1
|
Cheng L, Tu G, Ma H, Zhang K, Wang X, Zhou H, Gao J, Zhou J, Yu Y, Xu Q. Alternative splicing of CsbHLH133 regulates geraniol biosynthesis in tea plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:598-614. [PMID: 39207906 DOI: 10.1111/tpj.17003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/21/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Geraniol is one of the most abundant aromatic compounds in fresh tea leaves and contributes to the pleasant odor of tea products. Additionally, it functions as an airborne signal that interacts with other members of the ecosystem. To date, the regulation of the geraniol biosynthesis in tea plants remains to be investigated. In this study, a correlation test of the content of geraniol and its glycosides with gene expression data revealed that nudix hydrolase, CsNudix26, and its transcription factor, CsbHLH133 are involved in geraniol biosynthesis. In vitro enzyme assays and metabolic analyses of genetically modified tea plants confirmed that CsNudix26 is responsible for the formation of geraniol. Yeast one-hybrid, dual-luciferase reporter, and EMSA assays were used to verify the binding of CsbHLH133 to the CsNudix26 promoter. Overexpression of CsbHLH133 in tea leaves enhanced CsNudix26 expression and geraniol accumulation, whereas CsbHLH133 silencing reduced CsNudix26 transcript levels and geraniol content. Interestingly, CsbHLH133-AS, produced by alternative splicing, was discovered and proved to be the primary transcript expressed in response to various environmental stresses. Furthermore, geraniol release was found to be affected by various factors that alter the expression patterns of CsbHLH133 and CsbHLH133-AS. Our findings indicate that distinct transcript splicing patterns of CsbHLH133 regulate geraniol biosynthesis in tea plants in response to different regulatory factors.
Collapse
Affiliation(s)
- Long Cheng
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Gefei Tu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huicong Ma
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Keyi Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinyu Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haozhe Zhou
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jingwen Gao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jie Zhou
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qingshan Xu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
2
|
de Lima LFF, Carvalho IGB, de Souza-Neto RR, Dos Santos LDS, Nascimento CA, Takita MA, Távora FTPK, Mehta A, de Souza AA. Antisense Oligonucleotide as a New Technology Application for CsLOB1 Gene Silencing Aiming at Citrus Canker Resistance. PHYTOPATHOLOGY 2024; 114:1802-1809. [PMID: 38748545 DOI: 10.1094/phyto-02-24-0058-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Citrus canker disease, caused by Xanthomonas citri subsp. citri, poses a significant threat to global citrus production. The control of the disease in the field relies mainly on the use of conventional tools such as copper compounds, which are harmful to the environment and could lead to bacterial resistance. This scenario stresses the need for new and sustainable technologies to control phytopathogens, representing a key challenge in developing studies that translate basic into applied knowledge. During infection, X. citri subsp. citri secretes a transcriptional activator-like effector that enters the nucleus of plant cells, activating the expression of the canker susceptibility gene LATERAL ORGAN BOUNDARIES 1 (LOB1). In this study, we explored the use of antisense oligonucleotides (ASOs) with phosphorothioate modifications to transiently inhibit the gene expression of CsLOB1 in Citrus sinensis. We designed and validated three potential ASO sequences, which led to a significant reduction in disease symptoms compared with the control. The selected ASO3-CsLOB1 significantly decreased the expression level of CsLOB1 when delivered through two distinct delivery methods, and the reduction of the symptoms ranged from approximately 15 to 83%. Notably, plants treated with ASO3 did not exhibit an increase in symptom development over the evaluation period. This study highlights the efficacy of ASO technology, based on short oligonucleotide chemically modified sequences, as a promising tool for controlling phytopathogens without the need for genetic transformation or plant regeneration. Our results demonstrate the potential of ASOs as a biotechnological tool for the management of citrus canker disease.
Collapse
Affiliation(s)
- Luiz Felipe Franco de Lima
- Citrus Research Center "Sylvio Moreira," Agronomic Institute-IAC, Cordeirópolis, Brazil
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas-UNICAMP, Campinas, Brazil
| | | | - Reinaldo Rodrigues de Souza-Neto
- Citrus Research Center "Sylvio Moreira," Agronomic Institute-IAC, Cordeirópolis, Brazil
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas-UNICAMP, Campinas, Brazil
| | | | | | - Marco Aurélio Takita
- Citrus Research Center "Sylvio Moreira," Agronomic Institute-IAC, Cordeirópolis, Brazil
| | | | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final, CEP 70770917, Brasília, Brazil
| | | |
Collapse
|
3
|
Li D, Zhang H, Zhou Q, Tao Y, Wang S, Wang P, Wang A, Wei C, Liu S. The Laccase Family Gene CsLAC37 Participates in Resistance to Colletotrichum gloeosporioides Infection in Tea Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:884. [PMID: 38592904 PMCID: PMC10975366 DOI: 10.3390/plants13060884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Fungal attacks have become a major obstacle in tea plantations. Colletotrichum gloeosporioides is one of the most devastating fungal pathogens in tea plantations that can severely affect tea yield and quality. However, the molecular mechanism of resistance genes involved in anthracnose is still largely unknown in tea plants. Here, we found that the laccase gene CsLAC37 was involved in the response to fungal infection based on a transcriptome analysis. The full-length CDS of CsLAC37 was cloned, and its protein sequence had the closest relationship with the Arabidopsis AtLAC15 protein compared to other AtLACs. Tissue-specific expression analysis showed that CsLAC37 had higher expression levels in mature leaves and stems than in the other tissues. Subcellular localization showed that the CsLAC37 protein was predominantly localized in the cell membrane. The expression levels of CsLAC37 were upregulated at different time points under cold, salt, SA, and ABA treatments. qRT-PCR confirmed that CsLAC37 responded to both Pestalotiopsis-like species and C. gloeosporioides infections. Functional validation showed that the hydrogen peroxide (H2O2) content increased significantly, and POD activity decreased in leaves after antisense oligonucleotide (AsODN) treatment compared to the controls. The results demonstrated that CsLAC37 may play an important role in resistance to anthracnose, and the findings provide a theoretical foundation for molecular breeding of tea varieties with resistance to fungal diseases.
Collapse
Affiliation(s)
- Dangqiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Hongxiu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Qianqian Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Yongning Tao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Shuangshuang Wang
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Pengke Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Aoni Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| |
Collapse
|
4
|
Gruber C, Gursinsky T, Gago-Zachert S, Pantaleo V, Behrens SE. Effective Antiviral Application of Antisense in Plants by Exploiting Accessible Sites in the Target RNA. Int J Mol Sci 2023; 24:17153. [PMID: 38138982 PMCID: PMC10743417 DOI: 10.3390/ijms242417153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Antisense oligodeoxynucleotides (ASOs) have long been used to selectively inhibit or modulate gene expression at the RNA level, and some ASOs are approved for clinical use. However, the practicability of antisense technologies remains limited by the difficulty of reliably predicting the sites accessible to ASOs in complex folded RNAs. Recently, we applied a plant-based method that reproduces RNA-induced RNA silencing in vitro to reliably identify sites in target RNAs that are accessible to small interfering RNA (siRNA)-guided Argonaute endonucleases. Here, we show that this method is also suitable for identifying ASOs that are effective in DNA-induced RNA silencing by RNases H. We show that ASOs identified in this way that target a viral genome are comparably effective in protecting plants from infection as siRNAs with the corresponding sequence. The antiviral activity of the ASOs could be further enhanced by chemical modification. This led to two important conclusions: siRNAs and ASOs that can effectively knock down complex RNA molecules can be identified using the same approach, and ASOs optimized in this way could find application in crop protection. The technology developed here could be useful not only for effective RNA silencing in plants but also in other organisms.
Collapse
Affiliation(s)
- Cornelia Gruber
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany; (C.G.); (T.G.); (S.G.-Z.)
| | - Torsten Gursinsky
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany; (C.G.); (T.G.); (S.G.-Z.)
| | - Selma Gago-Zachert
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany; (C.G.); (T.G.); (S.G.-Z.)
| | - Vitantonio Pantaleo
- Institute for Sustainable Plant Protection, Department of Biology, Agricultural and Food Sciences National Research Council, Bari Unit, I-70126 Bari, Italy;
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany; (C.G.); (T.G.); (S.G.-Z.)
| |
Collapse
|
5
|
Jin J, Zhao M, Jing T, Wang J, Lu M, Pan Y, Du W, Zhao C, Bao Z, Zhao W, Tang X, Schwab W, Song C. (Z)-3-Hexenol integrates drought and cold stress signaling by activating abscisic acid glucosylation in tea plants. PLANT PHYSIOLOGY 2023; 193:1491-1507. [PMID: 37315209 PMCID: PMC10517186 DOI: 10.1093/plphys/kiad346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
Cold and drought stresses severely limit crop production and can occur simultaneously. Although some transcription factors and hormones have been characterized in plants subjected each stress, the role of metabolites, especially volatiles, in response to cold and drought stress exposure is rarely studied due to lack of suitable models. Here, we established a model for studying the role of volatiles in tea (Camellia sinensis) plants experiencing cold and drought stresses simultaneously. Using this model, we showed that volatiles induced by cold stress promote drought tolerance in tea plants by mediating reactive oxygen species and stomatal conductance. Needle trap microextraction combined with GC-MS identified the volatiles involved in the crosstalk and showed that cold-induced (Z)-3-hexenol improved the drought tolerance of tea plants. In addition, silencing C. sinensis alcohol dehydrogenase 2 (CsADH2) led to reduced (Z)-3-hexenol production and significantly reduced drought tolerance in response to simultaneous cold and drought stress. Transcriptome and metabolite analyses, together with plant hormone comparison and abscisic acid (ABA) biosynthesis pathway inhibition experiments, further confirmed the roles of ABA in (Z)-3-hexenol-induced drought tolerance of tea plants. (Z)-3-Hexenol application and gene silencing results supported the hypothesis that (Z)-3-hexenol plays a role in the integration of cold and drought tolerance by stimulating the dual-function glucosyltransferase UGT85A53, thereby altering ABA homeostasis in tea plants. Overall, we present a model for studying the roles of metabolites in plants under multiple stresses and reveal the roles of volatiles in integrating cold and drought stresses in plants.
Collapse
Affiliation(s)
- Jieyang Jin
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Mingyue Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Jingming Wang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Mengqian Lu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Yuting Pan
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Wenkai Du
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Chenjie Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Zhijie Bao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Wei Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Xiaoyan Tang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Wilfried Schwab
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230036, P. R. China
- Biotechnology of Natural Products, Technische Universität München, Freising 85354, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230036, P. R. China
| |
Collapse
|
6
|
Krasnodębski C, Sawuła A, Kaźmierczak U, Żuk M. Oligo-Not Only for Silencing: Overlooked Potential for Multidirectional Action in Plants. Int J Mol Sci 2023; 24:ijms24054466. [PMID: 36901895 PMCID: PMC10002457 DOI: 10.3390/ijms24054466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Oligo technology is a low-cost and easy-to-implement method for direct manipulation of gene activity. The major advantage of this method is that gene expression can be changed without requiring stable transformation. Oligo technology is mainly used for animal cells. However, the use of oligos in plants seems to be even easier. The oligo effect could be similar to that induced by endogenous miRNAs. In general, the action of exogenously introduced nucleic acids (Oligo) can be divided into a direct interaction with nucleic acids (genomic DNA, hnRNA, transcript) and an indirect interaction via the induction of processes regulating gene expression (at the transcriptional and translational levels) involving regulatory proteins using endogenous cellular mechanisms. Presumed mechanisms of oligonucleotides' action in plant cells (including differences from animal cells) are described in this review. Basic principles of oligo action in plants that allow bidirectional changes in gene activity and even those that lead to heritable epigenetic changes in gene expression are presented. The effect of oligos is related to the target sequence at which they are directed. This paper also compares different delivery methods and provides a quick guide to using IT tools to help design oligonucleotides.
Collapse
Affiliation(s)
- Cezary Krasnodębski
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Agnieszka Sawuła
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Urszula Kaźmierczak
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wroclaw, Poland
| | - Magdalena Żuk
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
- Correspondence:
| |
Collapse
|
7
|
Kim Y, Takahashi S, Miyao M. Relationship between reduction in rice (Nipponbare) leaf blade size under elevated CO 2 and miR396- GRF module. PLANT SIGNALING & BEHAVIOR 2022; 17:2041280. [PMID: 35318879 PMCID: PMC8959511 DOI: 10.1080/15592324.2022.2041280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 05/27/2023]
Abstract
Elevated CO2 (eCO2; 1000 ppm) influences developing rice leaf formation, reducing leaf blade length and width as compared to rice grown under ambient CO2 (aCO2; 400 ppm). Since micro RNAs (miRNAs) are known to play multiple roles in plant development, we hypothesized that miRNAs might be involved in modulating leaf size under eCO2 conditions. To identify miRNAs responding to eCO2, we profiled miRNA levels in developing rice leaves (P4; plastochron number of the fourth-youngest leaf) under eCO2 using small RNA-seq. We detected 18 mature miRNA sequences for which expression levels varied more than two-fold between the eCO2 and aCO2 conditions. Among them, only miR396e and miR396f significantly differed between the two conditions. Additionally, the expression of growth-regulating factors (GRFs), potential target mRNA of miR396s, were repressed under the eCO2 condition. We used an antisense oligonucleotide approach to confirm that single-strand DNA corresponding to the miR396e sequence effectively downregulated GRF expression in developing leaves, reducing the leaf blade length, such as for rice grown under eCO2. These results suggest that the miR396-GRF module is crucially relevant to controlling rice leaf blade length in eCO2 environments.
Collapse
Affiliation(s)
- Yonghyun Kim
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Sumire Takahashi
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Mitsue Miyao
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
8
|
Bashir F, Kovács S, Ábrahám Á, Nagy K, Ayaydin F, Valkony-Kelemen I, Ferenc G, Galajda P, Tóth SZ, Sass L, Kós PB, Vass I, Szabó M. Viable protoplast formation of the coral endosymbiont alga Symbiodinium spp. in a microfluidics platform. LAB ON A CHIP 2022; 22:2986-2999. [PMID: 35588270 DOI: 10.1039/d2lc00130f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Symbiodiniaceae is an important dinoflagellate family which lives in endosymbiosis with reef invertebrates, including coral polyps, making them central to the holobiont. With coral reefs currently under extreme threat from climate change, there is a pressing need to improve our understanding on the stress tolerance and stress avoidance mechanisms of Symbiodinium spp. Reactive oxygen species (ROS) such as singlet oxygen are central players in mediating various stress responses; however, the detection of ROS using specific dyes is still far from definitive in intact Symbiodinium cells due to the hindrance of uptake of certain fluorescent dyes because of the presence of the cell wall. Protoplast technology provides a promising platform for studying oxidative stress with the main advantage of removed cell wall, however the preparation of viable protoplasts remains a significant challenge. Previous studies have successfully applied cellulose-based protoplast preparation in Symbiodiniaceae; however, the protoplast formation and regeneration process was found to be suboptimal. Here, we present a microfluidics-based platform which allowed protoplast isolation from individually trapped Symbiodinium cells, by using a precisely adjusted flow of cell wall digestion enzymes (cellulase and macerozyme). Trapped single cells exhibited characteristic changes in their morphology, cessation of cell division and a slight decrease in photosynthetic activity during protoplast formation. Following digestion and transfer to regeneration medium, protoplasts remained photosynthetically active, regrew cell walls, regained motility, and entered exponential growth. Elevated flow rates in the microfluidic chambers resulted in somewhat faster protoplast formation; however, cell wall digestion at higher flow rates partially compromised photosynthetic activity. Physiologically competent protoplasts prepared from trapped cells in microfluidic chambers allowed for the first time the visualization of the intracellular localization of singlet oxygen (using Singlet Oxygen Sensor Green dye) in Symbiodiniaceae, potentially opening new avenues for studying oxidative stress.
Collapse
Affiliation(s)
- Faiza Bashir
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary.
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Sándor Kovács
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary.
| | - Ágnes Ábrahám
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Krisztina Nagy
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Ferhan Ayaydin
- Cellular Imaging Laboratory, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Ildikó Valkony-Kelemen
- Cellular Imaging Laboratory, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Györgyi Ferenc
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary.
| | - Péter Galajda
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Szilvia Z Tóth
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary.
| | - László Sass
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary.
| | - Péter B Kós
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary.
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Imre Vass
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary.
| | - Milán Szabó
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary.
- Climate Change Cluster, University of Technology Sydney, Australia
| |
Collapse
|
9
|
Zhou H, Wang S, Xie HF, Liu G, Shamala LF, Pang J, Zhang Z, Ling TJ, Wei S. Cytosolic Nudix Hydrolase 1 Is Involved in Geranyl β-Primeveroside Production in Tea. FRONTIERS IN PLANT SCIENCE 2022; 13:833682. [PMID: 35646040 PMCID: PMC9131077 DOI: 10.3389/fpls.2022.833682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Geraniol is a potent tea odorant and exists mainly as geranyl glycoside in Camellia sinensis. Understanding the mechanisms of geraniol biosynthesis at molecular levels in tea plants is of great importance for practical improvement of tea aroma. In this study, geraniol and its glycosides from tea plants were examined using liquid chromatography coupled with mass spectrometry. Two candidate geraniol synthase (GES) genes (CsTPS) and two Nudix hydrolase genes (CsNUDX1-cyto and CsNUDX1-chlo) from the tea genome were functionally investigated through gene transcription manipulation and gene chemical product analyses. Our data showed that in tea leaves, levels of geranyl β-primeveroside were dramatically higher than those of geranyl β-glucoside, while free geraniol was undetectable in this study. A tempo-spatial variation of geranyl β-primeveroside abundance in tea plants existed, with high levels in young and green tissues and low levels in mature or non-green tissues. Cytosolic CsNUDX1-cyto showed higher hydrolysis activity of geranyl-pyrophosphate to geranyl-monophosphate (GP) in vitro than did chloroplastidial CsNUDX1-chlo. A transgenic study revealed that expression of CsNUDX1-cyto resulted in significantly more geranyl β-primeveroside in transgenic Nicotiana benthamiana compared with non-transgenic wild-type, whereas expression of CsNUDX1-chlo had no effect. An antisense oligo-deoxynucleotide study confirmed that suppression of CsNUDX1-cyto transcription in tea shoots led to a significant decrease in geranyl β-primeveroside abundance. Additionally, CsNUDX1-cyto transcript levels and geranyl β-primeveroside abundances shared the same tempo-spatial patterns in different organs in the tea cultivar "Shucha Zao," indicating that CsNUDX1-cyto is important for geranyl β-primeveroside formation in tea plants. Results also suggested that neither of the two candidate GES genes in tea plants did not function as GES in transgenic N. benthamiana. All our data indicated that CsNUDX1-cyto is involved in geranyl β-primeveroside production in tea plants. Our speculation about possible conversion from the chemical product of CsNUDX1-cyto to geranyl β-primeveroside in plants was also discussed.
Collapse
Affiliation(s)
- Hanchen Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan, China
| | - Shijie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Hao-Fen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Guofeng Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- Henan Provincial Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, China
| | - Lubobi Ferdinand Shamala
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Jingyi Pang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Zhengzhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Tie-Jun Ling
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Shu Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
10
|
Zhu J, Yan X, Liu S, Xia X, An Y, Xu Q, Zhao S, Liu L, Guo R, Zhang Z, Xie DY, Wei C. Alternative splicing of CsJAZ1 negatively regulates flavan-3-ol biosynthesis in tea plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:243-261. [PMID: 35043493 DOI: 10.1111/tpj.15670] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/19/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Flavan-3-ols are abundant in the tea plant (Camellia sinensis) and confer tea with flavor and health benefits. We recently found that alternative splicing of genes is likely involved in the regulation of flavan-3-ol biosynthesis; however, the underlying regulatory mechanisms remain unknown. Here, we integrated metabolomics and transcriptomics to construct metabolite-gene networks in tea leaves, collected over five different months and from five spatial positions, and found positive correlations between endogenous jasmonic acid (JA), flavan-3-ols, and numerous transcripts. Transcriptome mining further identified CsJAZ1, which is negatively associated with flavan-3-ols formation and has three CsJAZ1 transcripts, one full-length (CsJAZ1-1), and two splice variants (CsJAZ1-2 and -3) that lacked 3' coding sequences, with CsJAZ1-3 also lacking the coding region for the Jas domain. Confocal microscopy showed that CsJAZ1-1 was localized to the nucleus, while CsJAZ1-2 and CsJAZ1-3 were present in both the nucleus and the cytosol. In the absence of JA, CsJAZ1-1 was bound to CsMYC2, a positive regulator of flavan-3-ol biosynthesis; CsJAZ1-2 functioned as an alternative enhancer of CsJAZ1-1 and an antagonist of CsJAZ1-1 in binding to CsMYC2; and CsJAZ1-3 did not interact with CsMYC2. In the presence of JA, CsJAZ1-3 interacted with CsJAZ1-1 and CsJAZ1-2 to form heterodimers that stabilized the CsJAZ1-1-CsMYC2 and CsJAZ1-2-CsMYC2 complexes, thereby repressing the transcription of four genes that act late in the flavan-3-ol biosynthetic pathway. These data indicate that the alternative splicing variants of CsJAZ1 coordinately regulate flavan-3-ol biosynthesis in the tea plant and improve our understanding of JA-mediated flavan-3-ol biosynthesis.
Collapse
Affiliation(s)
- Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Xiaomei Yan
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Xiaobo Xia
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Yanlin An
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Qingshan Xu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Shiqi Zhao
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Lu Liu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Rui Guo
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - De-Yu Xie
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| |
Collapse
|
11
|
Liu S, Guo L, Zhou Q, Jiang Z, Jin L, Zhu J, Xie H, Wei C. Identification and Functional Analysis of Two Alcohol Dehydrogenase Genes Involved in Catalyzing the Reduction of ( Z)-3-Hexenal into ( Z)-3-Hexenol in Tea Plants ( Camellia sinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1830-1839. [PMID: 35112571 DOI: 10.1021/acs.jafc.1c06984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Alcohol dehydrogenase (ADH) is a vital enzyme in the biosynthesis pathway of six-carbon volatiles in plants. However, little is known about its functions in tea plants. Here, we identified two ADH genes (CsADH1 and CsADH2). An in vitro protein expression assay showed that both CsADH1 and CsADH2 proteins can catalyze the reduction of (Z)-3-hexenal into (Z)-3-hexenol. Subcellular localization revealed that both CsADH1 and CsADH2 proteins were predominantly localized in the nucleus and cytosol. CsADH1 had high transcripts in young stems in autumn, while CsADH2 showed extremely high expression levels in stems and roots. The expression of CsADH2 was mainly downregulated under ABA treatment, while CsADH1 and CsADH2 transcripts were significantly lower under MeJA treatment at 12 and 24 h. Under cold treatment, CsADH1 transcripts first decreased and then increased, while CsADH2 demonstrated an almost opposite expression pattern. Notably, CsADH2 was significantly upregulated under simulated Ectropis obliqua invasion. Gene suppression by antisense oligonucleotides (AsODNs) demonstrated that AsODN_ADH2 treatment significantly reduced CsADH2 transcripts and the abundance of (Z)-3-hexenol products. The results indicate that the two CsADH genes may play an important role in response to (a)biotic stresses and in the process of (Z)-3-hexenol biosynthesis.
Collapse
Affiliation(s)
- Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Lingxiao Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Qiying Zhou
- Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang 464000, China
| | | | - Ling Jin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jiaxin Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Hui Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
12
|
Wdowikowska A, Janicka M. Antisense oligonucleotide technology as a research tool in plant biology. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 49:1-12. [PMID: 34794541 DOI: 10.1071/fp21194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
An antisense oligonucleotide (ASO) is a short single-stranded deoxyribonucleotide complementary to the sense strand of a selected nucleic acid. As a result, an ASO can modulate gene expression through several mechanisms. The technology based on ASO has already been applied in studies on gene function in mammalian cells and selective therapeutic strategies for many diseases. The conceptual simplicity and low cost of this method, and the developments in the field of plant genome sequencing observed in the last decades, have paved the way for the ASO method also in plant biology. It is applied in gene function analysis as well as the development of non-invasive plant production technology involving gene modifications without transgenesis. Therefore, the first part of this review provides a comprehensive overview of the structure, mechanism of action and delivery methods of ASOs in plants and shows the most important features essential for the proper design of individual experiments. We also discuss potential issues and difficulties that may arise during practical ASO implementation. The second part of this article contains an analysis of ASO applications in various studies in the field of plant biology. We presented for the first time that ASOs were also successfully applied in cucumber.
Collapse
Affiliation(s)
- Anna Wdowikowska
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Malgorzata Janicka
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland
| |
Collapse
|
13
|
Zhao X, Zeng X, Lin N, Yu S, Fernie AR, Zhao J. CsbZIP1-CsMYB12 mediates the production of bitter-tasting flavonols in tea plants (Camellia sinensis) through a coordinated activator-repressor network. HORTICULTURE RESEARCH 2021; 8:110. [PMID: 33931627 PMCID: PMC8087823 DOI: 10.1038/s41438-021-00545-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 05/02/2023]
Abstract
Under high light conditions or UV radiation, tea plant leaves produce more flavonols, which contribute to the bitter taste of tea; however, neither the flavonol biosynthesis pathways nor the regulation of their production are well understood. Intriguingly, tea leaf flavonols are enhanced by UV-B but reduced by shading treatment. CsFLS, CsUGT78A14, CsMYB12, and CsbZIP1 were upregulated by UV-B radiation and downregulated by shading. CsMYB12 and CsbZIP1 bound to the promoters of CsFLS and CsUGT78A14, respectively, and activated their expression individually. CsbZIP1 positively regulated CsMYB12 and interacted with CsMYB12, which specifically activated flavonol biosynthesis. Meanwhile, CsPIF3 and two MYB repressor genes, CsMYB4 and CsMYB7, displayed expression patterns opposite to that of CsMYB12. CsMYB4 and CsMYB7 bound to CsFLS and CsUGT78A14 and repressed their CsMYB12-activated expression. While CsbZIP1 and CsMYB12 regulated neither CsMYB4 nor CsMYB7, CsMYB12 interacted with CsbZIP1, CsMYB4, and CsMYB7, but CsbZIP1 did not physically interact with CsMYB4 or CsMYB7. Finally, CsPIF3 bound to and activated CsMYB7 under shading to repress flavonol biosynthesis. These combined results suggest that UV activation and shading repression of flavonol biosynthesis in tea leaves are coordinated through a complex network involving CsbZIP1 and CsPIF3 as positive MYB activators and negative MYB repressors, respectively. The study thus provides insight into the regulatory mechanism underlying the production of bitter-tasting flavonols in tea plants.
Collapse
Affiliation(s)
- Xuecheng Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036, Hefei, China
| | - Xiangsheng Zeng
- College of Agronomy, Anhui Agricultural University, 230036, Hefei, China
| | - Ning Lin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036, Hefei, China
| | - Shuwei Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036, Hefei, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036, Hefei, China.
| |
Collapse
|
14
|
Genome-wide analysis and metabolic profiling unveil the role of peroxidase CsGPX3 in theaflavin production in black tea processing. Food Res Int 2020; 137:109677. [PMID: 33233254 DOI: 10.1016/j.foodres.2020.109677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/29/2020] [Accepted: 09/06/2020] [Indexed: 01/20/2023]
Abstract
Plucked tea leaves can be processed into black tea (Camellia sinensis), which is rich in health-promoting molecules, including flavonoid antioxidants. During black tea processing, theaflavins (TFs) and thearubigins (TRs) are generated via the successive oxidation of catechins by endogenous polyphenol oxidase (PPO)- or peroxidase (POD)-mediated reactions. This process must be well controlled to achieve the proper TF/TR ratio, which is an important quality parameter of the tea beverage. However, little is known about the POD/PPO catalyzed TF formation process at the molecular genetic level. Here, we identified and characterized the POD genes responsible for TF production in tea. Genome-wide analysis of POD/PPO family genes, metabolite profiling, and expression analysis of PPO/POD genes in tea leaves enabled us to select several PPO/POD genes potentially involved in TF production. Differential gene expression in plant tissues and enzyme activity in several tea varieties traditionally used for processing of various beverage types indicate that black tea processing primarily depends on PPO/POD activity. Among these POD/PPO genes, the POD CsGPX3 is involved in the generation of TFs during black tea processing. The capacity of PPO/POD-catalysed TF production is potentially used for controlling catechin oxidation during black tea processing and could be used to create molecular markers for breeding of tea plant varieties suitable for the production of high-quality black tea beverages.
Collapse
|
15
|
Chen Y, Guo X, Gao T, Zhang N, Wan X, Schwab W, Song C. UGT74AF3 enzymes specifically catalyze the glucosylation of 4-hydroxy-2,5-dimethylfuran-3(2H)-one, an important volatile compound in Camellia sinensis. HORTICULTURE RESEARCH 2020; 7:25. [PMID: 32140234 PMCID: PMC7049299 DOI: 10.1038/s41438-020-0248-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/28/2019] [Accepted: 01/04/2020] [Indexed: 05/18/2023]
Abstract
4-Hydroxy-2,5-dimethylfuran-3(2H)-one (HDMF) is an important odorant in some fruits, and is proposed to play a crucial role in the caramel-like notes of some teas. However, its biosynthesis and metabolism in tea plants are still unknown. Here, HDMF glucoside was unambiguously identified as a native metabolite in tea plants. A novel glucosyltransferase UGT74AF3a and its allelic protein UGT74AF3b specifically catalyzed the glucosylation of HDMF and the commercially important structural homologues 2 (or 5)-ethyl-4-hydroxy-5 (or 2)-methylfuran-3(2H)-one (EHMF) and 4-hydroxy-5-methylfuran-3(2H)-one (HMF) to their corresponding β-D-glucosides. Site-directed mutagenesis of UGT74AF3b to introduce a single A456V mutation resulted in improved HDMF and EHMF glucosylation activity and affected the sugar donor preference compared with that of the wild-type control enzyme. The accumulation of HDMF glucoside was consistent with the transcript levels of UGT74AF3 in different tea cultivars. In addition, transient UGT74AF3a overexpression in tobacco significantly increased the HDMF glucoside contents, and downregulation of UGT74AF3 transcripts in tea leaves significantly reduced the concentration of HDMF glucoside compared with the levels in the controls. The identification of HDMF glucoside in the tea plant and the discovery of a novel-specific UDP-glucose:HDMF glucosyltransferase in tea plants provide the foundation for improvement of tea flavor and the biotechnological production of HDMF glucoside.
Collapse
Affiliation(s)
- Yongxian Chen
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui P. R. China
| | - Xiangyang Guo
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui P. R. China
| | - Ting Gao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui P. R. China
| | - Na Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui P. R. China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui P. R. China
| | - Wilfried Schwab
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui P. R. China
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui P. R. China
| |
Collapse
|
16
|
Xu Q, Cheng L, Mei Y, Huang L, Zhu J, Mi X, Yu Y, Wei C. Alternative Splicing of Key Genes in LOX Pathway Involves Biosynthesis of Volatile Fatty Acid Derivatives in Tea Plant ( Camellia sinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13021-13032. [PMID: 31693357 DOI: 10.1021/acs.jafc.9b05925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Volatile fatty acid derivatives (VFADs) produced in tea plants (Camellia sinensis) not only have been shown to function as defense compounds but also impart a "fresh green" odor to green tea products; however, little is known about alternative splicing (AS) of genes in regulating the production of VFADs in plants. In this study, the contents of VFADs and corresponding transcriptome profiles were obtained in five different months (April, June, August, September, and October). Correlation analysis identified seven unique transcripts of enzyme-coding genes (CsLOX2, CsLOX4, CsADH4, CsADH8, and CsADH10), which are responsible for regulating VFAD biosynthesis; four AS transcripts of these genes (CsLOX2, CsLOX4, CsADH4, and CsADH8) were validated by RT-PCR. By employing the gene-specific antisense oligodeoxynucleotide-mediated reduction method, we found the expression levels of alternatively spliced transcripts of CsLOX4-iso1, CsLOX4-iso2, and CsADH4-iso3 were lower, and the contents of cis-3-hexenol were correspondingly reduced in the leaves of tea plant; this result suggested that the AS play important roles in regulating biosynthesis of VFADs in C. sinensis. Our results provide new insights into the important contribution of AS events in regulating the VFAD biosynthesis in tea plant.
Collapse
Affiliation(s)
- Qingshan Xu
- College of Horticulture , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Long Cheng
- College of Horticulture , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Yu Mei
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , Hefei , Anhui , China
| | - Linli Huang
- College of Horticulture , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , Hefei , Anhui , China
| | - Xiaozeng Mi
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , Hefei , Anhui , China
| | - Youben Yu
- College of Horticulture , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , Hefei , Anhui , China
| |
Collapse
|
17
|
Lambertucci S, Orman KM, Das Gupta S, Fisher JP, Gazal S, Williamson RJ, Cramer R, Bindschedler LV. Analysis of Barley Leaf Epidermis and Extrahaustorial Proteomes During Powdery Mildew Infection Reveals That the PR5 Thaumatin-Like Protein TLP5 Is Required for Susceptibility Towards Blumeria graminis f. sp. hordei. FRONTIERS IN PLANT SCIENCE 2019; 10:1138. [PMID: 31736984 PMCID: PMC6831746 DOI: 10.3389/fpls.2019.01138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/20/2019] [Indexed: 05/18/2023]
Abstract
Powdery mildews are biotrophic pathogens causing fungal diseases in many economically important crops, including cereals, which are affected by Blumeria graminis. Powdery mildews only invade the epidermal cell layer of leaf tissues, in which they form haustorial structures. Haustoria are at the center of the biotrophic interaction by taking up nutrients from the host and by delivering effectors in the invaded cells to jeopardize plant immunity. Haustoria are composed of a fungal core delimited by a haustorial plasma membrane and cell wall. Surrounding these is the extrahaustorial complex, of which the extrahaustorial membrane is of plant origin. Although haustoria transcriptomes and proteomes have been investigated for Blumeria, the proteomes of barley epidermis upon infection and the barley components of the extrahaustorial complex remains unexplored. When comparing proteomes of infected and non-infected epidermis, several classical pathogenesis-related (PR) proteins were more abundant in infected epidermis. These included peroxidases, chitinases, cysteine-rich venom secreted proteins/PR1 and two thaumatin-like PR5 protein isoforms, of which TLP5 was previously shown to interact with the Blumeria effector BEC1054 (CSEP0064). Against expectations, transient TLP5 gene silencing suggested that TLP5 does not contribute to resistance but modulates susceptibility towards B. graminis. In a second proteomics comparison, haustorial structures were enriched from infected epidermal strips to identify plant proteins closely associated with the extrahaustorial complex. In these haustoria-enriched samples, relative abundances were higher for several V-type ATP synthase/ATPase subunits, suggesting the generation of proton gradients in the extrahaustorial space. Other haustoria-associated proteins included secreted or membrane proteins such as a PIP2 aquaporin, an early nodulin-like protein 9, an aspartate protease and other proteases, a lipase, and a lipid transfer protein, all of which are potential modulators of immunity, or the targets of pathogen effectors. Moreover, the ER BIP-like HSP70, may link ER stress responses and the idea of ER-like properties previously attributed to the extrahaustorial membrane. This initial investigation exploring the barley proteomes of Blumeria-infected tissues and haustoria, associated with a transient gene silencing approach, is invaluable to gain first insight of key players of resistance and susceptibility.
Collapse
Affiliation(s)
- Sebastien Lambertucci
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Kate Mary Orman
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Shaoli Das Gupta
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - James Paul Fisher
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Snehi Gazal
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | | | - Rainer Cramer
- Department of Chemistry, University of Reading, Reading, United Kingdom
| | | |
Collapse
|
18
|
Chen G, Liang H, Zhao Q, Wu AM, Wang B. Exploiting MATE efflux proteins to improve flavonoid accumulation in Camellia sinensis in silico. Int J Biol Macromol 2019; 143:732-743. [PMID: 31622702 DOI: 10.1016/j.ijbiomac.2019.10.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/04/2019] [Accepted: 10/02/2019] [Indexed: 01/30/2023]
Abstract
Flavonoids in tea plant are the important bioactive compounds for both human health and taste quality. Multidrug and Toxic compound Extrusion (MATE) proteins could improve flavonoid accumulations by transporting and sequestering the flavonoid in vacuoles. We identified 41 putative MATE genes in tea plants. The similar intron-exon structures of tea MATEs clustered within the same gene clade. The correlation analysis of tea flavonoid and transcriptome data showed that TEA006173 might be involve in the tea flavonoid accumulation. The RT-PCR results confirmed that TEA006173 showed high expression in the young leaf tissues. Tertiary structure prediction has shown that TEA006173 contained the 12 helices with three active pockets, comprising 13 critical residues. The present study provided the structural variations and expression patterns of tea MATEs and it would be helpful for taste and nutrient quality improvement in tea plant.
Collapse
Affiliation(s)
- Guanming Chen
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Haohong Liang
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Qi Zhao
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Bo Wang
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
19
|
Transgenerational Perpetuation of CHS Gene Expression and DNA Methylation Status Induced by Short Oligodeoxynucleotides in Flax ( Linum usitatissimum). Int J Mol Sci 2019; 20:ijms20163983. [PMID: 31426274 PMCID: PMC6719086 DOI: 10.3390/ijms20163983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/06/2019] [Accepted: 08/14/2019] [Indexed: 11/16/2022] Open
Abstract
Over two decades ago, short oligodeoxynucleotides (ODNs) were proven to be an effective and rapid technique for analysis of gene function without interference in the plant genome. Our previous research has shown the successful regulation of chalcone synthase (CHS) gene expression in flax by ODN technology. The CHS gene encodes a pivotal enzyme in flavonoid biosynthesis. The manipulation of its transcript level was the result of the specific methylation status developed after treatment with ODNs. In further analysis of the application of oligodeoxynucleotides in plants, we will focus on maintaining the methylation status induced originally by ODNs homologous to the regulatory regions of the CHS gene in flax. This article reports the latest investigation applied to stabilization and inheritance of the epigenetic marks induced by plants' treatment with ODNs. The methylation status was analyzed in the particular CCGG motifs located in the CHS gene sequence. Individual plants were able to maintain alterations induced by ODNs. In order to confirm the impact of methylation marks on the nucleosome rearrangement, chromatin accessibility assay was performed. The perpetuation of targeted plant modulation induced by ODNs exhibits strong potential for improving crops and intensified application for medicine, nutrition and industry.
Collapse
|
20
|
Chan WS, Kwok ACM, Wong JTY. Knockdown of Dinoflagellate Cellulose Synthase CesA1 Resulted in Malformed Intracellular Cellulosic Thecal Plates and Severely Impeded Cyst-to-Swarmer Transition. Front Microbiol 2019; 10:546. [PMID: 30941114 PMCID: PMC6433935 DOI: 10.3389/fmicb.2019.00546] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/04/2019] [Indexed: 11/13/2022] Open
Abstract
Cellulose synthesis (CS) is conducted by membrane-bound cellulose synthase complexes (CSCs), containing cellulose synthases (CesA), that are either arranged in hexagonal structures in higher plants or in linear arrays in most microbial organisms, including dinoflagellates. Dinoflagellates are a major phytoplankton group having linear-type CSCs and internal cellulosic thecal plates (CTPs) in large cortical vesicles. Immunological study suggested CesA1p were cortically localized to the periphery of CTPs. During cyst-to-swarmer transition (TC–S), synchronized peaks of CesA1 transcription, CesA1p expression, CS and CTP formation occurred in respective order, over 12–16 h, strategically allowing the study of CS regulation and CTP biogenesis. CesA1-knockdown resulted in 40% reduction in CesA1p level and time required for swarmer cells reappearance. CTPs were severely malformed with reduced cellulose content. As CTPs are deposited in internal organelle, the present study demonstrated dinoflagellate CesA1 ortholog was adapted for non-surface deposition; this is different to paradigm of other CesAps which require plasmamembrane for cellulose fiber deposition. This pioneer gene-knockdown study demonstrated the requirement of a gene for dinoflagellate cell wall remodeling and proper TC–S, which are prominent in dinoflagellate life-cycles.
Collapse
Affiliation(s)
- Wai Sun Chan
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Alvin Chun Man Kwok
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Joseph Tin Yum Wong
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| |
Collapse
|
21
|
Liu GF, Liu JJ, He ZR, Wang FM, Yang H, Yan YF, Gao MJ, Gruber MY, Wan XC, Wei S. Implementation of CsLIS/NES in linalool biosynthesis involves transcript splicing regulation in Camellia sinensis. PLANT, CELL & ENVIRONMENT 2018; 41:176-186. [PMID: 28963730 DOI: 10.1111/pce.13080] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 05/24/2023]
Abstract
Volatile terpenoids produced in tea plants (Camellia sinensis) are airborne signals interacting against other ecosystem members, but also pleasant odorants of tea products. Transcription regulation (including transcript processing) is pivotal for plant volatile terpenoid production. In this study, a terpene synthase gene CsLIS/NES was recovered from tea plants (C. sinensis cv. "Long-Men Xiang"). CsLIS/NES transcription regulation resulted in 2 splicing forms: CsLIS/NES-1 and CsLIS/NES-2 lacking a 305 bp-fragment at N-terminus, both producing (E)-nerolidol and linalool in vitro. Transgenic tobacco studies and a gene-specific antisense oligo-deoxynucleotide suppression applied in tea leaves indicated that CsLIS/NES-1, localized in chloroplasts, acted as linalool synthase, whereas CsLIS/NES-2 localized in cytosol, functioned as a potential nerolidol synthase, but not linalool synthase. Expression patterns of the 2 transcript isoforms in tea were distinctly different and responded differentially to the application of stress signal molecule methyl jasmonate. Leaf expression of CsLIS/NES-1, but not CsLIS/NES-2, was significantly induced by methyl jasmonate. Our data indicated that distinct transcript splicing regulation patterns, together with subcellular compartmentation of CsLIS/NE-1 and CsLIS/NE-2 implemented the linalool biosynthesis regulation in tea plants in responding to endogenous and exogenous regulatory factors.
Collapse
Affiliation(s)
- Guo-Feng Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Jing-Jing Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Zhi-Rong He
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Fu-Min Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Hua Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yi-Feng Yan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Ming-Jun Gao
- Agriculture and Agri-Food Canada, Saskatoon Research Center, Saskatoon, Saskatchewan, S7N 0X2, Canada
| | - Margaret Y Gruber
- Agriculture and Agri-Food Canada, Saskatoon Research Center, Saskatoon, Saskatchewan, S7N 0X2, Canada
| | - Xiao-Chun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Shu Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| |
Collapse
|
22
|
Dzialo M, Szopa J, Czuj T, Zuk M. Oligodeoxynucleotides Can Transiently Up- and Downregulate CHS Gene Expression in Flax by Changing DNA Methylation in a Sequence-Specific Manner. FRONTIERS IN PLANT SCIENCE 2017; 8:755. [PMID: 28555142 PMCID: PMC5430052 DOI: 10.3389/fpls.2017.00755] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Chalcone synthase (CHS) has been recognized as an essential enzyme in the phenylpropanoid biosynthesis pathway. Apart from the leading role in the production of phenolic compounds with many valuable biological activities beneficial to biomedicine, CHS is well appreciated in science. Genetic engineering greatly facilitates expanding knowledge on the function and genetics of CHS in plants. The CHS gene is one of the most intensively studied genes in flax. In our study, we investigated engineering of the CHS gene through genetic and epigenetic approaches. Considering the numerous restrictions concerning the application of genetically modified (GM) crops, the main purpose of this research was optimization of the plant's modulation via epigenetics. In our study, plants modified through two methods were compared: a widely popular agrotransformation and a relatively recent oligodeoxynucleotide (ODN) strategy. It was recently highlighted that the ODN technique can be a rapid and time-serving antecedent in quick analysis of gene function before taking vector-mediated transformation. In order to understand the molecular background of epigenetic variation in more detail and evaluate the use of ODNs as a tool for predictable and stable gene engineering, we concentrated on the integration of gene expression and gene-body methylation. The treatment of flax with a series of short oligonucleotides homologous to a different part of CHS gene isoforms revealed that those directed to regulatory gene regions (5'- and 3'-UTR) activated gene expression, directed to non-coding region (introns) caused gen activity reduction, while those homologous to a coding region may have a variable influence on its activity. Gene expression changes were accompanied by changes in its methylation status. However, only certain (CCGG) motifs along the gene sequence were affected. The analyzed DNA motifs of the CHS flax gene are more accessible for methylation when located within a CpG island. The methylation motifs also led to rearrangement of the nucleosome location. The obtained results suggest high specificity of ODN action and establish a potential valuable alternative for improvement of crops.
Collapse
Affiliation(s)
- Magdalena Dzialo
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of WrocławWroclaw, Poland
| | - Jan Szopa
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of WrocławWroclaw, Poland
- Linum FoundationWroclaw, Poland
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life SciencesWroclaw, Poland
| | - Tadeusz Czuj
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life SciencesWroclaw, Poland
| | - Magdalena Zuk
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of WrocławWroclaw, Poland
- Linum FoundationWroclaw, Poland
| |
Collapse
|
23
|
Wojtasik W, Kulma A, Boba A, Szopa J. Oligonucleotide treatment causes flax β-glucanase up-regulation via changes in gene-body methylation. BMC PLANT BIOLOGY 2014; 14:261. [PMID: 25287293 PMCID: PMC4209061 DOI: 10.1186/s12870-014-0261-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 09/23/2014] [Indexed: 05/29/2023]
Abstract
BACKGROUND Nowadays, the challenge for biotechnology is to develop tools for agriculture and industry to provide plants characterized by productivity and quality that will satisfy the growing demand for different kinds of natural products. To meet the challenge, the generation and application of genetically modified plants is justified. However, the strong social resistance to genetically modified organisms and restrictive regulations in European Union countries necessitated the development of a new technology for new plant types generation which uses the knowledge resulting from analysis of genetically modified plants to generate favourably altered plants while omitting the introduction of heterologous genes to their genome. Four-year experiments led to the development of a technology inducing heritable epigenetic gene activation without transgenesis. RESULTS The method comprises the induction of changes in methylation/demethylation of the endogenous gene by the plant's treatment with short oligodeoxynucleotides antisense to the coding region. In vitro cultured plants and F3 generation flax plants overproducing the β-1,3-glucanase gene (EMO-βGlu flax) were characterized by up-regulation of β-glucanase and chitinase genes, decreases in the methylation of CCGG sequences in the β-glucanase gene and in total DNA methylation and, more importantly, reasonable resistance against Fusarium infection. In addition, EMO-βGlu flax obtained by this technology showed similar features as those obtained by genetic engineering. CONCLUSION To our best knowledge, this is the first report on plant gene activation by treatment with oligodeoxynucleotides homologous to the coding region of the gene. Apart from the evident effectiveness, the most important issue is that the EMO method allows generation of favourably altered plants, whose cultivation makes the plant producer independent from the complicated procedure of obtaining an agreement on GMO release into the environment and whose products might be more easily introduced to the global market.
Collapse
Affiliation(s)
- Wioleta Wojtasik
- />Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, Wroclaw, 51-148 Poland
| | - Anna Kulma
- />Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, Wroclaw, 51-148 Poland
| | - Aleksandra Boba
- />Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, Wroclaw, 51-148 Poland
- />Wroclaw Research Center EIT+, Stablowicka 147/149, Wroclaw, 54-066 Poland
| | - Jan Szopa
- />Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, Wroclaw, 51-148 Poland
- />Linum Foundation, Stablowicka 147/149, Wroclaw, 54-066 Poland
| |
Collapse
|
24
|
Mizuta Y, Higashiyama T. Antisense gene inhibition by phosphorothioate antisense oligonucleotide in Arabidopsis pollen tubes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:516-26. [PMID: 24495108 DOI: 10.1111/tpj.12461] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 01/17/2014] [Accepted: 01/22/2014] [Indexed: 05/18/2023]
Abstract
Sexual reproduction is an essential biological event for proliferation of plants. The pollen tube (PT) that contained male gametes elongates and penetrates into the pistils for successful fertilization. However, the molecular mechanisms of plant fertilization remain largely unknown. Here, we report a transient inhibition of gene function using phosphorothioate antisense oligodeoxynucleotides (AS-ODNs) without cytofectin, which is a simple way to study gene function in Arabidopsis thaliana PTs. The PTs treated with AS-ODNs against both ANX1 and ANX2 showed short, knotted, and ruptured morphology in vitro/semi-in vitro, whereas normal PT growth was shown in its sense control in vitro/semi-in vitro. PT growth was impaired in a manner dependent on the dose of AS-ODNs against both ANX1 and ANX2 above 10 μm. The treatment with AS-ODNs against ROP1 and CalS5 resulted in waving PTs and in short PTs with a few callose plugs, respectively. The expression levels of the target genes in PTs treated with their AS-ODNs were lower than or similar to those in the sense control, indicating that the inhibition was directly or indirectly related to the expression of each mRNA. The AS-ODN against fluorescent protein (sGFP) led to reduced sGFP expression, suggesting that the AS-ODN suppressed protein expression. This method will enable the identification of reproductively important genes in Arabidopsis PTs.
Collapse
Affiliation(s)
- Yoko Mizuta
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan; JST, ERATO, Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | | |
Collapse
|
25
|
Xie Z, Sundström JF, Jin Y, Liu C, Jansson C, Sun C. A selection strategy in plant transformation based on antisense oligodeoxynucleotide inhibition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:954-61. [PMID: 24438514 DOI: 10.1111/tpj.12433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/20/2013] [Accepted: 01/13/2014] [Indexed: 05/18/2023]
Abstract
Antisense oligodeoxynucleotide (asODN) inhibition was developed in the 1970s, and since then has been widely used in animal research. However, in plant biology, the method has had limited application because plant cell walls significantly block efficient uptake of asODN to plant cells. Recently, we have found that asODN uptake is enhanced in a sugar solution. The method has promise for many applications, such as a rapid alternative to time-consuming transgenic studies, and high potential for studying gene functionality in intact plants and multiple plant species, with particular advantages in evaluating the roles of multiple gene family members. Generation of transgenic plants relies on the ability to select transformed cells. This screening process is based on co-introduction of marker genes into the plant cell together with a gene of interest. Currently, the most common marker genes are those that confer antibiotic or herbicide resistance. The possibility that traits introduced by selectable marker genes in transgenic field crops may be transferred horizontally is of major public concern. Marker genes that increase use of antibiotics and herbicides may increase development of antibiotic-resistant bacterial strains or contribute to weed resistance. Here, we describe a method for selection of transformed plant cells based on asODN inhibition. The method enables selective and high-throughput screening for transformed cells without conferring new traits or functions to the transgenic plants. Due to their high binding specificity, asODNs may also find applications as plant-specific DNA herbicides.
Collapse
Affiliation(s)
- Zhoupeng Xie
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7080, SE-75007, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
26
|
Liao F, Wang L, Yang LB, Zhang L, Peng X, Sun MX. Antisense oligodeoxynucleotide inhibition as an alternative and convenient method for gene function analysis in pollen tubes. PLoS One 2013; 8:e59112. [PMID: 23527102 PMCID: PMC3604054 DOI: 10.1371/journal.pone.0059112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/11/2013] [Indexed: 12/03/2022] Open
Abstract
Antisense oligodeoxynucleotide (A-ODN) inhibition works well in animal cells. However, there have been few successful examples to date of its application in plants, and more specifically whether the technique can be used in pollen tubes as a model of plant cell growth. NtGNL1 plays an important role in pollen tube development and was thus selected as an indicator to assess the biological effects of A-ODN. An A-ODN inhibition technique was used to down-regulate NtGNL1 expression in tobacco pollen tubes and showed that A-ODNs could quickly enter pollen tubes through the thick wall and cell membrane and effectively block NtGNL1 expression. Phenotype analysis revealed that the down-regulation of NtGNL1 by A-ODNs resulted in abnormalities in endocytosis and subsequent vesicle trafficking, similar to the phenotypes of pollen tubes treated with NtGNL1 RNAi. This investigation confirmed that A-ODNs could specifically inhibit target gene expression, and furthermore demonstrated that A-ODN functioned in a concentration- and duration-dependent manner, because A-ODNs could be degraded when incubated with pollen tubes. Thus, the A-ODN technique was successfully used for gene function analysis in pollen tubes and appears to be an alternative and convenient technique when the in vitro pollen tube is used as the study model. This technique will greatly facilitate investigations on the molecular mechanism(s) underlying pollen tube growth.
Collapse
Affiliation(s)
- Fanglei Liao
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, China
- College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (FL); (MXS)
| | - Lu Wang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Li-Bo Yang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Liyao Zhang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiongbo Peng
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Meng-xiang Sun
- College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (FL); (MXS)
| |
Collapse
|
27
|
Dinç E, Ceppi MG, Tóth SZ, Bottka S, Schansker G. The chl a fluorescence intensity is remarkably insensitive to changes in the chlorophyll content of the leaf as long as the chl a/b ratio remains unaffected. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:770-9. [PMID: 22342617 DOI: 10.1016/j.bbabio.2012.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/23/2011] [Accepted: 02/02/2012] [Indexed: 10/14/2022]
Abstract
The effects of changes in the chlorophyll (chl) content on the kinetics of the OJIP fluorescence transient were studied using two different approaches. An extensive chl loss (up to 5-fold decrease) occurs in leaves suffering from either an Mg(2+) or SO(4)(2-) deficiency. The effects of these treatments on the chl a/b ratio, which is related to antenna size, were very limited. This observation was confirmed by the identical light intensity dependencies of the K, J and I-steps of the fluorescence rise for three of the four treatments and by the absence of changes in the F(685 nm)/F(695 nm)-ratio of fluorescence emission spectra measured at 77K. Under these conditions, the F(0) and F(M)-values were essentially insensitive to the chl content. A second experimental approach consisted of the treatment of wheat leaves with specifically designed antisense oligodeoxynucleotides that interfered with the translation of mRNA of the genes coding for chl a/b binding proteins. This way, leaves with a wide range of chl a/b ratios were created. Under these conditions, an inverse proportional relationship between the F(M) values and the chl a/b ratio was observed. A strong effect of the chl a/b ratio on the fluorescence intensity was also observed for barley Chlorina f2 plants that lack chl b. The data suggest that the chl a/b ratio (antenna size) is a more important determinant of the maximum fluorescence intensity than the chl content of the leaf.
Collapse
Affiliation(s)
- Emine Dinç
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | | | | | | | | |
Collapse
|