID: 23343368 DOI: 10.1111/nph.12143] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/10/2012] [Indexed: 05/19/2023]
Abstract
Ribulose 1,5 bisphosphate carboxylase oxygenase (Rubisco) concentrations were quantified as a proportion of total protein in eight species of microalgae. This enzyme has been assumed to be a major fraction of total protein in phytoplankton, as has been demonstrated in plants, potentially constituting a large sink for cellular nitrogen. Representative microalgae were grown in batch and continuous cultures under nutrient-replete, nitrogen (N)-limited, or phosphorus (P)-limited conditions with varying CO(2). Quantitative Western blots were performed using commercially available global antibodies and protein standards. Field incubations with natural populations of organisms from the coast of California were conducted under both nutrient-replete and N-limited conditions with varying CO(2). In all experiments, Rubisco represented < 6% of total protein. In nutrient-replete exponentially growing batch cultures, concentrations ranged from 2% to 6%, while in nutrient-limited laboratory and field cultures, concentrations were < 2.5%. Rubisco generally decreased with increasing CO(2) and with decreasing growth rates. Based on a calculation of maximum Rubisco activity, these results suggest that phytoplankton contain the minimum concentration of enzyme necessary to support observed growth rates. Unlike in plants, Rubisco does not account for a major fraction of cellular N in phytoplankton.
Collapse
Affiliation(s)
- Jenna L Losh
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
| | - Jodi N Young
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
| | - François M M Morel
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
50
|
Hennige SJ, Coyne KJ, MacIntyre H, Liefer J, Warner ME. The photobiology of Heterosigma akashiwo. Photoacclimation, diurnal periodicity, and its ability to rapidly exploit exposure to high light. JOURNAL OF PHYCOLOGY 2013; 49:349-360. [PMID: 27008521 DOI: 10.1111/jpy.12043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 12/14/2012] [Indexed: 06/05/2023]
Abstract
Periodic and seasonal exposure to high light is a common occurrence for many near-shore and estuarine phytoplankton. Rapid acclimatization to shifts in light may provide an axis by which some species of phytoplankton can outcompete other microalgae. Patterns of photoacclimation and photosynthetic capacity in the raphidophyte Heterosigma akashiwo (Hada) Hada ex Hara et Chihara isolated from the mid-Atlantic of the United States were followed in continuous cultures at low- and high-light intensities, followed by reciprocal shifts to the opposite light level. The maximum quantum yield (Fv /Fm ) as well as the photosynthetic cross-section (σPSII ) of photosystem II was higher in high-light cultures compared to low-light cultures. Significant diurnal variability in photochemistry and photoprotection was noted at both light levels, and high-light-acclimated cultures displayed greater variability in photoprotective pathways. When shifted from low to high light, there was only a slight and temporary decline in maximum quantum yield, while cell specific growth more than doubled within 24 h. Rapid acclimation to high light was facilitated by short-term photoprotection (nonphotochemical quenching), reduced PSII reaction center connectivity, and electron transport. Short-term increases in de-epoxidated xanthophyll pigments contributed to nonphotochemical protection, but lagged behind initial increases in nonphotochemical quenching and were not the primary pathway of photoprotection in this alga. By 48 h, photochemistry of cultures shifted from low to high light resembled long-term high-light-acclimated cultures. This isolate of H. akashiwo appears well poised to exploit rapid shifts in light by using unique cellular adjustments in light harvesting and photochemistry.
Collapse
Affiliation(s)
- Sebastian J Hennige
- Centre for Marine Biodiversity and Biotechnology, Heriot-Watt University, Edinburgh, EH14 4AS, UK
- College of Earth, Ocean and Environment, University of Delaware, 700 Pilottown Rd., Lewes, Deleware, 19958, USA
| | - Kathryn J Coyne
- College of Earth, Ocean and Environment, University of Delaware, 700 Pilottown Rd., Lewes, Deleware, 19958, USA
| | - Hugh MacIntyre
- Department of Oceanography, Dalhousie University, PO Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Justin Liefer
- Dauphin Island Sea Lab, 102 B Bienville Blvd., Dauphin Island, Alabama, 36528, USA
| | - Mark E Warner
- College of Earth, Ocean and Environment, University of Delaware, 700 Pilottown Rd., Lewes, Deleware, 19958, USA
| |
Collapse
|