1
|
Roulet ME, Ceriotti LF, Gatica-Soria L, Sanchez-Puerta MV. Horizontally transferred mitochondrial DNA tracts become circular by microhomology-mediated repair pathways. THE NEW PHYTOLOGIST 2024; 243:2442-2456. [PMID: 39044460 DOI: 10.1111/nph.19984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024]
Abstract
The holoparasitic plant Lophophytum mirabile exhibits remarkable levels of mitochondrial horizontal gene transfer (HGT). Gathering comparative data from other individuals and host plants can provide insights into the HGT process. We sequenced the mitochondrial genome (mtDNA) from individuals of two species of Lophophytum and from mimosoid hosts. We applied a stringent phylogenomic approach to elucidate the origin of the whole mtDNAs, estimate the timing of the transfers, and understand the molecular mechanisms involved. Ancestral and recent HGT events replaced and enlarged the multichromosomal mtDNA of Lophophytum spp., with the foreign DNA ascending to 74%. A total of 14 foreign mitochondrial chromosomes originated from continuous regions in the host mtDNA flanked by short direct repeats. These foreign tracts are circularized by microhomology-mediated repair pathways and replicate independently until they are lost or they eventually recombine with other chromosomes. The foreign noncoding chromosomes are variably present in the population and likely evolve by genetic drift. We present the 'circle-mediated HGT' model in which foreign mitochondrial DNA tracts become circular and are maintained as plasmid-like molecules. This model challenges the conventional belief that foreign DNA must be integrated into the recipient genome for successful HGT.
Collapse
Affiliation(s)
- M Emilia Roulet
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
| | - Luis Federico Ceriotti
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina
| | - Leonardo Gatica-Soria
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina
| |
Collapse
|
2
|
Veeraragavan S, Johansen M, Johnston IG. Evolution and maintenance of mtDNA gene content across eukaryotes. Biochem J 2024; 481:1015-1042. [PMID: 39101615 PMCID: PMC11346449 DOI: 10.1042/bcj20230415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Across eukaryotes, most genes required for mitochondrial function have been transferred to, or otherwise acquired by, the nucleus. Encoding genes in the nucleus has many advantages. So why do mitochondria retain any genes at all? Why does the set of mtDNA genes vary so much across different species? And how do species maintain functionality in the mtDNA genes they do retain? In this review, we will discuss some possible answers to these questions, attempting a broad perspective across eukaryotes. We hope to cover some interesting features which may be less familiar from the perspective of particular species, including the ubiquity of recombination outside bilaterian animals, encrypted chainmail-like mtDNA, single genes split over multiple mtDNA chromosomes, triparental inheritance, gene transfer by grafting, gain of mtDNA recombination factors, social networks of mitochondria, and the role of mtDNA dysfunction in feeding the world. We will discuss a unifying picture where organismal ecology and gene-specific features together influence whether organism X retains mtDNA gene Y, and where ecology and development together determine which strategies, importantly including recombination, are used to maintain the mtDNA genes that are retained.
Collapse
Affiliation(s)
| | - Maria Johansen
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Waneka G, Broz AK, Wold-McGimsey F, Zou Y, Wu Z, Sloan DB. Disruption of recombination machinery alters the mutational landscape in plant organellar genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597120. [PMID: 38895361 PMCID: PMC11185577 DOI: 10.1101/2024.06.03.597120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Land plant organellar genomes have extremely low rates of point mutation yet also experience high rates of recombination and genome instability. Characterizing the molecular machinery responsible for these patterns is critical for understanding the evolution of these genomes. While much progress has been made towards understanding recombination activity in land plant organellar genomes, the relationship between recombination pathways and point mutation rates remains uncertain. The organellar targeted mutS homolog MSH1 has previously been shown to suppress point mutations as well as non-allelic recombination between short repeats in Arabidopsis thaliana. We therefore implemented high-fidelity Duplex Sequencing to test if other genes that function in recombination and maintenance of genome stability also affect point mutation rates. We found small to moderate increases in the frequency of single nucleotide variants (SNVs) and indels in mitochondrial and/or plastid genomes of A. thaliana mutant lines lacking radA, recA1, or recA3. In contrast, osb2 and why2 mutants did not exhibit an increase in point mutations compared to wild type (WT) controls. In addition, we analyzed the distribution of SNVs in previously generated Duplex Sequencing data from A. thaliana organellar genomes and found unexpected strand asymmetries and large effects of flanking nucleotides on mutation rates in WT plants and msh1 mutants. Finally, using long-read Oxford Nanopore sequencing, we characterized structural variants in organellar genomes of the mutant lines and show that different short repeat sequences become recombinationally active in different mutant backgrounds. Together, these complementary sequencing approaches shed light on how recombination may impact the extraordinarily low point mutation rates in plant organellar genomes.
Collapse
Affiliation(s)
- Gus Waneka
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Yi Zou
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Zhiqiang Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
4
|
Peñafiel-Ayala A, Peralta-Castro A, Mora-Garduño J, García-Medel P, Zambrano-Pereira AG, Díaz-Quezada C, Abraham-Juárez MJ, Benítez-Cardoza CG, Sloan DB, Brieba LG. Plant Organellar MSH1 Is a Displacement Loop-Specific Endonuclease. PLANT & CELL PHYSIOLOGY 2024; 65:560-575. [PMID: 37756637 PMCID: PMC11494383 DOI: 10.1093/pcp/pcad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/09/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
MutS HOMOLOG 1 (MSH1) is an organellar-targeted protein that obstructs ectopic recombination and the accumulation of mutations in plant organellar genomes. MSH1 also modulates the epigenetic status of nuclear DNA, and its absence induces a variety of phenotypic responses. MSH1 is a member of the MutS family of DNA mismatch repair proteins but harbors an additional GIY-YIG nuclease domain that distinguishes it from the rest of this family. How MSH1 hampers recombination and promotes fidelity in organellar DNA inheritance is unknown. Here, we elucidate its enzymatic activities by recombinantly expressing and purifying full-length MSH1 from Arabidopsis thaliana (AtMSH1). AtMSH1 is a metalloenzyme that shows a strong binding affinity for displacement loops (D-loops). The DNA-binding abilities of AtMSH1 reside in its MutS domain and not in its GIY-YIG domain, which is the ancillary nickase of AtMSH1. In the presence of divalent metal ions, AtMSH1 selectively executes multiple incisions at D-loops, but not other DNA structures including Holliday junctions or dsDNA, regardless of the presence or absence of mismatches. The selectivity of AtMSH1 to dismantle D-loops supports the role of this enzyme in preventing recombination between short repeats. Our results suggest that plant organelles have evolved novel DNA repair routes centered around the anti-recombinogenic activity of MSH1.
Collapse
Affiliation(s)
- Alejandro Peñafiel-Ayala
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Antolin Peralta-Castro
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Josue Mora-Garduño
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Paola García-Medel
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Angie G Zambrano-Pereira
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Corina Díaz-Quezada
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - María Jazmín Abraham-Juárez
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Claudia G Benítez-Cardoza
- Laboratorio de Investigación Bioquímica, Programa Institucional en Biomedicina Molecular ENMyH-IPN, Guillermo Massieu Helguera No. 239, La Escalera Ticoman 07320 DF, México
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Luis G Brieba
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| |
Collapse
|
5
|
Sakamoto W, Takami T. Plastid Inheritance Revisited: Emerging Role of Organelle DNA Degradation in Angiosperms. PLANT & CELL PHYSIOLOGY 2024; 65:484-492. [PMID: 37702423 DOI: 10.1093/pcp/pcad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/15/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Plastids are essential organelles in angiosperms and show non-Mendelian inheritance due to their evolution as endosymbionts. In approximately 80% of angiosperms, plastids are thought to be inherited from the maternal parent, whereas other species transmit plastids biparentally. Maternal inheritance can be generally explained by the stochastic segregation of maternal plastids after fertilization because the zygote is overwhelmed by the maternal cytoplasm. In contrast, biparental inheritance shows the transmission of organelles from both parents. In some species, maternal inheritance is not absolute and paternal leakage occurs at a very low frequency (∼10-5). A key process controlling the inheritance mode lies in the behavior of plastids during male gametophyte (pollen) development, with accumulating evidence indicating that the plastids themselves or their DNAs are eliminated during pollen maturation or at fertilization. Cytological observations in numerous angiosperm species have revealed several critical steps that mutually influence the degree of plastid transmission quantitatively among different species. This review revisits plastid inheritance from a mechanistic viewpoint. Particularly, we focus on a recent finding demonstrating that both low temperature and plastid DNA degradation mediated by the organelle exonuclease DEFECTIVE IN POLLEN ORGANELLE DNA DEGRADATION1 (DPD1) influence the degree of paternal leakage significantly in tobacco. Given these findings, we also highlight the emerging role of DPD1 in organelle DNA degradation.
Collapse
Affiliation(s)
- Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, 2-20-2 Chuo, Kurashiki, Okayama, 710-0046 Japan
| | - Tsuneaki Takami
- Institute of Plant Science and Resources, Okayama University, 2-20-2 Chuo, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
6
|
Zwonitzer KD, Tressel LG, Wu Z, Kan S, Broz AK, Mower JP, Ruhlman TA, Jansen RK, Sloan DB, Havird JC. Genome copy number predicts extreme evolutionary rate variation in plant mitochondrial DNA. Proc Natl Acad Sci U S A 2024; 121:e2317240121. [PMID: 38427600 PMCID: PMC10927533 DOI: 10.1073/pnas.2317240121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/22/2024] [Indexed: 03/03/2024] Open
Abstract
Nuclear and organellar genomes can evolve at vastly different rates despite occupying the same cell. In most bilaterian animals, mitochondrial DNA (mtDNA) evolves faster than nuclear DNA, whereas this trend is generally reversed in plants. However, in some exceptional angiosperm clades, mtDNA substitution rates have increased up to 5,000-fold compared with closely related lineages. The mechanisms responsible for this acceleration are generally unknown. Because plants rely on homologous recombination to repair mtDNA damage, we hypothesized that mtDNA copy numbers may predict evolutionary rates, as lower copy numbers may provide fewer templates for such repair mechanisms. In support of this hypothesis, we found that copy number explains 47% of the variation in synonymous substitution rates of mtDNA across 60 diverse seed plant species representing ~300 million years of evolution. Copy number was also negatively correlated with mitogenome size, which may be a cause or consequence of mutation rate variation. Both relationships were unique to mtDNA and not observed in plastid DNA. These results suggest that homologous recombinational repair plays a role in driving mtDNA substitution rates in plants and may explain variation in mtDNA evolution more broadly across eukaryotes. Our findings also contribute to broader questions about the relationships between mutation rates, genome size, selection efficiency, and the drift-barrier hypothesis.
Collapse
Affiliation(s)
- Kendra D. Zwonitzer
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| | - Lydia G. Tressel
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | - Shenglong Kan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
- Marine College, Shandong University, Weihai264209, China
| | - Amanda K. Broz
- Department of Biology, Colorado State University, Fort Collins, CO80523
| | - Jeffrey P. Mower
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE68588
| | - Tracey A. Ruhlman
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| | - Robert K. Jansen
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO80523
| | - Justin C. Havird
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
7
|
Broz AK, Sloan DB, Johnston IG. Stochastic organelle genome segregation through Arabidopsis development and reproduction. THE NEW PHYTOLOGIST 2024; 241:896-910. [PMID: 37925790 PMCID: PMC10841260 DOI: 10.1111/nph.19288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/07/2023] [Indexed: 11/07/2023]
Abstract
Organelle DNA (oDNA) in mitochondria and plastids is vital for plant (and eukaryotic) life. Selection against damaged oDNA is mediated in part by segregation - sorting different oDNA types into different cells in the germline. Plants segregate oDNA very rapidly, with oDNA recombination protein MSH1 a key driver of this segregation, but we have limited knowledge of the dynamics of this segregation within plants and between generations. Here, we reveal how oDNA evolves through Arabidopsis thaliana development and reproduction. We combine stochastic modelling, Bayesian inference, and model selection with new and existing tissue-specific oDNA measurements from heteroplasmic Arabidopsis plant lines through development and between generations. Segregation proceeds gradually but continually during plant development, with a more rapid increase between inflorescence formation and the next generation. When MSH1 is compromised, the majority of observed segregation can be achieved through partitioning at cell divisions. When MSH1 is functional, mtDNA segregation is far more rapid; we show that increased oDNA gene conversion is a plausible mechanism quantitatively explaining this acceleration. These findings reveal the quantitative, time-dependent details of oDNA segregation in Arabidopsis. We also discuss the support for different models of the plant germline provided by these observations.
Collapse
Affiliation(s)
- Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Iain G Johnston
- Department of Mathematics, University of Bergen, Bergen, 5007, Norway
- Computational Biology Unit, University of Bergen, Bergen, 5007, Norway
| |
Collapse
|
8
|
Yang W, Zou J, Wang J, Li N, Luo X, Jiang X, Li S. Variation in Rice Plastid Genomes in Wide Crossing Reveals Dynamic Nucleo-Cytoplasmic Interaction. Genes (Basel) 2023; 14:1411. [PMID: 37510315 PMCID: PMC10379430 DOI: 10.3390/genes14071411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Plastid genomes (plastomes) of angiosperms are well known for their relative stability in size, structure, and gene content. However, little is known about their heredity and variations in wide crossing. To such an end, the plastomes of five representative rice backcross inbred lines (BILs) developed from crosses of O. glaberrima/O. sativa were analyzed. We found that the size of all plastomes was about 134,580 bp, with a quadripartite structure that included a pair of inverted repeat (IR) regions, a small single-copy (SSC) region and a large single-copy (LSC) region. They contained 76 protein genes, 4 rRNA genes, and 30 tRNA genes. Although their size, structure, and gene content were stable, repeat-mediated recombination, gene expression, and RNA editing were extensively changed between the maternal line and the BILs. These novel discoveries demonstrate that wide crossing causes not only nuclear genomic recombination, but also plastome variation in plants, and that the plastome plays a critical role in coordinating the nuclear-cytoplasmic interaction.
Collapse
Affiliation(s)
- Weilong Yang
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518036, China
| | - Jianing Zou
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Jiajia Wang
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Nengwu Li
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Xiaoyun Luo
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Xiaofen Jiang
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| |
Collapse
|
9
|
Cao P, Huang Y, Zong M, Xu Z. De Novo Assembly and Comparative Analysis of the Complete Mitochondrial Genome of Chaenomeles speciosa (Sweet) Nakai Revealed the Existence of Two Structural Isomers. Genes (Basel) 2023; 14:526. [PMID: 36833452 PMCID: PMC9957484 DOI: 10.3390/genes14020526] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
As a valuable Chinese traditional medicinal species, Chaenomeles speciosa (Sweet) Nakai (C. speciosa) is a natural resource with significant economic and ornamental value. However, its genetic information is not well understood. In this study, the complete mitochondrial genome of C. speciosa was assembled and characterized to explore the repeat sequences, recombination events, rearrangements, and IGT, to predict RNA editing sites, and to clarify the phylogenetic and evolutionary relationship. The C. speciosa mitochondrial genome was found to have two circular chromosomes as its major conformation, with a total length of 436,464 bp and 45.2% GC content. The mitochondrial genome contained 54 genes, including 33 unique protein-coding genes, 18 tRNAs, and 3 rRNA genes. Seven pairs of repeat sequences involving recombination events were analyzed. Both the repeat pairs, R1 and R2, played significant roles in mediating the major and minor conformations. In total, 18 MTPTs were identified, 6 of which were complete tRNA genes. There were 454 RNA editing sites in the 33 protein-coding sequences predicted by the PREPACT3 program. A phylogenetic analysis based on 22 species of mitochondrial genomes was constructed and indicated highly conserved PCG sequences. Synteny analyses showed extensive genomic rearrangements in the mitochondrial genome of C. speciosa and closely related species. This work is the first to report the C. speciosa mitochondrial genome, which is of great significance for conducting additional genetic studies on this organism.
Collapse
Affiliation(s)
- Pei Cao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuan Huang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mei Zong
- College of Life Sciences, Anqing Normal University, Anqing 246133, China
| | - Zilong Xu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
10
|
Klucnika A, Mu P, Jezek J, McCormack M, Di Y, Bradshaw CR, Ma H. REC drives recombination to repair double-strand breaks in animal mtDNA. J Cell Biol 2023; 222:e202201137. [PMID: 36355348 PMCID: PMC9652705 DOI: 10.1083/jcb.202201137] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/09/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Mechanisms that safeguard mitochondrial DNA (mtDNA) limit the accumulation of mutations linked to mitochondrial and age-related diseases. Yet, pathways that repair double-strand breaks (DSBs) in animal mitochondria are poorly understood. By performing a candidate screen for mtDNA repair proteins, we identify that REC-an MCM helicase that drives meiotic recombination in the nucleus-also localizes to mitochondria in Drosophila. We show that REC repairs mtDNA DSBs by homologous recombination in somatic and germline tissues. Moreover, REC prevents age-associated mtDNA mutations. We further show that MCM8, the human ortholog of REC, also localizes to mitochondria and limits the accumulation of mtDNA mutations. This study provides mechanistic insight into animal mtDNA recombination and demonstrates its importance in safeguarding mtDNA during ageing and evolution.
Collapse
Affiliation(s)
- Anna Klucnika
- Wellcome/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Peiqiang Mu
- Wellcome/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jan Jezek
- Wellcome/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Matthew McCormack
- Wellcome/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Ying Di
- Wellcome/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | - Hansong Ma
- Wellcome/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Zou Y, Zhu W, Sloan DB, Wu Z. Long-read sequencing characterizes mitochondrial and plastid genome variants in Arabidopsis msh1 mutants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:738-755. [PMID: 36097957 PMCID: PMC9617793 DOI: 10.1111/tpj.15976] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
The abundant repeats in plant mitochondrial genomes can cause rapid genome rearrangements and are also a major obstacle in short-read sequencing studies. Nuclear-encoded proteins such as MSH1 are known to suppress the generation of repeat-associated mitochondrial genome variants, but our understanding of these mechanisms has been constrained by the limitations of short-read technologies. Here, we used highly accurate long-read sequencing (PacBio HiFi) to characterize mitochondrial and plastid genome variants in Arabidopsis thaliana msh1 mutant individuals. The HiFi reads provided a global view of recombination dynamics with detailed quantification of parental and crossover recombination products for both large and small repeats. We found that recombination breakpoints were distributed relatively evenly across the length of repeated sequences and detected widespread internal exchanges of sequence variants between pairs of imperfect repeats in the mitochondrial genome of msh1 mutants. Long-read assemblies of mitochondrial genomes from seven other A. thaliana wild-type accessions differed by repeat-mediated structural rearrangements similar to those observed in msh1 mutants, but they were all in a simple low-heteroplasmy state. The Arabidopsis plastid genome generally lacks small repeats and exhibited a very different pattern of variant accumulation in msh1 mutants compared with the mitochondrial genome. Our data illustrate the power of HiFi technology in studying repeat-mediated recombination in plant organellar genomes and improved the sequence resolution for recombinational processes suppressed by MSH1. Plant organellar genomes can undergo rapid rearrangements. Long-read sequencing provides a detailed and quantitative view of mitochondrial and plastid genome variants normally suppressed by MSH1, advancing our understanding of plant organellar genome dynamics.
Collapse
Affiliation(s)
- Yi Zou
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Weidong Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Zhiqiang Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| |
Collapse
|
12
|
Qian J, Zheng M, Wang L, Song Y, Yan J, Hsu YF. Arabidopsis mitochondrial single-stranded DNA-binding proteins SSB1 and SSB2 are essential regulators of mtDNA replication and homologous recombination. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1952-1965. [PMID: 35925893 DOI: 10.1111/jipb.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Faithful DNA replication is one of the most essential processes in almost all living organisms. However, the proteins responsible for organellar DNA replication are still largely unknown in plants. Here, we show that the two mitochondrion-targeted single-stranded DNA-binding (SSB) proteins SSB1 and SSB2 directly interact with each other and act as key factors for mitochondrial DNA (mtDNA) maintenance, as their single or double loss-of-function mutants exhibit severe germination delay and growth retardation. The mtDNA levels in mutants lacking SSB1 and/or SSB2 function were two- to four-fold higher than in the wild-type (WT), revealing a negative role for SSB1/2 in regulating mtDNA replication. Genetic analysis indicated that SSB1 functions upstream of mitochondrial DNA POLYMERASE IA (POLIA) or POLIB in mtDNA replication, as mutation in either gene restored the high mtDNA copy number of the ssb1-1 mutant back to WT levels. In addition, SSB1 and SSB2 also participate in mitochondrial genome maintenance by influencing mtDNA homologous recombination (HR). Additional genetic analysis suggested that SSB1 functions upstream of ORGANELLAR SINGLE-STRANDED DNA-BINDING PROTEIN1 (OSB1) during mtDNA replication, while SSB1 may act downstream of OSB1 and MUTS HOMOLOG1 for mtDNA HR. Overall, our results yield new insights into the roles of the plant mitochondrion-targeted SSB proteins and OSB1 in maintaining mtDNA stability via affecting DNA replication and DNA HR.
Collapse
Affiliation(s)
- Jie Qian
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Min Zheng
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lingyu Wang
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yu Song
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiawen Yan
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yi-Feng Hsu
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
13
|
Chevigny N, Weber-Lotfi F, Le Blevenec A, Nadiras C, Fertet A, Bichara M, Erhardt M, Dietrich A, Raynaud C, Gualberto JM. RADA-dependent branch migration has a predominant role in plant mitochondria and its defect leads to mtDNA instability and cell cycle arrest. PLoS Genet 2022; 18:e1010202. [PMID: 35550632 PMCID: PMC9129000 DOI: 10.1371/journal.pgen.1010202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/24/2022] [Accepted: 04/14/2022] [Indexed: 12/21/2022] Open
Abstract
Mitochondria of flowering plants have large genomes whose structure and segregation are modulated by recombination activities. The post-synaptic late steps of mitochondrial DNA (mtDNA) recombination are still poorly characterized. Here we show that RADA, a plant ortholog of bacterial RadA/Sms, is an organellar protein that drives the major branch-migration pathway of plant mitochondria. While RadA/Sms is dispensable in bacteria, RADA-deficient Arabidopsis plants are severely impacted in their development and fertility, correlating with increased mtDNA recombination across intermediate-size repeats and accumulation of recombination-generated mitochondrial subgenomes. The radA mutation is epistatic to recG1 that affects the additional branch migration activity. In contrast, the double mutation radA recA3 is lethal, underlining the importance of an alternative RECA3-dependent pathway. The physical interaction of RADA with RECA2 but not with RECA3 further indicated that RADA is required for the processing of recombination intermediates in the RECA2-depedent recombination pathway of plant mitochondria. Although RADA is dually targeted to mitochondria and chloroplasts we found little to no effects of the radA mutation on the stability of the plastidial genome. Finally, we found that the deficient maintenance of the mtDNA in radA apparently triggers a retrograde signal that activates nuclear genes repressing cell cycle progression. In flowering plants, the mitochondrial genome is very large and dynamic, and its stability influences plant fitness and development. Rearrangements by recombination drive its very rapid evolution and can lead to valuable agronomic traits such as cytoplasmic sterility, used by breeders for the production of hybrid seeds. Here we describe RADA, a DNA helicase essential for the stability of the mitochondrial DNA in Arabidopsis. We demonstrate that RADA has branch migrating activity, accelerating the processing of recombination intermediates. radA mutants are severely affected in development and fertility. They display mitochondrial genome instability that results in uncoordinated replication of subgenomes created by recombination. Furthermore, we found that an important component of the growth defects of radA mutants is apparently a cellular response triggered by the sensing of damages to the mitochondrial genome, resulting in the activation of genes that suppress the progression of the cell cycle. Our results underline the importance of better understanding the plant mitochondrial recombination pathways and their cross-talk with nuclear gene expression.
Collapse
Affiliation(s)
- Nicolas Chevigny
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Frédérique Weber-Lotfi
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Anaïs Le Blevenec
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Cédric Nadiras
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Arnaud Fertet
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Marc Bichara
- Biotechnologie et Signalisation Cellulaire, CNRS, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Mathieu Erhardt
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - André Dietrich
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Cécile Raynaud
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - José M. Gualberto
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
14
|
Forner J, Kleinschmidt D, Meyer EH, Fischer A, Morbitzer R, Lahaye T, Schöttler MA, Bock R. Targeted introduction of heritable point mutations into the plant mitochondrial genome. NATURE PLANTS 2022; 8:245-256. [PMID: 35301443 PMCID: PMC8940627 DOI: 10.1038/s41477-022-01108-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/10/2022] [Indexed: 05/05/2023]
Abstract
The development of technologies for the genetic manipulation of mitochondrial genomes remains a major challenge. Here we report a method for the targeted introduction of mutations into plant mitochondrial DNA (mtDNA) that we refer to as transcription activator-like effector nuclease (TALEN) gene-drive mutagenesis (GDM), or TALEN-GDM. The method combines TALEN-induced site-specific cleavage of the mtDNA with selection for mutations that confer resistance to the TALEN cut. Applying TALEN-GDM to the tobacco mitochondrial nad9 gene, we isolated a large set of mutants carrying single amino acid substitutions in the Nad9 protein. The mutants could be purified to homochondriomy and stably inherited their edited mtDNA in the expected maternal fashion. TALEN-GDM induces both transitions and transversions, and can access most nucleotide positions within the TALEN binding site. Our work provides an efficient method for targeted mitochondrial genome editing that produces genetically stable, homochondriomic and fertile plants with specific point mutations in their mtDNA.
Collapse
Affiliation(s)
- Joachim Forner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Dennis Kleinschmidt
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Etienne H Meyer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
- Institut für Pflanzenphysiologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Axel Fischer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Robert Morbitzer
- ZMBP, Allgemeine Genetik, Universität Tübingen, Tübingen, Germany
| | - Thomas Lahaye
- ZMBP, Allgemeine Genetik, Universität Tübingen, Tübingen, Germany
| | - Mark A Schöttler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.
| |
Collapse
|
15
|
Yang J, Yang X, Su T, Hu Z, Zhang M. The Development of Mitochondrial Gene Editing Tools and Their Possible Roles in Crop Improvement for Future Agriculture. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2100019. [PMID: 36619350 PMCID: PMC9744482 DOI: 10.1002/ggn2.202100019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Indexed: 01/11/2023]
Abstract
We are living in the era of genome editing. Nowadays, targeted editing of the plant nuclear DNA is prevalent in basic biological research and crop improvement since its first establishment a decade ago. However, achieving the same accomplishment for the plant mitochondrial genome has long been deemed impossible. Recently, the pioneer studies on editing plant mitogenome have been done using the mitochondria-targeted transcription activator-like effector nucleases (mitoTALENs) in rice, rapeseed, and Arabidopsis. It is well documented that mitochondria play essential roles in plant development and stress tolerance, particularly, in cytoplasmic male sterility widely used in production of hybrids. The success of mitochondrial genome editing enables studying the fundamentals of mitochondrial genome. Furthermore, mitochondrial RNA editing (mostly by nuclear-encoded pentatricopeptide repeat (PPR) proteins) in a sequence-specific manner can simultaneously change the production of translatable mitochondrial mRNA. Moreover, direct editing of the nuclear-encoding mitochondria-targeted factors required for plant mitochondrial genome dynamics and recombination may facilitate genetic manipulation of plant mitochondria. Here, the present state of knowledge on editing the plant mitochondrial genome is reviewed.
Collapse
Affiliation(s)
- Jinghua Yang
- Hainan Institute, Zhejiang UniversityYazhou Bay Science and Technology CitySanya572025China
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhou310058China
| | - Xiaodong Yang
- Departments of Biology and Plant ScienceThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Tongbing Su
- Beijing Vegetable Research CenterBeijing Academy of Agriculture and Forestry SciencesBeijing100097China
| | - Zhongyuan Hu
- Hainan Institute, Zhejiang UniversityYazhou Bay Science and Technology CitySanya572025China
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhou310058China
| | - Mingfang Zhang
- Hainan Institute, Zhejiang UniversityYazhou Bay Science and Technology CitySanya572025China
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhou310058China
| |
Collapse
|
16
|
Møller IM, Rasmusson AG, Van Aken O. Plant mitochondria - past, present and future. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:912-959. [PMID: 34528296 DOI: 10.1111/tpj.15495] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The study of plant mitochondria started in earnest around 1950 with the first isolations of mitochondria from animal and plant tissues. The first 35 years were spent establishing the basic properties of plant mitochondria and plant respiration using biochemical and physiological approaches. A number of unique properties (compared to mammalian mitochondria) were observed: (i) the ability to oxidize malate, glycine and cytosolic NAD(P)H at high rates; (ii) the partial insensitivity to rotenone, which turned out to be due to the presence of a second NADH dehydrogenase on the inner surface of the inner mitochondrial membrane in addition to the classical Complex I NADH dehydrogenase; and (iii) the partial insensitivity to cyanide, which turned out to be due to an alternative oxidase, which is also located on the inner surface of the inner mitochondrial membrane, in addition to the classical Complex IV, cytochrome oxidase. With the appearance of molecular biology methods around 1985, followed by genomics, further unique properties were discovered: (iv) plant mitochondrial DNA (mtDNA) is 10-600 times larger than the mammalian mtDNA, yet it only contains approximately 50% more genes; (v) plant mtDNA has kept the standard genetic code, and it has a low divergence rate with respect to point mutations, but a high recombinatorial activity; (vi) mitochondrial mRNA maturation includes a uniquely complex set of activities for processing, splicing and editing (at hundreds of sites); (vii) recombination in mtDNA creates novel reading frames that can produce male sterility; and (viii) plant mitochondria have a large proteome with 2000-3000 different proteins containing many unique proteins such as 200-300 pentatricopeptide repeat proteins. We describe the present and fairly detailed picture of the structure and function of plant mitochondria and how the unique properties make their metabolism more flexible allowing them to be involved in many diverse processes in the plant cell, such as photosynthesis, photorespiration, CAM and C4 metabolism, heat production, temperature control, stress resistance mechanisms, programmed cell death and genomic evolution. However, it is still a challenge to understand how the regulation of metabolism and mtDNA expression works at the cellular level and how retrograde signaling from the mitochondria coordinates all those processes.
Collapse
Affiliation(s)
- Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | | | | |
Collapse
|
17
|
Schatz-Daas D, Fertet A, Lotfi F, Gualberto JM. Assessment of Mitochondrial DNA Copy Number, Stability, and Repair in Arabidopsis. Methods Mol Biol 2021; 2363:301-319. [PMID: 34545500 DOI: 10.1007/978-1-0716-1653-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Mitochondrial functions depend on the proper maintenance and expression of the mitochondrial genome (mtDNA). Therefore, understanding mtDNA replication and repair requires methods to assess its integrity. Mutations or chemical treatments that affect processes involved in the maintenance or stability of the mtDNA can affect its global copy number, but also the relative abundance of different genomic regions or the frequency of illegitimate recombination across repeated sequences. These can be conveniently tested by quantitative PCR (qPCR). Arabidopsis thaliana offers several advantages for studying these processes, because of the extensive collections of mutants, natural accessions and other genetic resources available from stock centers. Here we describe protocols we routinely use to explore changes in mtDNA copy number and relative stoichiometry in Arabidopsis mutants of genes involved in the replication, repair and recombination of the mtDNA.
Collapse
Affiliation(s)
- Déborah Schatz-Daas
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Arnaud Fertet
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Frédérique Lotfi
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - José M Gualberto
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
18
|
Cheng L, Wang W, Yao Y, Sun Q. Mitochondrial RNase H1 activity regulates R-loop homeostasis to maintain genome integrity and enable early embryogenesis in Arabidopsis. PLoS Biol 2021; 19:e3001357. [PMID: 34343166 PMCID: PMC8330923 DOI: 10.1371/journal.pbio.3001357] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/08/2021] [Indexed: 11/24/2022] Open
Abstract
Plant mitochondrial genomes undergo frequent homologous recombination (HR). Ectopic HR activity is inhibited by the HR surveillance pathway, but the underlying regulatory mechanism is unclear. Here, we show that the mitochondrial RNase H1 AtRNH1B impairs the formation of RNA:DNA hybrids (R-loops) and participates in the HR surveillance pathway in Arabidopsis thaliana. AtRNH1B suppresses ectopic HR at intermediate-sized repeats (IRs) and thus maintains mitochondrial DNA (mtDNA) replication. The RNase H1 AtRNH1C is restricted to the chloroplast; however, when cells lack AtRNH1B, transport of chloroplast AtRNH1C into the mitochondria secures HR surveillance, thus ensuring the integrity of the mitochondrial genome and allowing embryogenesis to proceed. HR surveillance is further regulated by the single-stranded DNA-binding protein ORGANELLAR SINGLE-STRANDED DNA BINDING PROTEIN1 (OSB1), which decreases the formation of R-loops. This study uncovers a facultative dual targeting mechanism between organelles and sheds light on the roles of RNase H1 in organellar genome maintenance and embryogenesis. This study clarifies the function of mitochondrial RNase H1 in genome stability and early embryogenesis in plants, and shows that mitochondrial R-loops are involved in homologous recombination surveillance of mtDNA. Facultative re-targeting of the chloroplast RNase H1 protein to mitochondria, in response to cellular conditions, can help guarantee mitochondrial RNase H1 activity.
Collapse
Affiliation(s)
- Lingling Cheng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenjie Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yao Yao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
19
|
Wang W, Li K, Yang Z, Hou Q, Zhao WW, Sun Q. RNase H1C collaborates with ssDNA binding proteins WHY1/3 and recombinase RecA1 to fulfill the DNA damage repair in Arabidopsis chloroplasts. Nucleic Acids Res 2021; 49:6771-6787. [PMID: 34133716 PMCID: PMC8266629 DOI: 10.1093/nar/gkab479] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/25/2021] [Accepted: 05/19/2021] [Indexed: 12/28/2022] Open
Abstract
Proper repair of damaged DNA is crucial for genetic integrity and organismal survival. As semi-autonomous organelles, plastids have their own genomes whose integrity must be preserved. Several factors have been shown to participate in plastid DNA damage repair; however, the underlying mechanism remains unclear. Here, we elucidate a mechanism of homologous recombination (HR) repair in chloroplasts that involves R-loops. We find that the recombinase RecA1 forms filaments in chloroplasts during HR repair, but aggregates as puncta when RNA:DNA hybrids accumulate. ssDNA-binding proteins WHY1/3 and chloroplast RNase H1 AtRNH1C are recruited to the same genomic sites to promote HR repair. Depletion of AtRNH1C or WHY1/3 significantly suppresses the binding of RNA polymerase to the damaged DNA, thus reducing HR repair and modulating microhomology-mediated double-strand break repair. Furthermore, we show that DNA polymerase IB works with AtRNH1C genetically to complete the DNA damage repair process. This study reveals the positive role of R-loops in facilitating the activities of WHY1/3 and RecA1, which in turn secures HR repair and organellar development.
Collapse
Affiliation(s)
- Wenjie Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Kuan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Zhuo Yang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Quancan Hou
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei W Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
20
|
Ultra-deep sequencing reveals dramatic alteration of organellar genomes in Physcomitrella patens due to biased asymmetric recombination. Commun Biol 2021; 4:633. [PMID: 34045660 PMCID: PMC8159992 DOI: 10.1038/s42003-021-02141-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 04/22/2021] [Indexed: 12/21/2022] Open
Abstract
Destabilization of organelle genomes causes organelle dysfunction that appears as abnormal growth in plants and diseases in human. In plants, loss of the bacterial-type homologous recombination repair (HRR) factors RECA and RECG induces organelle genome instability. In this study, we show the landscape of organelle genome instability in Physcomitrella patens HRR knockout mutants by deep sequencing in combination with informatics approaches. Genome-wide maps of rearrangement positions in the organelle genomes, which exhibited prominent mutant-specific patterns, were highly biased in terms of direction and location and often associated with dramatic variation in read depth. The rearrangements were location-dependent and mostly derived from the asymmetric products of microhomology-mediated recombination. Our results provide an overall picture of organelle-specific gross genomic rearrangements in the HRR mutants, and suggest that chloroplasts and mitochondria share common mechanisms for replication-related rearrangements. Masaki Odahara and Kensuke Nakamura et al. use deep paired-end sequencing to examine organellar genome recombination when homologous recombination repair genes are individually knocked out in the moss, Physcomitrella patens. Their results suggest that chloroplasts and mitochondria share a common mechanism for replication-related rearrangements.
Collapse
|
21
|
Yang W, Zou J, Yu Y, Long W, Li S. Repeats in mitochondrial and chloroplast genomes characterize the ecotypes of the Oryza. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:7. [PMID: 37309528 PMCID: PMC10236085 DOI: 10.1007/s11032-020-01198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/28/2020] [Indexed: 06/14/2023]
Abstract
Mitochondria and chloroplast are very important organelles for organism, participating in basic life activity. Their genomes contain many repeats which can lead to a variation of genome structure. Oryza is an important genus for human beings' nutrition. Several mitochondrial and chloroplast genomes of Oryza have been sequenced, which help us to insight the distribution and evolution of the repeats in Oryza species. In this paper, we compared six mitochondrial and 13 chloroplast genomes of Oryza and found that the structures of mitochondrial genomes were more diverse than chloroplast genomes. Since repeats can change the structure of the genome, resulting in the structural diversity of the genome, we analyzed all repeats and found 31 repeats in mitochondrial and 13 repeats in chloroplast genomes. Further, we developed 21 pairs of MRS molecular markers and 12 pairs of CRS molecular markers based on mitochondrial repeats and chloroplast repeats, respectively. These molecular markers can be used to detect the repeat-mediated recombination in Oryza mitochondrial and chloroplast genomes by PCR or fluorescence quantification. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-020-01198-6.
Collapse
Affiliation(s)
- Weilong Yang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072 China
| | - Jianing Zou
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072 China
| | - Yajie Yu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072 China
| | - Weixiong Long
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072 China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
22
|
The Dark Side of UV-Induced DNA Lesion Repair. Genes (Basel) 2020; 11:genes11121450. [PMID: 33276692 PMCID: PMC7761550 DOI: 10.3390/genes11121450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
In their life cycle, plants are exposed to various unfavorable environmental factors including ultraviolet (UV) radiation emitted by the Sun. UV-A and UV-B, which are partially absorbed by the ozone layer, reach the surface of the Earth causing harmful effects among the others on plant genetic material. The energy of UV light is sufficient to induce mutations in DNA. Some examples of DNA damage induced by UV are pyrimidine dimers, oxidized nucleotides as well as single and double-strand breaks. When exposed to light, plants can repair major UV-induced DNA lesions, i.e., pyrimidine dimers using photoreactivation. However, this highly efficient light-dependent DNA repair system is ineffective in dim light or at night. Moreover, it is helpless when it comes to the repair of DNA lesions other than pyrimidine dimers. In this review, we have focused on how plants cope with deleterious DNA damage that cannot be repaired by photoreactivation. The current understanding of light-independent mechanisms, classified as dark DNA repair, indispensable for the maintenance of plant genetic material integrity has been presented.
Collapse
|
23
|
Kobayashi Y, Odahara M, Sekine Y, Hamaji T, Fujiwara S, Nishimura Y, Miyagishima SY. Holliday Junction Resolvase MOC1 Maintains Plastid and Mitochondrial Genome Integrity in Algae and Bryophytes. PLANT PHYSIOLOGY 2020; 184:1870-1883. [PMID: 32978278 PMCID: PMC7723093 DOI: 10.1104/pp.20.00763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
When DNA double-strand breaks occur, four-stranded DNA structures called Holliday junctions (HJs) form during homologous recombination. Because HJs connect homologous DNA by a covalent link, resolution of HJ is crucial to terminate homologous recombination and segregate the pair of DNA molecules faithfully. We recently identified Monokaryotic Chloroplast1 (MOC1) as a plastid DNA HJ resolvase in algae and plants. Although Cruciform cutting endonuclease1 (CCE1) was identified as a mitochondrial DNA HJ resolvase in yeasts, homologs or other mitochondrial HJ resolvases have not been identified in other eukaryotes. Here, we demonstrate that MOC1 depletion in the green alga Chlamydomonas reinhardtii and the moss Physcomitrella patens induced ectopic recombination between short dispersed repeats in ptDNA. In addition, MOC1 depletion disorganized thylakoid membranes in plastids. In some land plant lineages, such as the moss P. patens, a liverwort and a fern, MOC1 dually targeted to plastids and mitochondria. Moreover, mitochondrial targeting of MOC1 was also predicted in charophyte algae and some land plant species. Besides causing instability of plastid DNA, MOC1 depletion in P. patens induced short dispersed repeat-mediated ectopic recombination in mitochondrial DNA and disorganized cristae in mitochondria. Similar phenotypes in plastids and mitochondria were previously observed in mutants of plastid-targeted (RECA2) and mitochondrion-targeted (RECA1) recombinases, respectively. These results suggest that MOC1 functions in the double-strand break repair in which a recombinase generates HJs and MOC1 resolves HJs in mitochondria of some lineages of algae and plants as well as in plastids in algae and plants.
Collapse
Affiliation(s)
- Yusuke Kobayashi
- College of Science, Graduate School of Science and Engineering, Ibaraki University, Bunkyo, Mito, Ibaraki 310-8512, Japan
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Masaki Odahara
- Department of Life Science, College of Science, Rikkyo (St. Paul's) University, Toshima-ku, Tokyo 171-8501, Japan
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Yasuhiko Sekine
- Department of Life Science, College of Science, Rikkyo (St. Paul's) University, Toshima-ku, Tokyo 171-8501, Japan
| | - Takashi Hamaji
- Department of Botany, Laboratory of Plant Molecular Genetics, Kyoto University, Oiwake-cho, Kita-shirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Sumire Fujiwara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan
| | - Yoshiki Nishimura
- Department of Botany, Laboratory of Plant Molecular Genetics, Kyoto University, Oiwake-cho, Kita-shirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shin-Ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
24
|
Meng C, Yang M, Wang Y, Chen C, Sui N, Meng Q, Zhuang K, Lv W. SlWHY2 interacts with SlRECA2 to maintain mitochondrial function under drought stress in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110674. [PMID: 33218640 DOI: 10.1016/j.plantsci.2020.110674] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/27/2020] [Accepted: 09/08/2020] [Indexed: 05/24/2023]
Abstract
Drought stress in plants leads to inhibition of photosynthesis and respiration, accumulation of reactive oxygen species (ROS), and reprogramming of gene expression. Here, we established that the tomato (Solanum lycopersicum) WHIRLY2 (SlWHY2) gene, which encodes a mitochondrial single-stranded DNA-binding protein, was significantly induced by drought stress. Under drought conditions, SlWHY2 RNAi plants showed more wilting and lower fresh weight, chlorophyll content, quantum yield of photosystem I (PSI; YI), and maximal photochemical efficiency of PSII (Fv/Fm) than the wild type (WT). Drought treatment also caused the SlWHY2 RNAi lines to accumulate more ROS than the WT, and the silenced lines had lower AOX (alternative oxidase) activity. As expected, the mitochondrial membrane potential (MMP) was less stable in the SlWHY2 RNAi lines. The expression levels of seven genes in the mitochondrial genome (SYCF15, NAD7, NAD4, COS2, COX1, COX2, and COX3) were decreased even more in the SlWHY2 RNAi lines than they were in the WT under drought stress. SlWHY2 interacted directly in vivo and in vitro with SlRECA2, a mitochondrial recombinase A that is important for mitochondrial DNA recombination and repair. These results suggest that SlWHY2 plays an essential role in maintaining mitochondrial function and enhancing drought tolerance in tomato.
Collapse
Affiliation(s)
- Chen Meng
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Minmin Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong 271018, China
| | - Yixuan Wang
- Key Lab of Soil & Water Conservation and Desertification Combating, College of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Chong Chen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong 271018, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong 271018, China
| | - Kunyang Zhuang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong 271018, China.
| | - Wei Lv
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong 271018, China.
| |
Collapse
|
25
|
Peralta-Castro A, García-Medel PL, Baruch-Torres N, Trasviña-Arenas CH, Juarez-Quintero V, Morales-Vazquez CM, Brieba LG. Plant Organellar DNA Polymerases Evolved Multifunctionality through the Acquisition of Novel Amino Acid Insertions. Genes (Basel) 2020; 11:genes11111370. [PMID: 33228188 PMCID: PMC7699545 DOI: 10.3390/genes11111370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
The majority of DNA polymerases (DNAPs) are specialized enzymes with specific roles in DNA replication, translesion DNA synthesis (TLS), or DNA repair. The enzymatic characteristics to perform accurate DNA replication are in apparent contradiction with TLS or DNA repair abilities. For instance, replicative DNAPs incorporate nucleotides with high fidelity and processivity, whereas TLS DNAPs are low-fidelity polymerases with distributive nucleotide incorporation. Plant organelles (mitochondria and chloroplast) are replicated by family-A DNA polymerases that are both replicative and TLS DNAPs. Furthermore, plant organellar DNA polymerases from the plant model Arabidopsis thaliana (AtPOLIs) execute repair of double-stranded breaks by microhomology-mediated end-joining and perform Base Excision Repair (BER) using lyase and strand-displacement activities. AtPOLIs harbor three unique insertions in their polymerization domain that are associated with TLS, microhomology-mediated end-joining (MMEJ), strand-displacement, and lyase activities. We postulate that AtPOLIs are able to execute those different functions through the acquisition of these novel amino acid insertions, making them multifunctional enzymes able to participate in DNA replication and DNA repair.
Collapse
Affiliation(s)
- Antolín Peralta-Castro
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
| | - Paola L. García-Medel
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
| | - Noe Baruch-Torres
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
| | - Carlos H. Trasviña-Arenas
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Víctor Juarez-Quintero
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
| | - Carlos M. Morales-Vazquez
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
| | - Luis G. Brieba
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
- Correspondence: ; Tel.: +52-462-1663007
| |
Collapse
|
26
|
Sullivan AR, Eldfjell Y, Schiffthaler B, Delhomme N, Asp T, Hebelstrup KH, Keech O, Öberg L, Møller IM, Arvestad L, Street NR, Wang XR. The Mitogenome of Norway Spruce and a Reappraisal of Mitochondrial Recombination in Plants. Genome Biol Evol 2020; 12:3586-3598. [PMID: 31774499 PMCID: PMC6944214 DOI: 10.1093/gbe/evz263] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Plant mitogenomes can be difficult to assemble because they are structurally dynamic and prone to intergenomic DNA transfers, leading to the unusual situation where an organelle genome is far outnumbered by its nuclear counterparts. As a result, comparative mitogenome studies are in their infancy and some key aspects of genome evolution are still known mainly from pregenomic, qualitative methods. To help address these limitations, we combined machine learning and in silico enrichment of mitochondrial-like long reads to assemble the bacterial-sized mitogenome of Norway spruce (Pinaceae: Picea abies). We conducted comparative analyses of repeat abundance, intergenomic transfers, substitution and rearrangement rates, and estimated repeat-by-repeat homologous recombination rates. Prompted by our discovery of highly recombinogenic small repeats in P. abies, we assessed the genomic support for the prevailing hypothesis that intramolecular recombination is predominantly driven by repeat length, with larger repeats facilitating DNA exchange more readily. Overall, we found mixed support for this view: Recombination dynamics were heterogeneous across vascular plants and highly active small repeats (ca. 200 bp) were present in about one-third of studied mitogenomes. As in previous studies, we did not observe any robust relationships among commonly studied genome attributes, but we identify variation in recombination rates as a underinvestigated source of plant mitogenome diversity.
Collapse
Affiliation(s)
- Alexis R Sullivan
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Sweden
| | - Yrin Eldfjell
- Science for Life Laboratory, Department of Mathematics, Swedish e-Science Research Centre, Stockholm University, Sweden
| | - Bastian Schiffthaler
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, Sweden
| | - Nicolas Delhomme
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Torben Asp
- Department of Molecular Biology and Genetics, Aarhus University, Slagelse, Denmark
| | | | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, Sweden
| | - Lisa Öberg
- Oldtjikko Photo Art & Science, Duved, Sweden
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Slagelse, Denmark
| | - Lars Arvestad
- Science for Life Laboratory, Department of Mathematics, Swedish e-Science Research Centre, Stockholm University, Sweden
| | - Nathaniel R Street
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, Sweden
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Sweden
| |
Collapse
|
27
|
Wu Z, Waneka G, Broz AK, King CR, Sloan DB. MSH1 is required for maintenance of the low mutation rates in plant mitochondrial and plastid genomes. Proc Natl Acad Sci U S A 2020. [PMID: 32601224 DOI: 10.1073/pnas.2001998117/suppl_file/pnas.2001998117.sd01.xlsx] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Mitochondrial and plastid genomes in land plants exhibit some of the slowest rates of sequence evolution observed in any eukaryotic genome, suggesting an exceptional ability to prevent or correct mutations. However, the mechanisms responsible for this extreme fidelity remain unclear. We tested seven candidate genes involved in cytoplasmic DNA replication, recombination, and repair (POLIA, POLIB, MSH1, RECA3, UNG, FPG, and OGG1) for effects on mutation rates in the model angiosperm Arabidopsis thaliana by applying a highly accurate DNA sequencing technique (duplex sequencing) that can detect newly arisen mitochondrial and plastid mutations even at low heteroplasmic frequencies. We find that disrupting MSH1 (but not the other candidate genes) leads to massive increases in the frequency of point mutations and small indels and changes to the mutation spectrum in mitochondrial and plastid DNA. We also used droplet digital PCR to show transmission of de novo heteroplasmies across generations in msh1 mutants, confirming a contribution to heritable mutation rates. This dual-targeted gene is part of an enigmatic lineage within the mutS mismatch repair family that we find is also present outside of green plants in multiple eukaryotic groups (stramenopiles, alveolates, haptophytes, and cryptomonads), as well as certain bacteria and viruses. MSH1 has previously been shown to limit ectopic recombination in plant cytoplasmic genomes. Our results point to a broader role in recognition and correction of errors in plant mitochondrial and plastid DNA sequence, leading to greatly suppressed mutation rates perhaps via initiation of double-stranded breaks and repair pathways based on faithful homologous recombination.
Collapse
Affiliation(s)
- Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Gus Waneka
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Connor R King
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
28
|
MSH1 is required for maintenance of the low mutation rates in plant mitochondrial and plastid genomes. Proc Natl Acad Sci U S A 2020; 117:16448-16455. [PMID: 32601224 DOI: 10.1073/pnas.2001998117] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial and plastid genomes in land plants exhibit some of the slowest rates of sequence evolution observed in any eukaryotic genome, suggesting an exceptional ability to prevent or correct mutations. However, the mechanisms responsible for this extreme fidelity remain unclear. We tested seven candidate genes involved in cytoplasmic DNA replication, recombination, and repair (POLIA, POLIB, MSH1, RECA3, UNG, FPG, and OGG1) for effects on mutation rates in the model angiosperm Arabidopsis thaliana by applying a highly accurate DNA sequencing technique (duplex sequencing) that can detect newly arisen mitochondrial and plastid mutations even at low heteroplasmic frequencies. We find that disrupting MSH1 (but not the other candidate genes) leads to massive increases in the frequency of point mutations and small indels and changes to the mutation spectrum in mitochondrial and plastid DNA. We also used droplet digital PCR to show transmission of de novo heteroplasmies across generations in msh1 mutants, confirming a contribution to heritable mutation rates. This dual-targeted gene is part of an enigmatic lineage within the mutS mismatch repair family that we find is also present outside of green plants in multiple eukaryotic groups (stramenopiles, alveolates, haptophytes, and cryptomonads), as well as certain bacteria and viruses. MSH1 has previously been shown to limit ectopic recombination in plant cytoplasmic genomes. Our results point to a broader role in recognition and correction of errors in plant mitochondrial and plastid DNA sequence, leading to greatly suppressed mutation rates perhaps via initiation of double-stranded breaks and repair pathways based on faithful homologous recombination.
Collapse
|
29
|
Wynn E, Purfeerst E, Christensen A. Mitochondrial DNA Repair in an Arabidopsis thaliana Uracil N-Glycosylase Mutant. PLANTS (BASEL, SWITZERLAND) 2020; 9:E261. [PMID: 32085412 PMCID: PMC7076443 DOI: 10.3390/plants9020261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 02/07/2023]
Abstract
Substitution rates in plant mitochondrial genes are extremely low, indicating strong selective pressure as well as efficient repair. Plant mitochondria possess base excision repair pathways; however, many repair pathways such as nucleotide excision repair and mismatch repair appear to be absent. In the absence of these pathways, many DNA lesions must be repaired by a different mechanism. To test the hypothesis that double-strand break repair (DSBR) is that mechanism, we maintained independent self-crossing lineages of plants deficient in uracil-N-glycosylase (UNG) for 11 generations to determine the repair outcomes when that pathway is missing. Surprisingly, no single nucleotide polymorphisms (SNPs) were fixed in any line in generation 11. The pattern of heteroplasmic SNPs was also unaltered through 11 generations. When the rate of cytosine deamination was increased by mitochondrial expression of the cytosine deaminase APOBEC3G, there was an increase in heteroplasmic SNPs but only in mature leaves. Clearly, DNA maintenance in reproductive meristem mitochondria is very effective in the absence of UNG while mitochondrial genomes in differentiated tissue are maintained through a different mechanism or not at all. Several genes involved in DSBR are upregulated in the absence of UNG, indicating that double-strand break repair is a general system of repair in plant mitochondria. It is important to note that the developmental stage of tissues is critically important for these types of experiments.
Collapse
Affiliation(s)
- Emily Wynn
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (E.W.); (E.P.)
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Emma Purfeerst
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (E.W.); (E.P.)
- Athletics Department, Bethany Lutheran College, Mankato, MN 56001, USA
| | - Alan Christensen
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (E.W.); (E.P.)
| |
Collapse
|
30
|
Factors Affecting Organelle Genome Stability in Physcomitrella patens. PLANTS 2020; 9:plants9020145. [PMID: 31979236 PMCID: PMC7076466 DOI: 10.3390/plants9020145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 01/25/2023]
Abstract
Organelle genomes are essential for plants; however, the mechanisms underlying the maintenance of organelle genomes are incompletely understood. Using the basal land plant Physcomitrella patens as a model, nuclear-encoded homologs of bacterial-type homologous recombination repair (HRR) factors have been shown to play an important role in the maintenance of organelle genome stability by suppressing recombination between short dispersed repeats. In this review, I summarize the factors and pathways involved in the maintenance of genome stability, as well as the repeats that cause genomic instability in organelles in P. patens, and compare them with findings in other plant species. I also discuss the relationship between HRR factors and organelle genome structure from the evolutionary standpoint.
Collapse
|
31
|
Chevigny N, Schatz-Daas D, Lotfi F, Gualberto JM. DNA Repair and the Stability of the Plant Mitochondrial Genome. Int J Mol Sci 2020; 21:E328. [PMID: 31947741 PMCID: PMC6981420 DOI: 10.3390/ijms21010328] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/27/2019] [Accepted: 01/01/2020] [Indexed: 12/13/2022] Open
Abstract
The mitochondrion stands at the center of cell energy metabolism. It contains its own genome, the mtDNA, that is a relic of its prokaryotic symbiotic ancestor. In plants, the mitochondrial genetic information influences important agronomic traits including fertility, plant vigor, chloroplast function, and cross-compatibility. Plant mtDNA has remarkable characteristics: It is much larger than the mtDNA of other eukaryotes and evolves very rapidly in structure. This is because of recombination activities that generate alternative mtDNA configurations, an important reservoir of genetic diversity that promotes rapid mtDNA evolution. On the other hand, the high incidence of ectopic recombination leads to mtDNA instability and the expression of gene chimeras, with potential deleterious effects. In contrast to the structural plasticity of the genome, in most plant species the mtDNA coding sequences evolve very slowly, even if the organization of the genome is highly variable. Repair mechanisms are probably responsible for such low mutation rates, in particular repair by homologous recombination. Herein we review some of the characteristics of plant organellar genomes and of the repair pathways found in plant mitochondria. We further discuss how homologous recombination is involved in the evolution of the plant mtDNA.
Collapse
Affiliation(s)
| | | | | | - José Manuel Gualberto
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67081 Strasbourg, France; (N.C.); (D.S.-D.); (F.L.)
| |
Collapse
|
32
|
Klucnika A, Ma H. Mapping and editing animal mitochondrial genomes: can we overcome the challenges? Philos Trans R Soc Lond B Biol Sci 2019; 375:20190187. [PMID: 31787046 DOI: 10.1098/rstb.2019.0187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The animal mitochondrial genome, although small, can have a big impact on health and disease. Non-pathogenic sequence variation among mitochondrial DNA (mtDNA) haplotypes influences traits including fertility, healthspan and lifespan, whereas pathogenic mutations are linked to incurable mitochondrial diseases and other complex conditions like ageing, diabetes, cancer and neurodegeneration. However, we know very little about how mtDNA genetic variation contributes to phenotypic differences. Infrequent recombination, the multicopy nature and nucleic acid-impenetrable membranes present significant challenges that hamper our ability to precisely map mtDNA variants responsible for traits, and to genetically modify mtDNA so that we can isolate specific mutants and characterize their biochemical and physiological consequences. Here, we summarize the past struggles and efforts in developing systems to map and edit mtDNA. We also assess the future of performing forward and reverse genetic studies on animal mitochondrial genomes. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Anna Klucnika
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Hansong Ma
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
33
|
Brieba LG. Structure-Function Analysis Reveals the Singularity of Plant Mitochondrial DNA Replication Components: A Mosaic and Redundant System. PLANTS 2019; 8:plants8120533. [PMID: 31766564 PMCID: PMC6963530 DOI: 10.3390/plants8120533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
Plants are sessile organisms, and their DNA is particularly exposed to damaging agents. The integrity of plant mitochondrial and plastid genomes is necessary for cell survival. During evolution, plants have evolved mechanisms to replicate their mitochondrial genomes while minimizing the effects of DNA damaging agents. The recombinogenic character of plant mitochondrial DNA, absence of defined origins of replication, and its linear structure suggest that mitochondrial DNA replication is achieved by a recombination-dependent replication mechanism. Here, I review the mitochondrial proteins possibly involved in mitochondrial DNA replication from a structural point of view. A revision of these proteins supports the idea that mitochondrial DNA replication could be replicated by several processes. The analysis indicates that DNA replication in plant mitochondria could be achieved by a recombination-dependent replication mechanism, but also by a replisome in which primers are synthesized by three different enzymes: Mitochondrial RNA polymerase, Primase-Helicase, and Primase-Polymerase. The recombination-dependent replication model and primers synthesized by the Primase-Polymerase may be responsible for the presence of genomic rearrangements in plant mitochondria.
Collapse
Affiliation(s)
- Luis Gabriel Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato C.P. 36821, Mexico
| |
Collapse
|
34
|
García-Medel PL, Baruch-Torres N, Peralta-Castro A, Trasviña-Arenas CH, Torres-Larios A, Brieba LG. Plant organellar DNA polymerases repair double-stranded breaks by microhomology-mediated end-joining. Nucleic Acids Res 2019; 47:3028-3044. [PMID: 30698803 PMCID: PMC6451138 DOI: 10.1093/nar/gkz039] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 12/23/2018] [Accepted: 01/15/2019] [Indexed: 12/27/2022] Open
Abstract
Double-stranded breaks (DSBs) in plant organelles are repaired via genomic rearrangements characterized by microhomologous repeats. These microhomologous signatures predict the existence of an unidentified enzymatic machinery capable of repairing of DSBs via microhomology-mediated end-joining (MMEJ) in plant organelles. Here, we show that organellar DNA polymerases from Arabidopsis thaliana (AtPolIA and AtPolIB) perform MMEJ using microhomologous sequences as short as six nucleotides. AtPolIs execute MMEJ by virtue of two specialized amino acid insertions located in their thumb subdomains. Single-stranded binding proteins (SSBs) unique to plants, AtWhirly2 and organellar single-stranded binding proteins (AtOSBs), hinder MMEJ, whereas canonical mitochondrial SSBs (AtmtSSB1 and AtmtSSB2) do not interfere with MMEJ. Our data predict that organellar DNA rearrangements by MMEJ are a consequence of a competition for the 3'-OH of a DSBs. If AtWhirlies or AtOSBs gain access to the single-stranded DNA (ssDNA) region of a DSB, the reaction will shift towards high-fidelity routes like homologous recombination. Conversely MMEJ would be favored if AtPolIs or AtmtSSBs interact with the DSB. AtPolIs are not phylogenetically related to metazoan mitochondrial DNA polymerases, and the ability of AtPolIs to execute MMEJ may explain the abundance of DNA rearrangements in plant organelles in comparison to animal mitochondria.
Collapse
Affiliation(s)
- Paola L García-Medel
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, CP 36821, México
| | - Noe Baruch-Torres
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, CP 36821, México
| | - Antolín Peralta-Castro
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, CP 36821, México
| | - Carlos H Trasviña-Arenas
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, CP 36821, México
| | - Alfredo Torres-Larios
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Apartado postal 70-243, Mexico City 04510, México
| | - Luis G Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, CP 36821, México
| |
Collapse
|
35
|
Kozik A, Rowan BA, Lavelle D, Berke L, Schranz ME, Michelmore RW, Christensen AC. The alternative reality of plant mitochondrial DNA: One ring does not rule them all. PLoS Genet 2019; 15:e1008373. [PMID: 31469821 PMCID: PMC6742443 DOI: 10.1371/journal.pgen.1008373] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/12/2019] [Accepted: 08/16/2019] [Indexed: 01/27/2023] Open
Abstract
Plant mitochondrial genomes are usually assembled and displayed as circular maps based on the widely-held view across the broad community of life scientists that circular genome-sized molecules are the primary form of plant mitochondrial DNA, despite the understanding by plant mitochondrial researchers that this is an inaccurate and outdated concept. Many plant mitochondrial genomes have one or more pairs of large repeats that can act as sites for inter- or intramolecular recombination, leading to multiple alternative arrangements (isoforms). Most mitochondrial genomes have been assembled using methods unable to capture the complete spectrum of isoforms within a species, leading to an incomplete inference of their structure and recombinational activity. To document and investigate underlying reasons for structural diversity in plant mitochondrial DNA, we used long-read (PacBio) and short-read (Illumina) sequencing data to assemble and compare mitochondrial genomes of domesticated (Lactuca sativa) and wild (L. saligna and L. serriola) lettuce species. We characterized a comprehensive, complex set of isoforms within each species and compared genome structures between species. Physical analysis of L. sativa mtDNA molecules by fluorescence microscopy revealed a variety of linear, branched, and circular structures. The mitochondrial genomes for L. sativa and L. serriola were identical in sequence and arrangement and differed substantially from L. saligna, indicating that the mitochondrial genome structure did not change during domestication. From the isoforms in our data, we infer that recombination occurs at repeats of all sizes at variable frequencies. The differences in genome structure between L. saligna and the two other Lactuca species can be largely explained by rare recombination events that rearranged the structure. Our data demonstrate that representations of plant mitochondrial genomes as simple, circular molecules are not accurate descriptions of their true nature and that in reality plant mitochondrial DNA is a complex, dynamic mixture of forms.
Collapse
Affiliation(s)
- Alexander Kozik
- Genome Center and Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Beth A. Rowan
- Genome Center and Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Dean Lavelle
- Genome Center and Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Lidija Berke
- Wageningen University & Research, PB Wageningen, Gelderland, The Netherlands
| | - M. Eric Schranz
- Wageningen University & Research, PB Wageningen, Gelderland, The Netherlands
| | - Richard W. Michelmore
- Genome Center and Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Alan C. Christensen
- School of Biological Sciences, University of Nebraska - Lincoln, Lincoln, Nebraska, United States of America
| |
Collapse
|
36
|
AbdelGawwad MR, Marić A, Al-Ghamdi AA, Hatamleh AA. Interactome Analysis and Docking Sites of MutS Homologs Reveal New Physiological Roles in Arabidopsis thaliana. Molecules 2019; 24:molecules24132493. [PMID: 31288414 PMCID: PMC6651420 DOI: 10.3390/molecules24132493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 11/16/2022] Open
Abstract
Due to their sedentary lifestyle, plants are constantly exposed to different stress stimuli. Stress comes in variety of forms where factors like radiation, free radicals, “replication errors, polymerase slippage”, and chemical mutagens result in genotoxic or cytotoxic damage. In order to face “the base oxidation or DNA replication stress”, plants have developed many sophisticated mechanisms. One of them is the DNA mismatch repair (MMR) pathway. The main part of the MMR is the MutS homologue (MSH) protein family. The genome of Arabidopsis thaliana encodes at least seven homologues of the MSH family: AtMSH1, AtMSH2, AtMSH3, AtMSH4, AtMSH5, AtMSH6, and AtMSH7. Despite their importance, the functions of AtMSH homologs have not been investigated. In this work, bioinformatics tools were used to obtain a better understanding of MSH-mediated DNA repair mechanisms in Arabidopsis thaliana and to understand the additional biological roles of AtMSH family members. In silico analysis, including phylogeny tracking, prediction of 3D structure, interactome analysis, and docking site prediction, suggested interactions with proteins were important for physiological development of A. thaliana. The MSH homologs extensively interacted with both TIL1 and TIL2 (DNA polymerase epsilon catalytic subunit), proteins involved in cell fate determination during plant embryogenesis and involved in flowering time repression. Additionally, interactions with the RECQ protein family (helicase enzymes) and proteins of nucleotide excision repair pathway were detected. Taken together, the results presented here confirm the important role of AtMSH proteins in mismatch repair and suggest important new physiological roles.
Collapse
Affiliation(s)
- Mohamed Ragab AbdelGawwad
- Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, 71210 Sarajevo, Bosnia and Herzegovina.
| | - Aida Marić
- Centre for Research in Agricultural Genomics, UAB-Edifici CRAG, Cerdanyola, 08193 Barcelona, Spain
| | - Abdullah Ahmed Al-Ghamdi
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ashraf A Hatamleh
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
37
|
Li C, Wong JTY. DNA Damage Response Pathways in Dinoflagellates. Microorganisms 2019; 7:E191. [PMID: 31284474 PMCID: PMC6680887 DOI: 10.3390/microorganisms7070191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 12/17/2022] Open
Abstract
Dinoflagellates are a general group of phytoplankton, ubiquitous in aquatic environments. Most dinoflagellates are non-obligate autotrophs, subjected to potential physical and chemical DNA-damaging agents, including UV irradiation, in the euphotic zone. Delay of cell cycles by irradiation, as part of DNA damage responses (DDRs), could potentially lead to growth inhibition, contributing to major errors in the estimation of primary productivity and interpretations of photo-inhibition. Their liquid crystalline chromosomes (LCCs) have large amount of abnormal bases, restricted placement of coding sequences at the chromosomes periphery, and tandem repeat-encoded genes. These chromosome characteristics, their large genome sizes, as well as the lack of architectural nucleosomes, likely contribute to possible differential responses to DNA damage agents. In this study, we sought potential dinoflagellate orthologues of eukaryotic DNA damage repair pathways, and the linking pathway with cell-cycle control in three dinoflagellate species. It appeared that major orthologues in photoreactivation, base excision repair, nucleotide excision repair, mismatch repair, double-strand break repair and homologous recombination repair are well represented in dinoflagellate genomes. Future studies should address possible differential DNA damage responses of dinoflagellates over other planktonic groups, especially in relation to possible shift of life-cycle transitions in responses to UV irradiation. This may have a potential role in the persistence of dinoflagellate red tides with the advent of climatic change.
Collapse
Affiliation(s)
- Chongping Li
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China.
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China.
| | - Joseph Tin Yum Wong
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
38
|
Garcia LE, Zubko MK, Zubko EI, Sanchez-Puerta MV. Elucidating genomic patterns and recombination events in plant cybrid mitochondria. PLANT MOLECULAR BIOLOGY 2019; 100:433-450. [PMID: 30968307 DOI: 10.1007/s11103-019-00869-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/01/2019] [Indexed: 05/17/2023]
Abstract
KEY MESSAGE Cybrid plant mitochondria undergo homologous recombination, mainly BIR, keep a single allele for each gene, and maintain exclusive sequences of each parent and a single copy of the homologous regions. The maintenance of a dynamic equilibrium between the mitochondrial and nuclear genomes requires continuous communication and a high level of compatibility between them, so that alterations in one genetic compartment need adjustments in the other. The co-evolution of nuclear and mitochondrial genomes has been poorly studied, even though the consequences and effects of this interaction are highly relevant for human health, as well as for crop improvement programs and for genetic engineering. The mitochondria of plants represent an excellent system to understand the mechanisms of genomic rearrangements, chimeric gene formation, incompatibility between nucleus and cytoplasm, and horizontal gene transfer. We carried out detailed analyses of the mtDNA of a repeated cybrid between the solanaceae Nicotiana tabacum and Hyoscyamus niger. The mtDNA of the cybrid was intermediate between the size of the parental mtDNAs and the sum of them. Noticeably, most of the homologous sequences inherited from both parents were lost. In contrast, the majority of the sequences exclusive of a single parent were maintained. The mitochondrial gene content included a majority of N. tabacum derived genes, but also chimeric, two-parent derived, and H. niger-derived genes in a tobacco nuclear background. Any of these alterations in the gene content could be the cause of CMS in the cybrid. The parental mtDNAs interacted through 28 homologous recombination events and a single case of illegitimate recombination. Three main homologous recombination mechanisms were recognized in the cybrid mitochondria. Break induced replication (BIR) pathway was the most frequent. We propose that BIR could be one of the mechanisms responsible for the loss of the majority of the repeated regions derived from H. niger.
Collapse
Affiliation(s)
- Laura E Garcia
- Facultad de Ciencias Agrarias, IBAM, Universidad Nacional de Cuyo, CONICET, Almirante Brown 500, M5528AHB, Chacras de Coria, Argentina.
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina.
| | - Mikhajlo K Zubko
- Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Elena I Zubko
- Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - M Virginia Sanchez-Puerta
- Facultad de Ciencias Agrarias, IBAM, Universidad Nacional de Cuyo, CONICET, Almirante Brown 500, M5528AHB, Chacras de Coria, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| |
Collapse
|
39
|
Morley SA, Peralta-Castro A, Brieba LG, Miller J, Ong KL, Ridge PG, Oliphant A, Aldous S, Nielsen BL. Arabidopsis thaliana organelles mimic the T7 phage DNA replisome with specific interactions between Twinkle protein and DNA polymerases Pol1A and Pol1B. BMC PLANT BIOLOGY 2019; 19:241. [PMID: 31170927 PMCID: PMC6554949 DOI: 10.1186/s12870-019-1854-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/28/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND Plant chloroplasts and mitochondria utilize nuclear encoded proteins to replicate their DNA. These proteins are purposely built for replication in the organelle environment and are distinct from those involved in replication of the nuclear genome. These organelle-localized proteins have ancestral roots in bacterial and bacteriophage genes, supporting the endosymbiotic theory of their origin. We examined the interactions between three of these proteins from Arabidopsis thaliana: a DNA helicase-primase similar to bacteriophage T7 gp4 protein and animal mitochondrial Twinkle, and two DNA polymerases, Pol1A and Pol1B. We used a three-pronged approach to analyze the interactions, including Yeast-two-hybrid analysis, Direct Coupling Analysis (DCA), and thermophoresis. RESULTS Yeast-two-hybrid analysis reveals residues 120-295 of Twinkle as the minimal region that can still interact with Pol1A or Pol1B. This region is a part of the primase domain of the protein and slightly overlaps the zinc-finger and RNA polymerase subdomains located within. Additionally, we observed that Arabidopsis Twinkle interacts much more strongly with Pol1A versus Pol1B. Thermophoresis also confirms that the primase domain of Twinkle has higher binding affinity than any other region of the protein. Direct-Coupling-Analysis identified specific residues in Twinkle and the DNA polymerases critical to positive interaction between the two proteins. CONCLUSIONS The interaction of Twinkle with Pol1A or Pol1B mimics the minimal DNA replisomes of T7 phage and those present in mammalian mitochondria. However, while T7 and mammals absolutely require their homolog of Twinkle DNA helicase-primase, Arabidopsis Twinkle mutants are seemingly unaffected by this loss. This implies that while Arabidopsis mitochondria mimic minimal replisomes from T7 and mammalian mitochondria, there is an extra level of redundancy specific to loss of Twinkle function.
Collapse
Affiliation(s)
- Stewart A. Morley
- Department of Microbiology & Molecular Biology, Brigham Young University, 3130 Life Sciences Building, 4007 LSB, Provo, UT 84604 USA
| | - Antolín Peralta-Castro
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, 36821 Irapuato, Guanajuato Mexico
| | - Luis G. Brieba
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, 36821 Irapuato, Guanajuato Mexico
| | - Justin Miller
- Department of Biology, Brigham Young University, 4007 LSB, Provo, UT 84604 USA
| | - Kai Li Ong
- Department of Microbiology & Molecular Biology, Brigham Young University, 3130 Life Sciences Building, 4007 LSB, Provo, UT 84604 USA
| | - Perry G. Ridge
- Department of Biology, Brigham Young University, 4007 LSB, Provo, UT 84604 USA
| | - Amanda Oliphant
- Department of Microbiology & Molecular Biology, Brigham Young University, 3130 Life Sciences Building, 4007 LSB, Provo, UT 84604 USA
| | - Stephen Aldous
- Department of Microbiology & Molecular Biology, Brigham Young University, 3130 Life Sciences Building, 4007 LSB, Provo, UT 84604 USA
| | - Brent L. Nielsen
- Department of Microbiology & Molecular Biology, Brigham Young University, 3130 Life Sciences Building, 4007 LSB, Provo, UT 84604 USA
| |
Collapse
|
40
|
Johnston IG. Tension and Resolution: Dynamic, Evolving Populations of Organelle Genomes within Plant Cells. MOLECULAR PLANT 2019; 12:764-783. [PMID: 30445187 DOI: 10.1016/j.molp.2018.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/25/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Mitochondria and plastids form dynamic, evolving populations physically embedded in the fluctuating environment of the plant cell. Their evolutionary heritage has shaped how the cell controls the genetic structure and the physical behavior of its organelle populations. While the specific genes involved in these processes are gradually being revealed, the governing principles underlying this controlled behavior remain poorly understood. As the genetic and physical dynamics of these organelles are central to bioenergetic performance and plant physiology, this challenges both fundamental biology and strategies to engineer better-performing plants. This article reviews current knowledge of the physical and genetic behavior of mitochondria and chloroplasts in plant cells. An overarching hypothesis is proposed whereby organelles face a tension between genetic robustness and individual control and responsiveness, and different species resolve this tension in different ways. As plants are immobile and thus subject to fluctuating environments, their organelles are proposed to favor individual responsiveness, sacrificing genetic robustness. Several notable features of plant organelles, including large genomes, mtDNA recombination, fragmented organelles, and plastid/mitochondrial differences may potentially be explained by this hypothesis. Finally, the ways that quantitative and systems biology can help shed light on the plethora of open questions in this field are highlighted.
Collapse
Affiliation(s)
- Iain G Johnston
- School of Biosciences, University of Birmingham, Birmingham, UK; Birmingham Institute for Forest Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
41
|
Repeats of Unusual Size in Plant Mitochondrial Genomes: Identification, Incidence and Evolution. G3-GENES GENOMES GENETICS 2019; 9:549-559. [PMID: 30563833 PMCID: PMC6385970 DOI: 10.1534/g3.118.200948] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Plant mitochondrial genomes have excessive size relative to coding capacity, a low mutation rate in genes and a high rearrangement rate. They also have abundant non-tandem repeats often including pairs of large repeats which cause isomerization of the genome by recombination, and numerous repeats of up to several hundred base pairs that recombine only when the genome is stressed by DNA damaging agents or mutations in DNA repair pathway genes. Early work on mitochondrial genomes led to the suggestion that repeats in the size range from several hundred to a few thousand base pair are underrepresented. The repeats themselves are not well-conserved between species, and are not always annotated in mitochondrial sequence assemblies. We systematically identified and compared these repeats, which are important clues to mechanisms of DNA maintenance in mitochondria. We developed a tool to find and curate non-tandem repeats larger than 50bp and analyzed the complete mitochondrial sequences from 157 plant species. We observed an interesting difference between taxa: the repeats are larger and more frequent in the vascular plants. Analysis of closely related species also shows that plant mitochondrial genomes evolve in dramatic bursts of breakage and rejoining, complete with DNA sequence gain and loss. We suggest an adaptive explanation for the existence of the repeats and their evolution.
Collapse
|
42
|
Ayala-García VM, Baruch-Torres N, García-Medel PL, Brieba LG. Plant organellar DNA polymerases paralogs exhibit dissimilar nucleotide incorporation fidelity. FEBS J 2018; 285:4005-4018. [PMID: 30152200 DOI: 10.1111/febs.14645] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/27/2018] [Accepted: 08/24/2018] [Indexed: 01/06/2023]
Abstract
The coding sequences of plant mitochondrial and chloroplast genomes present a lower mutation rate than the coding sequences of animal mitochondria. However, plant mitochondrial genomes frequently rearrange and present high mutation rates in their noncoding sequences. DNA replication in plant organelles is carried out by two DNA polymerases (DNAP) paralogs. In Arabidopsis thaliana at least one DNAP paralog (AtPolIA or AtPolIB) is necessary for plant viability, suggesting that both genes are partially redundant. To understand how AtPolIs replicate genomes that present low and high mutation rates, we measured their nucleotide incorporation for all 16-base pair combinations in vitro. AtPolIA presents an error rate of 7.26 × 10-5 , whereas AtPolIB has an error rate of 5.45 × 10-4 . Thus, AtPolIA and AtPolIB are 3.5 and 26-times less accurate than human mitochondrial DNAP γ. The 8-fold difference in fidelity between both AtPolIs results from a higher catalytic efficiency in AtPolIA. Both AtPolIs extend from mismatches and the fidelity of AtPolIs ranks between high fidelity and lesion bypass DNAPs. The different nucleotide incorporation fidelity between AtPolIs predicts a prevalent role of AtPolIA in DNA replication and AtPolIB in DNA repair. We hypothesize that in plant organelles, DNA mismatches generated during DNA replication are repaired via recombination-mediated or DNA mismatch repair mechanisms that selectively target the coding region and that the mismatches generated by AtPolIs may result in the frequent expansion and rearrangements present in plant mitochondrial genomes.
Collapse
|
43
|
Meier SK, Adams N, Wolf M, Balkwill K, Muasya AM, Gehring CA, Bishop JM, Ingle RA. Comparative RNA-seq analysis of nickel hyperaccumulating and non-accumulating populations of Senecio coronatus (Asteraceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:1023-1038. [PMID: 29952120 DOI: 10.1111/tpj.14008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Most metal hyperaccumulating plants accumulate nickel, yet the molecular basis of Ni hyperaccumulation is not well understood. We chose Senecio coronatus to investigate this phenomenon as this species displays marked variation in shoot Ni content across ultramafic outcrops in the Barberton Greenstone Belt (South Africa), thus allowing an intraspecific comparative approach to be employed. No correlation between soil and shoot Ni contents was observed, suggesting that this variation has a genetic rather than environmental basis. This was confirmed by our observation that the accumulation phenotype of plants from two hyperaccumulator and two non-accumulator populations was maintained when the plants were grown on a soil mix from these four sites for 12 months. We analysed the genetic variation among 12 serpentine populations of S. coronatus, and used RNA-seq for de novo transcriptome assembly and analysis of gene expression in hyperaccumulator versus non-accumulator populations. Genetic analysis revealed the presence of hyperaccumulators in two well supported evolutionary lineages, indicating that Ni hyperaccumulation may have evolved more than once in this species. RNA-Seq analysis indicated that putative homologues of transporters associated with root iron uptake in plants are expressed at elevated levels in roots and shoots of hyperaccumulating populations of S. coronatus from both evolutionary lineages. We hypothesise that Ni hyperaccumulation in S. coronatus may have evolved through recruitment of these transporters, which play a role in the iron-deficiency response in other plant species.
Collapse
Affiliation(s)
- Stuart K Meier
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Nicolette Adams
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7700, South Africa
| | - Michael Wolf
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7700, South Africa
| | - Kevin Balkwill
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Abraham Muthama Muasya
- Department of Biological Sciences, University of Cape Town, Rondebosch, 7700, South Africa
| | - Christoph A Gehring
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Jacqueline M Bishop
- Department of Biological Sciences, University of Cape Town, Rondebosch, 7700, South Africa
| | - Robert A Ingle
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7700, South Africa
| |
Collapse
|
44
|
Blomme J, Van Aken O, Van Leene J, Jégu T, De Rycke R, De Bruyne M, Vercruysse J, Nolf J, Van Daele T, De Milde L, Vermeersch M, des Francs-Small CC, De Jaeger G, Benhamed M, Millar AH, Inzé D, Gonzalez N. The Mitochondrial DNA-Associated Protein SWIB5 Influences mtDNA Architecture and Homologous Recombination. THE PLANT CELL 2017; 29:1137-1156. [PMID: 28420746 PMCID: PMC5466028 DOI: 10.1105/tpc.16.00899] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/04/2017] [Accepted: 04/14/2017] [Indexed: 05/08/2023]
Abstract
In addition to the nucleus, mitochondria and chloroplasts in plant cells also contain genomes. Efficient DNA repair pathways are crucial in these organelles to fix damage resulting from endogenous and exogenous factors. Plant organellar genomes are complex compared with their animal counterparts, and although several plant-specific mediators of organelle DNA repair have been reported, many regulators remain to be identified. Here, we show that a mitochondrial SWI/SNF (nucleosome remodeling) complex B protein, SWIB5, is capable of associating with mitochondrial DNA (mtDNA) in Arabidopsis thaliana Gain- and loss-of-function mutants provided evidence for a role of SWIB5 in influencing mtDNA architecture and homologous recombination at specific intermediate-sized repeats both under normal and genotoxic conditions. SWIB5 interacts with other mitochondrial SWIB proteins. Gene expression and mutant phenotypic analysis of SWIB5 and SWIB family members suggests a link between organellar genome maintenance and cell proliferation. Taken together, our work presents a protein family that influences mtDNA architecture and homologous recombination in plants and suggests a link between organelle functioning and plant development.
Collapse
Affiliation(s)
- Jonas Blomme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Olivier Van Aken
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
- Department of Biology, Lund University, 226 52 Lund, Sweden
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Teddy Jégu
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, 91400 Orsay, France
- Molecular Biology Department, Simches Research Center, Boston, Massachusetts 02114
| | - Riet De Rycke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Michiel De Bruyne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jasmien Vercruysse
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jonah Nolf
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Twiggy Van Daele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Liesbeth De Milde
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Mattias Vermeersch
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | | | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, 91400 Orsay, France
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Nathalie Gonzalez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- INRA, UMR 1332, Biologie du Fruit et Pathologie, CS20032 Villenave d'Ornon, France
| |
Collapse
|
45
|
Gualberto JM, Newton KJ. Plant Mitochondrial Genomes: Dynamics and Mechanisms of Mutation. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:225-252. [PMID: 28226235 DOI: 10.1146/annurev-arplant-043015-112232] [Citation(s) in RCA: 268] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The large mitochondrial genomes of angiosperms are unusually dynamic because of recombination activities involving repeated sequences. These activities generate subgenomic forms and extensive genomic variation even within the same species. Such changes in genome structure are responsible for the rapid evolution of plant mitochondrial DNA and for the variants associated with cytoplasmic male sterility and abnormal growth phenotypes. Nuclear genes modulate these processes, and over the past decade, several of these genes have been identified. They are involved mainly in pathways of DNA repair by homologous recombination and mismatch repair, which appear to be essential for the faithful replication of the mitogenome. Mutations leading to the loss of any of these activities release error-prone repair pathways, resulting in increased ectopic recombination, genome instability, and heteroplasmy. We review the present state of knowledge of the genes and pathways underlying mitochondrial genome stability.
Collapse
Affiliation(s)
- José M Gualberto
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France;
| | - Kathleen J Newton
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211;
| |
Collapse
|
46
|
Paszkiewicz G, Gualberto JM, Benamar A, Macherel D, Logan DC. Arabidopsis Seed Mitochondria Are Bioenergetically Active Immediately upon Imbibition and Specialize via Biogenesis in Preparation for Autotrophic Growth. THE PLANT CELL 2017; 29:109-128. [PMID: 28062752 PMCID: PMC5304351 DOI: 10.1105/tpc.16.00700] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/06/2016] [Accepted: 01/06/2017] [Indexed: 05/14/2023]
Abstract
Seed germination is a vital developmental transition for production of progeny by sexual reproduction in spermatophytes. Quiescent cells in nondormant dry embryos are reawakened first by imbibition and then by perception of germination triggers. Reanimated tissues enter into a germination program requiring energy for expansion growth. However, germination requires that embryonic tissues develop to support the more energy-demanding processes of cell division and organogenesis of the new seedling. Reactivation of mitochondria to supply the required energy is thus a key process underpinning germination and seedling survival. Using live imaging, we investigated reactivation of mitochondrial bioenergetics and dynamics using Arabidopsis thaliana as a model. Bioenergetic reactivation, visualized by presence of a membrane potential, is immediate upon rehydration. However, reactivation of mitochondrial dynamics only occurs after transfer to germination conditions. Reactivation of mitochondrial bioenergetics is followed by dramatic reorganization of the chondriome (all mitochondrial in a cell, collectively) involving massive fusion and membrane biogenesis to form a perinuclear tubuloreticular structure enabling mixing of previously discrete mitochondrial DNA nucleoids. The end of germination coincides with fragmentation of the chondriome, doubling of mitochondrial number, and heterogeneous redistribution of nucleoids among the mitochondria, generating a population of mitochondria tailored to seedling growth.
Collapse
Affiliation(s)
- Gaël Paszkiewicz
- IRHS, Université d'Angers, INRA, AGROCAMPUS-Ouest, SFR 4207 QUASAV, 49071 Beaucouzé cedex, France
| | - José M Gualberto
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France
| | - Abdelilah Benamar
- IRHS, Université d'Angers, INRA, AGROCAMPUS-Ouest, SFR 4207 QUASAV, 49071 Beaucouzé cedex, France
| | - David Macherel
- IRHS, Université d'Angers, INRA, AGROCAMPUS-Ouest, SFR 4207 QUASAV, 49071 Beaucouzé cedex, France
| | - David C Logan
- IRHS, Université d'Angers, INRA, AGROCAMPUS-Ouest, SFR 4207 QUASAV, 49071 Beaucouzé cedex, France
| |
Collapse
|
47
|
Liberatore KL, Dukowic-Schulze S, Miller ME, Chen C, Kianian SF. The role of mitochondria in plant development and stress tolerance. Free Radic Biol Med 2016; 100:238-256. [PMID: 27036362 DOI: 10.1016/j.freeradbiomed.2016.03.033] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 01/03/2023]
Abstract
Eukaryotic cells require orchestrated communication between nuclear and organellar genomes, perturbations in which are linked to stress response and disease in both animals and plants. In addition to mitochondria, which are found across eukaryotes, plant cells contain a second organelle, the plastid. Signaling both among the organelles (cytoplasmic) and between the cytoplasm and the nucleus (i.e. nuclear-cytoplasmic interactions (NCI)) is essential for proper cellular function. A deeper understanding of NCI and its impact on development, stress response, and long-term health is needed in both animal and plant systems. Here we focus on the role of plant mitochondria in development and stress response. We compare and contrast features of plant and animal mitochondrial genomes (mtDNA), particularly highlighting the large and highly dynamic nature of plant mtDNA. Plant-based tools are powerful, yet underutilized, resources for enhancing our fundamental understanding of NCI. These tools also have great potential for improving crop production. Across taxa, mitochondria are most abundant in cells that have high energy or nutrient demands as well as at key developmental time points. Although plant mitochondria act as integrators of signals involved in both development and stress response pathways, little is known about plant mtDNA diversity and its impact on these processes. In humans, there are strong correlations between particular mitotypes (and mtDNA mutations) and developmental differences (or disease). We propose that future work in plants should focus on defining mitotypes more carefully and investigating their functional implications as well as improving techniques to facilitate this research.
Collapse
Affiliation(s)
- Katie L Liberatore
- United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108, United States; Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, United States.
| | | | - Marisa E Miller
- United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108, United States; Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, United States
| | - Changbin Chen
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, United States
| | - Shahryar F Kianian
- United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108, United States; Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, United States
| |
Collapse
|
48
|
Hofstatter PG, Tice AK, Kang S, Brown MW, Lahr DJG. Evolution of bacterial recombinase A (recA) in eukaryotes explained by addition of genomic data of key microbial lineages. Proc Biol Sci 2016; 283:20161453. [PMID: 27708147 PMCID: PMC5069510 DOI: 10.1098/rspb.2016.1453] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/12/2016] [Indexed: 11/12/2022] Open
Abstract
Recombinase enzymes promote DNA repair by homologous recombination. The genes that encode them are ancestral to life, occurring in all known dominions: viruses, Eubacteria, Archaea and Eukaryota. Bacterial recombinases are also present in viruses and eukaryotic groups (supergroups), presumably via ancestral events of lateral gene transfer. The eukaryotic recA genes have two distinct origins (mitochondrial and plastidial), whose acquisition by eukaryotes was possible via primary (bacteria-eukaryote) and/or secondary (eukaryote-eukaryote) endosymbiotic gene transfers (EGTs). Here we present a comprehensive phylogenetic analysis of the recA genealogy, with substantially increased taxonomic sampling in the bacteria, viruses, eukaryotes and a special focus on the key eukaryotic supergroup Amoebozoa, earlier represented only by Dictyostelium We demonstrate that several major eukaryotic lineages have lost the bacterial recombinases (including Opisthokonta and Excavata), whereas others have retained them (Amoebozoa, Archaeplastida and the SAR-supergroups). When absent, the bacterial recA homologues may have been lost entirely (secondary loss of canonical mitochondria) or replaced by other eukaryotic recombinases. RecA proteins have a transit peptide for organellar import, where they act. The reconstruction of the RecA phylogeny with its EGT events presented here retells the intertwined evolutionary history of eukaryotes and bacteria, while further illuminating the events of endosymbiosis in eukaryotes by expanding the collection of widespread genes that provide insight to this deep history.
Collapse
Affiliation(s)
- Paulo G Hofstatter
- Department of Zoology, Universidade de São Paulo/USP, Cidade Universitária, São Paulo, Brazil
| | - Alexander K Tice
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Seungho Kang
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Daniel J G Lahr
- Department of Zoology, Universidade de São Paulo/USP, Cidade Universitária, São Paulo, Brazil
| |
Collapse
|
49
|
Odahara M, Inouye T, Nishimura Y, Sekine Y. RECA plays a dual role in the maintenance of chloroplast genome stability in Physcomitrella patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:516-526. [PMID: 26340426 DOI: 10.1111/tpj.13017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 06/05/2023]
Abstract
Chloroplast DNA (cpDNA) encodes essential genes for chloroplast functions, including photosynthesis. Homologous recombination occurs frequently in cpDNA; however, its significance and underlying mechanism remain poorly understood. In this study, we analyzed the role of a nuclear-encoded chloroplast-localized homolog of RecA recombinase, which is a key factor in homologous recombination in bacteria, in the moss Physcomitrella patens. Complete knockout (KO) of the P. patens chloroplast RecA homolog RECA2 caused a modest growth defect and conferred sensitivity to methyl methanesulfonate and UV. The KO mutant exhibited low recovery of cpDNA from methyl methanesulfonate damage, suggesting that RECA2 knockout impairs repair of damaged cpDNA. The RECA2 KO mutant also exhibited reduced cpDNA copy number and an elevated level of cpDNA molecule resulting from aberrant recombination between short dispersed repeats (13-63 bp), indicating that the RECA2 KO chloroplast genome was destabilized. Taken together, these data suggest a dual role for RECA2 in the maintenance of chloroplast genome stability: RECA2 suppresses aberrant recombination between short dispersed repeats and promotes repair of damaged DNA.
Collapse
Affiliation(s)
- Masaki Odahara
- Department of Life Science, College of Science, Rikkyo (St Paul's) University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kita-Shirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takayuki Inouye
- Department of Life Science, College of Science, Rikkyo (St Paul's) University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Yoshiki Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kita-Shirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yasuhiko Sekine
- Department of Life Science, College of Science, Rikkyo (St Paul's) University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| |
Collapse
|
50
|
Tang M, Chen Z, Grover CE, Wang Y, Li S, Liu G, Ma Z, Wendel JF, Hua J. Rapid evolutionary divergence of Gossypium barbadense and G. hirsutum mitochondrial genomes. BMC Genomics 2015; 16:770. [PMID: 26459858 PMCID: PMC4603758 DOI: 10.1186/s12864-015-1988-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 10/06/2015] [Indexed: 11/10/2022] Open
Abstract
Background The mitochondrial genome from upland cotton, G. hirsutum, was previously sequenced. To elucidate the evolution of mitochondrial genomic diversity within a single genus, we sequenced the mitochondrial genome from Sea Island cotton (Gossypium barbadense L.). Methods Mitochondrial DNA from week-old etiolated seedlings was extracted from isolated organelles using discontinuous sucrose density gradient method. Mitochondrial genome was sequenced with Solexa using paired-end, 90 bp read. The clean reads were assembled into contigs using ABySS and finished via additional fosmid and BAC sequencing. Finally, the genome was annotated and analyzed using different softwares. Results The G. barbadense (Sea Island cotton) mitochondrial genome was fully sequenced (677,434-bp) and compared to the mitogenome of upland cotton. The G. barbadense mitochondrial DNA contains seven more genes than that of upland cotton, with a total of 40 protein coding genes (excluding possible pseudogenes), 6 rRNA genes, and 29 tRNA genes. Of these 75 genes, atp1, mttB, nad4, nad9, rrn5, rrn18, and trnD(GTC)-cp were each represented by two identical copies. A single 64 kb repeat was largely responsible for the 9 % difference in genome size between the two mtDNAs. Comparison of genome structures between the two mitochondrial genomes revealed 8 rearranged syntenic regions and several large repeats. The largest repeat was missing from the master chromosome in G. hirsutum. Both mitochondrial genomes contain a duplicated copy of rps3 (rps3-2) in conjunction with a duplication of repeated sequences. Phylogenetic and divergence considerations suggest that a 544-bp fragment of rps3 was transferred to the nuclear genome shortly after divergence of the A- and D- genome diploid cottons. Conclusion These results highlight the insights to the evolution of structural variation between Sea Island and upland cotton mitochondrial genomes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1988-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mingyong Tang
- Department of Plant Genetics and Breeding /Key Laboratory of Crop Heterosis and Utilization of Ministry of Education /Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| | - Zhiwen Chen
- Department of Plant Genetics and Breeding /Key Laboratory of Crop Heterosis and Utilization of Ministry of Education /Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| | - Corrinne E Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA50011, USA.
| | - Yumei Wang
- Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China.
| | - Shuangshuang Li
- Present address: Saskatchewan Cancer Agency, Division of Oncology, Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Guozheng Liu
- Present address: Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, D-06466, Stadt, Seeland, Germany.
| | - Zhiying Ma
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA50011, USA.
| | - Jinping Hua
- Department of Plant Genetics and Breeding /Key Laboratory of Crop Heterosis and Utilization of Ministry of Education /Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|