1
|
Zhong Q, Xu Y, Rao Y. Mechanism of Rice Resistance to Bacterial Leaf Blight via Phytohormones. PLANTS (BASEL, SWITZERLAND) 2024; 13:2541. [PMID: 39339516 PMCID: PMC11434988 DOI: 10.3390/plants13182541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Rice is one of the most important food crops in the world, and its yield restricts global food security. However, various diseases and pests of rice pose a great threat to food security. Among them, bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious bacterial diseases affecting rice globally, creating an increasingly urgent need for research in breeding resistant varieties. Phytohormones are widely involved in disease resistance, such as auxin, abscisic acid (ABA), ethylene (ET), jasmonic acid (JA), and salicylic acid (SA). In recent years, breakthroughs have been made in the analysis of their regulatory mechanism in BLB resistance in rice. In this review, a series of achievements of phytohormones in rice BLB resistance in recent years were summarized, the genes involved and their signaling pathways were reviewed, and a breeding strategy combining the phytohormones regulation network with modern breeding techniques was proposed, with the intention of applying this strategy to molecular breeding work and playing a reference role for how to further improve rice resistance.
Collapse
Affiliation(s)
- Qianqian Zhong
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuqing Xu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuchun Rao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
2
|
Zhu X, Zhao Y, Shi CM, Xu G, Wang N, Zuo S, Ning Y, Kang H, Liu W, Wang R, Yan S, Wang GL, Wang X. Antagonistic control of rice immunity against distinct pathogens by the two transcription modules via salicylic acid and jasmonic acid pathways. Dev Cell 2024; 59:1609-1622.e4. [PMID: 38640925 DOI: 10.1016/j.devcel.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/07/2024] [Accepted: 03/24/2024] [Indexed: 04/21/2024]
Abstract
Although the antagonistic effects of host resistance against biotrophic and necrotrophic pathogens have been documented in various plants, the underlying mechanisms are unknown. Here, we investigated the antagonistic resistance mediated by the transcription factor ETHYLENE-INSENSITIVE3-LIKE 3 (OsEIL3) in rice. The Oseil3 mutant confers enhanced resistance to the necrotroph Rhizoctonia solani but greater susceptibility to the hemibiotroph Magnaporthe oryzae and biotroph Xanthomonas oryzae pv. oryzae. OsEIL3 directly activates OsERF040 transcription while repressing OsWRKY28 transcription. The infection of R. solani and M. oryzae or Xoo influences the extent of binding of OsEIL3 to OsWRKY28 and OsERF040 promoters, resulting in the repression or activation of both salicylic acid (SA)- and jasmonic acid (JA)-dependent pathways and enhanced susceptibility or resistance, respectively. These results demonstrate that the distinct effects of plant immunity to different pathogen types are determined by two transcription factor modules that control transcriptional reprogramming and the SA and JA pathways.
Collapse
Affiliation(s)
- Xiaoying Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yudan Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Cheng-Min Shi
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Guojuan Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nana Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Houxiang Kang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuangyong Yan
- Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA.
| | - Xuli Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Guo H, Wang J, Yao D, Yu L, Jiang W, Xie L, Lv S, Zhang X, Wang Y, Wang C, Ji W, Zhang H. Identification of nuclear membrane SUN proteins and components associated with wheat fungal stress responses. STRESS BIOLOGY 2024; 4:29. [PMID: 38861095 PMCID: PMC11166608 DOI: 10.1007/s44154-024-00163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/21/2024] [Indexed: 06/12/2024]
Abstract
In eukaryotes, the nuclear membrane that encapsulates genomic DNA is composed of an inner nuclear membrane (INM), an outer nuclear membrane (ONM), and a perinuclear space. SUN proteins located in the INM and KASH proteins in the ONM form the SUN-KASH NM-bridge, which functions as the junction of the nucleocytoplasmic complex junction. Proteins containing the SUN domain showed the highest correlation with differentially accumulated proteins (DAPs) in the wheat response to fungal stress. To understand the characteristics of SUN and its associated proteins in wheat responding to pathogen stress, here we investigated and comprehensive analyzed SUN- and KASH-related proteins among the DAPs under fungi infection based on their conserved motifs. In total, four SUN proteins, one WPP domain-interacting protein (WIP), four WPP domain-interacting tail-anchored proteins (WIT), two WPP proteins and one Ran GTPase activating protein (RanGAP) were identified. Following transient expression of Nicotiana benthamiana, TaSUN2, TaRanGAP2, TaWIT1 and TaWIP1 were identified as nuclear membrane proteins, while TaWPP1 and TaWPP2 were expressed in both the nucleus and cell membrane. RT-qPCR analysis demonstrated that the transcription of TaSUN2, TaRanGAP2 and TaWPP1 were strongly upregulated in response to fungal infection. Furthermore, using the bimolecular fluorescence complementation, the luciferase complementation and a nuclear and split-ubiquitin-based membrane yeast two-hybrid systems, we substantiated the interaction between TaSUN2 and TaWIP1, as well as TaWIP1/WIT1 and TaWPP1/WPP2. Silencing of TaSUN2, TaRanGAP2 and TaWPP1 in wheat leaves promoted powdery mildew infection and hyphal growth, and reduced the expression of TaBRI1, TaBAK1 and Ta14-3-3, indicating that these NM proteins play a positive role in resistance to fungal stress. Our study reveals the characteristics of NM proteins and propose the preliminary construction of SUN-WIP-WPP-RanGAP complex in wheat, which represents a foundation for detail elucidating their functions in wheat in future.
Collapse
Affiliation(s)
- Huan Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Jianfeng Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Di Yao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Ligang Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Wenting Jiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Lincai Xie
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Shikai Lv
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xiangyu Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yajuan Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Changyou Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Wanquan Ji
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Hong Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China.
- Engineering Research Center of Wheat Breeding, Ministry of Education, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
4
|
Zhang M, Chen D, Tian J, Cao J, Xie K, He Y, Yuan M. OsGELP77, a QTL for broad-spectrum disease resistance and yield in rice, encodes a GDSL-type lipase. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1352-1371. [PMID: 38100249 PMCID: PMC11022805 DOI: 10.1111/pbi.14271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Lipids and lipid metabolites have essential roles in plant-pathogen interactions. GDSL-type lipases are involved in lipid metabolism modulating lipid homeostasis. Some plant GDSLs modulate lipid metabolism altering hormone signal transduction to regulate host-defence immunity. Here, we functionally characterized a rice lipase, OsGELP77, promoting both immunity and yield. OsGELP77 expression was induced by pathogen infection and jasmonic acid (JA) treatment. Overexpression of OsGELP77 enhanced rice resistance to both bacterial and fungal pathogens, while loss-of-function of osgelp77 showed susceptibility. OsGELP77 localizes to endoplasmic reticulum and is a functional lipase hydrolysing universal lipid substrates. Lipidomics analyses demonstrate that OsGELP77 is crucial for lipid metabolism and lipid-derived JA homeostasis. Genetic analyses confirm that OsGELP77-modulated resistance depends on JA signal transduction. Moreover, population genetic analyses indicate that OsGELP77 expression level is positively correlated with rice resistance against pathogens. Three haplotypes were classified based on nucleotide polymorphisms in the OsGELP77 promoter where OsGELP77Hap3 is an elite haplotype. Three OsGELP77 haplotypes are differentially distributed in wild and cultivated rice, while OsGELP77Hap3 has been broadly pyramided for hybrid rice development. Furthermore, quantitative trait locus (QTL) mapping and resistance evaluation of the constructed near-isogenic line validated OsGELP77, a QTL for broad-spectrum disease resistance. In addition, OsGELP77-modulated lipid metabolism promotes JA accumulation facilitating grain yield. Notably, the hub defence regulator OsWRKY45 acts upstream of OsGELP77 by initiating the JA-dependent signalling to trigger immunity. Together, OsGELP77, a QTL contributing to immunity and yield, is a candidate for breeding broad-spectrum resistant and high-yielding rice.
Collapse
Affiliation(s)
- Miaojing Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Dan Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Jingjing Tian
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Jianbo Cao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
5
|
Hou Y, Zeng W, Ao C, Huang J. Integrative analysis of the transcriptome and metabolome reveals Bacillus atrophaeus WZYH01-mediated salt stress mechanism in maize (Zea mays L.). J Biotechnol 2024; 383:39-54. [PMID: 38346451 DOI: 10.1016/j.jbiotec.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Maize is an important food crop that is affected by salt stress during growth, which can hinder plant growth and result in a significant decrease in yield. The application of plant growth-promoting rhizobacteria can improve this situation to a certain extent. However, the gene network of rhizosphere-promoting bacteria regulating the response of maize to salt stress remains elusive. Here, we used metabolomics and transcriptomics techniques to elucidate potential gene networks and salt-response pathways in maize. Phenotypic analysis showed that the Bacillus atrophaeus treatment improved the plant height, leaf area, biomass, ion, nutrient and stomatal indicators of maize. Metabolomic analysis identified that differentially expressed metabolites (DEMs) were primarily concentrated in the arginine, proline and phytohormone signaling metabolic pathways. 4-Hydroxyphenylacetylglutamic acid, L-histidinol, oxoglutaric acid, L-glutamic acid, L-arginine, and L-tyrosine were significantly increased in the Bacillus atrophaeus treatment. Weighted gene coexpression network analysis (WGCNA) identified several hub genes associated with salt response: Zm00001eb155540 and Zm00001eb088790 (ABC transporter family), Zm00001eb419060 (extra-large GTP-binding protein family), Zm00001eb317200 (calcium-transporting ATPase), Zm00001eb384800 (aquaporin NIP1-4) and Zm00001eb339170 (cytochrome P450). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that genes related to plant hormone signal transduction and the MAPK signaling pathway were involved in the response to the effect of Bacillus atrophaeus under salt stress. In the plant hormone signal transduction pathway, 3 differentially expressed genes (DEGs) encoding EIN3/EILs protein, 3 DEGs encoding GH3, 1 DEG encoding PYR/PYL and 6 DEGs encoding PP2C were all upregulated in Bacillus atrophaeus treatment. In the MAPK signaling pathway, 2 DEGs encoding CAT1 and 2 DEGs encoding WRKY22/WRKY29 were significantly upregulated, and the expression of DEGs encoding RbohD was downregulated by the application of Bacillus atrophaeus. In conclusion, the application of Bacillus atrophaeus under salt stress regulated key physiological and molecular processes in plants, which could stimulate the expression of genes related to ion transport and nutrients in maize, alleviate salt stress and promote maize growth to some extent, deepening our understanding of the application of Bacillus atrophaeus under salt stress to improve the salt-response gene network of maize growth.
Collapse
Affiliation(s)
- Yaling Hou
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei Province, China
| | - Wenzhi Zeng
- College of Agricultural Science and Engineering, Hohai University, Nanjing, Jiangsu Province, China.
| | - Chang Ao
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei Province, China.
| | - Jiesheng Huang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
6
|
Li M, Li J, Zhang Y, Zhai Y, Chen Y, Lin L, Peng J, Zheng H, Chen J, Yan F, Lu Y. Integrated ATAC-seq and RNA-seq data analysis identifies transcription factors related to rice stripe virus infection in Oryza sativa. MOLECULAR PLANT PATHOLOGY 2024; 25:e13446. [PMID: 38502176 PMCID: PMC10950023 DOI: 10.1111/mpp.13446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/20/2024]
Abstract
Animal studies have shown that virus infection causes changes in host chromatin accessibility, but little is known about changes in chromatin accessibility of plants infected by viruses and its potential impact. Here, rice infected by rice stripe virus (RSV) was used to investigate virus-induced changes in chromatin accessibility. Our analysis identified a total of 6462 open- and 3587 closed-differentially accessible chromatin regions (DACRs) in rice under RSV infection by ATAC-seq. Additionally, by integrating ATAC-seq and RNA-seq, 349 up-regulated genes in open-DACRs and 126 down-regulated genes in closed-DACRs were identified, of which 34 transcription factors (TFs) were further identified by search of upstream motifs. Transcription levels of eight of these TFs were validated by reverse transcription-PCR. Importantly, four of these TFs (OsWRKY77, OsWRKY28, OsZFP12 and OsERF91) interacted with RSV proteins and are therefore predicted to play important roles in RSV infection. This is the first application of ATAC-seq and RNA-seq techniques to analyse changes in rice chromatin accessibility caused by RSV infection. Integrating ATAC-seq and RNA-seq provides a new approach to select candidate TFs in response to virus infection.
Collapse
Affiliation(s)
- Miaomiao Li
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Jing Li
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Yan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Yushan Zhai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Lin Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Jianping Chen
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| |
Collapse
|
7
|
López-Martín M, Montero-Pau J, Ylla G, Gómez-Guillamón ML, Picó B, Pérez-de-Castro A. Insights into the early transcriptomic response against watermelon mosaic virus in melon. BMC PLANT BIOLOGY 2024; 24:58. [PMID: 38245701 PMCID: PMC10799517 DOI: 10.1186/s12870-024-04745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Watermelon mosaic virus (WMV) is one of the most prevalent viruses affecting melon worldwide. Recessive resistance to WMV in melon has previously been reported in the African accession TGR-1551. Moreover, the genomic regions associated to the resistance have also been described. Nevertheless, the transcriptomic response that might infer the resistance to this potyvirus has not been explored. RESULTS We have performed a comparative transcriptomic analysis using mock and WMV-inoculated plants of the susceptible cultivar "Bola de oro" (BO) and a resistant RIL (Recombinant inbred line) derived from the initial cross between "TGR-1551" and BO. In total, 616 genes were identified as differentially expressed and the weighted gene co-expression network analysis (WGCNA) detected 19 gene clusters (GCs), of which 7 were differentially expressed for the genotype x treatment interaction term. SNPs with a predicted high impact on the protein function were detected within the coding regions of most of the detected DEGs. Moreover, 3 and 16 DEGs were detected within the QTL regions previously described in chromosomes 11 and 5, respectively. In addition to these two specific genomic regions, we also observde large transcriptomic changes from genes spread across the genome in the resistant plants in response to the virus infection. This early response against WMV implied genes involved in plant-pathogen interaction, plant hormone signal transduction, the MAPK signaling pathway or ubiquitin mediated proteolysis, in detriment to the photosynthetic and basal metabolites pathways. Moreover, the gene MELO3C021395, which coded a mediator of RNA polymerase II transcription subunit 33A (MED33A), has been proposed as the candidate gene located on chromosome 11 conferring resistance to WMV. CONCLUSIONS The comparative transcriptomic analysis presented here showed that, even though the resistance to WMV in TGR-1551 has a recessive nature, it triggers an active defense response at a transcriptomic level, which involves broad-spectrum resistance mechanisms. Thus, this study represents a step forward on our understanding of the mechanisms underlaying WMV resistance in melon. In addition, it sheds light into a broader topic on the mechanisms of recessive resistances.
Collapse
Affiliation(s)
- María López-Martín
- COMAV, Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Cno. de Vera, s/n, 46022, València, Spain
| | - Javier Montero-Pau
- Instituto Cavanilles de biodiversidad y la biología evolutiva (ICBIBE), Universidad de Valencia, C/ del Catedrátic José Beltrán Martínez, 2, 46980, Paterna, Spain
| | - Guillem Ylla
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | - María Luisa Gómez-Guillamón
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, CSIC-UMA, Avda. Dr. Wienberg s/n, 29750, Málaga, Spain
| | - Belén Picó
- COMAV, Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Cno. de Vera, s/n, 46022, València, Spain
| | - Ana Pérez-de-Castro
- COMAV, Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Cno. de Vera, s/n, 46022, València, Spain.
| |
Collapse
|
8
|
Silva A, Montoya ME, Quintero C, Cuasquer J, Tohme J, Graterol E, Cruz M, Lorieux M. Genetic bases of resistance to the rice hoja blanca disease deciphered by a quantitative trait locus approach. G3 (BETHESDA, MD.) 2023; 13:jkad223. [PMID: 37766452 PMCID: PMC10700108 DOI: 10.1093/g3journal/jkad223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/04/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Rice hoja blanca (RHB) is one of the most serious diseases in rice-growing areas in tropical Americas. Its causal agent is RHB virus (RHBV), transmitted by the planthopper Tagosodes orizicolus Müir. Genetic resistance is the most effective and environment-friendly way of controlling the disease. So far, only 1 major quantitative trait locus (QTL) of Oryza sativa ssp. japonica origin, qHBV4.1, that alters the incidence of the virus symptoms in 2 Colombian cultivars has been reported. This resistance has already started to be broken, stressing the urgent need for diversifying the resistance sources. In the present study, we performed a search for new QTLs of O. sativa indica origin associated with RHB resistance. We used 4 F2:3-segregating populations derived from indica-resistant varieties crossed with a highly susceptible japonica pivot parent. Besides the standard method for measuring disease incidence, we developed a new method based on computer-assisted image processing to determine the affected leaf area (ALA) as a measure of symptom severity. Based on the disease severity and incidence scores in the F3 families under greenhouse conditions and SNP genotyping of the F2 individuals, we identified 4 new indica QTLs for RHB resistance on rice chromosomes 4, 6, and 11, namely, qHBV4.2WAS208, qHBV6.1PTB25, qHBV11.1, and qHBV11.2, respectively. We also confirmed the wide-range action of qHBV4.1. Among the 5 QTLs, qHBV4.1 and qHBV11.1 had the largest effects on incidence and severity, respectively. These results provide a more complete understanding of the genetic bases of RHBV resistance in the cultivated rice gene pool and can be used to develop marker-aided breeding strategies to improve RHB resistance. The power of joint- and meta-analyses allowed precise mapping and candidate gene identification, providing the basis for positional cloning of the 2 major QTLs qHBV4.1 and qHBV11.1.
Collapse
Affiliation(s)
- Alexander Silva
- Agrobiodiversity Unit, Alliance Bioversity-CIAT, Palmira, Valle del Cauca CP 763537, Colombia
| | - María Elker Montoya
- FLAR-The Latin American Fund for Irrigated Rice, Valle del Cauca CP 763537, Colombia
| | - Constanza Quintero
- Agrobiodiversity Unit, Alliance Bioversity-CIAT, Palmira, Valle del Cauca CP 763537, Colombia
| | - Juan Cuasquer
- Agrobiodiversity Unit, Alliance Bioversity-CIAT, Palmira, Valle del Cauca CP 763537, Colombia
| | - Joe Tohme
- Agrobiodiversity Unit, Alliance Bioversity-CIAT, Palmira, Valle del Cauca CP 763537, Colombia
| | - Eduardo Graterol
- FLAR-The Latin American Fund for Irrigated Rice, Valle del Cauca CP 763537, Colombia
| | - Maribel Cruz
- FLAR-The Latin American Fund for Irrigated Rice, Valle del Cauca CP 763537, Colombia
| | - Mathias Lorieux
- Agrobiodiversity Unit, Alliance Bioversity-CIAT, Palmira, Valle del Cauca CP 763537, Colombia
- DIADE, University of Montpellier, Cirad, IRD.IRD Occitanie, 911 Ave Agropolis, 34394 Montpellier Cedex 5, France
| |
Collapse
|
9
|
Wu Z, Liang J, Li T, Zhang D, Teng N. A LlMYB305-LlC3H18-LlWRKY33 module regulates thermotolerance in lily. MOLECULAR HORTICULTURE 2023; 3:15. [PMID: 37789438 PMCID: PMC10514960 DOI: 10.1186/s43897-023-00064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/31/2023] [Indexed: 10/05/2023]
Abstract
The CCCH proteins play important roles in plant growth and development, hormone response, pathogen defense and abiotic stress tolerance. However, the knowledge of their roles in thermotolerance are scarce. Here, we identified a heat-inducible CCCH gene LlC3H18 from lily. LlC3H18 was localized in the cytoplasm and nucleus under normal conditions, while it translocated in the cytoplasmic foci and co-located with the markers of two messenger ribonucleoprotein (mRNP) granules, processing bodies (PBs) and stress granules (SGs) under heat stress conditions, and it also exhibited RNA-binding ability. In addition, LlC3H18 exhibited transactivation activity in both yeast and plant cells. In lily and Arabidopsis, overexpression of LlC3H18 damaged their thermotolerances, and silencing of LlC3H18 in lily also impaired its thermotolerance. Similarly, Arabidopsis atc3h18 mutant also showed decreased thermotolerance. These results indicated that the appropriate expression of C3H18 was crucial for establishing thermotolerance. Further analysis found that LlC3H18 directly bound to the promoter of LlWRKY33 and activated its expression. Besides, it was found that LlMYB305 acted as an upstream factor of LlC3H18 and activated its expression. In conclusion, we demonstrated that there may be a LlMYB305-LlC3H18-LlWRKY33 regulatory module in lily that is involved in the establishment of thermotolerance and finely regulates heat stress response.
Collapse
Affiliation(s)
- Ze Wu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd, Nanjing, 210043, China
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiahui Liang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Ting Li
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd, Nanjing, 210043, China
| | - Dehua Zhang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd, Nanjing, 210043, China
| | - Nianjun Teng
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd, Nanjing, 210043, China.
| |
Collapse
|
10
|
Gou M, Balint-Kurti P, Xu M, Yang Q. Quantitative disease resistance: Multifaceted players in plant defense. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:594-610. [PMID: 36448658 DOI: 10.1111/jipb.13419] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
In contrast to large-effect qualitative disease resistance, quantitative disease resistance (QDR) exhibits partial and generally durable resistance and has been extensively utilized in crop breeding. The molecular mechanisms underlying QDR remain largely unknown but considerable progress has been made in this area in recent years. In this review, we summarize the genes that have been associated with plant QDR and their biological functions. Many QDR genes belong to the canonical resistance gene categories with predicted functions in pathogen perception, signal transduction, phytohormone homeostasis, metabolite transport and biosynthesis, and epigenetic regulation. However, other "atypical" QDR genes are predicted to be involved in processes that are not commonly associated with disease resistance, such as vesicle trafficking, molecular chaperones, and others. This diversity of function for QDR genes contrasts with qualitative resistance, which is often based on the actions of nucleotide-binding leucine-rich repeat (NLR) resistance proteins. An understanding of the diversity of QDR mechanisms and of which mechanisms are effective against which classes of pathogens will enable the more effective deployment of QDR to produce more durably resistant, resilient crops.
Collapse
Affiliation(s)
- Mingyue Gou
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Peter Balint-Kurti
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
- Plant Science Research Unit, USDA-ARS, Raleigh, NC, 27695, USA
| | - Mingliang Xu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, College of Agronomy, China Agricultural University, Beijing, 100193, China
| | - Qin Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
11
|
Hormone Regulation of CCCH Zinc Finger Proteins in Plants. Int J Mol Sci 2022; 23:ijms232214288. [PMID: 36430765 PMCID: PMC9698766 DOI: 10.3390/ijms232214288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
CCCH zinc finger proteins contain one to six tandem CCCH motifs composed of three cysteine and one histidine residues and have been widely found in eukaryotes. Plant CCCH proteins control a wide range of developmental and adaptive processes through DNA-protein, RNA-protein and/or protein-protein interactions. The complex networks underlying these processes regulated by plant CCCH proteins are often involved in phytohormones as signal molecules. In this review, we described the evolution of CCCH proteins from green algae to vascular plants and summarized the functions of plant CCCH proteins that are influenced by six major hormones, including abscisic acid, gibberellic acid, brassinosteroid, jasmonate, ethylene and auxin. We further compared the regulatory mechanisms of plant and animal CCCH proteins via hormone signaling. Among them, Arabidopsis AtC3H14, 15 and human hTTP, three typical CCCH proteins, are able to integrate multiple hormones to participate in various biological processes.
Collapse
|
12
|
Wang D, Chai G, Xu L, Yang K, Zhuang Y, Yang A, Liu S, Kong Y, Zhou G. Phosphorylation-mediated inactivation of C3H14 by MPK4 enhances bacterial-triggered immunity in Arabidopsis. PLANT PHYSIOLOGY 2022; 190:1941-1959. [PMID: 35736512 PMCID: PMC9614498 DOI: 10.1093/plphys/kiac300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Perception of pathogen-associated molecular patterns (PAMPs) triggers mitogen-activated protein (MAP) kinase 4 (MPK4)-mediated phosphorylation and induces downstream transcriptional reprogramming, but the mechanisms of the MPK4 defense pathway are poorly understood. Here, we showed that phosphorylation-mediated inactivation of the CCCH protein C3H14 by MPK4 positively regulates the immune response in Arabidopsis (Arabidopsis thaliana). Compared with wild-type plants, loss-of-function mutations in C3H14 and its paralog C3H15 resulted in enhanced defense against Pst DC3000 in infected leaves and the development of systemic acquired resistance (SAR), whereas C3H14 or C3H15 overexpression enhanced susceptibility to this pathogen and failed to induce SAR. The functions of C3H14 in PAMP-triggered immunity (PTI) and SAR were dependent on MPK4-mediated phosphorylation. Challenge with Pst DC3000 or the flagellin peptide flg22 enhanced the phosphorylation of C3H14 by MPK4 in the cytoplasm, relieving C3H14-inhibited expression of PTI-related genes and attenuating C3H14-activated expression of its targets NIM1-INTERACTING1 (NIMIN1) and NIMIN2, two negative regulators of SAR. Salicylic acid (SA) affected the MPK4-C3H14-NIMIN1/2 cascades in immunity, but SA signaling mediated by the C3H14-NIMIN1/2 cascades was independent of MPK4 phosphorylation. Our study suggests that C3H14 might be a negative component of the MPK4 defense signaling pathway.
Collapse
Affiliation(s)
| | | | - Li Xu
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Kangkang Yang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Yamei Zhuang
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Science, Qingdao 266101, China
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | | | | |
Collapse
|
13
|
Huang Y, Du L, Wang M, Ren M, Yu S, Yang Q. Multifaceted roles of zinc finger proteins in regulating various agronomic traits in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:974396. [PMID: 35958192 PMCID: PMC9359907 DOI: 10.3389/fpls.2022.974396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Rice is an important cereal crop, which provides staple food for more than half of the world's population. To meet the demand of the ever-growing population in the next few decades, an extra increase in rice yield is an urgent need. Given that various agronomic traits contribute to the yield of rice, deciphering the key regulators involved in multiple agronomic trait formation is particularly important. As a superfamily of transcription factors, zinc finger proteins participate in regulating multiple genes in almost every stage of rice growth and development. Therefore, understanding zinc finger proteins underlying regulatory network would provide insights into the regulation of agronomic traits in rice. To this end, we intend to summarize the current advances in zinc finger proteins, with emphasis on C2H2 and CCCH proteins, and then discuss their potential in improving rice yield.
Collapse
Affiliation(s)
- Yifeng Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
- Guangdong Province Key Laboratory of Plant Molecular Breeding, Guangzhou, China
| | - Longgang Du
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Meixi Wang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Mengyun Ren
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Shouwu Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Qianying Yang
- Division of Integrative Bioscience and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang-si, South Korea
| |
Collapse
|
14
|
Overexpression of OsGF14f Enhances Quantitative Leaf Blast and Bacterial Blight Resistance in Rice. Int J Mol Sci 2022; 23:ijms23137440. [PMID: 35806444 PMCID: PMC9266906 DOI: 10.3390/ijms23137440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Although it is known that rice 14-3-3 family genes are involved in various defense responses, the functions of OsGF14f in response to diseases have not been reported. Here, we showed that the transcription of OsGF14f was significantly induced by leaf blast infection, and the overexpression of OsGF14f quantitatively enhanced resistance to leaf blast and bacterial blight in rice. Further analysis showed that the expression levels of salicylic acid (SA) pathway-associated genes (PAL1, NH1, PR1a and PR10) in the OsGF14f-overexpressing plants, were higher than those in wild-type plants after inoculation with the blast isolate (Magnaporthe oryzae Barr). In addition, the expression level of OsGF14f was significantly induced after SA treatment, and higher endogenous SA levels were observed in the OsGF14f-overexpressing plants compared with that in wild-type plants, especially after blast challenge. Taken together, these results suggest that OsGF14f positively regulates leaf blast and bacterial blight resistance in rice via the SA-dependent signaling pathway.
Collapse
|
15
|
Wang Y, Habekuß A, Jayakodi M, Mascher M, Snowdon RJ, Stahl A, Fuß J, Ordon F, Perovic D. High-Resolution Mapping of Barley mild mosaic virus Resistance Gene rym15. FRONTIERS IN PLANT SCIENCE 2022; 13:908170. [PMID: 35720548 PMCID: PMC9201720 DOI: 10.3389/fpls.2022.908170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV), which are transmitted by the soil-borne plasmodiophorid Polymyxa graminis, cause high yield losses in barley. In previous studies, the recessive BaMMV resistance gene rym15, derived from the Japanese landrace Chikurin Ibaraki 1, was mapped on chromosome 6HS of Hordeum vulgare. In this study, 423 F4 segmental recombinant inbred lines (RILs) were developed from crosses of Chikurin Ibaraki 1 with two BaMMV-susceptible cultivars, Igri (139 RILs) and Uschi (284 RILs). A set of 32 competitive allele-specific PCR (KASP) assays, designed using single nucleotide polymorphisms (SNPs) from the barley 50 K Illumina Infinium iSelect SNP chip, genotyping by sequencing (GBS) and whole-genome sequencing (WGS), was used as a backbone for construction of two high-resolution maps. Using this approach, the target locus was narrowed down to 0.161 cM and 0.036 cM in the Igri × Chikurin Ibaraki 1 (I × C) and Chikurin Ibaraki 1 × Uschi (C × U) populations, respectively. Corresponding physical intervals of 11.3 Mbp and 0.281 Mbp were calculated for I × C and C × U, respectively, according to the Morex v3 genome sequence. In the 0.281 Mbp target region, six high confidence (HC) and two low confidence (LC) genes were identified. Genome assemblies of BaMMV-susceptible cultivars Igri and Golden Promise from the barley pan-genome, and a HiFi assembly of Chikurin Ibaraki 1 together with re-sequencing data for the six HC and two LC genes in susceptible parental cultivar Uschi revealed functional SNPs between resistant and susceptible genotypes only in two of the HC genes. These SNPs are the most promising candidates for the development of functional markers and the two genes represent promising candidates for functional analysis.
Collapse
Affiliation(s)
- Yaping Wang
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
| | - Antje Habekuß
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
| | - Murukarthick Jayakodi
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Martin Mascher
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Rod J. Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Andreas Stahl
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
| | - Janina Fuß
- Institute for Clinical Molecular Biology, Competence Centre for Genomic Analysis (CCGA), Kiel University, Kiel, Germany
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
| |
Collapse
|
16
|
Wang A, Ma L, Shu X, Jiang Y, Liang J, Zheng A. Rice (Oryza sativa L.) cytochrome P450 protein 716A subfamily CYP716A16 regulates disease resistance. BMC Genomics 2022; 23:343. [PMID: 35505282 PMCID: PMC9066777 DOI: 10.1186/s12864-022-08568-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The sustainable development of rice production is facing severe threats by a variety of pathogens, such as necrotrophic Rhizoctonia solani and hemibiotrophic Xanthomonas oryzae pv. oryzae (Xoo). Mining and applying resistance genes to increase the durable resistance of rice is an effective method that can be used to control these diseases. RESULTS In this research, we isolated and characterized CYP716A16, which is a positive regulator of rice to R. solani AG1-IA and Xoo, and belongs to the cytochrome P450 (CYP450) protein 716A subfamily. Overexpression (OE) of CYP716A16 resulted in enhanced resistance to R. solani AG1-IA and Xoo, while RNA interference (RNAi) of CYP716A16 resulted in increased susceptibility compared with wild-type (WT) plants. Additionally, jasmonic acid (JA)-dependent defense responses and reactive oxygen species (ROS) were activated in the CYP716A16-OE lines after R. solani AG1-IA inoculation. The comparative transcriptomic and metabolomics analysis of CYP716A16-OE and the WT lines showed that OE of CYP716A16 activated the biosynthesis of flavonoids and increased the amounts of narcissoside, methylophiopogonanone A, oroxin A, and amentoflavone in plants. CONCLUSION Based on these results, we suggest that JA-dependent response, ROS level, multiple resistance-related proteins, and flavonoid contents play an important role in CYP716A16-regulated R. solani AG1-IA and Xoo resistance. Our results broaden our knowledge regarding the function of a P450 protein 716A subfamily in disease resistance and provide new insight into the molecular mechanism of rice immune response.
Collapse
Affiliation(s)
- Aijun Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Li Ma
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xinyue Shu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yuqi Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Juan Liang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Aiping Zheng
- College of Agronomy, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
17
|
Wang L, Chen J, Zhao Y, Wang S, Yuan M. OsMAPK6 phosphorylates a zinc finger protein OsLIC to promote downstream OsWRKY30 for rice resistance to bacterial blight and leaf streak. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1116-1130. [PMID: 35293133 DOI: 10.1111/jipb.13249] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Rice OsLIC encoding a CCCH zinc finger transcription factor plays an important role in immunity. However, the immune signaling pathways that OsLIC-involved and the underlying mechanisms that OsLIC-conferred resistance against pathogens are largely unclear. Here, we show that OsLIC, as a substrate for OsMAPK6, negatively regulates resistance to Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc) by directly suppressing OsWRKY30 transcription. Biochemical assays showed that OsLIC bound to OsWRKY30 promoter and suppressed its transcription. Genetic assays confirmed that the osilc knockout mutants and OsWRKY30-overexpressing plants exhibited enhanced resistance to Xoo and Xoc, knocking out OsWRKY30 in the oslic mutants attenuated the resistance against bacterial pathogens. OsMAPK6 physically interacted with and phosphorylated OsLIC leading to decreased OsLIC DNA-binding activity, therefore, overexpression of OsLIC partially suppressed OsMAPK6-mediated rice resistance. In addition, both OsMAPK6-phosphorylated activation of OsLIC and phosphorylation-mimic OsLIC5D had reduced DNA-binding activity towards OsWRKY30 promoter, thereby promoting OsWRKY30 transcription. Collectively, these results reveal that OsMAPK6-mediated phosphorylation of OsLIC positively regulates rice resistance to Xoo and Xoc by modulating OsWRKY30 transcription, suggesting that OsMAPK6-OsLIC-OsWRKY30 module is an immune signaling pathway in response to the bacterial pathogens.
Collapse
Affiliation(s)
- Lihan Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuqin Zhao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
18
|
Ai Q, Pan W, Zeng Y, Li Y, Cui L. CCCH Zinc finger genes in Barley: genome-wide identification, evolution, expression and haplotype analysis. BMC PLANT BIOLOGY 2022; 22:117. [PMID: 35291942 PMCID: PMC8922935 DOI: 10.1186/s12870-022-03500-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/01/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND CCCH transcription factors are important zinc finger transcription factors involved in the response to biotic and abiotic stress and physiological and developmental processes. Barley (Hordeum vulgare) is an agriculturally important cereal crop with multiple uses, such as brewing production, animal feed, and human food. The identification and assessment of new functional genes are important for the molecular breeding of barley. RESULTS In this study, a total of 53 protein-encoding CCCH genes unevenly dispersed on seven different chromosomes were identified in barley. Phylogenetic analysis categorized the barley CCCH genes (HvC3Hs) into eleven subfamilies according to their distinct features, and this classification was supported by intron-exon structure and conserved motif analysis. Both segmental and tandem duplication contributed to the expansion of CCCH gene family in barley. Genetic variation of HvC3Hs was characterized using publicly available exome-capture sequencing datasets. Clear genetic divergence was observed between wild and landrace barley populations in HvC3H genes. For most HvC3Hs, nucleotide diversity and the number of haplotype polymorphisms decreased during barley domestication. Furthermore, the HvC3H genes displayed distinct expression profiles for different developmental processes and in response to various types of stresses. The HvC3H1, HvC3H2 and HvC3H13 of arginine-rich tandem CCCH zinc finger (RR-TZF) genes were significantly induced by multiple types of abiotic stress and/or phytohormone treatment, which might make them as excellent targets for the molecular breeding of barley. CONCLUSIONS Overall, our study provides a comprehensive characterization of barley CCCH transcription factors, their diversity, and their biological functions.
Collapse
Affiliation(s)
- Qi Ai
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yan Zeng
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Yihan Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
- Key Laboratory for Crop Gene Resources and Germplasm Enhancement, MOA, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
19
|
Kong Y, Wang G, Chen X, Li L, Zhang X, Chen S, He Y, Hong G. OsPHR2 modulates phosphate starvation-induced OsMYC2 signalling and resistance to Xanthomonas oryzae pv. oryzae. PLANT, CELL & ENVIRONMENT 2021; 44:3432-3444. [PMID: 33938007 DOI: 10.1111/pce.14078] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Phosphate (Pi) and MYC2-mediated jasmonate (JA) pathway play critical roles in plant growth and development. In particular, crosstalk between JA and Pi starvation signalling has been reported to mediate insect herbivory resistance in dicot plants. However, its roles and mechanism in monocot-bacterial defense systems remain obscure. Here, we report that Pi starvation in rice activates the OsMYC2 signalling and enhances resistance to Xanthomonas oryzae pv. oryzae (Xoo) infection. The direct regulation of OsPHR2 on the OsMYC2 promoter was confirmed by yeast one-hybrid, electrophoretic mobility shift, dual-luciferase and chromatin immunoprecipitation assays. Molecular analyses and infection studies using OsPHR2-Ov1 and phr2 mutants further demonstrated that OsPHR2 enhances antibacterial resistance via transcriptional regulation of OsMYC2 expression, indicating a positive role of OsPHR2-OsMYC2 crosstalk in modulating the OsMYC2 signalling and Xoo infection. Genetic analysis and infection assays using myc2 mutants revealed that Pi starvation-induced OsMYC2 signalling activation and consequent Xoo resistance depends on the regulation of OsMYC2. Together, these results reveal a clear interlink between Pi starvation- and OsMYC2- signalling in monocot plants, and provide new insight into how plants balance growth and defence by integrating nutrient deficiency and phytohormone signalling. We highlighted a molecular link connecting OsMYC2-mediated JA pathway and phosphate starvation signalling in monocot plant. We demonstrated that phosphate starvation promoted OsMYC2 signalling to enhance rice defence to bacterial blight via transcriptional regulation of OsPHR2 on OsMYC2.
Collapse
Affiliation(s)
- Yaze Kong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Gang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai, China
| | - Xian Chen
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Linying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Sangtian Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai, China
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
20
|
Yang W, Zhao J, Zhang S, Chen L, Yang T, Dong J, Fu H, Ma Y, Zhou L, Wang J, Liu W, Liu Q, Liu B. Genome-Wide Association Mapping and Gene Expression Analysis Reveal the Negative Role of OsMYB21 in Regulating Bacterial Blight Resistance in Rice. RICE (NEW YORK, N.Y.) 2021; 14:58. [PMID: 34185169 PMCID: PMC8241976 DOI: 10.1186/s12284-021-00501-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 06/08/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most devastating diseases in rice all over the world. Due to the diversity and rapid evolution of Xoo, identification and use of the non-race specific quantitative resistance QTLs has been considered the preferred strategy for effective control of this disease. Although numerous QTLs for BB resistance have been identified, they haven't been effectively used for improvement of BB resistance in rice due to their small effects and lack of knowledge on the function of genes underlying the QTLs. RESULTS In the present study, a genome-wide association study of BB resistance was performed in a rice core collection from South China. A total of 17 QTLs were identified to be associated with BB resistance. Among them, 13 QTLs were newly identified in the present study and the other 4 QTLs were co-localized with the previously reported QTLs or Xa genes that confer qualitative resistance to Xoo strains. Particularly, the qBBR11-4 on chromosome 11 explained the largest phenotypic variation in this study and was co-localized with the previously identified QTLs for BB and bacterial leaf streak (BLS) resistance against diverse strains in three studies, suggesting its broad-spectrum resistance and potential value in rice breeding. Through combined analysis of differential expression and annotations of the predicted genes within qBBR11-4 between two sets of rice accessions selected based on haplotypes and disease phenotypes, we identified the transcription factor OsMYB21 as the candidate gene for qBBR11-4. The OsMYB21 overexpressing plants exhibited decreased resistance to bacterial blight, accompanied with down-regulation of several defense-related genes compared with the wild-type plants. CONCLUSION The results suggest that OsMYB21 negatively regulates bacterial blight resistance in rice, and this gene can be a promising target in rice breeding by using the gene editing method. In addition, the potential candidate genes for the 13 novel QTLs for BB resistance were also analyzed in this study, providing a new source for cloning of genes associated with BB resistance and molecular breeding in rice.
Collapse
Affiliation(s)
- Wu Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Luo Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Tifeng Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Jingfang Dong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Hua Fu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Yamei Ma
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Lian Zhou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Jian Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Wei Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Qing Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Bin Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| |
Collapse
|
21
|
Dong J, Zhou L, Feng A, Zhang S, Fu H, Chen L, Zhao J, Yang T, Yang W, Ma Y, Wang J, Zhu X, Liu Q, Liu B. The OsOXO2, OsOXO3 and OsOXO4 Positively Regulate Panicle Blast Resistance in Rice. RICE (NEW YORK, N.Y.) 2021; 14:51. [PMID: 34091752 PMCID: PMC8179873 DOI: 10.1186/s12284-021-00494-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/17/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Although panicle blast is more destructive to yield loss than leaf blast in rice, the cloned genes that function in panicle blast resistance are still very limited and the molecular mechanisms underlying panicle blast resistance remain largely unknown. RESULTS In the present study, we have confirmed that the three Oxalate oxidase (OXO) genes, OsOXO2, OsOXO3 and OsOXO4 from a blast-resistant cultivar BC10 function in panicle blast resistance in rice. The expression of OsOXO2, OsOXO3 and OsOXO4 were induced by panicle blast inoculation. Subcellular localization analysis revealed that the three OXO proteins are all localized in the nucleus and cytoplasm. Simultaneous silencing of OsOXO2, OsOXO3 and OsOXO4 decreased rice resistance to panicle blast, whereas the OsOXO2, OsOXO3 and OsOXO4 overexpression rice plants individually showed enhanced panicle blast resistance. More H2O2 and higher expression levels of PR genes were observed in the overexpressing plants than in the control plants, while the silencing plants exhibited less H2O2 and lower expression levels of PR genes compared to the control plants. Moreover, phytohormone treatment and the phytohormone signaling related gene expression analysis showed that panicle blast resistance mediated by the three OXO genes was associated with the activation of JA and ABA signaling pathways but suppression of SA signaling pathway. CONCLUSION OsOXO2, OsOXO3 and OsOXO4 positively regulate panicle blast resistance in rice. The OXO genes could modulate the accumulation of H2O2 and expression levels of PR gene in plants. Moreover, the OXO genes mediated panicle blast resistance could be regulated by ABA, SA and JA, and may be associated with the activation of JA and ABA signaling pathways but suppression of the SA signaling pathway.
Collapse
Affiliation(s)
- Jingfang Dong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Lian Zhou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Aiqing Feng
- Guangdong Key Laboratory of New Technology in Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Hua Fu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Luo Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Tifeng Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Wu Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Yamei Ma
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Jian Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Xiaoyuan Zhu
- Guangdong Key Laboratory of New Technology in Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Qing Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Bin Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| |
Collapse
|
22
|
Zhang Q, Zhang WJ, Yin ZG, Li WJ, Zhao HH, Zhang S, Zhuang L, Wang YX, Zhang WH, Du JD. Genome- and Transcriptome-Wide Identification of C3Hs in Common Bean ( Phaseolus vulgaris L.) and Structural and Expression-Based Analyses of Their Functions During the Sprout Stage Under Salt-Stress Conditions. Front Genet 2020; 11:564607. [PMID: 33101386 PMCID: PMC7522512 DOI: 10.3389/fgene.2020.564607] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
CCCH (C3H) zinc-finger proteins are involved in plant biotic and abiotic stress responses, growth and development, and disease resistance. However, studies on C3H genes in Phaseolus vulgaris L. (common bean) are limited. Here, 29 protein-encoding C3H genes, located on 11 different chromosomes, were identified in P. vulgaris. A phylogenetic analysis categorized the PvC3Hs into seven subfamilies on the basis of distinct features, such as exon–intron structure, cis-regulatory elements, and MEME motifs. A collinearity analysis revealed connections among the PvC3Hs in the same and different species. The PvC3H genes showed tissue-specific expression patterns during the sprout stage, as assessed by real-time quantitative PCR (RT-qPCR). Using RNA-sequencing and RT-qPCR data, PvC3Hs were identified as being enriched through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses in binding, channel activity, and the spliceosome pathway. These results provide useful information and a rich resource that can be exploited to functionally characterize and understand PvC3Hs. These PvC3Hs, especially those enriched in binding, channel activity, and the spliceosome pathway will further facilitate the molecular breeding of common bean and provide insights into the correlations between PvC3Hs and salt-stress responses during the sprout stage.
Collapse
Affiliation(s)
- Qi Zhang
- Laboratory Crop Genetics and Breeding, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wen-Jing Zhang
- Laboratory Crop Genetics and Breeding, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhen-Gong Yin
- Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences, Heilongjiang, China
| | - Wei-Jia Li
- Laboratory Crop Genetics and Breeding, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hao-Hao Zhao
- Laboratory Crop Genetics and Breeding, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shuo Zhang
- Laboratory Crop Genetics and Breeding, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Lin Zhuang
- Laboratory Crop Genetics and Breeding, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yu-Xin Wang
- Laboratory Crop Genetics and Breeding, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wen-Hui Zhang
- Laboratory Crop Genetics and Breeding, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ji-Dao Du
- Laboratory Crop Genetics and Breeding, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China.,Laboratory Crop Genetics and Breeding, National Coarse Cereals Engineering Research Center, Daqing, China
| |
Collapse
|
23
|
Banoo A, Nabi A, Rasool RS, Mahiya-Farooq, Shah MD, Ahmad M, Sofi PA, Aasiya-Nabi, Itoo H, Sharma PN, Padder BA. North-Western Himalayan Common Beans: Population Structure and Mapping of Quantitative Anthracnose Resistance Through Genome Wide Association Study. FRONTIERS IN PLANT SCIENCE 2020; 11:571618. [PMID: 33123180 PMCID: PMC7573075 DOI: 10.3389/fpls.2020.571618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/04/2020] [Indexed: 08/31/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is an important legume crop of north-western (NW) Himalayan region and the major disease that causes catastrophic loss to the crop is anthracnose, which is caused by Colletotrichum lindemuthianum. The pathogen is highly diverse and most of the commercial cultivars are susceptible to different races prevalent in the region. The lack of information on the genomic regions associated with anthracnose resistance in NW Himalayan common bean population prompted us to dissect Quantitative Resistance Loci (QRLs) against major anthracnose races. In this study, 188 common bean landraces collected from NW region were screened against five important anthracnose races and 113 bean genotypes showed resistance to one or multiple races. Genotyping by sequencing (GBS) was performed on a panel of 192 bean lines (4 controls plus 188 Indian beans) and 22,589 SNPs were obtained that are evenly distributed. Population structure analysis of 192 bean genotypes categorized 188 Indian beans into two major clusters representing Andean and Mesoamerican gene pools with obvious admixtures. Many QRLs associated with anthracnose resistance to Indian C. lindemuthianum virulences (race 3, 87, and 503) are located at Pv04 within the gene models that encode typical resistance gene signatures. The QRLs associated with race 73 are located on Pv08 and overlaps with Co-4 anthracnose resistance gene. A SNP located at distal end of Pv11 in a gene model Phvul.011G202300 which encodes a LRR with a typical NB-ARC domain showed association with race 73 resistance. Common bean genomic regions located at Pv03, Pv09, and Pv11 showed association with resistance to anthracnose race 2047. The present study showed presence of many novel bean genomic regions associated with anthracnose resistance. The presence of Co-4 and Co-2 genes in our material is encouraging for breeding durable anthracnose resistant cultivars for the region.
Collapse
Affiliation(s)
- Aqleema Banoo
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Srinagar, India
| | - Asha Nabi
- Directorate of Extension, SKUAST-Kashmir, Srinagar, India
| | - Rovidha S. Rasool
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Srinagar, India
| | - Mahiya-Farooq
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Srinagar, India
| | - Mehraj D. Shah
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Srinagar, India
| | - Mushtaq Ahmad
- Directorate of Extension, SKUAST-Kashmir, Srinagar, India
| | - Parvaze A. Sofi
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, India
| | - Aasiya-Nabi
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Srinagar, India
| | - Hamidullah Itoo
- Ambri Apple Research Centre, SKUAST-Kashmir, Srinagar, India
| | - P. N. Sharma
- Department of Plant Pathology, CSK HPKV, Palampur, India
| | - Bilal A. Padder
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Srinagar, India
| |
Collapse
|
24
|
Wang B, Fang R, Chen F, Han J, Liu YG, Chen L, Zhu Q. A novel CCCH-type zinc finger protein SAW1 activates OsGA20ox3 to regulate gibberellin homeostasis and anther development in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1594-1606. [PMID: 32149461 DOI: 10.1111/jipb.12924] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
Male sterility is a prerequisite for hybrid seed production. The phytohormone gibberellin (GA) is involved in regulating male reproductive development, but the mechanism underlying GA homeostasis in anther development remains less understood. Here, we report the isolation and characterization of a new positive regulator of GA homeostasis, swollen anther wall 1 (SAW1), for anther development in rice (Oryza sativa L.). Rice plants carrying the recessive mutant allele saw1 produces abnormal anthers with swollen anther wall and aborted pollen. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRIPSR-associated protein 9-mediated knockout of SAW1 in rice generated similar male sterile plants. SAW1 encodes a novel nucleus-localizing CCCH-tandem zinc finger protein, and this protein could directly bind to the promoter region of the GA synthesis gene OsGA20ox3 to induce its anther-specific expression. In the saw1 anther, the significantly decreased OsGA20ox3 expression resulted in lower bioactive GA content, which in turn caused the lower expression of the GA-inducible anther-regulator gene OsGAMYB. Thus, our results disclose the mechanism of the SAW1-GA20ox3-GAMYB pathway in controlling rice anther development, and provide a new target gene for the rapid generation of male sterile lines by genome editing for hybrid breeding.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ruiqiu Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- Dongyang Institute of Maize Research, Zhejiang Academy of Agricultural Sciences, Dongyang, 322100, China
| | - Faming Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jingluan Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
25
|
Wang D, Xu H, Huang J, Kong Y, AbuQamar S, Yu D, Liu S, Zhou G, Chai G. The Arabidopsis CCCH protein C3H14 contributes to basal defense against Botrytis cinerea mainly through the WRKY33-dependent pathway. PLANT, CELL & ENVIRONMENT 2020; 43:1792-1806. [PMID: 32279333 DOI: 10.1111/pce.13771] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/15/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Necrotrophic pathogens such as Botrytis cinerea cause significant crop yield losses. Plant CCCH proteins play important roles in pathogen resistance responses. However, the CCCH-mediated defense mechanisms against necrotrophic pathogens are unclear. Here, we report that the Arabidopsis CCCH protein C3H14 positively regulates basal defense against B. cinerea mainly by WRKY33 signaling. Simultaneous mutation of C3H14 and its paralog C3H15 resulted in enhanced susceptibility to B. cinerea, while C3H14 or C3H15 overexpression lines exhibited reduced susceptibility. A large number of differentially expressed genes (DEGs) were present in the c3h14c3h15 double mutant and C3H14 overexpression plants compared with wild-type plants at 24 hr post infection. These DEGs covered over one third of B. cinerea-responsive WRKY33 targets, including genes involved in jasmonic acid (JA)/ethylene (ET) signaling, and camalexin biosynthesis. Genetic analysis indicated that C3H14 mainly depended on WRKY33 to modulate defense against B. cinerea. Moreover, C3H14 activated the WRKY33-ORA59 and -PAD3 cascades to correspondingly control JA/ET- and camalexin-mediated defense responses. However, C3H14 was essential for B. cinerea-induced production of 12-oxo-phytodienoic acid and it also directly mediated ORA59-dependent JA/ET signaling after infection. Therefore, C3H14 may act as a novel transcriptional regulator of the WRKY33-mediated defense pathway.
Collapse
Affiliation(s)
- Dian Wang
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Hua Xu
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Junyan Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yingzhen Kong
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Synan AbuQamar
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Gongke Zhou
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Guohua Chai
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
26
|
Liu C, Xu X, Kan J, Cheng ZM, Chang Y, Lin J, Li H. Genome-wide analysis of the C3H zinc finger family reveals its functions in salt stress responses of Pyrus betulaefolia. PeerJ 2020; 8:e9328. [PMID: 32566409 PMCID: PMC7293859 DOI: 10.7717/peerj.9328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 05/18/2020] [Indexed: 01/09/2023] Open
Abstract
Transcription factors regulate gene expression in response to various external and internal cues by activating or suppressing downstream genes. Significant progress has been made in identifying and characterizing the Cysteine3Histidine (C3H) gene family in several dicots and monocots. They are characterized by their signature motif of three cysteine and one histidine residues, and reportedly play important roles in regulation of plant growth, developmental processes and environmental responses. In this study, we performed genome-wide and deep analysis of putative C3H genes, and a total of 117 PbeC3H members, were identified in P. betulaefolia and classified into 12 groups. Results were supported by the gene structural characteristics and phylogenetic analysis. These genes were unevenly distributed on 17 chromosomes. The gene structures of the C3H genes were relatively complex but conserved in each group. The C3H genes experienced a WGD event that occurred in the ancestor genome of P. betulaefolia and apple before their divergence based on the synonymous substitutions (Ks) values. There were 35 and 37 pairs of paralogous genes in the P. betulaefolia and apple genome, respectively, and 87 pairs of orthologous genes between P. betulaefolia and apple were identified. Except for one orthologous pairs PbeC3H66 and MD05G1311700 which had undergone positive selection, the other C3H genes had undergone purifying selection. Expression profiles showed that high salinity stress could influence the expression level of C3H genes in P. betulaefolia. Four members were responsive to salt stress in roots, nine were responsive to salt stress in leaves and eight showed inhibited expression in leaves. Results suggested important roles of PbeC3H genes in response to salt stress and will be useful for better understanding the complex functions of the C3H genes, and will provide excellent candidates for salt-tolerance improvement.
Collapse
Affiliation(s)
- Chunxiao Liu
- Institute of Pomology, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xiaoyang Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Jialiang Kan
- Institute of Pomology, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Zong Ming Cheng
- Department of Plant Sciences, University of Tennessee-Knoxville, Knoxville, TN, United States of America
| | - Youhong Chang
- Institute of Pomology, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Jing Lin
- Institute of Pomology, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Hui Li
- Institute of Pomology, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
27
|
Angeles-Shim RB, Shim J, Vinarao RB, Lapis RS, Singleton JJ. A novel locus from the wild allotetraploid rice species Oryza latifolia Desv. confers bacterial blight (Xanthomonas oryzae pv. oryzae) resistance in rice (O. sativa). PLoS One 2020; 15:e0229155. [PMID: 32084193 PMCID: PMC7034821 DOI: 10.1371/journal.pone.0229155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/30/2020] [Indexed: 11/19/2022] Open
Abstract
Bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major limiting factor to rice productivity worldwide. Genetic control through the identification of novel sources of bacterial blight resistance and their utilization in resistance breeding remains the most effective and economical strategy to manage the disease. Here we report the identification of a novel locus from the wild Oryza species, Oryza latifolia, conferring a race-specific resistance to Philippine Xoo race 9A (PXO339). The locus was identified from two introgression lines i.e. WH12-2252 and WH12-2256 that segregated from O. latifolia monosomic alien addition lines (MAALs). The discrete segregation ratio of susceptible and resistant phenotypes in the F2 (χ2[3:1] = 0.22 at p>0.05) and F3 (χ2[3:1] = 0.36 at p>0.05) populations indicates that PXO339 resistance in the MAAL-derived introgression lines (MDILs) is controlled by a single, recessive gene. Genotyping of a total of 216 F2, 1130 F3 and 288 F4 plants derived from crossing either of the MDILs with the recurrent parent used to generate the MAALs narrowed the candidate region to a 1,817 kb locus that extends from 10,425 to 12,266 kb in chromosome 12. Putative candidate genes that were identified by data mining and comparative sequence analysis can provide targets for further studies on mapping and cloning of the causal gene for PXO339 resistance in the MDILs. To our knowledge, this is the first report of a genetic locus from the allotetraploid wild rice, O. latifolia conferring race-specific resistance to bacterial blight.
Collapse
Affiliation(s)
| | - Junghyun Shim
- Plant Breeding Division, International Rice Research Institute, Manila, Philippines
| | - Ricky B. Vinarao
- Plant Breeding Division, International Rice Research Institute, Manila, Philippines
| | - Ruby S. Lapis
- Plant Breeding Division, International Rice Research Institute, Manila, Philippines
| | - Joshua J. Singleton
- Plant Breeding Division, International Rice Research Institute, Manila, Philippines
| |
Collapse
|
28
|
Identification and characterization of genes frequently responsive to Xanthomonas oryzae pv. oryzae and Magnaporthe oryzae infections in rice. BMC Genomics 2020; 21:21. [PMID: 31906847 PMCID: PMC6945429 DOI: 10.1186/s12864-019-6438-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/29/2019] [Indexed: 01/06/2023] Open
Abstract
Background Disease resistance is an important factor that impacts rice production. However, the mechanisms underlying rice disease resistance remain to be elucidated. Results Here, we show that a robust set of genes has been defined in rice response to the infections of Xanthomonas oryzae pv. oryzae (Xoo) and Magnaporthe oryzae (Mor). We conducted a comprehensive analysis of the available microarray data from a variety of rice samples with inoculation of Xoo and Mor. A set of 12,932 genes was identified to be regulated by Xoo and another set of 2709 Mor-regulated genes was determined. GO enrichment analysis of the regulated genes by Xoo or Mor suggested mitochondrion may be an arena for the up-regulated genes and chloroplast be another for the down-regulated genes by Xoo or Mor. Cytokinin-related processes were most frequently repressed by Xoo, while processes relevant to jasmonic acid and abscisic acid were most frequently activated by Xoo and Mor. Among genes responsive to Xoo and Mor, defense responses and diverse signaling pathways were the most frequently enriched resistance mechanisms. InterPro annotation showed the zinc finger domain family, WRKY proteins, and Myb domain proteins were the most significant transcription factors regulated by Xoo and Mor. KEGG analysis demonstrated pathways including ‘phenylpropanoid biosynthesis’, ‘biosynthesis of antibiotics’, ‘phenylalanine metabolism’, and ‘biosynthesis of secondary metabolites’ were most frequently triggered by Xoo and Mor, whereas ‘circadian rhythm-plant’ was the most frequent pathway repressed by Xoo and Mor. Conclusions The genes identified here represent a robust set of genes responsive to the infections of Xoo and Mor, which provides an overview of transcriptional reprogramming during rice defense against Xoo and Mor infections. Our study would be helpful in understanding the mechanisms of rice disease resistance.
Collapse
|
29
|
Zhang Y, Bouwmeester HJ, Kappers IF. Combined transcriptome and metabolome analysis identifies defence responses in spider mite-infested pepper (Capsicum annuum). JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:330-343. [PMID: 31557301 PMCID: PMC6913709 DOI: 10.1093/jxb/erz422] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/05/2019] [Indexed: 05/09/2023]
Abstract
Plants regulate responses towards herbivory through fine-tuning of defence-related hormone production, expression of defence genes, and production of secondary metabolites. Jasmonic acid (JA) plays a key role in plant-herbivorous arthropod interactions. To understand how pepper (Capsicum annuum) responds to herbivory, leaf transcriptomes and metabolomes of two genotypes different in their susceptibility to spider mites were studied. Mites induced both JA and salicylic acid (SA) signalling. However, mite infestation and exogenous JA resulted in distinct transcriptome profiles. Compared with JA, mites induced fewer differentially expressed genes involved in metabolic processes (except for genes involved in the phenylpropanoid pathway) and lipid metabolic processes. Furthermore, pathogen-related defence responses including WRKY transcription factors were more strongly induced upon mite infestation, probably as a result of induced SA signalling. Untargeted analysis of secondary metabolites confirmed that JA treatment induced larger changes in metabolism than spider mite infestation, resulting in higher terpenoid and flavonoid production. The more resistant genotype exhibited a larger increase in endogenous JA and volatile and non-volatile secondary metabolites upon infestation, which could explain its stronger defence. Reasoning that in JA-SA antagonizing crosstalk, SA defences are prioritized over JA defences, we hypothesize that lack of SA-mediated repression of JA-induced defences could result in gain of resistance towards spider mites in pepper.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Harro J Bouwmeester
- Plant Hormone Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park, Amsterdam, The Netherlands
| | - Iris F Kappers
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg, Wageningen, The Netherlands
- Correspondence:
| |
Collapse
|
30
|
Zhang Y, Bouwmeester HJ, Kappers IF. Combined transcriptome and metabolome analysis identifies defence responses in spider mite-infested pepper (Capsicum annuum). JOURNAL OF EXPERIMENTAL BOTANY 2020. [PMID: 31557301 DOI: 10.5061/dryad.n34h180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Plants regulate responses towards herbivory through fine-tuning of defence-related hormone production, expression of defence genes, and production of secondary metabolites. Jasmonic acid (JA) plays a key role in plant-herbivorous arthropod interactions. To understand how pepper (Capsicum annuum) responds to herbivory, leaf transcriptomes and metabolomes of two genotypes different in their susceptibility to spider mites were studied. Mites induced both JA and salicylic acid (SA) signalling. However, mite infestation and exogenous JA resulted in distinct transcriptome profiles. Compared with JA, mites induced fewer differentially expressed genes involved in metabolic processes (except for genes involved in the phenylpropanoid pathway) and lipid metabolic processes. Furthermore, pathogen-related defence responses including WRKY transcription factors were more strongly induced upon mite infestation, probably as a result of induced SA signalling. Untargeted analysis of secondary metabolites confirmed that JA treatment induced larger changes in metabolism than spider mite infestation, resulting in higher terpenoid and flavonoid production. The more resistant genotype exhibited a larger increase in endogenous JA and volatile and non-volatile secondary metabolites upon infestation, which could explain its stronger defence. Reasoning that in JA-SA antagonizing crosstalk, SA defences are prioritized over JA defences, we hypothesize that lack of SA-mediated repression of JA-induced defences could result in gain of resistance towards spider mites in pepper.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Harro J Bouwmeester
- Plant Hormone Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park, Amsterdam, The Netherlands
| | - Iris F Kappers
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg, Wageningen, The Netherlands
| |
Collapse
|
31
|
Zhao Q, Wu J, Cai G, Yang Q, Shahid M, Fan C, Zhang C, Zhou Y. A novel quantitative trait locus on chromosome A9 controlling oleic acid content in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2313-2324. [PMID: 31037811 PMCID: PMC6835171 DOI: 10.1111/pbi.13142] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 05/09/2023]
Abstract
One of the most important goals in the breeding of oilseed crops, including Brassica napus, is to improve the quality of edible vegetable oil, which is mainly determined by the seed fatty acid composition, particularly the C18:1 content. Previous studies have indicated that the C18:1 content is a polygenic trait, and no stable quantitative trait loci (QTLs) except for FAD2 have been reported. By performing a GWAS using 375 low erucic acid B. napus accessions genotyped with the Brassica 60K SNP array and constructing a high-density SNP-based genetic map of a 150 DH population, we identified a novel QTL on the A9 chromosome. The novel locus could explain 11.25%, 5.72% and 6.29% of phenotypic variation during three consecutive seasons and increased the C18:1 content by approximately 3%-5%. By fine mapping and gene expression analysis, we found three potential candidate genes and verified the fatty acids in a homologous gene mutant of Arabidopsis. A metal ion-binding protein was found to be the most likely candidate gene in the region. Thus, the C18:1 content can be further increased to about 80% with this novel locus together with FAD2 mutant allele without compromise of agronomic performance. A closely linked marker, BnA129, for this novel QTL (OLEA9) was developed so that we can effectively identify materials with high C18:1 content at an early growth stage by marker-assisted selection. Our results may also provide new insight for understanding the complex genetic mechanism of fatty acid metabolism.
Collapse
Affiliation(s)
- Qing Zhao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Jian Wu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Present address:
Jiangsu Provincial Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhou225009JiangsuChina
| | - Guangqin Cai
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Qingyong Yang
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of InformaticsHuazhong Agricultural UniversityWuhanHubeiChina
| | - Muhammad Shahid
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|
32
|
Svara A, Jakse J, Radisek S, Javornik B, Stajner N. Temporal and spatial assessment of defence responses in resistant and susceptible hop cultivars during infection with Verticillium nonalfalfae. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:153008. [PMID: 31326713 DOI: 10.1016/j.jplph.2019.153008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/21/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Hop (Humulus lupulus L.) is an important industrial plant providing ingredients for brewing and pharmaceutical industry worldwide. Its intensive production is challenged by numerous diseases. One of the most lethal and difficult to control is verticillium wilt, a vascular disease caused by the fungal pathogen Verticillium nonalfalfae. The disease can be successfully controlled by the host resistance. Despite various studies that already researched resistance mechanisms of hops, only limited number of resistance genes and markers that could be utilized for efficient resistance breeding has been identified. In this study we aimed to follow fungus colonization pattern and the differential expression of selected genes during pre-symptomatic period of susceptible (Celeia) and resistant (Wye Target) hop cultivars. Results of gene expressions and fungal colonisation of compatible and incompatible interactions with V. nonalfalfae suggest that the hop plant is challenged already at the very early fungal colonisation stages. In total, nine out of 17 gene targets investigated in our study resulted in differential expression between inoculated and control plants of susceptible and resistant cultivars. The difference was the most evident in stems at an early stage of colonisation (6 dpi), showing relatively stronger changes in targeted gene expression to infection in the resistant cultivar than in the susceptible one. Analysed gene targets are involved in the overall defence response processes of nucleic acid binding, signalling, protein ubiquitination, cell oxidative burst, hydroxylation, peroxidation, alternative splicing, and metabolite biosynthesis. The up-regulation of some genes (e.g. glycine-rich RNA-binding family protein, protein phosphatase, cysteine-rich receptor-like protein kinase, zinc finger CCCH domain-containing protein 40, cinnamic acid 4-hydroxylase, class III peroxidase, putative MAPK2, peroxiredoxin-2F) upon infection in incompatible interactions might reflect defence activation, restriction of disease spreading throughout the plant and successful response of resistant genotype.
Collapse
Affiliation(s)
- A Svara
- Department of Biosystems, KU Leuven, W. De Croylaan 42, 3001 Leuven, Belgium.
| | - J Jakse
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| | - S Radisek
- Plant Protection Department, Slovenian Institute of Hop Research and Brewing, Cesta Žalskega tabora 2, 3310 Žalec, Slovenia.
| | - B Javornik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| | - N Stajner
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| |
Collapse
|
33
|
Uji Y, Kashihara K, Kiyama H, Mochizuki S, Akimitsu K, Gomi K. Jasmonic Acid-Induced VQ-Motif-Containing Protein OsVQ13 Influences the OsWRKY45 Signaling Pathway and Grain Size by Associating with OsMPK6 in Rice. Int J Mol Sci 2019; 20:ijms20122917. [PMID: 31207967 PMCID: PMC6627515 DOI: 10.3390/ijms20122917] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/31/2022] Open
Abstract
Jasmonic acid (JA) is a plant hormone that plays an important role in the defense response and stable growth of rice. In this study, we investigated the role of the JA-responsive valine-glutamine (VQ)-motif-containing protein OsVQ13 in JA signaling in rice. OsVQ13 was primarily located in the nucleus and cytoplasm. The transgenic rice plants overexpressing OsVQ13 exhibited a JA-hypersensitive phenotype and increased JA-induced resistance to Xanthomonas oryzae pv. oryzae (Xoo), which is the bacteria that causes rice bacterial blight, one of the most serious diseases in rice. Furthermore, we identified a mitogen-activated protein kinase, OsMPK6, as an OsVQ13-associating protein. The expression of genes regulated by OsWRKY45, an important WRKY-type transcription factor for Xoo resistance that is known to be regulated by OsMPK6, was upregulated in OsVQ13-overexpressing rice plants. The grain size of OsVQ13-overexpressing rice plants was also larger than that of the wild type. These results indicated that OsVQ13 positively regulated JA signaling by activating the OsMPK6-OsWRKY45 signaling pathway in rice.
Collapse
Affiliation(s)
- Yuya Uji
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.
| | - Keita Kashihara
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.
| | - Haruna Kiyama
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.
| | - Susumu Mochizuki
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.
| | - Kazuya Akimitsu
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.
| | - Kenji Gomi
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.
| |
Collapse
|
34
|
Ke Y, Kang Y, Wu M, Liu H, Hui S, Zhang Q, Li X, Xiao J, Wang S. Jasmonic Acid-Involved OsEDS1 Signaling in Rice-Bacteria Interactions. RICE (NEW YORK, N.Y.) 2019; 12:25. [PMID: 30989404 PMCID: PMC6465387 DOI: 10.1186/s12284-019-0283-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/27/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND The function of Arabidopsis enhanced disease susceptibility 1 (AtEDS1) and its sequence homologs in other dicots have been extensively studied. However, it is unknown whether rice EDS1 homolog (OsEDS1) plays a role in regulating the rice-pathogen interaction. RESULTS In this study, a OsEDS1-knouckout mutant (oseds1) was characterized and shown to have increased susceptibility to Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), suggesting the positive role of OsEDS1 in regulating rice disease resistance. However, the following evidence suggests that OsEDS1 shares some differences with AtEDS1 in its way to regulate the host-pathogen interactions. Firstly, OsEDS1 modulates the rice-bacteria interactions involving in jasmonic acid (JA) signaling pathway, while AtEDS1 regulates Arabidopsis disease resistance against biotrophic pathogens depending on salicylic acid (SA) signaling pathway. Secondly, introducing AtEDS1 could reduce oseds1 mutant susceptibility to Xoo rather than to Xoc. Thirdly, exogenous application of JA and SA cannot complement the susceptible phenotype of the oseds1 mutant, while exogenous application of SA is capable of complementing the susceptible phenotype of the ateds1 mutant. Finally, OsEDS1 is not required for R gene mediated resistance, while AtEDS1 is required for disease resistance mediated by TIR-NB-LRR class of R proteins. CONCLUSION OsEDS1 is a positive regulator in rice-pathogen interactions, and shares both similarities and differences with AtEDS1 in its way to regulate plant-pathogen interactions.
Collapse
Affiliation(s)
- Yinggen Ke
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanrong Kang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengxiao Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Shugang Hui
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
35
|
Ke Y, Wu M, Zhang Q, Li X, Xiao J, Wang S. Hd3a and OsFD1 negatively regulate rice resistance to Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola. Biochem Biophys Res Commun 2019; 513:775-780. [PMID: 30992130 DOI: 10.1016/j.bbrc.2019.03.169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 11/28/2022]
Abstract
In rice, Hd3a, GF14 and OsFD1 proteins, forming florigen activation complex, are key components in flowering time regulation. GF14 genes in rice response to biotic and abiotic stress has also been well addressed. The role of GF14e in rice defense has been well studied. However, whether Hd3a and OsFD1 play roles in defense is unclear. In present study, we identified that Hd3a and OsFD1 expression is repressed by Xoo and JA, and validated that Hd3a and OsFD1 negatively regulate resistance to Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc). hd3a and osfd1 mutants increase resistance to Xoo and Xoc, and activate JA responsive genes expression. Our data also demonstrate that OsFD1 binds to the promoters of and activates the expression of JAZ genes; Hd3a, cooperating with GF14e, promotes OsFD1 action on JAZ gene expression. The functional confirmation of Hd3a and OsFD1 in rice defense makes them to be promising targets in molecular rice breeding.
Collapse
Affiliation(s)
- Yinggen Ke
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengxiao Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
36
|
Tonnessen BW, Bossa-Castro AM, Mauleon R, Alexandrov N, Leach JE. Shared cis-regulatory architecture identified across defense response genes is associated with broad-spectrum quantitative resistance in rice. Sci Rep 2019; 9:1536. [PMID: 30733489 PMCID: PMC6367480 DOI: 10.1038/s41598-018-38195-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/18/2018] [Indexed: 12/30/2022] Open
Abstract
Plant disease resistance that is durable and effective against diverse pathogens (broad-spectrum) is essential to stabilize crop production. Such resistance is frequently controlled by Quantitative Trait Loci (QTL), and often involves differential regulation of Defense Response (DR) genes. In this study, we sought to understand how expression of DR genes is orchestrated, with the long-term goal of enabling genome-wide breeding for more effective and durable resistance. We identified short sequence motifs in rice promoters that are shared across Broad-Spectrum DR (BS-DR) genes co-expressed after challenge with three major rice pathogens (Magnaporthe oryzae, Rhizoctonia solani, and Xanthomonas oryzae pv. oryzae) and several chemical elicitors. Specific groupings of these BS-DR-associated motifs, called cis-Regulatory Modules (CRMs), are enriched in DR gene promoters, and the CRMs include cis-elements known to be involved in disease resistance. Polymorphisms in CRMs occur in promoters of genes in resistant relative to susceptible BS-DR haplotypes providing evidence that these CRMs have a predictive role in the contribution of other BS-DR genes to resistance. Therefore, we predict that a CRM signature within BS-DR gene promoters can be used as a marker for future breeding practices to enrich for the most responsive and effective BS-DR genes across the genome.
Collapse
Affiliation(s)
| | | | - Ramil Mauleon
- International Rice Research Institute, Manila, Philippines
| | | | - Jan E Leach
- Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
37
|
Vemanna RS, Bakade R, Bharti P, Kumar MKP, Sreeman SM, Senthil-Kumar M, Makarla U. Cross-Talk Signaling in Rice During Combined Drought and Bacterial Blight Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:193. [PMID: 30894866 PMCID: PMC6415615 DOI: 10.3389/fpls.2019.00193] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/05/2019] [Indexed: 05/22/2023]
Abstract
Due to climatic changes, rice crop is affected by moisture deficit stress and pathogens. Tissue water limitation besides reducing growth rates, also renders the crop susceptible to the infection by Xanthomonas oryzae pv. oryzae (Xoo) that causes bacterial leaf blight. Independently, both drought adaptation and Xoo resistance have been extensively studied. Though the cross-talk between drought and Xoo stress responses have been explored from individual stress studies, examining the combinatorial stress response is limited in rice. Recently published combined stress studies showed that under the combined stress, maintenance of carbon assimilation is hindered and such response is regulated by overlapping cellular mechanisms that are different from either of the individual stresses. Several receptors, MAP kinases, transcription factors, and ribosomal proteins, are predicted for playing a role in cellular homeostasis and protects cells from combined stress effects. Here we provide a critical analysis of these aspects using information from the recently published combined stress literature. This review is useful for researchers to comprehend combinatorial stress response of rice plants to drought and Xoo.
Collapse
Affiliation(s)
- Ramu S. Vemanna
- Department of Crop Physiology, University of Agriculture Sciences, Bengaluru, India
- Regional Center for Biotechnology, Faridabad, India
- *Correspondence: Ramu S. Vemanna, ;
| | - Rahul Bakade
- Department of Plant Pathology, University of Agriculture Sciences, Bengaluru, India
| | - Pooja Bharti
- Department of Crop Physiology, University of Agriculture Sciences, Bengaluru, India
| | - M. K. Prasanna Kumar
- Department of Plant Pathology, University of Agriculture Sciences, Bengaluru, India
| | | | | | - Udayakumar Makarla
- Department of Crop Physiology, University of Agriculture Sciences, Bengaluru, India
| |
Collapse
|
38
|
Kashihara K, Onohata T, Okamoto Y, Uji Y, Mochizuki S, Akimitsu K, Gomi K. Overexpression of OsNINJA1 negatively affects a part of OsMYC2-mediated abiotic and biotic responses in rice. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:180-187. [PMID: 30537605 DOI: 10.1016/j.jplph.2018.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 05/11/2023]
Abstract
The plant hormone jasmonic acid (JA) plays an important role in defense response and plant development. Jasmonate ZIM-domain (JAZ) proteins act as transcriptional repressors of plant responses to JA. In this study, we found that OsNINJA1, which is a JAZ-interacting adaptor protein, plays an important role in JA signaling that is positively regulated by the transcription factor OsMYC2 in rice. The expression of OsNINJA1 was upregulated at an early phase after JA treatment, and OsNINJA1 interacted with several OsJAZ proteins in a C domain-dependent manner. Transgenic rice plants overexpressing OsNINJA1 exhibited a JA-insensitive phenotype and were more susceptible to rice bacterial blight caused by Xanthomonas oryzae pv. oryzae, which is one of the most serious diseases affecting rice. Furthermore, OsNINJA1 negatively affected JA-regulated leaf senescence under dark-induced senescence conditions. Finally, the expression of OsMYC2-responsive pathogenesis-related (PR) genes and senescence-associated genes (SAGs) tended to be downregulated in the OsNINJA1-overexpressing rice plants. These results indicate that OsNINJA1 acts as a negative regulator of OsMYC2-mediated JA signaling in rice.
Collapse
Affiliation(s)
- Keita Kashihara
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Tomonori Onohata
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Yuki Okamoto
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Yuya Uji
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Susumu Mochizuki
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Kazuya Akimitsu
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Kenji Gomi
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan.
| |
Collapse
|
39
|
Liu Q, Yan S, Huang W, Yang J, Dong J, Zhang S, Zhao J, Yang T, Mao X, Zhu X, Liu B. NAC transcription factor ONAC066 positively regulates disease resistance by suppressing the ABA signaling pathway in rice. PLANT MOLECULAR BIOLOGY 2018; 98:289-302. [PMID: 30387038 DOI: 10.1007/s11103-018-0768-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/17/2018] [Indexed: 05/22/2023]
Abstract
This is the first time to dissect the mechanism of NACs-mediated disease resistance in plants using metabolomic approach and discover the involvement of ABA signaling pathway in NACs-mediated disease resistance. NAC transcription factors have been validated as important regulators in stress responses, but their molecular mechanisms in plant disease resistance are still largely unknown. Here we report that the NAC gene ONAC066 (LOC_Os01g09550) is significantly activated by rice blast infection. ONAC066 is ubiquitously expressed and this protein is localized in the nucleus. Overexpression of ONAC066 quantitatively enhances resistance to blast disease and bacterial blight in rice. The transcript levels of PR genes are also dramatically induced in ONAC066 overexpressing plants. Exogenous abscisic acid (ABA) strongly activates the transcription of ONAC066 in rice. Further analysis shows that overexpression of ONAC066 remarkably suppresses the expression of ABA-related genes, whereas there are no obvious differences for salicylic acid (SA) and jasmonic acid (JA)-related genes between wild-type and ONAC066 overexpressing plants. Consistently, lower endogenous ABA levels are identified in ONAC066 overexpressing plants compared with wild-type plants before and after blast inoculation, while no significant differences are observed for the SA and JA levels. Yeast one-hybrid assays demonstrate that ONAC066 directly binds to the promoters of LIP9 and NCED4 to modulate their expression. Moreover, the metabolomic study reveals that the ONAC066 overexpressing plants accumulated higher contents of soluble sugars and amino acids both before and after pathogen attack, when compared to wild-type plants. Taken together, our results suggest that ONAC066 positively regulates rice resistance to blast and bacterial blight, and ONAC066 exerts its functions on disease resistance by modulating of ABA signaling pathway, sugars and amino acids accumulation in rice.
Collapse
Affiliation(s)
- Qing Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Wushan, Tianhe District, Guangzhou, 510640, China
| | - Shijuan Yan
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Wenjie Huang
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jianyuan Yang
- Guangdong Key Laboratory of New Technology in Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Wushan, Tianhe District, Guangzhou, 510640, China
| | - Jingfang Dong
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Wushan, Tianhe District, Guangzhou, 510640, China
| | - Shaohong Zhang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Wushan, Tianhe District, Guangzhou, 510640, China
| | - Junliang Zhao
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Wushan, Tianhe District, Guangzhou, 510640, China
| | - Tifeng Yang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Wushan, Tianhe District, Guangzhou, 510640, China
| | - Xingxue Mao
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Wushan, Tianhe District, Guangzhou, 510640, China
| | - Xiaoyuan Zhu
- Guangdong Key Laboratory of New Technology in Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Wushan, Tianhe District, Guangzhou, 510640, China.
| | - Bin Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Wushan, Tianhe District, Guangzhou, 510640, China.
| |
Collapse
|
40
|
Liu Y, Cao Y, Zhang Q, Li X, Wang S. A Cytosolic Triosephosphate Isomerase Is a Key Component in XA3/XA26-Mediated Resistance. PLANT PHYSIOLOGY 2018; 178:923-935. [PMID: 30158116 PMCID: PMC6181051 DOI: 10.1104/pp.18.00348] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/23/2018] [Indexed: 05/04/2023]
Abstract
Bacterial blight caused by Xanthomonas oryzae pv oryzae (Xoo) causes severe damage to rice (Oryza sativa) production worldwide. The major disease resistance gene, Xa3/Xa26, confers broad-spectrum and durable resistance to Xoo at both seedling and adult stages. However, the molecular mechanism of the Xa3/Xa26-initiated defense pathway against Xoo is still largely unknown. Here, we show that a triosephosphate isomerase (TPI), OsTPI1.1, is a key component in XA3/XA26-mediated resistance to Xoo OsTPI1.1 is a glycolytic enzyme that catalyzes the reversible interconversion of dihydroxyacetone phosphate to glyceraldehyde-3-phosphate. Transcriptional suppression of OsTPI1.1 in plants harboring Xa3/Xa26 largely impaired the XA3/XA26-mediated resistance to Xoo, and constitutive overexpression of OsTPI1.1 in susceptible rice plants without Xa3/Xa26 only slightly decreased the susceptibility to Xoo Therefore, both XA3/XA26 and OsTPI1.1 are required in XA3/XA26-mediated resistance. We show that OsTPI1.1 participates in the resistance through its enzymatic activity, which was enhanced significantly by its binding with XA3/XA26. Reactive oxygen species (ROS), especially hydrogen peroxide, accumulated in the OsTPI1.1-overexpressing plants, and suppression of OsTPI1.1 decreased ROS accumulation. The changes in ROS are associated with the reduction of NADP+ to NADPH, which may act as a redox cofactor to scavenge ROS, leading to reduced resistance to Xoo These results suggest that OsTPI1.1 modulates ROS production as a resistance mechanism against Xoo.
Collapse
Affiliation(s)
- Yanyan Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yinglong Cao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
41
|
Qiu A, Lei Y, Yang S, Wu J, Li J, Bao B, Cai Y, Wang S, Lin J, Wang Y, Shen L, Cai J, Guan D, He S. CaC3H14 encoding a tandem CCCH zinc finger protein is directly targeted by CaWRKY40 and positively regulates the response of pepper to inoculation by Ralstonia solanacearum. MOLECULAR PLANT PATHOLOGY 2018; 19:2221-2235. [PMID: 29683552 PMCID: PMC6638151 DOI: 10.1111/mpp.12694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/27/2018] [Accepted: 04/20/2018] [Indexed: 05/10/2023]
Abstract
Tandem CCCH zinc finger (TZnF) proteins have been implicated in plant defence, but their role in pepper (Capsicum annuum) is unclear. In the present study, the role of CaC3H14, a pepper TZnF protein, in the immune response of pepper plants to Ralstonia solanacearum infection was characterized. When fused to the green fluorescent protein, CaC3H14 was localized exclusively to the nuclei in leaf cells of Nicotiana benthamiana plants transiently overexpressing CaC3H14. Transcript abundance of CaC3H14 was up-regulated by inoculation with R. solanacearum. Virus-induced silencing of CaC3H14 increased the susceptibility of the plants to R. solanacearum and down-regulated the genes associated with the hypersensitive response (HR), specifically HIR1 and salicylic acid (SA)-dependent PR1a. By contrast, silencing resulted in the up-regulation of jasmonic acid (JA)-dependent DEF1 and ethylene (ET) biosynthesis-associated ACO1. Transient overexpression of CaC3H14 in pepper triggered an intensive HR, indicated by cell death and hydrogen peroxide (H2 O2 ) accumulation, up-regulated PR1a and down-regulated DEF1 and ACO1. Ectopic overexpression of CaC3H14 in tobacco plants significantly decreased the susceptibility of tobacco plants to R. solanacearum. It also up-regulated HR-associated HSR515, immunity-associated GST1 and the SA-dependent marker genes NPR1 and PR2, but down-regulated JA-dependent PR1b and ET-dependent EFE26. The CaC3H14 promoter and was bound and its transcription was up-regulated by CaWRKY40. Collectively, these results indicate that CaC3H14 is transcriptionally targeted by CaWRKY40, is a modulator of the antagonistic interaction between SA and JA/ET signalling, and enhances the defence response of pepper plants to infection by R. solanacearum.
Collapse
Affiliation(s)
- Ailian Qiu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Yufen Lei
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Sheng Yang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Ji Wu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Jiazhi Li
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Bingjin Bao
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Yiting Cai
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Song Wang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Jinhui Lin
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Yuzhu Wang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Lei Shen
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Jinsen Cai
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Deyi Guan
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Shuilin He
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| |
Collapse
|
42
|
Moin M, Bakshi A, Madhav MS, Kirti PB. Cas9/sgRNA-based genome editing and other reverse genetic approaches for functional genomic studies in rice. Brief Funct Genomics 2018; 17:339-351. [PMID: 29579147 DOI: 10.1093/bfgp/ely010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One of the important and direct ways of investigating the function of a gene is to characterize the phenotypic consequences associated with loss or gain-of-function of the corresponding gene. These mutagenesis strategies have been successfully deployed in Arabidopsis, and subsequently extended to crop species including rice. Researchers have made vast advancements in the area of rice genomics and functional genomics, as it is a diploid plant with a relatively smaller genome size unlike other cereals. The advent of rice genome research and the annotation of high-quality genome sequencing along with the developments in databases and computer searches have enabled the functional characterization of unknown genes in rice. Further, with the improvements in the efficiency of regeneration and transformation protocols, it has now become feasible to produce sizable mutant populations in indica rice varieties also. In this review, various mutagenesis methods, the current status of the mutant resources, limitations and strengths of insertional mutagenesis approaches and also results obtained with suitable screens for stress tolerance in rice are discussed. In addition, targeted genome editing using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) or Cas9/single-guide RNA system and its potential applications in generating transgene-free rice plants through genome engineering as an efficient alternative to classical transgenic technology are also discussed.
Collapse
Affiliation(s)
- Mazahar Moin
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), India
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Achala Bakshi
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - M S Madhav
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), India
| | - P B Kirti
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
43
|
Wang W, Zhou XM, Xiong HX, Mao WY, Zhao P, Sun MX. Papain-like and legumain-like proteases in rice: genome-wide identification, comprehensive gene feature characterization and expression analysis. BMC PLANT BIOLOGY 2018; 18:87. [PMID: 29764367 PMCID: PMC5952849 DOI: 10.1186/s12870-018-1298-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/26/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Papain-like and legumain-like proteases are proteolytic enzymes which play key roles in plant development, senescence and defense. The activities of proteases in both families could be inhibited by a group of small proteins called cystatin. Cystatin family genes have been well characterized both in tobacco and rice, suggesting their potential roles in seed development. However, their potential targets, papain-like and legumain-like proteases, have not been well characterized in plants, especially in rice, a model plant for cereal biology. RESULTS Here, 33 papain-like and 5 legumain-like proteases have been identified in rice genome, respectively. Gene structure, distribution in rice chromosome, and evolutionary relationship to their counterparts in other plants have been well characterized. Comprehensive expression profile analysis revealed that two family genes display divergent expression pattern, which are regulated temporally and spatially during the process of seed development and germination. Our experiments also revealed that the expression of most genes in these two families is sensitively responsive to plant hormones and different abiotic stresses. CONCLUSIONS Genome-wide identification and comprehensive gene expression pattern analysis of papain-like and legumain-like proteases in rice suggests their multiple and cooperative roles in seed development and response to environmental variations, which provides several useful cues for further in-depth study.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xue-Mei Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Han-Xian Xiong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wan-Ying Mao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
44
|
Li N, Wei S, Chen J, Yang F, Kong L, Chen C, Ding X, Chu Z. OsASR2 regulates the expression of a defence-related gene, Os2H16, by targeting the GT-1 cis-element. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:771-783. [PMID: 28869785 PMCID: PMC5814579 DOI: 10.1111/pbi.12827] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 08/23/2017] [Indexed: 05/11/2023]
Abstract
The GT-1 cis-element widely exists in many plant gene promoters. However, the molecular mechanism that underlies the response of the GT-1 cis-element to abiotic and biotic stresses remains elusive in rice. We previously isolated a rice short-chain peptide-encoding gene, Os2H16, and demonstrated that it plays important roles in both disease resistance and drought tolerance. Here, we conducted a promoter assay of Os2H16 and identified GT-1 as an important cis-element that mediates Os2H16 expression in response to pathogen attack and osmotic stress. Using the repeated GT-1 as bait, we characterized an abscisic acid, stress and ripening 2 (ASR2) protein from yeast-one hybridization screening. Sequence alignments showed that the carboxy-terminal domain of OsASR2 containing residues 80-138 was the DNA-binding domain. Furthermore, we identified that OsASR2 was specifically bound to GT-1 and activated the expression of the target gene Os2H16, as well as GFP driven by the chimeric promoter of 2 × GT-1-35S mini construct. Additionally, the expression of OsASR2 was elevated by pathogens and osmotic stress challenges. Overexpression of OsASR2 enhanced the resistance against Xanthomonas oryzae pv. oryzae and Rhizoctonia solani, and tolerance to drought in rice. These results suggest that the interaction between OsASR2 and GT-1 plays an important role in the crosstalk of the response of rice to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTaianShandongChina
| | - Shutong Wei
- Shandong Provincial Key Laboratory for Biology of Vegetable Disease and Insect PestsCollege of Plant ProtectionShandong Agricultural UniversityTaianShandongChina
| | - Jing Chen
- Shandong Provincial Key Laboratory for Biology of Vegetable Disease and Insect PestsCollege of Plant ProtectionShandong Agricultural UniversityTaianShandongChina
| | - Fangfang Yang
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTaianShandongChina
| | - Lingguang Kong
- Shandong Provincial Key Laboratory for Biology of Vegetable Disease and Insect PestsCollege of Plant ProtectionShandong Agricultural UniversityTaianShandongChina
| | - Cuixia Chen
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTaianShandongChina
| | - Xinhua Ding
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTaianShandongChina
- Shandong Provincial Key Laboratory for Biology of Vegetable Disease and Insect PestsCollege of Plant ProtectionShandong Agricultural UniversityTaianShandongChina
| | - Zhaohui Chu
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTaianShandongChina
| |
Collapse
|
45
|
Gao M, Yin X, Yang W, Lam SM, Tong X, Liu J, Wang X, Li Q, Shui G, He Z. GDSL lipases modulate immunity through lipid homeostasis in rice. PLoS Pathog 2017; 13:e1006724. [PMID: 29131851 PMCID: PMC5703576 DOI: 10.1371/journal.ppat.1006724] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 11/27/2017] [Accepted: 10/31/2017] [Indexed: 12/04/2022] Open
Abstract
Lipids and lipid metabolites play important roles in plant-microbe interactions. Despite the extensive studies of lipases in lipid homeostasis and seed oil biosynthesis, the involvement of lipases in plant immunity remains largely unknown. In particular, GDSL esterases/lipases, characterized by the conserved GDSL motif, are a subfamily of lipolytic enzymes with broad substrate specificity. Here, we functionally identified two GDSL lipases, OsGLIP1 and OsGLIP2, in rice immune responses. Expression of OsGLIP1 and OsGLIP2 was suppressed by pathogen infection and salicylic acid (SA) treatment. OsGLIP1 was mainly expressed in leaf and leaf sheath, while OsGLIP2 showed high expression in elongating internodes. Biochemical assay demonstrated that OsGLIP1 and OsGLIP2 are functional lipases that could hydrolyze lipid substrates. Simultaneous down-regulation of OsGLIP1 and OsGLIP2 increased plant resistance to both bacterial and fungal pathogens, whereas disease resistance in OsGLIP1 and OsGLIP2 overexpression plants was significantly compromised, suggesting that both genes act as negative regulators of disease resistance. OsGLIP1 and OsGLIP2 proteins mainly localize to lipid droplets and the endoplasmic reticulum (ER) membrane. The proper cellular localization of OsGLIP proteins is indispensable for their functions in immunity. Comprehensive lipid profiling analysis indicated that the alteration of OsGLIP gene expression was associated with substantial changes of the levels of lipid species including monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG). We show that MGDG and DGDG feeding could attenuate disease resistance. Taken together, our study indicates that OsGLIP1 and OsGLIP2 negatively regulate rice defense by modulating lipid metabolism, thus providing new insights into the function of lipids in plant immunity. Lipases are a large family of enzymes conferring lipid metabolism. Lipids and their metabolites play diverse roles in plant growth as well as response to environmental stimuli. Accumulating evidence implicates lipids as signaling molecules mediating plant immunity. Therefore, lipases are presumed to be actively involved in plant defense responses. Based on gene expression profiling, we have identified two functional GDSL lipases, encoded by OsGLIP1 and OsGLIP2, whose expression was suppressed by pathogen infection in the model cereal rice. Both OsGLIP1 and OsGLIP2 proteins localize to lipid droplets and the endoplasmic reticulum (ER) membrane, and they likely coordinate lipid metabolism with differential but complementary expression patterns in tissues and developmental stages. Consequently, alteration of OsGLIP gene expression was associated with substantial changes of lipid abundance and plant disease resistance. Our work identifies and characterizes two lipases that function as negative regulators of plant immune responses, strengthening the understanding of lipid metabolism in plant-microbe interactions.
Collapse
Affiliation(s)
- Mingjun Gao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xin Yin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Weibing Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Tong
- China National Rice Research Institute, Hangzhou, China
| | - Jiyun Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xin Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qun Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
46
|
Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P. Navigating complexity to breed disease-resistant crops. Nat Rev Genet 2017; 19:21-33. [PMID: 29109524 DOI: 10.1038/nrg.2017.82] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant diseases are responsible for substantial crop losses each year and pose a threat to global food security and agricultural sustainability. Improving crop resistance to pathogens through breeding is an environmentally sound method for managing disease and minimizing these losses. However, it is challenging to breed varieties with resistance that is effective, stable and broad-spectrum. Recent advances in genetic and genomic technologies have contributed to a better understanding of the complexity of host-pathogen interactions and have identified some of the genes and mechanisms that underlie resistance. This new knowledge is benefiting crop improvement through better-informed breeding strategies that utilize diverse forms of resistance at different scales, from the genome of a single plant to the plant varieties deployed across a region.
Collapse
Affiliation(s)
- Rebecca Nelson
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Tyr Wiesner-Hanks
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Randall Wisser
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Peter Balint-Kurti
- United States Department of Agriculture Agricultural Research Service (USDA-ARS), Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695-7616, USA
| |
Collapse
|
47
|
Ke Y, Deng H, Wang S. Advances in understanding broad-spectrum resistance to pathogens in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:738-748. [PMID: 27888533 DOI: 10.1111/tpj.13438] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 05/22/2023]
Abstract
Rice diseases caused by multiple pathogen species are a major obstacle to achieving optimal yield. Using host pathogen species-non-specific broad-spectrum resistance (BSR) for rice improvement is an efficient way to control diseases. Recent advances in rice genomics and improved understanding of the mechanisms of rice-pathogen interactions have shown that using a single gene to improve rice BSR to multiple pathogen species is technically possible and the necessary resources exist. A variety of rice genes, including major disease resistance genes and defense-responsive genes, which function in pattern-triggered immunity signaling, effector-triggered immunity signaling or quantitative resistance, can mediate BSR to two or more pathogen species independently. These genes encode diverse proteins and function differently in promoting disease resistance, thus providing a relatively broad choice for different breeding programs. This updated knowledge will facilitate rice improvement with pathogen species-non-specific BSR via gene marker-assisted selection or biotechnological approaches.
Collapse
Affiliation(s)
- Yinggen Ke
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanqing Deng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
48
|
Hu K, Cao J, Zhang J, Xia F, Ke Y, Zhang H, Xie W, Liu H, Cui Y, Cao Y, Sun X, Xiao J, Li X, Zhang Q, Wang S. Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. NATURE PLANTS 2017; 3:17009. [PMID: 28211849 DOI: 10.1038/nplants.2017.9] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 01/21/2017] [Indexed: 05/03/2023]
Abstract
The major disease resistance gene Xa4 confers race-specific durable resistance against Xanthomonas oryzae pv. oryzae, which causes the most damaging bacterial disease in rice worldwide. Although Xa4 has been one of the most widely exploited resistance genes in rice production worldwide, its molecular nature remains unknown. Here we show that Xa4, encoding a cell wall-associated kinase, improves multiple traits of agronomic importance without compromising grain yield by strengthening the cell wall via promoting cellulose synthesis and suppressing cell wall loosening. Strengthening of the cell wall by Xa4 enhances resistance to bacterial infection, and also increases mechanical strength of the culm with slightly reduced plant height, which may improve lodging resistance of the rice plant. The simultaneous improvement of multiple agronomic traits conferred by Xa4 may account for its widespread and lasting utilization in rice breeding programmes globally.
Collapse
Affiliation(s)
- Keming Hu
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jianbo Cao
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Fan Xia
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yinggen Ke
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Haitao Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Wenya Xie
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Cui
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yinglong Cao
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xinli Sun
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
49
|
Jain P, Singh PK, Kapoor R, Khanna A, Solanke AU, Krishnan SG, Singh AK, Sharma V, Sharma TR. Understanding Host-Pathogen Interactions with Expression Profiling of NILs Carrying Rice-Blast Resistance Pi9 Gene. FRONTIERS IN PLANT SCIENCE 2017; 8:93. [PMID: 28280498 PMCID: PMC5322464 DOI: 10.3389/fpls.2017.00093] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/16/2017] [Indexed: 05/03/2023]
Abstract
Magnaporthe oryzae infection causes rice blast, a destructive disease that is responsible for considerable decrease in rice yield. Development of resistant varieties via introgressing resistance genes with marker-assisted breeding can eliminate pesticide use and minimize crop losses. Here, resistant near-isogenic line (NIL) of Pusa Basmati-1(PB1) carrying broad spectrum rice blast resistance gene Pi9 was used to investigate Pi9-mediated resistance response. Infected and uninfected resistant NIL and susceptible control line were subjected to RNA-Seq. With the exception of one gene (Pi9), transcriptional signatures between the two lines were alike, reflecting basal similarities in their profiles. Resistant and susceptible lines possessed 1043 (727 up-regulated and 316 down-regulated) and 568 (341 up-regulated and 227 down-regulated) unique and significant differentially expressed loci (SDEL), respectively. Pathway analysis revealed higher transcriptional activation of kinases, WRKY, MYB, and ERF transcription factors, JA-ET hormones, chitinases, glycosyl hydrolases, lipid biosynthesis, pathogenesis and secondary metabolism related genes in resistant NIL than susceptible line. Singular enrichment analysis demonstrated that blast resistant NIL is significantly enriched with genes for primary and secondary metabolism, response to biotic stimulus and transcriptional regulation. The co-expression network showed proteins of genes in response to biotic stimulus interacted in a manner unique to resistant NIL upon M. oryzae infection. These data suggest that Pi9 modulates genome-wide transcriptional regulation in resistant NIL but not in susceptible PB1. We successfully used transcriptome profiling to understand the molecular basis of Pi9-mediated resistance mechanisms, identified potential candidate genes involved in early pathogen response and revealed the sophisticated transcriptional reprogramming during rice-M. oryzae interactions.
Collapse
Affiliation(s)
- Priyanka Jain
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
- Department of Bioscience & Biotechnology, Banasthali UniversityTonk, India
| | - Pankaj K. Singh
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
- Department of Bioscience & Biotechnology, Banasthali UniversityTonk, India
| | - Ritu Kapoor
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
| | - Apurva Khanna
- ICAR-Indian Agricultural Research InstituteNew Delhi, India
| | | | | | - Ashok K. Singh
- ICAR-Indian Agricultural Research InstituteNew Delhi, India
| | - Vinay Sharma
- Department of Bioscience & Biotechnology, Banasthali UniversityTonk, India
| | - Tilak R. Sharma
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
- *Correspondence: Tilak R. Sharma ;
| |
Collapse
|
50
|
Duan L, Xiao W, Xia F, Liu H, Xiao J, Li X, Wang S. Two Different Transcripts of a LAMMER Kinase Gene Play Opposite Roles in Disease Resistance. PLANT PHYSIOLOGY 2016; 172:1959-1972. [PMID: 27621422 PMCID: PMC5100786 DOI: 10.1104/pp.16.01245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/07/2016] [Indexed: 05/07/2023]
Abstract
Alternative splicing of genes can increase protein diversity and affect mRNA stability. Genome-wide transcriptome sequencing has demonstrated that alternative splicing occurs in a large number of intron-containing genes of different species. However, despite the phenomenon having been known for decades, it is largely unknown how the alternatively spliced transcripts function differently. Here, we report that two alternatively spliced transcripts of the rice (Oryza sativa) LAMMER kinase gene OsDR11, long OsDR11L and short OsDR11S, play opposite roles in rice resistance against Xanthomonas oryzae pv oryzae (Xoo), which causes the most damaging bacterial disease in rice worldwide. Overexpressing OsDR11S or suppressing OsDR11L in rice enhanced resistance to Xoo, which was accompanied by an accumulation of jasmonic acid (JA) and induced expression of JA signaling genes. In contrast, suppressing OsDR11S was associated with increased susceptibility to Xoo, along with decreased levels of JA and expression of JA signaling genes. The OsDR11S and OsDR11L proteins colocalized in the nucleus. OsDR11L showed autophosphorylation activity in vitro, while OsDR11S did not. In the presence of OsDR11S, autophosphorylation of OsDR11L was inhibited, and overexpression of OsDR11S suppressed OsDR11L expression. OsDR11 appeared to contribute to a minor quantitative trait locus against Xoo These results suggest that OsDR11L is a negative regulator in rice disease resistance, which may be associated with suppression of JA signaling. The results also suggest that OsDR11S may inhibit the function of OsDR11L at both the transcription and protein kinase activity levels, leading to resistance against Xoo.
Collapse
Affiliation(s)
- Liu Duan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfei Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Fan Xia
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|