1
|
Feng S, Ren L, Dai S, Wang H, Zhang F, Zhou A, Zhou B, Wang J. AabHLH48, a novel basic helix-loop-helix transcription factor from Adonis amurensis, promotes early flowering in Arabidopsis by activating FRUITFULL expression. JOURNAL OF PLANT PHYSIOLOGY 2024; 297:154256. [PMID: 38657393 DOI: 10.1016/j.jplph.2024.154256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Basic helix-loop-helix (bHLH) transcription factors play various important roles in plant growth and development. In this study, a AabHLH48 was identified in the floral organ of Adonis amurensis, a perennial herb that can naturally complete flowering at extreme low temperatures. AabHLH48 was widely expressed in various tissues or organs of A. amurensis and was localized in the nucleus. Overexpression of AabHLH48 promotes early flowering in Arabidopsis under both photoperiod (12 h light/12 h dark and 16 h light/8 h dark) and temperature (22 and 18 °C) conditions. Transcriptome sequencing combined with quantitative real-time PCR analysis showed that overexpression of AabHLH48 caused a general upregulation of genes involved in floral development in Arabidopsis, especially for AtAGAMOUS-LIKE 8/FRUITFULL (AtAGL8/FUL). The yeast one-hybrid assay revealed that AabHLH48 has transcriptional activating activity and can directly bind to the promoter region of AtAGL8/FUL. These results suggest that the overexpression of AabHLH48 promoting early flowering in Arabidopsis is associated with the upregulated expression of AtAGL8/FUL activated by AabHLH48. This indicates that AabHLH48 can serve as an important genetic resource for improving flowering-time control in other ornamental plants or crops.
Collapse
Affiliation(s)
- Shuang Feng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; Zhejiang Baihua Landscape Group Company Limited, Taizhou, 318000, China; Large-Scale Instrument and Equipment Sharing Service Platform, Northeast Agricultural University, Harbin, 150030, China
| | - Lulu Ren
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Shengyue Dai
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Haoyun Wang
- Zhejiang Baihua Landscape Group Company Limited, Taizhou, 318000, China
| | - Fan Zhang
- Zhejiang Baihua Landscape Group Company Limited, Taizhou, 318000, China
| | - Aimin Zhou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Bin Zhou
- Zhejiang Baihua Landscape Group Company Limited, Taizhou, 318000, China.
| | - Jingang Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
2
|
Madrigal Y, Alzate JF, Pabón-Mora N. Evolution of major flowering pathway integrators in Orchidaceae. PLANT REPRODUCTION 2024; 37:85-109. [PMID: 37823912 PMCID: PMC11180029 DOI: 10.1007/s00497-023-00482-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/10/2023] [Indexed: 10/13/2023]
Abstract
The Orchidaceae is a mega-diverse plant family with ca. 29,000 species with a large variety of life forms that can colonize transitory habitats. Despite this diversity, little is known about their flowering integrators in response to specific environmental factors. During the reproductive transition in flowering plants a vegetative apical meristem (SAM) transforms into an inflorescence meristem (IM) that forms bracts and flowers. In model grasses, like rice, a flowering genetic regulatory network (FGRN) controlling reproductive transitions has been identified, but little is known in the Orchidaceae. In order to analyze the players of the FRGN in orchids, we performed comprehensive phylogenetic analyses of CONSTANS-like/CONSTANS-like 4 (COL/COL4), FLOWERING LOCUS D (FD), FLOWERING LOCUS C/FRUITFULL (FLC/FUL) and SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) gene lineages. In addition to PEBP and AGL24/SVP genes previously analyzed, here we identify an increase of orchid homologs belonging to COL4, and FUL gene lineages in comparison with other monocots, including grasses, due to orchid-specific gene lineage duplications. Contrariwise, local duplications in Orchidaceae are less frequent in the COL, FD and SOC1 gene lineages, which points to a retention of key functions under strong purifying selection in essential signaling factors. We also identified changes in the protein sequences after such duplications, variation in the evolutionary rates of resulting paralogous clades and targeted expression of isolated homologs in different orchids. Interestingly, vernalization-response genes like VERNALIZATION1 (VRN1) and FLOWERING LOCUS C (FLC) are completely lacking in orchids, or alternatively are reduced in number, as is the case of VERNALIZATION2/GHD7 (VRN2). Our findings point to non-canonical factors sensing temperature changes in orchids during reproductive transition. Expression data of key factors gathered from Elleanthus auratiacus, a terrestrial orchid in high Andean mountains allow us to characterize which copies are actually active during flowering. Altogether, our data lays down a comprehensive framework to assess gene function of a restricted number of homologs identified more likely playing key roles during the flowering transition, and the changes of the FGRN in neotropical orchids in comparison with temperate grasses.
Collapse
Affiliation(s)
- Yesenia Madrigal
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Juan F Alzate
- Facultad de Medicina, Centro Nacional de Secuenciación Genómica, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| | - Natalia Pabón-Mora
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
3
|
Martínez-Fernández I, Fourquin C, Lindsay D, Berbel A, Balanzà V, Huang S, Dalmais M, LeSignor C, Bendahmane A, Warkentin TD, Madueño F, Ferrándiz C. Analysis of pea mutants reveals the conserved role of FRUITFULL controlling the end of flowering and its potential to boost yield. Proc Natl Acad Sci U S A 2024; 121:e2321975121. [PMID: 38557190 PMCID: PMC11009629 DOI: 10.1073/pnas.2321975121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Monocarpic plants have a single reproductive phase in their life. Therefore, flower and fruit production are restricted to the length of this period. This reproductive strategy involves the regulation of flowering cessation by a coordinated arrest of the growth of the inflorescence meristems, optimizing resource allocation to ensure seed filling. Flowering cessation appears to be a regulated phenomenon in all monocarpic plants. Early studies in several species identified seed production as a major factor triggering inflorescence proliferative arrest. Recently, genetic factors controlling inflorescence arrest, in parallel to the putative signals elicited by seed production, have started to be uncovered in Arabidopsis, with the MADS-box gene FRUITFULL (FUL) playing a central role in the process. However, whether the genetic network regulating arrest is also at play in other species is completely unknown. Here, we show that this role of FUL is not restricted to Arabidopsis but is conserved in another monocarpic species with a different inflorescence structure, field pea, strongly suggesting that the network controlling the end of flowering is common to other plants. Moreover, field trials with lines carrying mutations in pea FUL genes show that they could be used to boost crop yield.
Collapse
Affiliation(s)
- Irene Martínez-Fernández
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Chloe Fourquin
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Donna Lindsay
- Department of Plant Sciences, College of Agriculture and Bio-Resources, University of Saskatchewan, Saskatoon, SKS7N5A8, Canada
| | - Ana Berbel
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Vicente Balanzà
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Shaoming Huang
- Department of Plant Sciences, College of Agriculture and Bio-Resources, University of Saskatchewan, Saskatoon, SKS7N5A8, Canada
| | - Marion Dalmais
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette91190, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette91190, France
| | - Christine LeSignor
- Agroécologie, INRAE, Institut Agro, Université de Bourgogne, Université de Bourgogne Franche-Comté, Dijon21000, France
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette91190, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette91190, France
| | - Thomas D. Warkentin
- Department of Plant Sciences, College of Agriculture and Bio-Resources, University of Saskatchewan, Saskatoon, SKS7N5A8, Canada
| | - Francisco Madueño
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia46022, Spain
| |
Collapse
|
4
|
Becker A, Bachelier JB, Carrive L, Conde E Silva N, Damerval C, Del Rio C, Deveaux Y, Di Stilio VS, Gong Y, Jabbour F, Kramer EM, Nadot S, Pabón-Mora N, Wang W. A cornucopia of diversity-Ranunculales as a model lineage. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1800-1822. [PMID: 38109712 DOI: 10.1093/jxb/erad492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
The Ranunculales are a hyperdiverse lineage in many aspects of their phenotype, including growth habit, floral and leaf morphology, reproductive mode, and specialized metabolism. Many Ranunculales species, such as opium poppy and goldenseal, have a high medicinal value. In addition, the order includes a large number of commercially important ornamental plants, such as columbines and larkspurs. The phylogenetic position of the order with respect to monocots and core eudicots and the diversity within this lineage make the Ranunculales an excellent group for studying evolutionary processes by comparative studies. Lately, the phylogeny of Ranunculales was revised, and genetic and genomic resources were developed for many species, allowing comparative analyses at the molecular scale. Here, we review the literature on the resources for genetic manipulation and genome sequencing, the recent phylogeny reconstruction of this order, and its fossil record. Further, we explain their habitat range and delve into the diversity in their floral morphology, focusing on perianth organ identity, floral symmetry, occurrences of spurs and nectaries, sexual and pollination systems, and fruit and dehiscence types. The Ranunculales order offers a wealth of opportunities for scientific exploration across various disciplines and scales, to gain novel insights into plant biology for researchers and plant enthusiasts alike.
Collapse
Affiliation(s)
- Annette Becker
- Plant Development Group, Institute of Botany, Justus-Liebig-University, Giessen, Germany
| | - Julien B Bachelier
- Institute of Biology/Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Laetitia Carrive
- Université de Rennes, UMR CNRS 6553, Ecosystèmes-Biodiversité-Evolution, Campus de Beaulieu, 35042 Rennes cedex, France
| | - Natalia Conde E Silva
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, 91190 Gif-sur-Yvette, France
| | - Catherine Damerval
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, 91190 Gif-sur-Yvette, France
| | - Cédric Del Rio
- CR2P - Centre de Recherche en Paléontologie - Paris, MNHN - Sorbonne Université - CNRS, 43 Rue Buffon, 75005 Paris, France
| | - Yves Deveaux
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, 91190 Gif-sur-Yvette, France
| | | | - Yan Gong
- Department of Organismic and Evolutionary Biology, Harvard University, MA, 02138, USA
| | - Florian Jabbour
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP39, Paris, 75005, France
| | - Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, MA, 02138, USA
| | - Sophie Nadot
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie, Systématique et Evolution, Gif-sur-Yvette, France
| | - Natalia Pabón-Mora
- Instituto de Biología, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Wei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China and University of Chinese Academy of Sciences, Beijing, 100049China
| |
Collapse
|
5
|
Xiang Y, Zhang T, Zhao Y, Dong H, Chen H, Hu Y, Huang CH, Xiang J, Ma H. Angiosperm-wide analysis of fruit and ovary evolution aided by a new nuclear phylogeny supports association of the same ovary type with both dry and fleshy fruits. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:228-251. [PMID: 38351714 DOI: 10.1111/jipb.13618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024]
Abstract
Fruit functions in seed protection and dispersal and belongs to many dry and fleshy types, yet their evolutionary pattern remains unclear in part due to uncertainties in the phylogenetic relationships among several orders and families. Thus we used nuclear genes of 502 angiosperm species representing 231 families to reconstruct a well supported phylogeny, with resolved relationships for orders and families with previously uncertain placements. Using this phylogeny as a framework, molecular dating supports a Triassic origin of the crown angiosperms, followed by the emergence of most orders in the Jurassic and Cretaceous and their rise to ecological dominance during the Cretaceous Terrestrial Revolution. The robust phylogeny allowed an examination of the evolutionary pattern of fruit and ovary types, revealing a trend of parallel carpel fusions during early diversifications in eudicots, monocots, and magnoliids. Moreover, taxa in the same order or family with the same ovary type can develop either dry or fleshy fruits with strong correlations between specific types of dry and fleshy fruits; such associations of ovary, dry and fleshy fruits define several ovary-fruit "modules" each found in multiple families. One of the frequent modules has an ovary containing multiple ovules, capsules and berries, and another with an ovary having one or two ovules, achenes (or other single-seeded dry fruits) and drupes. This new perspective of relationships among fruit types highlights the closeness of specific dry and fleshy fruit types, such as capsule and berry, that develop from the same ovary type and belong to the same module relative to dry and fleshy fruits of other modules (such as achenes and drupes). Further analyses of gene families containing known genes for ovary and fruit development identified phylogenetic nodes with multiple gene duplications, supporting a possible role of whole-genome duplications, in combination with climate changes and animal behaviors, in angiosperm fruit and ovary diversification.
Collapse
Affiliation(s)
- Yezi Xiang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, 27708, NC, USA
| | - Taikui Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Department of Biology, the Eberly College of Science, and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, 16802, PA, USA
| | - Yiyong Zhao
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hongjin Dong
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, China
| | - Hongyi Chen
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, China
| | - Yi Hu
- Department of Biology, the Eberly College of Science, and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, 16802, PA, USA
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jun Xiang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, China
| | - Hong Ma
- Department of Biology, the Eberly College of Science, and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, 16802, PA, USA
| |
Collapse
|
6
|
Lou H, Huang Y, Zhu Z, Xu Q. Cloning and Expression Analysis of Onion (Allium cepa L.) MADS-Box Genes and Regulation Mechanism of Cytoplasmic Male Sterility. Biochem Genet 2023; 61:2116-2134. [PMID: 36947296 DOI: 10.1007/s10528-023-10360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 02/27/2023] [Indexed: 03/23/2023]
Abstract
Flower organ development is one of the most important processes in plant life. However, onion CMS (cytoplasmic male sterility) shows an abnormal development of floral organs. The regulation of MADS-box transcription factors is important for flower development. To further understand the role of MADS-box transcription factors in the regulation of cytoplasmic male sterility onions. We cloned the full-length cDNA of five MADS-box transcription factors from the flowers of onion using RACE (rapid amplification of cDNA ends) technology. We used bioinformatics methods for sequence analysis and phylogenetic analysis. Real-time quantitative PCR was used to detect the expression patterns of these genes in different onion organs. The relative expression levels of five flower development genes were compared in CMS onions and wild onions. The results showed that the full-length cDNA sequences of the cloned MADS-box genes AcFUL, AcDEF, AcPI, AcAG, and AcSEP3 belonged to A, B, C, and E MADS-box genes, respectively. A phylogenetic tree construction analysis was performed on its sequence. Analysis of MADS-box gene expression in wild onion and CMS onion showed that the formation of CMS onion was caused by down-regulation of AcDEF, AcPI, and AcAG gene expression, up-regulation of AcSEP3 gene expression, and no correlation with AcFUL gene expression. This work laid the foundation for further study of the molecular mechanism of onion flower development and the molecular mechanism of CMS onion male sterility.
Collapse
Affiliation(s)
- Hu Lou
- School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Yuntong Huang
- Medical Laboratory College of Youjiang Medical College for Nationalities, Baise, 533000, Guangxi, China
- Industrial College of Biomedicine and Health Industry, Youjiang Medical College for Nationalities, Baise, 533000, Guangxi, China
| | - Zhengjie Zhu
- Agriculture and Food Engineering College, Baise University, Baise, 533000, Guangxi, China
| | - Qijiang Xu
- Medical Laboratory College of Youjiang Medical College for Nationalities, Baise, 533000, Guangxi, China.
- Industrial College of Biomedicine and Health Industry, Youjiang Medical College for Nationalities, Baise, 533000, Guangxi, China.
| |
Collapse
|
7
|
Becker A, Yamada Y, Sato F. California poppy ( Eschscholzia californica), the Papaveraceae golden girl model organism for evodevo and specialized metabolism. FRONTIERS IN PLANT SCIENCE 2023; 14:1084358. [PMID: 36938015 PMCID: PMC10017456 DOI: 10.3389/fpls.2023.1084358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
California poppy or golden poppy (Eschscholzia californica) is the iconic state flower of California, with native ranges from Northern California to Southwestern Mexico. It grows well as an ornamental plant in Mediterranean climates, but it might be invasive in many parts of the world. California poppy was also highly prized by Native Americans for its medicinal value, mainly due to its various specialized metabolites, especially benzylisoquinoline alkaloids (BIAs). As a member of the Ranunculales, the sister lineage of core eudicots it occupies an interesting phylogenetic position. California poppy has a short-lived life cycle but can be maintained as a perennial. It has a comparatively simple floral and vegetative morphology. Several genetic resources, including options for genetic manipulation and a draft genome sequence have been established already with many more to come. Efficient cell and tissue culture protocols are established to study secondary metabolite biosynthesis and its regulation. Here, we review the use of California poppy as a model organism for plant genetics, with particular emphasis on the evolution of development and BIA biosynthesis. In the future, California poppy may serve as a model organism to combine two formerly separated lines of research: the regulation of morphogenesis and the regulation of secondary metabolism. This can provide insights into how these two integral aspects of plant biology interact with each other.
Collapse
Affiliation(s)
- Annette Becker
- Plant Development Lab, Institute of Botany, Hustus-Liebig-University, Giessen, Germany
| | - Yasuyuki Yamada
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Kobe, Japan
| | - Fumihiko Sato
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Bioorganic Research Institute, Suntory Foundation for Life Science, Kyoto, Japan
- Graduate School of Science, Osaka Metropolitan University, Sakai, Japan
| |
Collapse
|
8
|
Pabón-Mora N, Suárez-Baron H, Madrigal Y, Alzate JF, González F. Expression and Functional Studies of Leaf, Floral, and Fruit Developmental Genes in Non-model Species. Methods Mol Biol 2023; 2686:365-401. [PMID: 37540370 DOI: 10.1007/978-1-0716-3299-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Researchers working on evolutionary developmental plant biology are inclined to choose non-model taxa to address how specific features have been acquired during ontogeny and fixed during phylogeny. In this chapter we describe methods to extract RNA, to assemble de-novo transcriptomes, to isolate orthologous genes within gene families, and to evaluate expression and function of target genes. We have successfully optimized these protocols for non-model plant species including ferns, gymnosperms, and a large assortment of angiosperms. In the latter, we have ranged a large number of families including Aristolochiaceae, Apodanthaceae, Chloranthaceae, Orchidaceae, Papaveraceae, Rubiaceae, Solanaceae, and Tropaeolaceae.
Collapse
Affiliation(s)
| | - Harold Suárez-Baron
- Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
- Departamento de Ciencias Naturales y Matemáticas, Pontificia Universidad Javeriana, Cali, Colombia
| | - Yesenia Madrigal
- Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Juan F Alzate
- Centro Nacional de Secuenciación Genómica-CNSG, Sede de Investigación Universitaria-SIU, Medellín, Antioquia, Colombia
| | - Favio González
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Sede Bogotá, Bogotá, Colombia
| |
Collapse
|
9
|
Zhang X, Ren Z, Hu G, Zhao S, Wei H, Fan S, Ma Q. Functional divergence of GhAP1.1 and GhFUL2 associated with flowering regulation in upland cotton (Gossypium hirsutum L.). JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153757. [PMID: 35777126 DOI: 10.1016/j.jplph.2022.153757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The AP1/FUL transcription factors are important for floral development, but the underlying molecular mechanisms remain unclear. In this study, we cloned and identified two AP1/FUL-like genes, GhAP1.1 and GhFUL2, in upland cotton, which is a commonly cultivated economically valuable crop. Sequence alignment and phylogenetic analysis indicated that GhAP1.1 and GhFUL2, which are encoded by genes in the AP1/FUL clade, have conserved N-terminal regions but diverse C-terminal domains. Quantitative real-time PCR analysis revealed that GhAP1.1 and GhFUL2 were expressed in the flower and root, and showed opposite expression patterns during shoot apical meristem development. The upregulated expression of GhAP1.1 in Arabidopsis did not result in significant changes to the flowering time or floral organ development, and the transcript levels of the florigen FT increased and those of LFY decreased. Overexpression of GhFUL2 in Arabidopsis delayed flowering and promoted bolting by decreasing FT and LFY transcript levels. Silencing GhFUL2 in cotton dramatically increased the expression of GhFT and GhAP1.3 and promoted flowering. Yeast two-hybrid and bimolecular fluorescence complementation assays indicated that GhAP1.1 could interact with the SVP homolog GhSVP2.2, whereas GhFUL2 formed heterodimers with GhSEP3/GhSEP4 homologs and GhSVP2.2. The present results demonstrated that the functional divergence of GhAP1.1 and GhFUL2, which involved changes in sequences and expression patterns, influenced the regulation of cotton flower development.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, PR China
| | - Zhongying Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, PR China
| | - Genhai Hu
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, PR China
| | - Shilei Zhao
- Sanmenxia Academy of Agricultural Sciences, Sanmenxia, 472000, PR China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, PR China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, PR China.
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, PR China.
| |
Collapse
|
10
|
Jiang X, Lubini G, Hernandes-Lopes J, Rijnsburger K, Veltkamp V, de Maagd RA, Angenent GC, Bemer M. FRUITFULL-like genes regulate flowering time and inflorescence architecture in tomato. THE PLANT CELL 2022; 34:1002-1019. [PMID: 34893888 PMCID: PMC8894982 DOI: 10.1093/plcell/koab298] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/30/2021] [Indexed: 05/23/2023]
Abstract
The timing of flowering and the inflorescence architecture are critical for the reproductive success of tomato (Solanum lycopersicum), but the gene regulatory networks underlying these traits have not been fully explored. Here, we show that the tomato FRUITFULL-like (FUL-like) genes FUL2 and MADS-BOX PROTEIN 20 (MBP20) promote the vegetative-to-reproductive transition and repress inflorescence branching by inducing floral meristem (FM) maturation. FUL1 fulfils a less prominent role and appears to depend on FUL2 and MBP20 for its upregulation in the inflorescence- and floral meristems. MBP10, the fourth tomato FUL-like gene, has probably lost its function. The tomato FUL-like proteins cannot homodimerize in in vitro assays, but heterodimerize with various other MADS-domain proteins, potentially forming distinct complexes in the transition meristem and FM. Transcriptome analysis of the primary shoot meristems revealed various interesting downstream targets, including four repressors of cytokinin signaling that are upregulated during the floral transition in ful1 ful2 mbp10 mbp20 mutants. FUL2 and MBP20 can also bind in vitro to the upstream regions of these genes, thereby probably directly stimulating cell division in the meristem upon the transition to flowering. The control of inflorescence branching does not occur via the cytokinin oxidase/dehydrogenases (CKXs) but may be regulated by repression of transcription factors such as TOMATO MADS-box gene 3 (TM3) and APETALA 2b (AP2b).
Collapse
Affiliation(s)
- Xiaobing Jiang
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Greice Lubini
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - José Hernandes-Lopes
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090 São Paulo, Brazil
| | - Kim Rijnsburger
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Vera Veltkamp
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ruud A de Maagd
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Gerco C Angenent
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Marian Bemer
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
11
|
Wang B, Hu W, Fang Y, Feng X, Fang J, Zou T, Zheng S, Ming R, Zhang J. Comparative Analysis of the MADS-Box Genes Revealed Their Potential Functions for Flower and Fruit Development in Longan ( Dimocarpus longan). FRONTIERS IN PLANT SCIENCE 2022; 12:813798. [PMID: 35154209 PMCID: PMC8829350 DOI: 10.3389/fpls.2021.813798] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/16/2021] [Indexed: 06/01/2023]
Abstract
Longan (Dimocarpus longan Lour.) is an important economic crop widely planted in tropical and subtropical regions, and flower and fruit development play decisive effects on the longan yield and fruit quality formation. MCM1, AGAMOUS, DEFICIENS, Serum Response Factor (MADS)-box transcription factor family plays important roles for the flowering time, floral organ identity, and fruit development in plants. However, there is no systematic information of MADS-box family in longan. In this study, 114 MADS-box genes were identified from the longan genome, phylogenetic analysis divided them into type I (Mα, Mβ, Mγ) and type II (MIKC*, MIKC C ) groups, and MIKC C genes were further clustered into 12 subfamilies. Comparative genomic analysis of 12 representative plant species revealed the conservation of type II in Sapindaceae and analysis of cis-elements revealed that Dof transcription factors might directly regulate the MIKC C genes. An ABCDE model was proposed for longan based on the phylogenetic analysis and expression patterns of MADS-box genes. Transcriptome analysis revealed that MIKC C genes showed wide expression spectrums, particularly in reproductive organs. From 35 days after KClO3 treatment, 11 MIKC genes were up-regulated, suggesting a crucial role in off-season flower induction, while DlFLC, DlSOC1, DlSVP, and DlSVP-LIKE may act as the inhibitors. The gene expression patterns of longan fruit development indicated that DlSTK, DlSEP1/2, and DlMADS53 could be involved in fruit growth and ripening. This paper carried out the whole genome identification and analysis of the longan MADS-box family for the first time, which provides new insights for further understanding its function in flowers and fruit.
Collapse
Affiliation(s)
- Baiyu Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenshun Hu
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Breeding Engineering Technology Research Center for Longan & Loquat, Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yaxue Fang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoxi Feng
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jingping Fang
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Tengyue Zou
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoquan Zheng
- Fujian Breeding Engineering Technology Research Center for Longan & Loquat, Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
12
|
Yao JL, Kang C, Gu C, Gleave AP. The Roles of Floral Organ Genes in Regulating Rosaceae Fruit Development. FRONTIERS IN PLANT SCIENCE 2022; 12:644424. [PMID: 35069608 PMCID: PMC8766977 DOI: 10.3389/fpls.2021.644424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
The function of floral organ identity genes, APETALA1/2/3, PISTILLATA, AGAMOUS, and SEPALLATA1/2/3, in flower development is highly conserved across angiosperms. Emerging evidence shows that these genes also play important roles in the development of the fruit that originates from floral organs following pollination and fertilization. However, their roles in fruit development may vary significantly between species depending on the floral organ types contributing to the fruit tissues. Fruits of the Rosaceae family develop from different floral organ types depending on the species, for example, peach fruit flesh develops from carpellary tissues, whereas apple and strawberry fruit flesh develop from extra-carpellary tissues, the hypanthium and receptacle, respectively. In this review, we summarize recent advances in understanding floral organ gene function in Rosaceae fruit development and analyze the similarities and diversities within this family as well as between Rosaceae and the model plant species Arabidopsis and tomato. We conclude by suggesting future research opportunities using genomics resources to rapidly dissect gene function in this family of perennial plants.
Collapse
Affiliation(s)
- Jia-Long Yao
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Chunying Kang
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Chao Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Andrew Peter Gleave
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
13
|
Bomzan DP, Kumar K, Kumar SR, Meena S, Nagegowda DA. Virus-Induced Gene Silencing for Functional Genomics of Specialized Metabolism in Medicinal Plants. Methods Mol Biol 2022; 2408:147-163. [PMID: 35325422 DOI: 10.1007/978-1-0716-1875-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Virus-induced gene silencing (VIGS) is a functional genomics tool to transiently downregulate the expression of target gene(s) by exploiting the plant's innate defense mechanism against invading RNA viruses. VIGS is a rapid and efficient approach to analyze the gene function, particularly, in the plants that are not amenable to stable genetic transformation. This strategy has been successfully used to decipher the function of several genes and transcription factors involved in the biosynthesis of specialized metabolites and regulation of specialized metabolism, respectively, in different medicinal and aromatic plants. Here, we describe a detailed Tobacco rattle virus (TRV)-mediated VIGS protocol for silencing of the gene encoding Phytoene desaturase (PDS) in important medicinal plants Catharanthus roseus, Calotropis gigantean, Rauwolfia serpentina, and Ocimum basilicum. Our methods allow the study of gene function within 3-4 weeks after agro-inoculation, and can be an easy and efficient approach for future studies on understanding of the biosynthesis of specialized metabolites in these important medicinal plants.
Collapse
Affiliation(s)
- Dikki Pedenla Bomzan
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Krishna Kumar
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, Karnataka, India
| | - Sarma Rajeev Kumar
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, Karnataka, India
| | - Seema Meena
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, Karnataka, India
| | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, Karnataka, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
14
|
Moschin S, Nigris S, Ezquer I, Masiero S, Cagnin S, Cortese E, Colombo L, Casadoro G, Baldan B. Expression and Functional Analyses of Nymphaea caerulea MADS-Box Genes Contribute to Clarify the Complex Flower Patterning of Water Lilies. FRONTIERS IN PLANT SCIENCE 2021; 12:730270. [PMID: 34630477 PMCID: PMC8492926 DOI: 10.3389/fpls.2021.730270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Nymphaeaceae are early diverging angiosperms with large flowers characterized by showy petals and stamens not clearly whorled but presenting a gradual morphological transition from the outer elements to the inner stamens. Such flower structure makes these plant species relevant for studying flower evolution. MADS-domain transcription factors are crucial components of the molecular network that controls flower development. We therefore isolated and characterized MADS-box genes from the water lily Nymphaea caerulea. RNA-seq experiments on floral buds have been performed to obtain the transcript sequences of floral organ identity MADS-box genes. Maximum Likelihood phylogenetic analyses confirmed their belonging to specific MADS-box gene subfamilies. Their expression was quantified by RT-qPCR in all floral organs at two stages of development. Protein interactions among these transcription factors were investigated by yeast-two-hybrid assays. We found especially interesting the involvement of two different AGAMOUS-like genes (NycAG1 and NycAG2) in the water lily floral components. They were therefore functionally characterized by complementing Arabidopsis ag and shp1 shp2 mutants. The expression analysis of MADS-box genes across flower development in N. caerulea described a complex scenario made of numerous genes in numerous floral components. Their expression profiles in some cases were in line with what was expected from the ABC model of flower development and its extensions, while in other cases presented new and interesting gene expression patterns, as for instance the involvement of NycAGL6 and NycFL. Although sharing a high level of sequence similarity, the two AGAMOUS-like genes NycAG1 and NycAG2 could have undergone subfunctionalization or neofunctionalization, as only one of them could partially restore the euAG function in Arabidopsis ag-3 mutants. The hereby illustrated N. caerulea MADS-box gene expression pattern might mirror the morphological transition from the outer to the inner floral organs, and the presence of transition organs such as the petaloid stamens. This study is intended to broaden knowledge on the role and evolution of floral organ identity genes and the genetic mechanisms causing biodiversity in angiosperm flowers.
Collapse
Affiliation(s)
- Silvia Moschin
- Botanical Garden, University of Padua, Padua, Italy
- Department of Biology, University of Padua, Padua, Italy
| | - Sebastiano Nigris
- Botanical Garden, University of Padua, Padua, Italy
- Department of Biology, University of Padua, Padua, Italy
| | - Ignacio Ezquer
- Department of Biosciences, University of Milan, Milan, Italy
| | - Simona Masiero
- Department of Biosciences, University of Milan, Milan, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padua, Padua, Italy
- CRIBI Biotechnology Center, University of Padua, Padua, Italy
| | - Enrico Cortese
- Department of Biology, University of Padua, Padua, Italy
| | - Lucia Colombo
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Barbara Baldan
- Botanical Garden, University of Padua, Padua, Italy
- Department of Biology, University of Padua, Padua, Italy
| |
Collapse
|
15
|
Zhao Y, Zhong Y, Ye C, Liang P, Pan X, Zhang YY, Zhang Y, Shen Y. Multi-omics analyses on Kandelia obovata reveal its response to transplanting and genetic differentiation among populations. BMC PLANT BIOLOGY 2021; 21:341. [PMID: 34281510 PMCID: PMC8287808 DOI: 10.1186/s12870-021-03123-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Restoration through planting is the dominant strategy to conserve mangrove ecosystems. However, many of the plantations fail to survive. Site and seeding selection matters for planting. The process of afforestation, where individuals were planted in a novel environment, is essentially human-controlled transplanting events. Trying to deepen and expand the understanding of the effects of transplanting on plants, we have performed a seven-year-long reciprocal transplant experiment on Kandelia obovata along a latitudinal gradient. RESULTS Combined phenotypic analyses and next-generation sequencing, we found phenotypic discrepancies among individuals from different populations in the common garden and genetic differentiation among populations. The central population with abundant genetic diversity and high phenotypic plasticity had a wide plantable range. But its biomass was reduced after being transferred to other latitudes. The suppressed expression of lignin biosynthesis genes revealed by RNA-seq was responsible for the biomass reduction. Moreover, using whole-genome bisulfite sequencing, we observed modification of DNA methylation in MADS-box genes that involved in the regulation of flowering time, which might contribute to the adaptation to new environments. CONCLUSIONS Taking advantage of classical ecological experiments as well as multi-omics analyses, our work observed morphology differences and genetic differentiation among different populations of K. obovata, offering scientific advice for the development of restoration strategy with long-term efficacy, also explored phenotypic, transcript, and epigenetic responses of plants to transplanting events between latitudes.
Collapse
Affiliation(s)
- Yuze Zhao
- Key Laboratory of the Ministry of E, ducation for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, 571199, China
| | - Yifan Zhong
- Key Laboratory of the Ministry of E, ducation for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Congting Ye
- Key Laboratory of the Ministry of E, ducation for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Pingping Liang
- Key Laboratory of the Ministry of E, ducation for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xiaobao Pan
- Key Laboratory of the Ministry of E, ducation for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yuan-Ye Zhang
- Key Laboratory of the Ministry of E, ducation for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yihui Zhang
- Key Laboratory of the Ministry of E, ducation for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Yingjia Shen
- Key Laboratory of the Ministry of E, ducation for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
16
|
Zhou FY, Yu Q, Zhang Y, Han YJ, Yao CC. Overexpression of AGAMOUS-like gene PfAG5 promotes early flowering in Polypogon fugax. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:793-801. [PMID: 33820601 DOI: 10.1071/fp21047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Herbicides are the major tool for controlling large populations of yield depleting weeds. However, over-reliance on herbicides has resulted in weed adaptation and herbicide resistance. In recent years, early flowering weed species related to herbicide resistance is emerging, which may cause seed loss before crop harvest, creating a new problem for non-chemical weed management. In this study, a homologue gene of AGAMOUS sub-family (referred to as PfAG5) of the MADS-box family was cloned from plants of an early flowering Polypogon fugax Nees ex Steud. population resistant to the ACCase inhibitor herbicide (clodinafop-propargyl). The PfAG5 gene was functionally characterised in Arabidopsis thaliana L. Overexpression of the PfAG5 gene in Arabidopsis resulted in early flowering, abnormal flowers (e.g. small petals), short plants and reduced seed set, compared with the wild type. The expression of the PfAG5 gene was high in leaves and flowers, but low in pods in transgenic Arabidopsis. The PfAG5 gene was expressed earlier and higher in the resistant (R) than the susceptible (S) P. fugax plants. Furthermore, one protein (FRIGIDA-like) with relevance to flowering time regulation and interacts with PfAG5 in resistant (R) P. fugax was identified by the yeast two-hybrid and pull-down assays. These results suggest that the PfAG5 gene is involved in modulating early flowering in P. fugax.
Collapse
Affiliation(s)
- Feng-Yan Zhou
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230001, China; and Corresponding author.
| | - Qin Yu
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, University of Western Australia, Perth, WA 6009, Australia
| | - Yong Zhang
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Yun-Jing Han
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Chuan-Chun Yao
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| |
Collapse
|
17
|
Guan Y, Ding L, Jiang J, Shentu Y, Zhao W, Zhao K, Zhang X, Song A, Chen S, Chen F. Overexpression of the CmJAZ1-like gene delays flowering in Chrysanthemum morifolium. HORTICULTURE RESEARCH 2021; 8:87. [PMID: 33795661 PMCID: PMC8016864 DOI: 10.1038/s41438-021-00525-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/23/2021] [Accepted: 03/01/2021] [Indexed: 05/11/2023]
Abstract
Chrysanthemum (Chrysanthemum morifolium) is one of the four major cut-flower plants worldwide and possesses both high ornamental value and cultural connotation. As most chrysanthemum varieties flower in autumn, it is costly to achieve annual production. JAZ genes in the TIFY family are core components of the jasmonic acid (JA) signaling pathway; in addition to playing a pivotal role in plant responses to defense, they are also widely implicated in regulating plant development processes. Here, we characterized the TIFY family gene CmJAZ1-like from the chrysanthemum cultivar 'Jinba'. CmJAZ1-like localizes in the nucleus and has no transcriptional activity in yeast. Tissue expression pattern analysis indicated that CmJAZ1-like was most active in the root and shoot apex. Overexpressing CmJAZ1-like with Jas domain deletion in chrysanthemum resulted in late flowering. RNA-Seq analysis of the overexpression lines revealed some differentially expressed genes (DEGs) involved in flowering, such as the homologs of the flowering integrators FT and SOC1, an FUL homolog involved in flower meristem identity, AP2 domain-containing transcription factors, MADS box genes, and autonomous pathway-related genes. Based on KEGG pathway enrichment analysis, the differentially transcribed genes were enriched in carbohydrate metabolic and fatty acid-related pathways, which are notable for their role in flowering in plants. This study preliminarily verified the function of CmJAZ1-like in chrysanthemum flowering, and the results can be used in molecular breeding programs aimed at flowering time regulation of chrysanthemum.
Collapse
Affiliation(s)
- Yunxiao Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lian Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanyue Shentu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenqian Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kunkun Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xue Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
18
|
Li C, Chen L, Fan X, Qi W, Ma J, Tian T, Zhou T, Ma L, Chen F. MawuAP1 promotes flowering and fruit development in the basal angiosperm Magnolia wufengensis (Magnoliaceae). TREE PHYSIOLOGY 2020; 40:1247-1259. [PMID: 32348527 DOI: 10.1093/treephys/tpaa057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
The APETALA1/SQUAMOSA (AP1/SQUA)-like genes of flowering plants play crucial roles in the development processes of floral meristems, sepals, petals and fruits. Although many of the AP1/SQUA-like genes have been characterized in angiosperms, few have been identified in basal angiosperm taxa. Therefore, the functional evolution of the AP1/SQUA subfamily is still unclear. We characterized an AP1 homolog, MawuAP1, from Magnolia wufengensis that is an ornamental woody plant belonging to the basal angiosperms. Gene sequence and phylogenetic analyses suggested that MawuAP1 was clustered with the FUL-like homologous genes of basal angiosperms and had FUL motif and paleoAP1 motif domain, but it did not have the euAP1 motif domain of core eudicots. Expression pattern analysis showed that MawuAP1 was highly expressed in vegetative and floral organs, particularly in the early stage of flower bud development and pre-anthesis. Protein-protein interaction pattern analysis revealed that MawuAP1 has interaction with an A-class gene (MawuAP1), C-class gene (MawuAG-1) and E-class gene (MawuAGL9) of the MADS-box family genes. Ectopic expression in Arabidopsis thaliana indicated that MawuAP1 could significantly promote flowering and fruit development, but it could not restore the sepal and petal formation of ap1 mutants. These results demonstrated that there are functional differences in the specification of sepal and petal floral organs and development of fruits among the AP1/SQUA-like genes, and functional conservation in the regulation of floral meristem. These findings provide strong evidence for the important functions of MawuAP1 in floral meristem determination, promoting flowering and fruit development, and further highlight the importance of AP1/SQUA subfamily in biological evolution and diversity.
Collapse
Affiliation(s)
- Cunjie Li
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443000, P.R. China
| | - Liyuan Chen
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, P.R. China
| | - Xiaoning Fan
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443000, P.R. China
| | - Wenjuan Qi
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443000, P.R. China
| | - Jiang Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, P.R. China
| | - Tian Tian
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443000, P.R. China
| | - Tao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443000, P.R. China
| | - Luyi Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, P.R. China
| | - Faju Chen
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443000, P.R. China
| |
Collapse
|
19
|
González AD, Pabón-Mora N, Alzate JF, González F. Meristem Genes in the Highly Reduced Endoparasitic Pilostyles boyacensis (Apodanthaceae). Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
20
|
Seibert T, Abel C, Wahl V. Flowering time and the identification of floral marker genes in Solanum tuberosum ssp. andigena. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:986-996. [PMID: 31665396 PMCID: PMC6977542 DOI: 10.1093/jxb/erz484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/21/2019] [Indexed: 05/19/2023]
Abstract
Solanaceae is a family of flowering plants that includes agricultural species such as tomato (Solanum lycopersicum), eggplant (S. melongena), pepper (Capsicum annuum), and potato (S. tuberosum). The transition from the vegetative to reproductive stage has been extensively investigated in tomato as it affects fruit yield. While potato has mainly been studied with regards to the formation of storage organs, control of flowering time is a subject of increasing interest as development of true seeds is becoming more important for future breeding strategies. Here, we describe a robust growth regime for synchronized development of S. tuberosum ssp. andigena. Using SEM to analyse the developmental stages of the shoot apical meristem (SAM) throughout the floral transition, we show that andigena is a facultative long-day plant with respect to flowering. In addition, we identify the flower meristem identity gene MACROCALYX (StMC) as a marker to distinguish between the vegetative and reproductive stages. We show that the expression of WUSCHEL HOMEOBOX 9 (StWOX9) and ANANTHA (StAN) are specific to the inflorescence meristem and flower meristems in the cyme, respectively. The expression patterns of homologs of Arabidopsis flowering-time regulators were studied, and indicated that SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (StSOC1) and StFD might regulate flowering similar to other plant species.
Collapse
Affiliation(s)
- Tanja Seibert
- Max Planck Institute of Molecular Plant Physiology, Department of Metabolic Networks, Am Mühlenberg, Potsdam, Germany
| | - Christin Abel
- Max Planck Institute of Molecular Plant Physiology, Department of Metabolic Networks, Am Mühlenberg, Potsdam, Germany
| | - Vanessa Wahl
- Max Planck Institute of Molecular Plant Physiology, Department of Metabolic Networks, Am Mühlenberg, Potsdam, Germany
| |
Collapse
|
21
|
Wang Q, Dan N, Zhang X, Lin S, Bao M, Fu X. Identification, Characterization and Functional Analysis of C-Class Genes Associated with Double Flower Trait in Carnation ( Dianthus caryphyllus L.). PLANTS 2020; 9:plants9010087. [PMID: 31936710 PMCID: PMC7020439 DOI: 10.3390/plants9010087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/19/2019] [Accepted: 01/06/2020] [Indexed: 11/23/2022]
Abstract
Flowers with more petals are of more ornamental value. It is well known that AGAMOUS (AG) is the core member of the C-class gene which plays an essential role in double flower formation and identification of stamens and carpels in Arabidopsisthaliana. We searched C-class genes in the genome of the carnation, and found two AG orthologs (DcaAGa, DcaAGb). Phylogenetic analysis showed that the two genes were closely related to the euAG subclade. Then we searched the genomes of other Caryophyllales plants (Beta vulgaris, Spinacia oleracea, Chenopodium quinoa) for C-class genes, and found that their C-class genes all belonged to the euAG subclade. Semi-quantitative PCR (sq-PCR) analysis indicated that the expression of DcaAG genes in the single flower phenotype was higher than that in the double flower phenotype. Quantitative real-time RT-PCR (qRT-PCR) analysis showed that the expressions of DcaAG genes in the flower bud were significantly different from those in the root, stem, and leaf between the single and double flower phenotype carnations, and that DcaAG genes were specifically expressed in the stamen and carpel of carnation. Moreover, the expression of other floral organ identity genes (AP1 and AP2, PI and AP3, SEP1 and SEP3 corresponding to the A-, B-, and E-class of genes, respectively) showed no significant difference in all floral organs between the single and double flower phenotype carnations, suggesting that C-class (DcaAG) genes might play an important role in the double flower phenotype in carnation. Petal loss or decrease, precocious flowering, silique shortening, and seed sterility were observed in 35S::DcaAGa and 35S::DcaAGb transgenic Arabidopsis plants. All these results show that DcaAG genes might affect the petal number negatively and have a specific function in stamen and carpel development in carnation.
Collapse
Affiliation(s)
- Qijian Wang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (N.D.); (X.Z.); (S.L.); (M.B.)
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan 430070, China
| | - Naizhen Dan
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (N.D.); (X.Z.); (S.L.); (M.B.)
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan 430070, China
| | - Xiaoni Zhang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (N.D.); (X.Z.); (S.L.); (M.B.)
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan 430070, China
| | - Shengnan Lin
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (N.D.); (X.Z.); (S.L.); (M.B.)
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan 430070, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (N.D.); (X.Z.); (S.L.); (M.B.)
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan 430070, China
| | - Xiaopeng Fu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (N.D.); (X.Z.); (S.L.); (M.B.)
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan 430070, China
- Correspondence: ; Tel.: +86-159-2625-8658; Fax: +86-027-8728-2010
| |
Collapse
|
22
|
Wang S, Huang H, Han R, Liu C, Qiu Z, Liu G, Chen S, Jiang J. Negative feedback loop between BpAP1 and BpPI/BpDEF heterodimer in Betula platyphylla × B. pendula. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110280. [PMID: 31623773 DOI: 10.1016/j.plantsci.2019.110280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/25/2019] [Accepted: 09/18/2019] [Indexed: 05/15/2023]
Abstract
MADS-box genes encode transcription factors involved in the control of many important developmental processes, especially the flower development of angiosperms. Analysis on gene regulatory relationship between MADS-box genes is useful for understanding the molecular mechanism of flower development. In this study, we focused on the regulatory relationship between MADS-box transcription factors APETALA1 (AP1) and PISTILLATA(PI)/DEFICIENS (DEF) in birch. We found that BpPI was an authentic target gene of BpAP1, and BpAP1 activated the expression of BpPI via directly binding to the CArG box motif. Functional analysis of BpPI showed that overexpression of BpPI may delay flowering via restricting flowering activators, in which BpAP1 was significantly down-regulated. We further investigated the regulatory of BpAP1 by BpPI, and found that BpPI could directly bind to the promoter of BpAP1 to restrict BpAP1 expression. In addition, we also found that BpPI could interact with its hypothetical partner BpDEF to co-regulate BpAP1 in birch. Our results suggested that overexpression of BpPI may delay flowering via restricting flowering activators, and there is a negative feedback loop between BpAP1 and BpPI/BpDEF heterodimer in birch. Our results will bring new evidences for further analysis of the molecular mechanism of flower formation in plants that produced unisexual flowers.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Haijiao Huang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Rui Han
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Chaoyi Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Zhinan Qiu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
23
|
Shan H, Cheng J, Zhang R, Yao X, Kong H. Developmental mechanisms involved in the diversification of flowers. NATURE PLANTS 2019; 5:917-923. [PMID: 31477891 DOI: 10.1038/s41477-019-0498-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/18/2019] [Indexed: 05/08/2023]
Abstract
We all appreciate the fantastic diversity of flowers. How flowers diversified, however, remains largely enigmatic. The mechanisms underlying the diversification of flowers are complex because the overall appearance of a flower is determined by many factors, such as the shape and size of its receptacle, and the arrangement, number, type, shape and colour of floral organs. Modifications of the developmental trajectories of a flower and its components, therefore, can lead to the generation of new floral types. In this Review, by summarizing the recent progress in studying the initiation, identity determination, morphogenesis and maturation of floral organs, we present our current understanding of the mechanisms underlying the diversification of flowers.
Collapse
Affiliation(s)
- Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jie Cheng
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rui Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xu Yao
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
24
|
Hernandes-Lopes J, Sousa-Baena MS, Lemos RCC, Corrêa TCS, Van Sluys MA, Melo-de-Pinna GFDA. Toward understanding inflorescence development and architecture in Passiflora: insights from comparative anatomy and expression of APETALA1. AMERICAN JOURNAL OF BOTANY 2019; 106:1173-1189. [PMID: 31483483 DOI: 10.1002/ajb2.1353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
PREMISE The inflorescence of Passiflora species originates from a bud complex that derives from an initially undivided meristem and ultimately produces flowers and tendrils. Because the development of the inflorescence structures derived from such meristems has been variously interpreted, we investigated the ontogeny of the bud complex and the expression of APETALA1 (AP1) in Passiflora species. METHODS The anatomical development of 15 species of Passiflora was analyzed using light and scanning electron microscopy. We localized AP1 expression in tissues during inflorescence initiation in two Passiflora species using in situ hybridization. RESULTS In most species, the first primordium to differentiate from the bud complex is a bract, which develops laterally to what will become the inflorescence first-order axis, in this case, the tendril. The bract axillary meristem originates the second-order inflorescence axis meristem, which produces two bracteoles, subsequently developing into a floral meristem. AP1 is uniformly expressed in the initially undivided meristem, with expression maintained in the organ primordia derived from the bud complex. Signal is particularly strong in tendril tips. CONCLUSIONS We concluded that what is often understood as the first bract produced by a floral meristem actually is produced by the original axillary meristem. Bracteoles develop from the meristem in the bract axil; bracteoles plus floral meristem constitute the inflorescence second-order axis. Comparison of inflorescence early developmental stages in different subgenera indicates flowers are arranged in a modified cyme, with the tendril representing the inflorescence terminal portion. PasAP1 has a broad expression pattern and may have an important role during inflorescence development.
Collapse
Affiliation(s)
- José Hernandes-Lopes
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, SP, Brazil
| | - Mariane S Sousa-Baena
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, SP, Brazil
| | - Renata C C Lemos
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, SP, Brazil
| | - Tatiana C S Corrêa
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, SP, Brazil
| | - Marie-Anne Van Sluys
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, SP, Brazil
| | | |
Collapse
|
25
|
Ortiz-Ramírez CI, Giraldo MA, Ferrándiz C, Pabón-Mora N. Expression and function of the bHLH genes ALCATRAZ and SPATULA in selected Solanaceae species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:686-702. [PMID: 31009131 DOI: 10.1111/tpj.14352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/27/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
The genetic mechanisms underlying fruit development have been identified in Arabidopsis and have been comparatively studied in tomato as a representative of fleshy fruits. However, comparative expression and functional analyses on the bHLH genes downstream the genetic network, ALCATRAZ (ALC) and SPATULA (SPT), which are involved in the formation of the dehiscence zone in Arabidopsis, have not been functionally studied in the Solanaceae. Here, we perform detailed expression and functional studies of ALC/SPT homologs in Nicotiana obtusifolia with capsules, and in Capsicum annuum and Solanum lycopersicum with berries. In Solanaceae, ALC and SPT genes are expressed in leaves, and all floral organs, especially in petal margins, stamens and carpels; however, their expression changes during fruit maturation according to the fruit type. Functional analyses show that downregulation of ALC/SPT genes does not have an effect on gynoecium patterning; however, they have acquired opposite roles in petal expansion and have been co-opted in leaf pigmentation in Solanaceae. In addition, ALC/SPT genes repress lignification in time and space during fruit development in Solanaceae. Altogether, some roles of ALC and SPT genes are different between Brassicaceae and Solanaceae; while the paralogs have undergone some subfunctionalization in the former they are mostly redundant in the latter.
Collapse
Affiliation(s)
- Clara Inés Ortiz-Ramírez
- Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Marco A Giraldo
- Instituto de Física, Universidad de Antioquia, Medellín, Colombia
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | | |
Collapse
|
26
|
RcAP1, a Homolog of APETALA1, is Associated with Flower Bud Differentiation and Floral Organ Morphogenesis in Rosa chinensis. Int J Mol Sci 2019; 20:ijms20143557. [PMID: 31330828 PMCID: PMC6679073 DOI: 10.3390/ijms20143557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/15/2023] Open
Abstract
Rosa chinensis is one of the most popular flower plants worldwide. The recurrent flowering trait greatly enhances the ornamental value of roses, and is the result of the constant formation of new flower buds. Flower bud differentiation has always been a major topic of interest among researchers. The APETALA1 (AP1) MADS-box (Mcm1, Agamous, Deficiens and SRF) transcription factor-encoding gene is important for the formation of the floral meristem and floral organs. However, research on the rose AP1 gene has been limited. Thus, we isolated AP1 from Rosa chinensis ‘Old Blush’. An expression analysis revealed that RcAP1 was not expressed before the floral primordia formation stage in flower buds. The overexpression of RcAP1 in Arabidopsis thaliana resulted in an early-flowering phenotype. Additionally, the virus-induced down-regulation of RcAP1 expression delayed flowering in ‘Old Blush’. Moreover, RcAP1 was specifically expressed in the sepals of floral organs, while its expression was down-regulated in abnormal sepals and leaf-like organs. These observations suggest that RcAP1 may contribute to rose bud differentiation as well as floral organ morphogenesis, especially the sepals. These results may help for further characterization of the regulatory mechanisms of the recurrent flowering trait in rose.
Collapse
|
27
|
Wang S, Huang H, Han R, Chen J, Jiang J, Li H, Liu G, Chen S. BpAP1 directly regulates BpDEF to promote male inflorescence formation in Betula platyphylla × B. pendula. TREE PHYSIOLOGY 2019; 39:1046-1060. [PMID: 30976801 DOI: 10.1093/treephys/tpz021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/28/2019] [Indexed: 05/15/2023]
Abstract
Flowering is a crucial process for plants that is under complex genetic control. AP1 acts as an organizer and a switch for the transition from vegetative to reproductive growth. In our previous study, we found that overexpression of BpAP1 significantly promoted the formation of male inflorescence in birch (Betula platyphlla × B. pendula). In this study, we aimed at investigating the molecular regulatory mechanism of BpAP1 during the process of male inflorescence formation in birch. We found that overexpression of BpAP1 affected the expression of many flowering-related genes, and had significant effect on B class MADS-box genes. A BpAP1-mediated gene regulatory network was constructed and B class gene BpDEF was finally predicted as a key target gene of BpAP1. Chromatin immunoprecipitation results indicated that BpAP1 could directly regulate BpDEF during the process of male inflorescence formation. Yeast one-hybrid assays and its validation in tobacco results suggested that BpAP1 regulated BpDEF via binding to a consensus DNA sequence known as CArG box. Gene function analysis of BpDEF indicated that BpDEF may function in sex-determination, and in particular specify the identity of male inflorescence in birch. Our results provide valuable clues for our understanding of the molecular mechanism of BpAP1 during the process of male inflorescence formation in birch.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, China
| | - Haijiao Huang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, China
| | - Rui Han
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, China
| | - Jiying Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, China
| | - Huiyu Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, China
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, China
| |
Collapse
|
28
|
Ma G, Zou Q, Shi X, Tian D, Sheng Q. Ectopic expression of the AaFUL1 gene identified in Anthurium andraeanum affected floral organ development and seed fertility in tobacco. Gene 2019; 696:197-205. [PMID: 30802537 DOI: 10.1016/j.gene.2019.02.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/21/2019] [Accepted: 02/12/2019] [Indexed: 11/18/2022]
Abstract
Anthurium andraeanum is a high-grade potted flower that enjoys global popularity. Its floral organs have been substantially modified, and its ornamental value is based on its petaloid bracts. MADS-box gene products are important transcription factors that control plant development. In particular, the APETALA1 (AP1)/FRUITFULL (FUL) family of MADS-box genes plays a key role in flowering transitions and out-whorl floral organ identity specification. In this report, one FUL-like gene was cloned from Anthurium andraeanum and named AaFUL1 after bioinformatics identification. Subsequent subcellular localization experiments confirmed that the AaFUL1 protein was located in the nucleus, and data obtained from an expression analysis indicated that the relative expression level of AaFUL1 was the highest in bracts and inflorescences, while its expression was relatively low in stems and roots. Next, an AaFUL1 overexpression vector was constructed and ectopically expressed in tobacco. The transformants did not show any early flowering phenotype, but the average internode length of the inflorescence branch was significantly higher than that observed in the control, and its petal color had substantially faded. The morphology of the petal and pistil was clearly changed, the fruit was deformed, and the seed was largely aborted. These data indicate that even though the sequence of AaFUL1 is relatively conserved, its function differs from that of other orthologs, and the FUL subfamily of MADS-box transcription factors may have taken on new functions during the evolution processes. The results of this experiment enrich our knowledge of FUL transcription factors in monocotyledon plants.
Collapse
Affiliation(s)
- Guangying Ma
- Floriculture Research and Development Center of Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.
| | - Qingcheng Zou
- Floriculture Research and Development Center of Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xiaohua Shi
- Floriculture Research and Development Center of Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Danqing Tian
- Floriculture Research and Development Center of Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Qianqian Sheng
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
29
|
Liu Z, Fei Y, Zhang K, Fang Z. Ectopic Expression of a Fagopyrum esculentum APETALA1 Ortholog only Rescues Sepal Development in Arabidopsis ap1 Mutant. Int J Mol Sci 2019; 20:ijms20082021. [PMID: 31022949 PMCID: PMC6515404 DOI: 10.3390/ijms20082021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/20/2019] [Accepted: 04/22/2019] [Indexed: 11/20/2022] Open
Abstract
Fagopyrum esculentum (Polygonaceae: Caryophyllales) exhibits an undifferentiated perianth comprising five showy tepals, which does not completely correspond to the perianth differentiated into typical sepals and petals in most core eudicots. In Arabidopsis, the APETALA1 (AP1) gene is involved in specifying sepals and petals development. Here we isolated AP1 ortholog, FaesAP1, and a 2.2kb FaesAP1 promoter (pFaesAP1) from F. esculentum. FaesAP1 expression is mainly detectable in all floral organs and maintains at a high level when tepals elongate rapidly both in pin and thrum flowers. Moreover, the GUS reporter gene driven by pFaesAP1 was activated in flowers where the sepals were intense, but the petals very weak or absent. Additionally, FaesAP1 ectopic expression in Arabidopsis ap1-10 mutant rescues sepal development fully, obviously prompting early flowering, but failing to complement petal development. In this study, evidence was provided that the showy tepals in the F. esculentum are homologs to core eudicots sepals. Furthermore, these findings show a different perianth identity program in Caryophyllales, suggesting that AP1 orthologs involved in petal development may evolve independently across different clades of core eudicots. Our results also suggest that FaesAP1 holds potential for biotechnical engineering to develop early flowering varieties of F. esculentum.
Collapse
Affiliation(s)
- Zhixiong Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
- Institute of Crop Genetics and Breeding, Yangtze University, Jingzhou 434025, China.
| | - Yue Fei
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Kebing Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Zhengwu Fang
- Institute of Crop Genetics and Breeding, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
30
|
Zúñiga-Mayo VM, Gómez-Felipe A, Herrera-Ubaldo H, de Folter S. Gynoecium development: networks in Arabidopsis and beyond. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1447-1460. [PMID: 30715461 DOI: 10.1093/jxb/erz026] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/14/2019] [Indexed: 05/27/2023]
Abstract
Life has always found a way to preserve itself. One strategy that has been developed for this purpose is sexual reproduction. In land plants, the gynoecium is considered to be at the top of evolutionary innovation, since it has been a key factor in the success of the angiosperms. The gynoecium is composed of carpels with different tissues that need to develop and differentiate in the correct way. In order to control and guide gynoecium development, plants have adapted elements of pre-existing gene regulatory networks (GRNs) but new ones have also evolved. The GRNs can interact with internal factors (e.g. hormones and other metabolites) and external factors (e.g. mechanical signals and temperature) at different levels, giving robustness and flexibility to gynoecium development. Here, we review recent findings regarding the role of cytokinin-auxin crosstalk and the genes that connect these hormonal pathways during early gynoecium development. We also discuss some examples of internal and external factors that can modify GRNs. Finally, we make a journey through the flowering plant lineage to determine how conserved are these GRNs that regulate gynoecium and fruit development.
Collapse
Affiliation(s)
- Victor M Zúñiga-Mayo
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, México
| | - Andrea Gómez-Felipe
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, México
| | - Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, México
| | - Stefan de Folter
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, México
| |
Collapse
|
31
|
Zhang S, Lu S, Yi S, Han H, Zhou Q, Cai F, Bao M, Liu G. Identification and characterization of FRUITFULL-like genes from Platanus acerifolia, a basal eudicot tree. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:206-218. [PMID: 30823999 DOI: 10.1016/j.plantsci.2018.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/18/2018] [Accepted: 11/26/2018] [Indexed: 05/26/2023]
Abstract
The function of euAP1 and euFUL in AP1/FUL lineage have been well characterized in core eudicots, and they play common and distinct roles in plant development. However, the evolution and function of FUL-like genes is poorly understood in basal eudicots. In this study, we identified three FUL-like genes PlacFL1/2/3 from London plane (Platanus acerifolia). Sequence alignment and phylogenetic analysis indicated that PlacFL1/2/3 are AP1/FUL orthologs and encoded proteins containing FUL motif and paleoAP1 motif. Quantitative real-time PCR (qRT-PCR) analysis showed that PlacFL1/2/3 were expressed in both vegetative and reproductive tissues, but with distinct spatiotemporal patterns. In contrast to PlacFL1 and PlacFL3, PlacFL2 exhibited higher expression levels and broader expression regions, and that the expression of PlacFL2 gene showed a decreasing and increasing tendency in subpetiolar buds during dormancy induction and breaking, respectively. Overexpression of PlacFLs in Arabidopsis and PlacFL3 in tobacco resulted in early flowering, as well as early termination of inflorescence meristems for transgenic Arabidopsis plants. The expression changes of flowering time and flower meristem identity genes in transgenic Arabidopsis lines with different PlacFLs suggested that PlacFL2 and PlacFL3 may regulate different downstream genes to perform divergent functions. Yeast two-hybrid analysis indicated that PlacFLs interacted strongly with PlacSEP proteins, and PlacFL3 instead of PlacFL1 and PlacFL2 could also form a homodimer and interact with D-class proteins. Our results suggest that PlacFLs may play conserved functions in regulating flowering and flower development, and PlacFL2 might also be involved in dormancy regulation. The research helps us to understand the functional evolution of FUL-like genes in basal eudicots, especially in perennial woody species.
Collapse
Affiliation(s)
- Sisi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Wuhan Institute of Landscape Architecture, Peace Avenue No. 1240, Wuhan, 430081, China
| | - Shunjiao Lu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China
| | - Shuangshuang Yi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China
| | - Hongji Han
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China
| | - Qin Zhou
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China
| | - Fangfang Cai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China
| | - Guofeng Liu
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, 510405, China.
| |
Collapse
|
32
|
Peréz-Mesa P, Suárez-Baron H, Ambrose BA, González F, Pabón-Mora N. Floral MADS-box protein interactions in the early diverging angiosperm Aristolochia fimbriata Cham. (Aristolochiaceae: Piperales). Evol Dev 2019; 21:96-110. [PMID: 30734997 DOI: 10.1111/ede.12282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Floral identity MADS-box A, B, C, D, E, and AGL6 class genes are predominantly single copy in Magnoliids, and predate the whole genome duplication (WGD) events in monocots and eudicots. By comparison with the model species Arabidopsis thaliana, the expression patterns of B-, C-, and D-class genes in stamen, carpel, and ovules are conserved in Aristolochia fimbriata, whereas A-, E-class, and AGL6 genes have different expression patterns. Nevertheless, the interactions of these proteins that act through multimeric complexes remain poorly known in early divergent angiosperms. This study evaluates protein interactions among all floral MADS-box A. fimbriata proteins using the Yeast Two Hybrid System (Y2H). We found no homodimers and less heterodimers formed by AfimFUL when compared to AfimAGL6, which allowed us to suggest AGL6 homodimers in combination with AfimSEP2 as the most likely tetramer in sepal identity. We found AfimAP3-AfimPI obligate heterodimers and AfimAG-AfimSEP2 protein interactions intact suggesting conserved stamen and carpel tetrameric complexes in A. fimbriata. We observed a broader interaction partner set for AfimSEP2 than for its paralog AfimSEP1. We show conserved and exclusive MADS-box protein interactions in A. fimbriata in comparison with other eudicot and monocot model species in order to establish plesiomorphic MADS-box protein floral networks in angiosperms.
Collapse
Affiliation(s)
- Pablo Peréz-Mesa
- Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | | | | | - Favio González
- Universidad Nacional de Colombia, Facultad de Ciencias, Instituto de Ciencias Naturales, Sede Bogotá, Colombia
| | | |
Collapse
|
33
|
Lin T, Walworth A, Zong X, Danial GH, Tomaszewski EM, Callow P, Han X, Irina Zaharia L, Edger PP, Zhong GY, Song GQ. VcRR2 regulates chilling-mediated flowering through expression of hormone genes in a transgenic blueberry mutant. HORTICULTURE RESEARCH 2019; 6:96. [PMID: 31645954 PMCID: PMC6804727 DOI: 10.1038/s41438-019-0180-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 05/18/2023]
Abstract
The molecular mechanism underlying dormancy release and the induction of flowering remains poorly understood in woody plants. Mu-legacy is a valuable blueberry mutant, in which a transgene insertion caused increased expression of a RESPONSE REGULATOR 2-like gene (VcRR2). Mu-legacy plants, compared with nontransgenic 'Legacy' plants, show dwarfing, promotion of flower bud formation, and can flower under nonchilling conditions. We conducted transcriptomic comparisons in leaves, chilled and nonchilled flowering buds, and late-pink buds, and analyzed a total of 41 metabolites of six groups of hormones in leaf tissues of both Mu-legacy and 'Legacy' plants. These analyses uncovered that increased VcRR2 expression promotes the expression of a homolog of Arabidopsis thaliana ENT-COPALYL DIPHOSPHATE SYNTHETASE 1 (VcGA1), which induces new homeostasis of hormones, including increased gibberellin 4 (GA4) levels in Mu-legacy leaves. Consequently, increased expression of VcRR2 and VcGA1, which function in cytokinin responses and gibberellin synthesis, respectively, initiated the reduction in plant height and the enhancement of flower bud formation of the Mu-legacy plants through interactions of multiple approaches. In nonchilled flower buds, 29 differentially expressed transcripts of 17 genes of five groups of hormones were identified in transcriptome comparisons between Mu-legacy and 'Legacy' plants, of which 22 were chilling responsive. Thus, these analyses suggest that increased expression of VcRR2 was collectively responsible for promoting flower bud formation in highbush blueberry under nonchilling conditions. We report here for the first time the importance of VcRR2 to induce a suite of downstream hormones that promote flowering in woody plants.
Collapse
Affiliation(s)
- Tianyi Lin
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Aaron Walworth
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Xiaojuan Zong
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Gharbia H. Danial
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Elise M. Tomaszewski
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Pete Callow
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Xiumei Han
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, SK S7N 0W9 Canada
| | - L. Irina Zaharia
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, SK S7N 0W9 Canada
| | - Patrick P. Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Gan-yuan Zhong
- Grape Genetics Research Unit, USDA-ARS, Geneva, NY 14456 USA
| | - Guo-qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
34
|
Maheepala DC, Emerling CA, Rajewski A, Macon J, Strahl M, Pabón-Mora N, Litt A. Evolution and Diversification of FRUITFULL Genes in Solanaceae. FRONTIERS IN PLANT SCIENCE 2019; 10:43. [PMID: 30846991 PMCID: PMC6394111 DOI: 10.3389/fpls.2019.00043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/11/2019] [Indexed: 05/12/2023]
Abstract
Ecologically and economically important fleshy edible fruits have evolved from dry fruit numerous times during angiosperm diversification. However, the molecular mechanisms that underlie these shifts are unknown. In the Solanaceae there has been a major shift to fleshy fruits in the subfamily Solanoideae. Evidence suggests that an ortholog of FRUITFULL (FUL), a transcription factor that regulates cell proliferation and limits the dehiscence zone in the silique of Arabidopsis, plays a similar role in dry-fruited Solanaceae. However, studies have shown that FUL orthologs have taken on new functions in fleshy fruit development, including regulating elements of tomato ripening such as pigment accumulation. FUL belongs to the core eudicot euFUL clade of the angiosperm AP1/FUL gene lineage. The euFUL genes fall into two paralogous clades, euFULI and euFULII. While most core eudicots have one gene in each clade, Solanaceae have two: FUL1 and FUL2 in the former, and MBP10 and MBP20 in the latter. We characterized the evolution of the euFUL genes to identify changes that might be correlated with the origin of fleshy fruit in Solanaceae. Our analyses revealed that the Solanaceae FUL1 and FUL2 clades probably originated through an early whole genome multiplication event. By contrast, the data suggest that the MBP10 and MBP20 clades are the result of a later tandem duplication event. MBP10 is expressed at weak to moderate levels, and its atypical short first intron lacks putative transcription factor binding sites, indicating possible pseudogenization. Consistent with this, our analyses show that MBP10 is evolving at a faster rate compared to MBP20. Our analyses found that Solanaceae euFUL gene duplications, evolutionary rates, and changes in protein residues and expression patterns are not correlated with the shift in fruit type. This suggests deeper analyses are needed to identify the mechanism underlying the change in FUL ortholog function.
Collapse
Affiliation(s)
- Dinusha C. Maheepala
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Christopher A. Emerling
- Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, École Pratique des Hautes Études, Montpellier, France
| | - Alex Rajewski
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Jenna Macon
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Maya Strahl
- The New York Botanical Garden, Bronx, NY, United States
| | | | - Amy Litt
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Amy Litt,
| |
Collapse
|
35
|
The cotton HD-Zip transcription factor GhHB12 regulates flowering time and plant architecture via the GhmiR157-GhSPL pathway. Commun Biol 2018; 1:229. [PMID: 30564750 PMCID: PMC6292863 DOI: 10.1038/s42003-018-0234-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 11/06/2018] [Indexed: 12/03/2022] Open
Abstract
Domestication converts perennial and photoperiodic ancestral cotton to day-neutral cotton varieties, and the selection of short-season cotton varieties is one of the major objectives of cotton breeding. However, little is known about the mechanism of flowering time in cotton. Here, we report a cotton HD-ZIP I-class transcription factor (GhHB12) specifically expressed in axillary buds, which antagonisticlly interacts with GhSPL10/13 to repress the expression of GhFT, GhFUL, and GhSOC1, resulting in bushy architecture and delayed flowering under long-day conditions. We found that GhHB12-mediated ancestral upland cotton phenotypes (bushy architecture and delayed flowering) could be rescued under short-day conditions. We showed that overexpressing of GhrSPL10 partially rescues the bushy architecture and delayed flowering phenotypes, while overexpression of GhmiR157 reinforced these phenotypes in GhHB12-overexpressing plants. This study defines a regulatory module which regulates cotton architecture, phase transition and could be applied in the breeding of early maturing cotton varieties. Xin He et al. present a characterization of GhHB12, a HD-ZIP family transcription factor expressed in upland cotton axillary buds. They show that GhHB12 regulates flowering time, plant architecture and phase transition via a regulatory module that could be harnessed to improve cotton for mechanical harvesting.
Collapse
|
36
|
Aviña-Padilla K, Rivera-Bustamante R, Kovalskaya NY, Hammond RW. Pospiviroid Infection of Tomato Regulates the Expression of Genes Involved in Flower and Fruit Development. Viruses 2018; 10:v10100516. [PMID: 30241423 PMCID: PMC6213050 DOI: 10.3390/v10100516] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 12/22/2022] Open
Abstract
Viroids are unencapsidated, single-stranded, covalently-closed circular, highly structured, noncoding RNAs of 239–401 nucleotides that cause disease in several economically important crop plants. In tomato (Solanum lycopersicum cv. Rutgers), symptoms of pospiviroid infection include stunting, reduced vigor, flower abortion, and reduced size and number of fruits, resulting in significant crop losses. Dramatic alterations in plant development triggered by viroid infection are the result of differential gene expression; in our study, we focused on the effect of tomato planta macho viroid (TPMVd) and Mexican papita viroid (MPVd) infection on gene networks associated with the regulation of flower and fruit development. The expression of several of the genes were previously reported to be affected by viroid infection, but two genes not previously studied were included. Changes in gene expression of SlBIGPETAL1 (bHLH transcription factor) and SlOVA6 (proline-like tRNA synthetase) are involved in petal morphology and fertility, respectively. Expression of SlOVA6 was down-regulated in flowers of TPMVd- and MPVd-infected plants, while expression of SlBIGPETAL1 was up-regulated in flowers. Up-regulation of SlBIGPETAL1 and down-regulation of SlOVA6 were positively correlated with symptoms such as reduced petal size and flower abortion. Expression analysis of additional tomato genes and a prediction of a global network association of genes involved in flower and fruit development and impacted by viroid infection may further elucidate the pathways underlying viroid pathogenicity.
Collapse
Affiliation(s)
- Katia Aviña-Padilla
- Campus Juriquilla, Universidad Nacional Autónoma de Mexico, Querátaro Qro 76300, Mexico.
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato 36821, Mexico.
| | - Rafael Rivera-Bustamante
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato 36821, Mexico.
| | - Natalia Y Kovalskaya
- United States Department of Agriculture, Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD 20705, USA.
| | - Rosemarie W Hammond
- United States Department of Agriculture, Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD 20705, USA.
| |
Collapse
|
37
|
Cheng X, Li G, Tang Y, Wen J. Dissection of genetic regulation of compound inflorescence development in Medicago truncatula. Development 2018; 145:dev.158766. [PMID: 29361570 DOI: 10.1242/dev.158766] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/02/2018] [Indexed: 12/15/2022]
Abstract
Development of inflorescence architecture is controlled by genetic regulatory networks. TERMINAL FLOWER1 (TFL1), APETALA1 (AP1), LEAFY (LFY) and FRUITFULL (FUL) are core regulators for inflorescence development. To understand the regulation of compound inflorescence development, we characterized mutants of corresponding orthologous genes, MtTFL1, MtAP1, SINGLE LEAFLET1 (SGL1) and MtFULc, in Medicago truncatula, and analyzed expression patterns of these genes. Results indicate that MtTFL1, MtFULc, MtAP1 and SGL1 play specific roles in identity determination of primary inflorescence meristems, secondary inflorescence meristems, floral meristems and common primordia, respectively. Double mutation of MtTFL1 and MtFULc transforms compound inflorescences to simple flowers, whereas single mutation of MtTFL1 changes the inflorescence branching pattern from monopodial to sympodial. Double mutant mtap1sgl1 completely loses floral meristem identity. We conclude that inflorescence architecture in M. truncatula is controlled by spatiotemporal expression of MtTFL1, MtFULc, MtAP1 and SGL1 through reciprocal repression. Although this regulatory network shares similarity with the pea model, it has specificity in regulating inflorescence architecture in Mtruncatula This study establishes M. truncatula as an excellent genetic model for understanding compound inflorescence development in related legume crops.
Collapse
Affiliation(s)
- Xiaofei Cheng
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Guifen Li
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Yuhong Tang
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Jiangqi Wen
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| |
Collapse
|
38
|
Wang J, Wang H, Ding L, Song A, Shen F, Jiang J, Chen S, Chen F. Transcriptomic and hormone analyses reveal mechanisms underlying petal elongation in Chrysanthemum morifolium 'Jinba'. PLANT MOLECULAR BIOLOGY 2017; 93:593-606. [PMID: 28108965 DOI: 10.1007/s11103-017-0584-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 01/10/2017] [Indexed: 05/21/2023]
Abstract
Auxin regulates chrysanthemum petal elongation by promoting cell elongation. Transcriptomic analysis shows that auxin signal transduction may connect with other transcription factors by TCPs to regulate chrysanthemum petal elongation. As an ornamental species, Chrysanthemum morifolium has high ornamental and economic value. Petal size is the primary factor that influences the ornamental value of chrysanthemum, but the mechanism underlying the development of C. morifolium petals remains unclear. In our study, we tracked the growth of petals and found that the basal region of 'Jinba' petals showed a higher elongation rate, exhibiting rapid cell elongation during petal growth. During petal elongation growth, auxin was demonstrated to promote cell elongation and an increase in cell numbers in the petal basal region. To further study the molecular mechanisms underlying petal growth, the RNA-seq (high-throughput cDNA sequencing) technique was employed. Four cDNA libraries were assembled from petals in the budding, bud breaking, early blooming and full blooming stages of 'Jinba' flower development. Analysis of differentially expressed genes (DEGs) showed that auxin was the most important regulator in controlling petal growth. The TEOSINTEBRANCHED 1, CYCLOIDEA and PCF transcription factor genes (TCPs), basic helix-loop-helix-encoding gene (bHLH), glutaredoxin-C (GRXC) and other zinc finger protein genes exhibited obvious up-regulation and might have significant effects on the growth of 'Jinba' petals. Given the interaction between these genes in Arabidopsis thaliana, we speculated that auxin signal transduction might exhibit a close relationship with transcription factors through TCPs. In summary, we present the first comprehensive transcriptomic and hormone analyses of C. morifolium petals. The results offer direction in identifying the mechanism underlying the development of chrysanthemum petals in the elongated phase and have great significance in improving the ornamental characteristics of C. morifolium via molecular breeding.
Collapse
Affiliation(s)
- Jingjing Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haibin Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lian Ding
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Shen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, Nanjing, 210095, China.
| |
Collapse
|
39
|
Zumajo-Cardona C, Ambrose BA, Pabón-Mora N. Evolution of the SPATULA/ALCATRAZ gene lineage and expression analyses in the basal eudicot, Bocconia frutescens L. (Papaveraceae). EvoDevo 2017; 8:5. [PMID: 28331573 PMCID: PMC5353969 DOI: 10.1186/s13227-017-0068-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/08/2017] [Indexed: 12/19/2022] Open
Abstract
Background SPATULA (SPT) and ALCATRAZ (ALC) are recent paralogs that belong to the large bHLH transcription factor family. Orthologs of these genes have been found in all core eudicots, whereas pre-duplication genes, named paleoSPATULA/ALCATRAZ, have been found in basal eudicots, monocots, basal angiosperms and gymnosperms. Nevertheless, functional studies have only been performed in Arabidopsis thaliana, where SPT and ALC are partially redundant in carpel and valve margin development and ALC has a unique role in the dehiscence zone. Further analyses of pre-duplication genes are necessary to assess the functional evolution of this gene lineage. Results We isolated additional paleoSPT/ALC genes from Aristolochia fimbriata, Bocconia frutescens, Cattleya trianae and Hypoxis decumbens from our transcriptome libraries and performed phylogenetic analyses. We identified the previously described bHLH domain in all analyzed sequences and also new conserved motifs using the MEME suite. Finally, we analyzed the expression of three paleoSPT/ALC genes (BofrSPT1/2/3) from Bocconia frutescens, a basal eudicot in the Papaveraceae. To determine the developmental stages at which these genes were expressed, pre- and post-anthesis carpels and fruits of B. frutescens were collected, sectioned, stained, and examined using light microscopy. Using in situ hybridization we detected that BofrSPT1/2/3 genes are expressed in floral buds, early sepal initiation, stamens and carpel primordia and later during fruit development in the dehiscence zone of the opercular fruit. Conclusions Our expression results, in comparison with those available for core eudicots, suggest conserved roles of members of the SPT/ALC gene lineage across eudicots in the specification of carpel margins and the dehiscence zone of the mature fruits. Although there is some redundancy between ALC and SPT, these gene clades seem to have undergone some degree of sub-functionalization in the core eudicots, likely by changes in cis regulatory regions and to some extent in coding sequences, at least in Brassicaceae. Our results also indicate that in Bocconia frutescens, paleoSPT/ALC genes may play a role in early floral organ specification that was subsequently lost in core eudicot lineages. Electronic supplementary material The online version of this article (doi:10.1186/s13227-017-0068-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cecilia Zumajo-Cardona
- Instituto de Biología, Universidad de Antioquia, Medellín, 1226, Colombia.,New York Botanical Garden, Bronx, NY 10458 USA.,City University of New York, New York, NY 10016 USA
| | | | - Natalia Pabón-Mora
- Instituto de Biología, Universidad de Antioquia, Medellín, 1226, Colombia
| |
Collapse
|
40
|
Scorza LCT, Hernandes-Lopes J, Melo-de-Pinna GFA, Dornelas MC. Expression patterns of Passiflora edulis APETALA1/ FRUITFULL homologues shed light onto tendril and corona identities. EvoDevo 2017; 8:3. [PMID: 28174623 PMCID: PMC5290658 DOI: 10.1186/s13227-017-0066-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/18/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Passiflora (passionflowers) makes an excellent model for studying plant evolutionary development. They are mostly perennial climbers that display axillary tendrils, which are believed to be modifications of the inflorescence. Passionflowers are also recognized by their unique flower features, such as the extra whorls of floral organs composed of corona filaments and membranes enclosing the nectary. Although some work on Passiflora organ ontogeny has been done, the developmental identity of both Passiflora tendrils and the corona is still controversial. Here, we combined ultrastructural analysis and expression patterns of the flower meristem and floral organ identity genes of the MADS-box AP1/FUL clade to reveal a possible role for these genes in the generation of evolutionary novelties in Passiflora. RESULTS We followed the development of structures arising from the axillary meristem from juvenile to adult phase in P. edulis. We further assessed the expression pattern of P. edulis AP1/FUL homologues (PeAP1 and PeFUL), by RT-qPCR and in situ hybridization in several tissues, correlating it with the developmental stages of P. edulis. PeAP1 is expressed only in the reproductive stage, and it is highly expressed in tendrils and in flower meristems from the onset of their development. PeAP1 is also expressed in sepals, petals and in corona filaments, suggesting a novel role for PeAP1 in floral organ diversification. PeFUL presented a broad expression pattern in both vegetative and reproductive tissues, and it is also expressed in fruits. CONCLUSIONS Our results provide new molecular insights into the morphological diversity in the genus Passiflora. Here, we bring new evidence that tendrils are part of the Passiflora inflorescence. This points to the convergence of similar developmental processes involving the recruitment of genes related to flower identity in the origin of tendrils in different plant families. The data obtained also support the hypothesis that the corona filaments are likely sui generis floral organs. Additionally, we provide an indication that PeFUL acts as a coordinator of passionfruit development.
Collapse
Affiliation(s)
- Livia C. T. Scorza
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato, 255, 13083-862 Campinas, SP Brazil
- Institute of Molecular Plant Sciences, University of Edinburgh, Max Born Crescent, King’s Buildings, Edinburgh, EH9 3BF UK
| | - Jose Hernandes-Lopes
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090 São Paulo, SP Brazil
| | - Gladys F. A. Melo-de-Pinna
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090 São Paulo, SP Brazil
| | - Marcelo C. Dornelas
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato, 255, 13083-862 Campinas, SP Brazil
| |
Collapse
|
41
|
Gomariz-Fernández A, Sánchez-Gerschon V, Fourquin C, Ferrándiz C. The Role of SHI/STY/SRS Genes in Organ Growth and Carpel Development Is Conserved in the Distant Eudicot Species Arabidopsis thaliana and Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2017; 8:814. [PMID: 28588595 PMCID: PMC5440560 DOI: 10.3389/fpls.2017.00814] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/01/2017] [Indexed: 05/02/2023]
Abstract
Carpels are a distinctive feature of angiosperms, the ovule-bearing female reproductive organs that endow them with multiple selective advantages likely linked to the evolutionary success of flowering plants. Gene regulatory networks directing the development of carpel specialized tissues and patterning have been proposed based on genetic and molecular studies carried out in Arabidopsis thaliana. However, studies on the conservation/diversification of the elements and the topology of this network are still scarce. In this work, we have studied the functional conservation of transcription factors belonging to the SHI/STY/SRS family in two distant species within the eudicots, Eschscholzia californica and Nicotiana benthamiana. We have found that the expression patterns of EcSRS-L and NbSRS-L genes during flower development are similar to each other and to those reported for Arabidopsis SHI/STY/SRS genes. We have also characterized the phenotypic effects of NbSRS-L gene inactivation and overexpression in Nicotiana. Our results support the widely conserved role of SHI/STY/SRS genes at the top of the regulatory network directing style and stigma development, specialized tissues specific to the angiosperm carpels, at least within core eudicots, providing new insights on the possible evolutionary origin of the carpels.
Collapse
|
42
|
Eldridge T, Łangowski Ł, Stacey N, Jantzen F, Moubayidin L, Sicard A, Southam P, Kennaway R, Lenhard M, Coen ES, Østergaard L. Fruit shape diversity in the Brassicaceae is generated by varying patterns of anisotropy. Development 2016; 143:3394-406. [PMID: 27624834 PMCID: PMC5047655 DOI: 10.1242/dev.135327] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/10/2016] [Indexed: 01/21/2023]
Abstract
Fruits exhibit a vast array of different 3D shapes, from simple spheres and cylinders to more complex curved forms; however, the mechanism by which growth is oriented and coordinated to generate this diversity of forms is unclear. Here, we compare the growth patterns and orientations for two very different fruit shapes in the Brassicaceae: the heart-shaped Capsella rubella silicle and the near-cylindrical Arabidopsis thaliana silique. We show, through a combination of clonal and morphological analyses, that the different shapes involve different patterns of anisotropic growth during three phases. These experimental data can be accounted for by a tissue-level model in which specified growth rates vary in space and time and are oriented by a proximodistal polarity field. The resulting tissue conflicts lead to deformation of the tissue as it grows. The model allows us to identify tissue-specific and temporally specific activities required to obtain the individual shapes. One such activity may be provided by the valve-identity gene FRUITFULL, which we show through comparative mutant analysis to modulate fruit shape during post-fertilisation growth of both species. Simple modulations of the model presented here can also broadly account for the variety of shapes in other Brassicaceae species, thus providing a simplified framework for fruit development and shape diversity.
Collapse
Affiliation(s)
- Tilly Eldridge
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK Biosciences Eastern and Central Africa - International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya
| | | | - Nicola Stacey
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | | | - Adrien Sicard
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| | - Paul Southam
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Michael Lenhard
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| | - Enrico S Coen
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Lars Østergaard
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
43
|
Marcellini S, González F, Sarrazin AF, Pabón-Mora N, Benítez M, Piñeyro-Nelson A, Rezende GL, Maldonado E, Schneider PN, Grizante MB, Da Fonseca RN, Vergara-Silva F, Suaza-Gaviria V, Zumajo-Cardona C, Zattara EE, Casasa S, Suárez-Baron H, Brown FD. Evolutionary Developmental Biology (Evo-Devo) Research in Latin America. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 328:5-40. [PMID: 27491339 DOI: 10.1002/jez.b.22687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 12/29/2022]
Abstract
Famous for its blind cavefish and Darwin's finches, Latin America is home to some of the richest biodiversity hotspots of our planet. The Latin American fauna and flora inspired and captivated naturalists from the nineteenth and twentieth centuries, including such notable pioneers such as Fritz Müller, Florentino Ameghino, and Léon Croizat who made a significant contribution to the study of embryology and evolutionary thinking. But, what are the historical and present contributions of the Latin American scientific community to Evo-Devo? Here, we provide the first comprehensive overview of the Evo-Devo laboratories based in Latin America and describe current lines of research based on endemic species, focusing on body plans and patterning, systematics, physiology, computational modeling approaches, ecology, and domestication. Literature searches reveal that Evo-Devo in Latin America is still in its early days; while showing encouraging indicators of productivity, it has not stabilized yet, because it relies on few and sparsely distributed laboratories. Coping with the rapid changes in national scientific policies and contributing to solve social and health issues specific to each region are among the main challenges faced by Latin American researchers. The 2015 inaugural meeting of the Pan-American Society for Evolutionary Developmental Biology played a pivotal role in bringing together Latin American researchers eager to initiate and consolidate regional and worldwide collaborative networks. Such networks will undoubtedly advance research on the extremely high genetic and phenotypic biodiversity of Latin America, bound to be an almost infinite source of amazement and fascinating findings for the Evo-Devo community.
Collapse
Affiliation(s)
- Sylvain Marcellini
- Laboratorio de Desarrollo y Evolución, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Favio González
- Facultad de Ciencias, Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Andres F Sarrazin
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | - Mariana Benítez
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Alma Piñeyro-Nelson
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana, Xochimilco, Ciudad de México, México
| | - Gustavo L Rezende
- Universidade Estadual do Norte Fluminense, CBB, LQFPP, Campos dos Goytacazes, RJ, Brazil
| | - Ernesto Maldonado
- EvoDevo Lab, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | | | | | - Rodrigo Nunes Da Fonseca
- Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro, Macae, RJ, Brazil
| | | | | | | | | | - Sofia Casasa
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Federico D Brown
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
44
|
Arango-Ocampo C, González F, Alzate JF, Pabón-Mora N. The developmental and genetic bases of apetaly in Bocconia frutescens (Chelidonieae: Papaveraceae). EvoDevo 2016; 7:16. [PMID: 27489612 DOI: 10.1186/s1322701600546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 07/19/2016] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Bocconia and Macleaya are the only genera of the poppy family (Papaveraceae) lacking petals; however, the developmental and genetic processes underlying such evolutionary shift have not yet been studied. RESULTS We studied floral development in two species of petal-less poppies Bocconia frutescens and Macleaya cordata as well as in the closely related petal-bearing Stylophorum diphyllum. We generated a floral transcriptome of B. frutescens to identify MADS-box ABCE floral organ identity genes expressed during early floral development. We performed phylogenetic analyses of these genes across Ranunculales as well as RT-PCR and qRT-PCR to assess loci-specific expression patterns. We found that petal-to-stamen homeosis in petal-less poppies occurs through distinct developmental pathways. Transcriptomic analyses of B. frutescens floral buds showed that homologs of all MADS-box genes are expressed except for the APETALA3-3 ortholog. Species-specific duplications of other ABCE genes in B. frutescens have resulted in functional copies with expanded expression patterns than those predicted by the model. CONCLUSIONS Petal loss in B. frutescens is likely associated with the lack of expression of AP3-3 and an expanded expression of AGAMOUS. The genetic basis of petal identity is conserved in Ranunculaceae and Papaveraceae although they have different number of AP3 paralogs and exhibit dissimilar floral groundplans.
Collapse
Affiliation(s)
| | - Favio González
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Juan Fernando Alzate
- Centro de Secuenciación Genómica Nacional (CSGN), Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| | | |
Collapse
|
45
|
Arango-Ocampo C, González F, Alzate JF, Pabón-Mora N. The developmental and genetic bases of apetaly in Bocconia frutescens (Chelidonieae: Papaveraceae). EvoDevo 2016; 7:16. [PMID: 27489612 PMCID: PMC4971710 DOI: 10.1186/s13227-016-0054-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 07/19/2016] [Indexed: 01/01/2023] Open
Abstract
Background Bocconia and Macleaya are the only genera of the poppy family (Papaveraceae) lacking petals; however, the developmental and genetic processes underlying such evolutionary shift have not yet been studied. Results We studied floral development in two species of petal-less poppies Bocconiafrutescens and Macleayacordata as well as in the closely related petal-bearing Stylophorum diphyllum. We generated a floral transcriptome of B. frutescens to identify MADS-box ABCE floral organ identity genes expressed during early floral development. We performed phylogenetic analyses of these genes across Ranunculales as well as RT-PCR and qRT-PCR to assess loci-specific expression patterns. We found that petal-to-stamen homeosis in petal-less poppies occurs through distinct developmental pathways. Transcriptomic analyses of B. frutescens floral buds showed that homologs of all MADS-box genes are expressed except for the APETALA3-3 ortholog. Species-specific duplications of other ABCE genes in B. frutescens have resulted in functional copies with expanded expression patterns than those predicted by the model. Conclusions Petal loss in B. frutescens is likely associated with the lack of expression of AP3-3 and an expanded expression of AGAMOUS. The genetic basis of petal identity is conserved in Ranunculaceae and Papaveraceae although they have different number of AP3 paralogs and exhibit dissimilar floral groundplans. Electronic supplementary material The online version of this article (doi:10.1186/s13227-016-0054-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Favio González
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Juan Fernando Alzate
- Centro de Secuenciación Genómica Nacional (CSGN), Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| | | |
Collapse
|
46
|
Becker A. Tinkering with transcription factor networks for developmental robustness of Ranunculales flowers. ANNALS OF BOTANY 2016; 117:845-58. [PMID: 27091506 PMCID: PMC4845810 DOI: 10.1093/aob/mcw037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/16/2016] [Accepted: 01/27/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND The flowers of core eudicots and monocots are generally determined by the number of floral organs they produce, and their developmental set-up tolerates little change from the bauplan once the floral primordium is initiated. Many species outside the core eudicots and monocots are more plastic in the number of floral organs they produce. For example, the Nymphaeales (water lilies), within the basal angiosperms, arrange their floral organs spirally and show smooth transitions between floral organs, and many Ranunculales (buttercups) produce variable numbers of stamens by adjusting the number of stamen whorls generated from a specialized ring meristem. However, the interactions of regulatory genes governing those processes are unknown. SCOPE AND CONCLUSIONS This review provides an overview of the functional analyses of floral homeotic genes carried out in Ranunculales, summarizing knockdown and mutant phenotypes, and protein interactions to identify similarities and differences within the Ranunculales and in comparison with core eudicots. Floral gene regulatory networks in Ranunculales are identified showing intensive re-wiring amongst the floral homeotic genes to allow some degree of plasticity. The 'fading-border' model of floral organ identity evolution is extended by a hypothesis on how developmental plasticity can be achieved by interdependent regulation of floral homeotic genes. One aspect of floral plasticity may be achieved by regulation of the activity of a stamen-generating ring meristem and first ideas on its control are presented. While the amazing conservation of the major floral organ identity programme is being unravelled by analysing floral homeotic gene function and expression, we are only just beginning to understand the evolution of the gene network governing the organ identity genes, e.g. how plasticity can be achieved, and which aspects foster the robustness of the core eudicot floral bauplan.
Collapse
Affiliation(s)
- Annette Becker
- Justus-Liebig-University, Institute of Botany, Heinrich-Buff-Ring 38, D-35392 Gießen, Germany
| |
Collapse
|
47
|
Zumajo-Cardona C, Pabón-Mora N. Evolution of the APETALA2 Gene Lineage in Seed Plants. Mol Biol Evol 2016; 33:1818-32. [PMID: 27030733 DOI: 10.1093/molbev/msw059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene duplication is a fundamental source of functional evolutionary change and has been associated with organismal diversification and the acquisition of novel features. The APETALA2/ETHYLENE RESPONSIVE ELEMENT-BINDING FACTOR (AP2/ERF) genes are exclusive to vascular plants and have been classified into the AP2-like and ERF-like clades. The AP2-like clade includes the AINTEGUMENTA (ANT) and the euAPETALA2 (euAP2) genes, both regulated by miR172 Arabidopsis has two paralogs in the euAP2 clade, namely APETALA2 (AP2) and TARGET OF EAT3 (TOE3) that control flowering time, meristem determinacy, sepal and petal identity and fruit development. euAP2 genes are likely functionally divergent outside Brassicaceae, as they control fruit development in tomato, and regulate inflorescence meristematic activity in maize. We studied the evolution and expression patterns of euAP2/TOE3 genes to assess large scale and local duplications and evaluate protein motifs likely related with functional changes across seed plants. We sampled euAP2/TOE3 genes from vascular plants and have found three major duplications and a few taxon-specific duplications. Here, we report conserved and new motifs across euAP2/TOE3 proteins and conclude that proteins predating the Brassicaceae duplication are more similar to AP2 than TOE3. Expression data show a shift from restricted expression in leaves, carpels, and fruits in non-core eudicots and asterids to a broader expression of euAP2 genes in leaves, all floral organs and fruits in rosids. Altogether, our data show a functional trend where the canonical A-function (sepal and petal identity) is exclusive to Brassicaceae and it is likely not maintained outside of rosids.
Collapse
|
48
|
Yu X, Duan X, Zhang R, Fu X, Ye L, Kong H, Xu G, Shan H. Prevalent Exon-Intron Structural Changes in the APETALA1/FRUITFULL, SEPALLATA, AGAMOUS-LIKE6, and FLOWERING LOCUS C MADS-Box Gene Subfamilies Provide New Insights into Their Evolution. FRONTIERS IN PLANT SCIENCE 2016; 7:598. [PMID: 27200066 PMCID: PMC4852290 DOI: 10.3389/fpls.2016.00598] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 04/18/2016] [Indexed: 05/19/2023]
Abstract
AP1/FUL, SEP, AGL6, and FLC subfamily genes play important roles in flower development. The phylogenetic relationships among them, however, have been controversial, which impedes our understanding of the origin and functional divergence of these genes. One possible reason for the controversy may be the problems caused by changes in the exon-intron structure of genes, which, according to recent studies, may generate non-homologous sites and hamper the homology-based sequence alignment. In this study, we first performed exon-by-exon alignments of these and three outgroup subfamilies (SOC1, AG, and STK). Phylogenetic trees reconstructed based on these matrices show improved resolution and better congruence with species phylogeny. In the context of these phylogenies, we traced evolutionary changes of exon-intron structures in each subfamily. We found that structural changes have occurred frequently following gene duplication and speciation events. Notably, exons 7 and 8 (if present) suffered more structural changes than others. With the knowledge of exon-intron structural changes, we generated more reasonable alignments containing all the focal subfamilies. The resulting trees showed that the SEP subfamily is sister to the monophyletic group formed by AP1/FUL and FLC subfamily genes and that the AGL6 subfamily forms a sister group to the three abovementioned subfamilies. Based on this topology, we inferred the evolutionary history of exon-intron structural changes among different subfamilies. Particularly, we found that the eighth exon originated before the divergence of AP1/FUL, FLC, SEP, and AGL6 subfamilies and degenerated in the ancestral FLC-like gene. These results provide new insights into the origin and evolution of the AP1/FUL, FLC, SEP, and AGL6 subfamilies.
Collapse
Affiliation(s)
- Xianxian Yu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Xiaoshan Duan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Rui Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Xuehao Fu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Lingling Ye
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Guixia Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
- *Correspondence: Guixia Xu
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Hongyan Shan
| |
Collapse
|
49
|
Wu J, Zheng S, Feng G, Yi H. Comparative Analysis of miRNAs and Their Target Transcripts between a Spontaneous Late-Ripening Sweet Orange Mutant and Its Wild-Type Using Small RNA and Degradome Sequencing. FRONTIERS IN PLANT SCIENCE 2016; 7:1416. [PMID: 27708662 PMCID: PMC5030777 DOI: 10.3389/fpls.2016.01416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/06/2016] [Indexed: 05/04/2023]
Abstract
Fruit ripening in citrus is not well-understood at the molecular level. Knowledge of the regulatory mechanism of citrus fruit ripening at the post-transcriptional level in particular is lacking. Here, we comparatively analyzed the miRNAs and their target genes in a spontaneous late-ripening mutant, "Fengwan" sweet orange (MT) (Citrus sinensis L. Osbeck), and its wild-type counterpart ("Fengjie 72-1," WT). Using high-throughput sequencing of small RNAs and RNA degradome tags, we identified 107 known and 21 novel miRNAs, as well as 225 target genes. A total of 24 miRNAs (16 known miRNAs and 8 novel miRNAs) were shown to be differentially expressed between MT and WT. The expression pattern of several key miRNAs and their target genes during citrus fruit development and ripening stages was examined. Csi-miR156k, csi-miR159, and csi-miR166d suppressed specific transcription factors (GAMYBs, SPLs, and ATHBs) that are supposed to be important regulators involved in citrus fruit development and ripening. In the present study, miRNA-mediated silencing of target genes was found under complicated and sensitive regulation in citrus fruit. The identification of miRNAs and their target genes provide new clues for future investigation of mechanisms that regulate citrus fruit ripening.
Collapse
|
50
|
Edgar A, Chinga J. Inaugural meeting of the Pan-American Society for Evolutionary Developmental Biology report: the importance of diversity in a multidisciplinary field. EvoDevo 2015. [PMCID: PMC4674996 DOI: 10.1186/s13227-015-0035-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|