1
|
Bashyal S, Gautam CK, Müller LM. CLAVATA signaling in plant-environment interactions. PLANT PHYSIOLOGY 2024; 194:1336-1357. [PMID: 37930810 PMCID: PMC10904329 DOI: 10.1093/plphys/kiad591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 11/08/2023]
Abstract
Plants must rapidly and dynamically adapt to changes in their environment. Upon sensing environmental signals, plants convert them into cellular signals, which elicit physiological or developmental changes that allow them to respond to various abiotic and biotic cues. Because plants can be simultaneously exposed to multiple environmental cues, signal integration between plant cells, tissues, and organs is necessary to induce specific responses. Recently, CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) peptides and their cognate CLAVATA-type receptors received increased attention for their roles in plant-environment interactions. CLE peptides are mobile signaling molecules, many of which are induced by a variety of biotic and abiotic stimuli. Secreted CLE peptides are perceived by receptor complexes on the surface of their target cells, which often include the leucine-rich repeat receptor-like kinase CLAVATA1. Receptor activation then results in cell-type and/or environment-specific responses. This review summarizes our current understanding of the diverse roles of environment-regulated CLE peptides in modulating plant responses to environmental cues. We highlight how CLE signals regulate plant physiology by fine-tuning plant-microbe interactions, nutrient homeostasis, and carbon allocation. Finally, we describe the role of CLAVATA receptors in the perception of environment-induced CLE signals and discuss how diverse CLE-CLAVATA signaling modules may integrate environmental signals with plant physiology and development.
Collapse
Affiliation(s)
- Sagar Bashyal
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | | | - Lena Maria Müller
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
2
|
Soto-Cerda BJ, Larama G, Cloutier S, Fofana B, Inostroza-Blancheteau C, Aravena G. The Genetic Dissection of Nitrogen Use-Related Traits in Flax ( Linum usitatissimum L.) at the Seedling Stage through the Integration of Multi-Locus GWAS, RNA-seq and Genomic Selection. Int J Mol Sci 2023; 24:17624. [PMID: 38139451 PMCID: PMC10743809 DOI: 10.3390/ijms242417624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Nitrogen (N), the most important macro-nutrient for plant growth and development, is a key factor that determines crop yield. Yet its excessive applications pollute the environment and are expensive. Hence, studying nitrogen use efficiency (NUE) in crops is fundamental for sustainable agriculture. Here, an association panel consisting of 123 flax accessions was evaluated for 21 NUE-related traits at the seedling stage under optimum N (N+) and N deficiency (N-) treatments to dissect the genetic architecture of NUE-related traits using a multi-omics approach integrating genome-wide association studies (GWAS), transcriptome analysis and genomic selection (GS). Root traits exhibited significant and positive correlations with NUE under N- conditions (r = 0.33 to 0.43, p < 0.05). A total of 359 QTLs were identified, accounting for 0.11% to 23.1% of the phenotypic variation in NUE-related traits. Transcriptomic analysis identified 1034 differentially expressed genes (DEGs) under contrasting N conditions. DEGs involved in N metabolism, root development, amino acid transport and catabolism and others, were found near the QTLs. GS models to predict NUE stress tolerance index (NUE_STI) trait were tested using a random genome-wide SNP dataset and a GWAS-derived QTLs dataset. The latter produced superior prediction accuracy (r = 0.62 to 0.79) compared to the genome-wide SNP marker dataset (r = 0.11) for NUE_STI. Our results provide insights into the QTL architecture of NUE-related traits, identify candidate genes for further studies, and propose genomic breeding tools to achieve superior NUE in flax under low N input.
Collapse
Affiliation(s)
- Braulio J. Soto-Cerda
- Departamento de Ciencias Agropecuarias y Acuícolas, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco 4781312, Chile; (C.I.-B.); (G.A.)
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco 4781312, Chile
| | - Giovanni Larama
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile;
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco 4811230, Chile
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada;
| | - Bourlaye Fofana
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE C1A 4N6, Canada
| | - Claudio Inostroza-Blancheteau
- Departamento de Ciencias Agropecuarias y Acuícolas, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco 4781312, Chile; (C.I.-B.); (G.A.)
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco 4781312, Chile
| | - Gabriela Aravena
- Departamento de Ciencias Agropecuarias y Acuícolas, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco 4781312, Chile; (C.I.-B.); (G.A.)
| |
Collapse
|
3
|
Lebedeva MA, Dobychkina DA, Yashenkova YS, Romanyuk DA, Lutova LA. Local and systemic targets of the MtCLE35-SUNN pathway in the roots of Medicago truncatula. JOURNAL OF PLANT PHYSIOLOGY 2023; 281:153922. [PMID: 36669364 DOI: 10.1016/j.jplph.2023.153922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/26/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
CLE (CLAVATA3/ENDOSPERM SURROUNDING REGION-related) peptides are systemic regulators of legume-rhizobium symbiosis that negatively control the number of nitrogen-fixing nodules. CLE peptides are produced in the root in response to rhizobia inoculation and/or nitrate treatment and are transported to the shoot where they are recognized by the CLV1-like (CLAVATA1-like) receptor kinase. As a result, a shoot-derived signaling pathway is activated that inhibits subsequent nodule development in the root. In Medicago truncatula, MtCLE35 is activated in response to rhizobia and nitrate treatment and the overexpression of this gene systemically inhibits nodulation. The inhibitory effect of MtCLE35 overexpression is dependent on the CLV1-like receptor kinase MtSUNN (SUPER NUMERIC NODULES), suggesting that MtSUNN could be involved in the reception of the MtCLE35 peptide. Yet little is known about the downstream genes regulated by a MtCLE35-activated response in the root. In order to identify genes whose expression levels could be regulated by the MtCLE35-MtSUNN pathway, we performed a MACE-Seq (Massive Analysis of cDNA Ends) transcriptomic analysis of MtCLE35-overexpressing roots. Among upregulated genes, the gene MtSUNN that encodes a putative receptor of MtCLE35 was detected. Moreover, we found that MtSUNN, as well as several other differentially expressed genes, were upregulated locally in MtCLE35-overexpressing roots whereas the MtTML1 and MtTML2 genes were upregulated systemically. Our data suggest that MtCLE35 has both local and systemic effects on target genes in the root.
Collapse
Affiliation(s)
- M A Lebedeva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, 199034, Saint Petersburg, Russia.
| | - D A Dobychkina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, 199034, Saint Petersburg, Russia
| | - Ya S Yashenkova
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, 199034, Saint Petersburg, Russia
| | - D A Romanyuk
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Laboratory of Genetics of Plant-Microbe Interactions, Podbelsky Sh. 3, 196608, Saint-Petersburg, Russia
| | - L A Lutova
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, 199034, Saint Petersburg, Russia; Center for Genetic Technologies, N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia
| |
Collapse
|
4
|
Zhang RY, Massey B, Mathesius U, Clarke VC. Photosynthetic Gains in Super-Nodulating Mutants of Medicago truncatula under Elevated Atmospheric CO 2 Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:441. [PMID: 36771529 PMCID: PMC9920600 DOI: 10.3390/plants12030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Legumes are generally considered to be more responsive to elevated CO2 (eCO2) conditions due to the benefits provided by symbiotic nitrogen fixation. In response to high carbohydrate demand from nodules, legumes display autoregulation of nodulation (AON) to restrict nodules to the minimum number necessary to sustain nitrogen supply under current photosynthetic levels. AON mutants super-nodulate and typically grow smaller than wild-type plants under ambient CO2. Here, we show that AON super-nodulating mutants have substantially higher biomass under eCO2 conditions, which is sustained through increased photosynthetic investment. We examined photosynthetic and physiological traits across super-nodulating rdn1-1 (Root Determined Nodulation) and sunn4 (Super Numeric Nodules) and non-nodulating nfp1 (Nod Factor Perception) Medicago truncatula mutants. Under eCO2 conditions, super-nodulating plants exhibited increased rates of carboxylation (Vcmax) and electron transport (J) relative to wild-type and non-nodulating counterparts. The substantially higher rate of CO2 assimilation in eCO2-grown sunn4 super-nodulating plants was sustained through increased production of key photosynthetic enzymes, including Rieske FeS. We hypothesize that AON mutants are carbon-limited and can perform better at eCO2 through improved photosynthesis. Nodulating legumes, especially those with higher nitrogen fixation capability, are likely to out-perform non-nodulating plants under future CO2 conditions and will be important tools for understanding carbon and nitrogen partitioning under eCO2 conditions and future crop improvements.
Collapse
Affiliation(s)
- Rose Y. Zhang
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Baxter Massey
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Ulrike Mathesius
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Victoria C. Clarke
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
- Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, TAS 7005, Australia
| |
Collapse
|
5
|
Roy S, Müller LM. A rulebook for peptide control of legume-microbe endosymbioses. TRENDS IN PLANT SCIENCE 2022; 27:870-889. [PMID: 35246381 DOI: 10.1016/j.tplants.2022.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Plants engage in mutually beneficial relationships with microbes, such as arbuscular mycorrhizal fungi or nitrogen-fixing rhizobia, for optimized nutrient acquisition. In return, the microbial symbionts receive photosynthetic carbon from the plant. Both symbioses are regulated by the plant nutrient status, indicating the existence of signaling pathways that allow the host to fine-tune its interactions with the beneficial microbes depending on its nutrient requirements. Peptide hormones coordinate a plethora of developmental and physiological processes and, recently, various peptide families have gained special attention as systemic and local regulators of plant-microbe interactions and nutrient homeostasis. In this review, we identify five 'rules' or guiding principles that govern peptide function during symbiotic plant-microbe interactions, and highlight possible points of integration with nutrient acquisition pathways.
Collapse
Affiliation(s)
- Sonali Roy
- College of Agriculture, Tennessee State University, Nashville, TN 37209, USA.
| | - Lena Maria Müller
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
6
|
Qiao Y, Miao S, Jin J, Mathesius U, Tang C. Differential responses of the sunn4 and rdn1-1 super-nodulation mutants of Medicago truncatula to elevated atmospheric CO2. ANNALS OF BOTANY 2021; 128:441-452. [PMID: 34297052 PMCID: PMC8414924 DOI: 10.1093/aob/mcab098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/23/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND AIMS Nitrogen fixation in legumes requires tight control of carbon and nitrogen balance. Thus, legumes control nodule numbers via an autoregulation mechanism. 'Autoregulation of nodulation' mutants super-nodulate are thought to be carbon-limited due to the high carbon-sink strength of excessive nodules. This study aimed to examine the effect of increasing carbon supply on the performance of super-nodulation mutants. METHODS We compared the responses of Medicago truncatula super-nodulation mutants (sunn-4 and rdn1-1) and wild type to five CO2 levels (300-850 μmol mol-1). Nodule formation and nitrogen fixation were assessed in soil-grown plants at 18 and 42 d after sowing. KEY RESULTS Shoot and root biomass, nodule number and biomass, nitrogenase activity and fixed nitrogen per plant of all genotypes increased with increasing CO2 concentration and reached a maximum at 700 μmol mol-1. While the sunn-4 mutant showed strong growth retardation compared with wild-type plants, elevated CO2 increased shoot biomass and total nitrogen content of the rdn1-1 mutant up to 2-fold. This was accompanied by a 4-fold increase in nitrogen fixation capacity in the rdn1-1 mutant. CONCLUSIONS These results suggest that the super-nodulation phenotype per se did not limit growth. The additional nitrogen fixation capacity of the rdn1-1 mutant may enhance the benefit of elevated CO2 for plant growth and N2 fixation.
Collapse
Affiliation(s)
- Yunfa Qiao
- Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing 210044, China
- Department of Animal, Plant & Soil Sciences, Centre for AgriBioscience, La Trobe University, Bundoora, Vic. 3086, Australia
| | - Shujie Miao
- Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing 210044, China
| | - Jian Jin
- Department of Animal, Plant & Soil Sciences, Centre for AgriBioscience, La Trobe University, Bundoora, Vic. 3086, Australia
| | - Ulrike Mathesius
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Caixian Tang
- Department of Animal, Plant & Soil Sciences, Centre for AgriBioscience, La Trobe University, Bundoora, Vic. 3086, Australia
| |
Collapse
|
7
|
Pérez-Giménez J, Iturralde ET, Torres Tejerizo G, Quelas JI, Krol E, Borassi C, Becker A, Estevez JM, Lodeiro AR. A Stringent-Response-Defective Bradyrhizobium diazoefficiens Strain Does Not Activate the Type 3 Secretion System, Elicits an Early Plant Defense Response, and Circumvents NH 4NO 3-Induced Inhibition of Nodulation. Appl Environ Microbiol 2021; 87:e02989-20. [PMID: 33608284 PMCID: PMC8091029 DOI: 10.1128/aem.02989-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/08/2021] [Indexed: 12/30/2022] Open
Abstract
When subjected to nutritional stress, bacteria modify their amino acid metabolism and cell division activities by means of the stringent response, which is controlled by the Rsh protein in alphaproteobacteria. An important group of alphaproteobacteria are the rhizobia, which fix atmospheric N2 in symbiosis with legume plants. Although nutritional stress is common for rhizobia while infecting legume roots, the stringent response has scarcely been studied in this group of soil bacteria. In this report, we obtained a mutant with a kanamycin resistance insertion in the rsh gene of Bradyrhizobium diazoefficiens, the N2-fixing symbiont of soybean. This mutant was defective for type 3 secretion system induction, plant defense suppression at early root infection, and nodulation competition. Furthermore, the mutant produced smaller nodules, although with normal morphology, which led to lower plant biomass production. Soybean (Glycine max) genes GmRIC1 and GmRIC2, involved in autoregulation of nodulation, were upregulated in plants inoculated with the mutant under the N-free condition. In addition, when plants were inoculated in the presence of 10 mM NH4NO3, the mutant produced nodules containing bacteroids, and GmRIC1 and GmRIC2 were downregulated. The rsh mutant released more auxin to the culture supernatant than the wild type, which might in part explain its symbiotic behavior in the presence of combined N. These results indicate that the B. diazoefficiens stringent response integrates into the plant defense suppression and regulation of nodulation circuits in soybean, perhaps mediated by the type 3 secretion system.IMPORTANCE The symbiotic N2 fixation carried out between prokaryotic rhizobia and legume plants performs a substantial contribution to the N cycle in the biosphere. This symbiotic association is initiated when rhizobia infect and penetrate the root hairs, which is followed by the growth and development of root nodules, within which the infective rhizobia are established and protected. Thus, the nodule environment allows the expression and function of the enzyme complex that catalyzes N2 fixation. However, during early infection, the rhizobia find a harsh environment while penetrating the root hairs. To cope with this nuisance, the rhizobia mount a stress response known as the stringent response. In turn, the plant regulates nodulation in response to the presence of alternative sources of combined N in the surrounding medium. Control of these processes is crucial for a successful symbiosis, and here we show how the rhizobial stringent response may modulate plant defense suppression and the networks of regulation of nodulation.
Collapse
Affiliation(s)
- Julieta Pérez-Giménez
- IBBM, Facultad de Ciencias Exactas, CCT-La Plata CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Esteban T Iturralde
- IBBM, Facultad de Ciencias Exactas, CCT-La Plata CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Gonzalo Torres Tejerizo
- IBBM, Facultad de Ciencias Exactas, CCT-La Plata CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juan Ignacio Quelas
- IBBM, Facultad de Ciencias Exactas, CCT-La Plata CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Elizaveta Krol
- Center for Synthetic Microbiology (SYNMIKRO), Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Cecilia Borassi
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - José M Estevez
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Buenos Aires, Argentina
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Aníbal R Lodeiro
- IBBM, Facultad de Ciencias Exactas, CCT-La Plata CONICET, Universidad Nacional de La Plata, La Plata, Argentina
- Laboratorio de Genética, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
8
|
Chaulagain D, Frugoli J. The Regulation of Nodule Number in Legumes Is a Balance of Three Signal Transduction Pathways. Int J Mol Sci 2021; 22:1117. [PMID: 33498783 PMCID: PMC7866212 DOI: 10.3390/ijms22031117] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/02/2022] Open
Abstract
Nitrogen is a major determinant of plant growth and productivity and the ability of legumes to form a symbiotic relationship with nitrogen-fixing rhizobia bacteria allows legumes to exploit nitrogen-poor niches in the biosphere. But hosting nitrogen-fixing bacteria comes with a metabolic cost, and the process requires regulation. The symbiosis is regulated through three signal transduction pathways: in response to available nitrogen, at the initiation of contact between the organisms, and during the development of the nodules that will host the rhizobia. Here we provide an overview of our knowledge of how the three signaling pathways operate in space and time, and what we know about the cross-talk between symbiotic signaling for nodule initiation and organogenesis, nitrate dependent signaling, and autoregulation of nodulation. Identification of common components and points of intersection suggest directions for research on the fine-tuning of the plant's response to rhizobia.
Collapse
Affiliation(s)
| | - Julia Frugoli
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634, USA;
| |
Collapse
|
9
|
Oladzad A, González A, Macchiavelli R, de Jensen CE, Beaver J, Porch T, McClean P. Genetic Factors Associated With Nodulation and Nitrogen Derived From Atmosphere in a Middle American Common Bean Panel. FRONTIERS IN PLANT SCIENCE 2020; 11:576078. [PMID: 33384700 PMCID: PMC7769817 DOI: 10.3389/fpls.2020.576078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Among grain legume crops, common beans (Phaseolus vulgaris L.) are considered to have poor biological nitrogen (N2) fixation (BNF) capabilities although variation in N2 fixing capabilities exists within the species. The availability of genetic panel varying in BNF capacity and a large-scale single nucleotide polymorphism (SNP) data set for common bean provided an opportunity to discover genetic factors associated with N2 fixation among genotypes in the Middle American gene pool. Using nodulation and percentage of N2-derived from atmosphere (%NDFA) data collected from field trials, at least 11 genotypes with higher levels of BNF capacity were identified. Genome-wide association studies (GWASs) detected both major and minor effects that control these traits. A major nodulation interval at Pv06:28.0-28.27 Mbp was discovered. In this interval, the peak SNP was located within a small GTPase that positively regulates cellular polarity and growth of root hair tips. Located 20 kb upstream of this peak SNP is an auxin-responsive factor AUX/indole acetic auxin (IAA)-related gene involved in auxin transportation during root nodulation. For %NDFA, nitrate (NO3 -) transporters, NRT1:2 and NRT1.7 (Pv02:8.64), squamosa promoter binding transcriptome factor (Pv08:28.42), and multi-antimicrobial extrusion protein (MATE) efflux family protein (Pv06:10.91) were identified as candidate genes. Three additional QTLs were identified on chromosomes Pv03:5.24, Pv09:25.89, and Pv11: 32.89 Mbp. These key candidate genes from both traits were integrated with previous results on N2 fixation to describe a BNF pathway.
Collapse
Affiliation(s)
- Atena Oladzad
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Abiezer González
- Department of Agroenvironmental Sciences, University of Puerto Rico, Mayagüez, Puerto Rico
| | - Raul Macchiavelli
- Department of Agroenvironmental Sciences, University of Puerto Rico, Mayagüez, Puerto Rico
| | | | - James Beaver
- Department of Agroenvironmental Sciences, University of Puerto Rico, Mayagüez, Puerto Rico
| | - Tim Porch
- USDA-ARS, Tropical Agriculture Research Station, Mayagüez, Puerto Rico
| | - Phillip McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
10
|
Wang C, Reid JB, Foo E. The role of CLV1, CLV2 and HPAT homologues in the nitrogen-regulation of root development. PHYSIOLOGIA PLANTARUM 2020; 170:607-621. [PMID: 32880978 DOI: 10.1111/ppl.13200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Plants use a variety of signals to control root development, including in modifying root development in response to nutrient stress. For example, in response to nitrogen (N) stress, plants dramatically modulate root development, including the formation of N-fixing nodules in legumes. Recently, specific CLE peptides and/or receptors important for their perception, including CLV1 and CLV2, have been found to play roles in root development, including in response to N supply. In the legume Medicago truncatula, this response also appears to be influenced by RDN1, a member of the hydroxyproline-O-arabinosyltransferase (HPAT) family which can modify specific CLE peptides. However, it is not known if this signalling pathway plays a central role in root development across species, and in particular root responses to N. In this study, we systematically examined the role of the CLV signalling pathway genes in root development of the legume pea (Pisum sativum) and non-legume tomato (Solanum lycopersicum) using a mutant-based approach. This included a detailed examination of root development in response to N in tomato mutants disrupted in CLV1- or CLV2-like genes or HPAT family member FIN. We found no evidence for a role of these genes in pea seedling root development. Furthermore, the CLV1-like FAB gene did not influence tomato root development, including the root response to N supply. In contrast, both CLV2 and the HPAT gene FIN appear to positively influence root size in tomato but do not mediate root responses to N. These results suggest the function of these genes may vary somewhat in different species, including the N regulation of root architecture.
Collapse
Affiliation(s)
- Chenglei Wang
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - James B Reid
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Eloise Foo
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| |
Collapse
|
11
|
Zhu F, Deng J, Chen H, Liu P, Zheng L, Ye Q, Li R, Brault M, Wen J, Frugier F, Dong J, Wang T. A CEP Peptide Receptor-Like Kinase Regulates Auxin Biosynthesis and Ethylene Signaling to Coordinate Root Growth and Symbiotic Nodulation in Medicago truncatula. THE PLANT CELL 2020; 32:2855-2877. [PMID: 32887805 PMCID: PMC7474297 DOI: 10.1105/tpc.20.00248] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 06/03/2020] [Accepted: 06/24/2020] [Indexed: 05/06/2023]
Abstract
Because of the large amount of energy consumed during symbiotic nitrogen fixation, legumes must balance growth and symbiotic nodulation. Both lateral roots and nodules form on the root system, and the developmental coordination of these organs under conditions of reduced nitrogen (N) availability remains elusive. We show that the Medicago truncatula COMPACT ROOT ARCHITECTURE2 (MtCRA2) receptor-like kinase is essential to promote the initiation of early symbiotic nodulation and to inhibit root growth in response to low N. C-TERMINALLY ENCODED PEPTIDE (MtCEP1) peptides can activate MtCRA2 under N-starvation conditions, leading to a repression of YUCCA2 (MtYUC2) auxin biosynthesis gene expression, and therefore of auxin root responses. Accordingly, the compact root architecture phenotype of cra2 can be mimicked by an auxin treatment or by overexpressing MtYUC2, and conversely, a treatment with YUC inhibitors or an MtYUC2 knockout rescues the cra2 root phenotype. The MtCEP1-activated CRA2 can additionally interact with and phosphorylate the MtEIN2 ethylene signaling component at Ser643 and Ser924, preventing its cleavage and thereby repressing ethylene responses, thus locally promoting the root susceptibility to rhizobia. In agreement with this interaction, the cra2 low nodulation phenotype is rescued by an ein2 mutation. Overall, by reducing auxin biosynthesis and inhibiting ethylene signaling, the MtCEP1/MtCRA2 pathway balances root and nodule development under low-N conditions.
Collapse
Affiliation(s)
- Fugui Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Grassland Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Deng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hong Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Grassland Sciences, China Agricultural University, Beijing 100193, China
| | - Peng Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lihua Zheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qinyi Ye
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Rui Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Mathias Brault
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université d'Evry, Université de Paris, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Jiangqi Wen
- Plant Biology Division, Samuel Roberts Noble Research Institute, Ardmore, Oklahoma 73401
| | - Florian Frugier
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université d'Evry, Université de Paris, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Concha C, Doerner P. The impact of the rhizobia-legume symbiosis on host root system architecture. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3902-3921. [PMID: 32337556 PMCID: PMC7316968 DOI: 10.1093/jxb/eraa198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/22/2020] [Indexed: 05/20/2023]
Abstract
Legumes form symbioses with rhizobia to fix N2 in root nodules to supplement their nitrogen (N) requirements. Many studies have shown how symbioses affect the shoot, but far less is understood about how they modify root development and root system architecture (RSA). RSA is the distribution of roots in space and over time. RSA reflects host resource allocation into below-ground organs and patterns of host resource foraging underpinning its resource acquisition capacity. Recent studies have revealed a more comprehensive relationship between hosts and symbionts: the latter can affect host resource acquisition for phosphate and iron, and the symbiont's production of plant growth regulators can enhance host resource flux and abundance. We review the current understanding of the effects of rhizobia-legume symbioses on legume root systems. We focus on resource acquisition and allocation within the host to conceptualize the effect of symbioses on RSA, and highlight opportunities for new directions of research.
Collapse
Affiliation(s)
- Cristobal Concha
- Institute for Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Peter Doerner
- Institute for Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Iturralde ET, Stocco MC, Faura A, Mónaco CI, Cordo C, Pérez-Giménez J, Lodeiro AR. Coinoculation of soybean plants with Bradyrhizobium japonicum and Trichoderma harzianum: Coexistence of both microbes and relief of nitrate inhibition of nodulation. ACTA ACUST UNITED AC 2020; 26:e00461. [PMID: 32420051 PMCID: PMC7218258 DOI: 10.1016/j.btre.2020.e00461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
Bradyrhizobium japonicum and Trichoderma harzianum coexisted in soybean rhizosphere. Soybean inoculated with both microbes nodulated with high nitrate concentrations. T. harzianum produced auxins in culture medium. Auxins applied with B. japonicum alone relieved nitrate inhibition of nodulation.
Coinoculation of plants with mixtures of beneficial microbes sometimes produces synergistic effects. In this study, the effect of soybean coinoculation with the N2-fixing Bradyrhizobium japonicum E109 and the biocontrol fungus Trichoderma harzianum Th5cc was analyzed. Nodulation by E109 was not hampered by Th5cc, which antagonized five out of seven soybean pathogens tested. Furthermore, Th5cc relieved nitrate-inhibition of nodulation, enabling the formation of nodules containing infected cells with bacteroids in the presence of the otherwise inhibitory 10 mM KNO3. Th5cc released micromolar amounts of auxin, and addition of 11 μM indoleacetic acid to soybean plants inoculated with E109 in the absence of Th5cc also induced nodulation in the presence of 10 mM KNO3. Thus, Th5cc may release auxins into the soybean rhizosphere, which hormones might participate in overcoming the nitrate-inhibition of nodulation. Our results suggest that soybean plants coinoculated with these microorganisms might benefit from biocontrol while contributing to soil-nitrogen preservation.
Collapse
Key Words
- AG, arabinose-gluconate medium
- Bradyrhizobium
- CFU, colony-forming units
- CR, Congo Red
- Coinoculation
- DAI, days after inoculation
- IAA, indoleacetic acid
- LPCB, lactophenol cotton blue
- MFS, modified Fåhræus solution
- Nitrate
- PDA, potato-dextrose agar
- PGPM, plant-growth promoting microbe
- Soybean
- Trichoderma
- YM, yeast-extract mannitol medium
- YMA, YM with 1.5 % (w/v) agar
Collapse
Affiliation(s)
- Esteban Tomás Iturralde
- Laboratorio de Interacciones entre Rizobios y Soja (Lirys), IBBM CCT-La Plata CONICET and Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900), La Plata, Argentina
| | - Marina Celeste Stocco
- CIDEFI, CIC-PBA and Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Calles 60 y 119 (1900), La Plata, Argentina
| | - Andrés Faura
- Rizobacter Argentina SA, Avda. Dr. Arturo Frondizi 1150, Parque Industrial (2700), Pergamino, Argentina
| | - Cecilia Inés Mónaco
- CIDEFI, CIC-PBA and Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Calles 60 y 119 (1900), La Plata, Argentina
| | - Cristina Cordo
- CIDEFI, CIC-PBA and Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Calles 60 y 119 (1900), La Plata, Argentina
| | - Julieta Pérez-Giménez
- Laboratorio de Interacciones entre Rizobios y Soja (Lirys), IBBM CCT-La Plata CONICET and Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900), La Plata, Argentina
| | - Aníbal Roberto Lodeiro
- Laboratorio de Interacciones entre Rizobios y Soja (Lirys), IBBM CCT-La Plata CONICET and Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900), La Plata, Argentina.,Laboratorio de Genética, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Calles 60 y 119 (1900), La Plata, Argentina
| |
Collapse
|
14
|
Yang H, Klopotek Y, Hajirezaei MR, Zerche S, Franken P, Druege U. Role of auxin homeostasis and response in nitrogen limitation and dark stimulation of adventitious root formation in petunia cuttings. ANNALS OF BOTANY 2019; 124:1053-1066. [PMID: 31181150 PMCID: PMC6881223 DOI: 10.1093/aob/mcz095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/05/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Adventitious root (AR) formation in Petunia hybrida is inhibited by low nitrogen fertilization of stock plants but promoted by dark incubation of cuttings before planting. We investigated whether the plant hormone auxin is involved in nitrogen- and dark-mediated AR formation. METHODS Concentrations of indole-3-acetic acid (IAA) and RNA accumulation of genes controlling auxin homeostasis and function were monitored in the stem base in response to high versus low nitrogen supply to stock plants and to temporal dark vs. light exposure of cuttings by use of GC-MS/MS, a petunia-specific microarray and quantitative RT-PCR. Auxin source capacity, polar auxin transport in cuttings and auxin concentration in the rooting zone were manipulated to investigate the functional contribution of auxin homeostasis and response to the effects of nitrogen fertilization and dark exposure on rooting. KEY RESULTS The nitrogen content of cuttings had only a marginal effect on IAA concentration in the stem base. Dark incubation enhanced the accumulation of IAA in the stem base during AR induction independent of nitrogen level. Early IAA accumulation in the dark depended on the upper shoot as an auxin source and was enhanced after apical IAA supply. Dark exposure stimulated RNA accumulation of auxin-related genes. In particular, expression of Ph-PIN1 and of genes controlling auxin signalling, including Ph-IAA14, Ph-ARF8, Ph-ARF10 and Ph-SAUR14, was enhanced, while the latter four were repressed in nitrogen-limited cuttings, particularly in the dark. Dark stimulation of rooting depended on polar auxin transport. Basal auxin application partially substituted the effect of dark exposure on rooting, whereas the auxin response of AR formation was strongly depressed by nitrogen limitation. CONCLUSIONS Increased auxin delivery from the upper shoot and enhanced auxin signalling in the stem base contribute to dark-stimulated AR formation, while nitrogen limitation inhibits AR formation downstream of the auxin signal.
Collapse
Affiliation(s)
- Huaiyu Yang
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Erfurt, Germany
| | - Yvonne Klopotek
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Erfurt, Germany
| | | | - Siegfried Zerche
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Erfurt, Germany
| | - Philipp Franken
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Erfurt, Germany
| | - Uwe Druege
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Erfurt, Germany
| |
Collapse
|
15
|
Druege U, Hilo A, Pérez-Pérez JM, Klopotek Y, Acosta M, Shahinnia F, Zerche S, Franken P, Hajirezaei MR. Molecular and physiological control of adventitious rooting in cuttings: phytohormone action meets resource allocation. ANNALS OF BOTANY 2019; 123:929-949. [PMID: 30759178 PMCID: PMC6589513 DOI: 10.1093/aob/mcy234] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 12/03/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Adventitious root (AR) formation in excised plant parts is a bottleneck for survival of isolated plant fragments. AR formation plays an important ecological role and is a critical process in cuttings for the clonal propagation of horticultural and forestry crops. Therefore, understanding the regulation of excision-induced AR formation is essential for sustainable and efficient utilization of plant genetic resources. SCOPE Recent studies of plant transcriptomes, proteomes and metabolomes, and the use of mutants and transgenic lines have significantly expanded our knowledge concerning excision-induced AR formation. Here, we integrate new findings regarding AR formation in the cuttings of diverse plant species. These findings support a new system-oriented concept that the phytohormone-controlled reprogramming and differentiation of particular responsive cells in the cutting base interacts with a co-ordinated reallocation of plant resources within the whole cutting to initiate and drive excision-induced AR formation. Master control by auxin involves diverse transcription factors and mechanically sensitive microtubules, and is further linked to ethylene, jasmonates, cytokinins and strigolactones. Hormone functions seem to involve epigenetic factors and cross-talk with metabolic signals, reflecting the nutrient status of the cutting. By affecting distinct physiological units in the cutting, environmental factors such as light, nitrogen and iron modify the implementation of the genetically controlled root developmental programme. CONCLUSION Despite advanced research in the last decade, important questions remain open for future investigations on excision-induced AR formation. These concern the distinct roles and interactions of certain molecular, hormonal and metabolic factors, as well as the functional equilibrium of the whole cutting in a complex environment. Starting from model plants, cell type- and phase-specific monitoring of controlling processes and modification of gene expression are promising methodologies that, however, need to be integrated into a coherent model of the whole system, before research findings can be translated to other crops.
Collapse
Affiliation(s)
- Uwe Druege
- Leibniz Institute of Vegetable and Ornamental Crops, Erfurt, Germany
| | - Alexander Hilo
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Stadt Seeland, Germany
| | | | - Yvonne Klopotek
- Leibniz Institute of Vegetable and Ornamental Crops, Erfurt, Germany
| | - Manuel Acosta
- Universidad de Murcia, Facultad de Biología, Campus de Espinardo, Murcia, Spain
| | - Fahimeh Shahinnia
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Stadt Seeland, Germany
| | - Siegfried Zerche
- Leibniz Institute of Vegetable and Ornamental Crops, Erfurt, Germany
| | - Philipp Franken
- Leibniz Institute of Vegetable and Ornamental Crops, Erfurt, Germany
| | - Mohammad R Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Stadt Seeland, Germany
| |
Collapse
|
16
|
Lagunas B, Achom M, Bonyadi-Pour R, Pardal AJ, Richmond BL, Sergaki C, Vázquez S, Schäfer P, Ott S, Hammond J, Gifford ML. Regulation of Resource Partitioning Coordinates Nitrogen and Rhizobia Responses and Autoregulation of Nodulation in Medicago truncatula. MOLECULAR PLANT 2019; 12:833-846. [PMID: 30953787 PMCID: PMC6557310 DOI: 10.1016/j.molp.2019.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 05/29/2023]
Abstract
Understanding how plants respond to nitrogen in their environment is crucial for determining how they use it and how the nitrogen use affects other processes related to plant growth and development. Under nitrogen limitation the activity and affinity of uptake systems is increased in roots, and lateral root formation is regulated in order to adapt to low nitrogen levels and scavenge from the soil. Plants in the legume family can form associations with rhizobial nitrogen-fixing bacteria, and this association is tightly regulated by nitrogen levels. The effect of nitrogen on nodulation has been extensively investigated, but the effects of nodulation on plant nitrogen responses remain largely unclear. In this study, we integrated molecular and phenotypic data in the legume Medicago truncatula and determined that genes controlling nitrogen influx are differently expressed depending on whether plants are mock or rhizobia inoculated. We found that a functional autoregulation of nodulation pathway is required for roots to perceive, take up, and mobilize nitrogen as well as for normal root development. Our results together revealed that autoregulation of nodulation, root development, and the location of nitrogen are processes balanced by the whole plant system as part of a resource-partitioning mechanism.
Collapse
Affiliation(s)
- Beatriz Lagunas
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Mingkee Achom
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | - Alonso J Pardal
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | - Chrysi Sergaki
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Saúl Vázquez
- Gateway Building, Sutton Bonington Campus, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Patrick Schäfer
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Sascha Ott
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
| | - John Hammond
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6AH, UK; Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | - Miriam L Gifford
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
17
|
Goh CH, Nicotra AB, Mathesius U. Genes controlling legume nodule numbers affect phenotypic plasticity responses to nitrogen in the presence and absence of rhizobia. PLANT, CELL & ENVIRONMENT 2019; 42:1747-1757. [PMID: 30512188 DOI: 10.1111/pce.13498] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/07/2018] [Accepted: 11/24/2018] [Indexed: 05/11/2023]
Abstract
We investigated the role of three autoregulation of nodulation (AON) genes in regulating of root and shoot phenotypes when responding to changing nitrogen availability in the model legume, Medicago truncatula. These genes, RDN1-1 (ROOT DETERMINED NODULATION1-1), SUNN (SUPER NUMERIC NODULES), and LSS (LIKE SUNN SUPERNODULAOR), act in a systemic signalling pathway that limits nodule numbers. This pathway is also influenced by nitrogen availability, but it is not well known if AON genes control root and shoot phenotypes other than nodule numbers in response to nitrogen. We conducted a controlled glasshouse experiment to compare root and shoot phenotypes of mutants and wild type plants treated with four nitrate concentrations. All AON mutants showed altered rhizobia-independent phenotypes, including biomass allocation, lateral root length, lateral root density, and root length ratio. In response to nitrogen, uninoculated AON mutants were less plastic than the wild type in controlling root mass ratio, root length ratio, and lateral root length. This suggests that AON genes control nodulation-independent root architecture phenotypes in response to nitrogen. The phenotypic differences between wild type and AON mutants were exacerbated by the presence of nodules, pointing to resource competition as an additional mechanism affecting root and shoot responses to nitrogen.
Collapse
Affiliation(s)
- Chooi-Hua Goh
- Division of Plant Science, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Adrienne B Nicotra
- Division of Evolution and Ecology, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Ulrike Mathesius
- Division of Plant Science, Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
18
|
Kohlen W, Ng JLP, Deinum EE, Mathesius U. Auxin transport, metabolism, and signalling during nodule initiation: indeterminate and determinate nodules. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:229-244. [PMID: 28992078 DOI: 10.1093/jxb/erx308] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Most legumes can form a unique type of lateral organ on their roots: root nodules. These structures host symbiotic nitrogen-fixing bacteria called rhizobia. Several different types of nodules can be found in nature, but the two best-studied types are called indeterminate and determinate nodules. These two types differ with respect to the presence or absence of a persistent nodule meristem, which consistently correlates with the cortical cell layers giving rise to the nodule primordia. Similar to other plant developmental processes, auxin signalling overlaps with the site of organ initiation and meristem activity. Here, we review how auxin contributes to early nodule development. We focus on changes in auxin transport, signalling, and metabolism during nodule initiation, describing both experimental evidence and computer modelling. We discuss how indeterminate and determinate nodules may differ in their mechanisms for generating localized auxin response maxima and highlight outstanding questions for future research.
Collapse
Affiliation(s)
- Wouter Kohlen
- Laboratory for Molecular Biology, Wageningen University & Research, The Netherlands
| | - Jason Liang Pin Ng
- Division of Plant Science, Research School of Biology, The Australian National University, Australia
| | - Eva E Deinum
- Mathematical and Statistical Methods, Wageningen University & Research, The Netherlands
| | - Ulrike Mathesius
- Division of Plant Science, Research School of Biology, The Australian National University, Australia
| |
Collapse
|
19
|
Proust H, Hartmann C, Crespi M, Lelandais-Brière C. Root Development in Medicago truncatula: Lessons from Genetics to Functional Genomics. Methods Mol Biol 2018; 1822:205-239. [PMID: 30043307 DOI: 10.1007/978-1-4939-8633-0_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This decade introduced "omics" approaches, such as genomics, transcriptomics, proteomics, and metabolomics in association with reverse and forward genetic approaches, developed earlier, to try to identify molecular pathways involved in the development or in the response to environmental conditions as well as in animals and plants. This review summarizes studies that utilized "omics" strategies to unravel the root development in the model legume Medicago truncatula and how external factors such as soil mineral status or the presence of bacteria and fungi affect root system architecture in this species. We also compare these "omics" data to the knowledges concerning the Arabidopsis thaliana root development, nowadays considered as the model of allorhiz root systems. However, unlike legumes, this species is unable to interact with soil nitrogen-fixing rhizobia and arbuscular-mycorrhizal (AM) fungi to develop novel root-derived symbiotic structures. Differences in root organization, development, and regulatory pathways between these two model species have been highlighted.
Collapse
Affiliation(s)
- Hélène Proust
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry Val d'Essonne, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France
| | - Caroline Hartmann
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry Val d'Essonne, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry Val d'Essonne, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France
| | - Christine Lelandais-Brière
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry Val d'Essonne, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France.
| |
Collapse
|
20
|
Hobecker KV, Reynoso MA, Bustos-Sanmamed P, Wen J, Mysore KS, Crespi M, Blanco FA, Zanetti ME. The MicroRNA390/TAS3 Pathway Mediates Symbiotic Nodulation and Lateral Root Growth. PLANT PHYSIOLOGY 2017; 174:2469-2486. [PMID: 28663332 PMCID: PMC5543954 DOI: 10.1104/pp.17.00464] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/24/2017] [Indexed: 05/19/2023]
Abstract
Legume roots form two types of postembryonic organs, lateral roots and symbiotic nodules. Nodule formation is the result of the interaction of legumes with rhizobia and requires the mitotic activation and differentiation of root cells as well as an independent, but coordinated, program that allows infection by rhizobia. MicroRNA390 (miR390) is an evolutionarily conserved microRNA that targets the Trans-Acting Short Interference RNA3 (TAS3) transcript. Cleavage of TAS3 by ARGONAUTE7 results in the production of trans-acting small interference RNAs, which target mRNAs encoding AUXIN RESPONSE FACTOR2 (ARF2), ARF3, and ARF4. Here, we show that activation of the miR390/TAS3 regulatory module by overexpression of miR390 in Medicago truncatula promotes lateral root growth but prevents nodule organogenesis, rhizobial infection, and the induction of two key nodulation genes, Nodulation Signaling Pathway1 (NSP1) and NSP2 Accordingly, inactivation of the miR390/TAS3 module, either by expression of a miR390 target mimicry construct or mutations in ARGONAUTE7, enhances nodulation and rhizobial infection, alters the spatial distribution of the nodules, and increases the percentage of nodules with multiple meristems. Our results revealed a key role of the miR390/TAS3 pathway in legumes as a modulator of lateral root organs, playing opposite roles in lateral root and nodule development.
Collapse
Affiliation(s)
- Karen Vanesa Hobecker
- Instituto de Biotecnología y Biología Molecular, FCE-UNLP CCT-CONICET, C.P. 1900 La Plata, Argentina
| | - Mauricio Alberto Reynoso
- Instituto de Biotecnología y Biología Molecular, FCE-UNLP CCT-CONICET, C.P. 1900 La Plata, Argentina
| | - Pilar Bustos-Sanmamed
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Universités Paris-Sud, Evry, Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France
| | - Jiangqi Wen
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Kirankumar S Mysore
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Martín Crespi
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Universités Paris-Sud, Evry, Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France
| | - Flavio Antonio Blanco
- Instituto de Biotecnología y Biología Molecular, FCE-UNLP CCT-CONICET, C.P. 1900 La Plata, Argentina
| | - María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, FCE-UNLP CCT-CONICET, C.P. 1900 La Plata, Argentina
| |
Collapse
|
21
|
Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB, Krishanani KK, Minhas PS. Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants: The Omics Strategies. FRONTIERS IN PLANT SCIENCE 2017; 8:172. [PMID: 28232845 PMCID: PMC5299014 DOI: 10.3389/fpls.2017.00172] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/27/2017] [Indexed: 05/19/2023]
Abstract
Abiotic stresses are the foremost limiting factors for agricultural productivity. Crop plants need to cope up adverse external pressure created by environmental and edaphic conditions with their intrinsic biological mechanisms, failing which their growth, development, and productivity suffer. Microorganisms, the most natural inhabitants of diverse environments exhibit enormous metabolic capabilities to mitigate abiotic stresses. Since microbial interactions with plants are an integral part of the living ecosystem, they are believed to be the natural partners that modulate local and systemic mechanisms in plants to offer defense under adverse external conditions. Plant-microbe interactions comprise complex mechanisms within the plant cellular system. Biochemical, molecular and physiological studies are paving the way in understanding the complex but integrated cellular processes. Under the continuous pressure of increasing climatic alterations, it now becomes more imperative to define and interpret plant-microbe relationships in terms of protection against abiotic stresses. At the same time, it also becomes essential to generate deeper insights into the stress-mitigating mechanisms in crop plants for their translation in higher productivity. Multi-omics approaches comprising genomics, transcriptomics, proteomics, metabolomics and phenomics integrate studies on the interaction of plants with microbes and their external environment and generate multi-layered information that can answer what is happening in real-time within the cells. Integration, analysis and decipherization of the big-data can lead to a massive outcome that has significant chance for implementation in the fields. This review summarizes abiotic stresses responses in plants in-terms of biochemical and molecular mechanisms followed by the microbe-mediated stress mitigation phenomenon. We describe the role of multi-omics approaches in generating multi-pronged information to provide a better understanding of plant-microbe interactions that modulate cellular mechanisms in plants under extreme external conditions and help to optimize abiotic stresses. Vigilant amalgamation of these high-throughput approaches supports a higher level of knowledge generation about root-level mechanisms involved in the alleviation of abiotic stresses in organisms.
Collapse
Affiliation(s)
- Kamlesh K. Meena
- Department of Microbiology, School of Edaphic Stress Management, National Institute of Abiotic Stress Management, Indian Council of Agricultural ResearchBaramati, India
| | - Ajay M. Sorty
- Department of Microbiology, School of Edaphic Stress Management, National Institute of Abiotic Stress Management, Indian Council of Agricultural ResearchBaramati, India
| | - Utkarsh M. Bitla
- Department of Microbiology, School of Edaphic Stress Management, National Institute of Abiotic Stress Management, Indian Council of Agricultural ResearchBaramati, India
| | - Khushboo Choudhary
- Department of Microbiology, School of Edaphic Stress Management, National Institute of Abiotic Stress Management, Indian Council of Agricultural ResearchBaramati, India
| | - Priyanka Gupta
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Dhananjaya P. Singh
- Department of Biotechnology, National Bureau of Agriculturally Important Microorganisms, Indian Council of Agricultural ResearchKushmaur, India
| | - Ratna Prabha
- Department of Biotechnology, National Bureau of Agriculturally Important Microorganisms, Indian Council of Agricultural ResearchKushmaur, India
| | - Pramod K. Sahu
- Department of Biotechnology, National Bureau of Agriculturally Important Microorganisms, Indian Council of Agricultural ResearchKushmaur, India
| | - Vijai K. Gupta
- Molecular Glyco-Biotechnology Group, Discipline of Biochemistry, School of Natural Sciences, National University of Ireland GalwayGalway, Ireland
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, School of Science, Tallinn University of TechnologyTallinn, Estonia
| | - Harikesh B. Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu UniversityVaranasi, India
| | - Kishor K. Krishanani
- Department of Microbiology, School of Edaphic Stress Management, National Institute of Abiotic Stress Management, Indian Council of Agricultural ResearchBaramati, India
| | - Paramjit S. Minhas
- Department of Microbiology, School of Edaphic Stress Management, National Institute of Abiotic Stress Management, Indian Council of Agricultural ResearchBaramati, India
| |
Collapse
|
22
|
Mohd-Radzman NA, Laffont C, Ivanovici A, Patel N, Reid D, Stougaard J, Frugier F, Imin N, Djordjevic MA. Different Pathways Act Downstream of the CEP Peptide Receptor CRA2 to Regulate Lateral Root and Nodule Development. PLANT PHYSIOLOGY 2016; 171:2536-48. [PMID: 27342310 PMCID: PMC4972263 DOI: 10.1104/pp.16.00113] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/21/2016] [Indexed: 05/18/2023]
Abstract
C-TERMINALLY ENCODED PEPTIDEs (CEPs) control root system architecture in a non-cell-autonomous manner. In Medicago truncatula, MtCEP1 affects root development by increasing nodule formation and inhibiting lateral root emergence by unknown pathways. Here, we show that the MtCEP1 peptide-dependent increase in nodulation requires the symbiotic signaling pathway and ETHYLENE INSENSITIVE2 (EIN2)/SICKLE (SKL), but acts independently of SUPER NUMERIC NODULES. MtCEP1-dependent inhibition of lateral root development acts through an EIN2-independent mechanism. MtCEP1 increases nodulation by promoting rhizobial infections, the developmental competency of roots for nodulation, the formation of fused nodules, and an increase in frequency of nodule development that initiates at proto-phloem poles. These phenotypes are similar to those of the ein2/skl mutant and support that MtCEP1 modulates EIN2-dependent symbiotic responses. Accordingly, MtCEP1 counteracts the reduction in nodulation induced by increasing ethylene precursor concentrations, and an ethylene synthesis inhibitor treatment antagonizes MtCEP1 root phenotypes. MtCEP1 also inhibits the development of EIN2-dependent pseudonodule formation. Finally, mutants affecting the COMPACT ROOT ARCHITECTURE2 (CRA2) receptor, which is closely related to the Arabidopsis CEP Receptor1, are unresponsive to MtCEP1 effects on lateral root and nodule formation, suggesting that CRA2 is a CEP peptide receptor mediating both organogenesis programs. In addition, an ethylene inhibitor treatment counteracts the cra2 nodulation phenotype. These results indicate that MtCEP1 and its likely receptor, CRA2, mediate nodulation and lateral root development through different pathways.
Collapse
Affiliation(s)
- Nadiatul A Mohd-Radzman
- Plant Science Division, Research School of Biology, College of Medicine, Biology and the Environment, Australian National University, Canberra, ACT 2601, Australia (N.A.M.-R., A.I., N.P., N.I., M.A.D.);Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Universités Paris Sud, Evry, Paris-Diderot, and Paris-Saclay, 91190 Gif sur Yvette, France (C.L., F.F.); andPlant Molecular Biology, Department of Molecular Biology and Genetics, 8000 Aarhus C, Denmark (D.R., J.S.)
| | - Carole Laffont
- Plant Science Division, Research School of Biology, College of Medicine, Biology and the Environment, Australian National University, Canberra, ACT 2601, Australia (N.A.M.-R., A.I., N.P., N.I., M.A.D.);Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Universités Paris Sud, Evry, Paris-Diderot, and Paris-Saclay, 91190 Gif sur Yvette, France (C.L., F.F.); andPlant Molecular Biology, Department of Molecular Biology and Genetics, 8000 Aarhus C, Denmark (D.R., J.S.)
| | - Ariel Ivanovici
- Plant Science Division, Research School of Biology, College of Medicine, Biology and the Environment, Australian National University, Canberra, ACT 2601, Australia (N.A.M.-R., A.I., N.P., N.I., M.A.D.);Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Universités Paris Sud, Evry, Paris-Diderot, and Paris-Saclay, 91190 Gif sur Yvette, France (C.L., F.F.); andPlant Molecular Biology, Department of Molecular Biology and Genetics, 8000 Aarhus C, Denmark (D.R., J.S.)
| | - Neha Patel
- Plant Science Division, Research School of Biology, College of Medicine, Biology and the Environment, Australian National University, Canberra, ACT 2601, Australia (N.A.M.-R., A.I., N.P., N.I., M.A.D.);Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Universités Paris Sud, Evry, Paris-Diderot, and Paris-Saclay, 91190 Gif sur Yvette, France (C.L., F.F.); andPlant Molecular Biology, Department of Molecular Biology and Genetics, 8000 Aarhus C, Denmark (D.R., J.S.)
| | - Dugald Reid
- Plant Science Division, Research School of Biology, College of Medicine, Biology and the Environment, Australian National University, Canberra, ACT 2601, Australia (N.A.M.-R., A.I., N.P., N.I., M.A.D.);Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Universités Paris Sud, Evry, Paris-Diderot, and Paris-Saclay, 91190 Gif sur Yvette, France (C.L., F.F.); andPlant Molecular Biology, Department of Molecular Biology and Genetics, 8000 Aarhus C, Denmark (D.R., J.S.)
| | - Jens Stougaard
- Plant Science Division, Research School of Biology, College of Medicine, Biology and the Environment, Australian National University, Canberra, ACT 2601, Australia (N.A.M.-R., A.I., N.P., N.I., M.A.D.);Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Universités Paris Sud, Evry, Paris-Diderot, and Paris-Saclay, 91190 Gif sur Yvette, France (C.L., F.F.); andPlant Molecular Biology, Department of Molecular Biology and Genetics, 8000 Aarhus C, Denmark (D.R., J.S.)
| | - Florian Frugier
- Plant Science Division, Research School of Biology, College of Medicine, Biology and the Environment, Australian National University, Canberra, ACT 2601, Australia (N.A.M.-R., A.I., N.P., N.I., M.A.D.);Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Universités Paris Sud, Evry, Paris-Diderot, and Paris-Saclay, 91190 Gif sur Yvette, France (C.L., F.F.); andPlant Molecular Biology, Department of Molecular Biology and Genetics, 8000 Aarhus C, Denmark (D.R., J.S.)
| | - Nijat Imin
- Plant Science Division, Research School of Biology, College of Medicine, Biology and the Environment, Australian National University, Canberra, ACT 2601, Australia (N.A.M.-R., A.I., N.P., N.I., M.A.D.);Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Universités Paris Sud, Evry, Paris-Diderot, and Paris-Saclay, 91190 Gif sur Yvette, France (C.L., F.F.); andPlant Molecular Biology, Department of Molecular Biology and Genetics, 8000 Aarhus C, Denmark (D.R., J.S.)
| | - Michael A Djordjevic
- Plant Science Division, Research School of Biology, College of Medicine, Biology and the Environment, Australian National University, Canberra, ACT 2601, Australia (N.A.M.-R., A.I., N.P., N.I., M.A.D.);Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Universités Paris Sud, Evry, Paris-Diderot, and Paris-Saclay, 91190 Gif sur Yvette, France (C.L., F.F.); andPlant Molecular Biology, Department of Molecular Biology and Genetics, 8000 Aarhus C, Denmark (D.R., J.S.)
| |
Collapse
|
23
|
Molecular Signals Controlling the Inhibition of Nodulation by Nitrate in Medicago truncatula. Int J Mol Sci 2016; 17:ijms17071060. [PMID: 27384556 PMCID: PMC4964436 DOI: 10.3390/ijms17071060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 11/30/2022] Open
Abstract
The presence of nitrogen inhibits legume nodule formation, but the mechanism of this inhibition is poorly understood. We found that 2.5 mM nitrate and above significantly inhibited nodule initiation but not root hair curling in Medicago trunatula. We analyzed protein abundance in M. truncatula roots after treatment with either 0 or 2.5 mM nitrate in the presence or absence of its symbiont Sinorhizobium meliloti after 1, 2 and 5 days following inoculation. Two-dimensional gel electrophoresis combined with mass spectrometry was used to identify 106 differentially accumulated proteins responding to nitrate addition, inoculation or time point. While flavonoid-related proteins were less abundant in the presence of nitrate, addition of Nod gene-inducing flavonoids to the Sinorhizobium culture did not rescue nodulation. Accumulation of auxin in response to rhizobia, which is also controlled by flavonoids, still occurred in the presence of nitrate, but did not localize to a nodule initiation site. Several of the changes included defense- and redox-related proteins, and visualization of reactive oxygen species indicated that their induction in root hairs following Sinorhizobium inoculation was inhibited by nitrate. In summary, the presence of nitrate appears to inhibit nodulation via multiple pathways, including changes to flavonoid metabolism, defense responses and redox changes.
Collapse
|
24
|
Goh CH, Nicotra AB, Mathesius U. The presence of nodules on legume root systems can alter phenotypic plasticity in response to internal nitrogen independent of nitrogen fixation. PLANT, CELL & ENVIRONMENT 2016; 39:883-96. [PMID: 26523414 DOI: 10.1111/pce.12672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/23/2015] [Accepted: 10/29/2015] [Indexed: 05/11/2023]
Abstract
All higher plants show developmental plasticity in response to the availability of nitrogen (N) in the soil. In legumes, N starvation causes the formation of root nodules, where symbiotic rhizobacteria fix atmospheric N2 for the host in exchange for fixed carbon (C) from the shoot. Here, we tested whether plastic responses to internal [N] of legumes are altered by their symbionts. Glasshouse experiments compared root phenotypes of three legumes, Medicago truncatula, Medicago sativa and Trifolium subterraneum, inoculated with their compatible symbiont partners and grown under four nitrate levels. In addition, six strains of rhizobia, differing in their ability to fix N2 in M. truncatula, were compared to test if plastic responses to internal [N] were dependent on the rhizobia or N2 -fixing capability of the nodules. We found that the presence of rhizobia affected phenotypic plasticity of the legumes to internal [N], particularly in root length and root mass ratio (RMR), in a plant species-dependent way. While root length responses of M. truncatula to internal [N] were dependent on the ability of rhizobial symbionts to fix N2 , RMR response to internal [N] was dependent only on initiation of nodules, irrespective of N2 -fixing ability of the rhizobia strains.
Collapse
Affiliation(s)
- Chooi-Hua Goh
- Division of Plant Science, Australian National University, Canberra, ACT, 0200, Australia
| | - Adrienne B Nicotra
- Division of Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia
| | - Ulrike Mathesius
- Division of Plant Science, Australian National University, Canberra, ACT, 0200, Australia
| |
Collapse
|
25
|
Shabala S, White RG, Djordjevic MA, Ruan YL, Mathesius U. Root-to-shoot signalling: integration of diverse molecules, pathways and functions. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:87-104. [PMID: 32480444 DOI: 10.1071/fp15252] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/06/2015] [Indexed: 05/23/2023]
Abstract
Plant adaptive potential is critically dependent upon efficient communication and co-ordination of resource allocation and signalling between above- and below-ground plant parts. Plant roots act as gatekeepers that sense and encode information about soil physical, chemical and biological factors, converting them into a sophisticated network of signals propagated both within the root itself, and also between the root and shoot, to optimise plant performance for a specific set of conditions. In return, plant roots receive and decode reciprocal information coming from the shoot. The communication modes are highly diverse and include a broad range of physical (electric and hydraulic signals, propagating Ca2+ and ROS waves), chemical (assimilates, hormones, peptides and nutrients), and molecular (proteins and RNA) signals. Further, different signalling systems operate at very different timescales. It remains unclear whether some of these signalling systems operate in a priming mode(s), whereas others deliver more specific information about the nature of the signal, or whether they carry the same 'weight'. This review summarises the current knowledge of the above signalling mechanisms, and reveals their hierarchy, and highlights the importance of integration of these signalling components, to enable optimal plant functioning in a dynamic environment.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | | | - Michael A Djordjevic
- Plant Science Division, Research School of Biology, Building 134, Linnaeus Way, The Australian National University, Canberra, ACT 2601, Australia
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Ulrike Mathesius
- Plant Science Division, Research School of Biology, Building 134, Linnaeus Way, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
26
|
Ng JLP, Perrine-Walker F, Wasson AP, Mathesius U. The Control of Auxin Transport in Parasitic and Symbiotic Root-Microbe Interactions. PLANTS (BASEL, SWITZERLAND) 2015; 4:606-43. [PMID: 27135343 PMCID: PMC4844411 DOI: 10.3390/plants4030606] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/12/2015] [Accepted: 08/18/2015] [Indexed: 01/13/2023]
Abstract
Most field-grown plants are surrounded by microbes, especially from the soil. Some of these, including bacteria, fungi and nematodes, specifically manipulate the growth and development of their plant hosts, primarily for the formation of structures housing the microbes in roots. These developmental processes require the correct localization of the phytohormone auxin, which is involved in the control of cell division, cell enlargement, organ development and defense, and is thus a likely target for microbes that infect and invade plants. Some microbes have the ability to directly synthesize auxin. Others produce specific signals that indirectly alter the accumulation of auxin in the plant by altering auxin transport. This review highlights root-microbe interactions in which auxin transport is known to be targeted by symbionts and parasites to manipulate the development of their host root system. We include case studies for parasitic root-nematode interactions, mycorrhizal symbioses as well as nitrogen fixing symbioses in actinorhizal and legume hosts. The mechanisms to achieve auxin transport control that have been studied in model organisms include the induction of plant flavonoids that indirectly alter auxin transport and the direct targeting of auxin transporters by nematode effectors. In most cases, detailed mechanisms of auxin transport control remain unknown.
Collapse
Affiliation(s)
- Jason Liang Pin Ng
- Division of Plant Science, Research School of Biology, Australian National University, Linnaeus Way, Building 134, Canberra ACT 2601, Australia.
| | | | | | - Ulrike Mathesius
- Division of Plant Science, Research School of Biology, Australian National University, Linnaeus Way, Building 134, Canberra ACT 2601, Australia.
| |
Collapse
|
27
|
Bensmihen S. Hormonal Control of Lateral Root and Nodule Development in Legumes. PLANTS (BASEL, SWITZERLAND) 2015; 4:523-47. [PMID: 27135340 PMCID: PMC4844399 DOI: 10.3390/plants4030523] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/24/2015] [Accepted: 07/29/2015] [Indexed: 11/23/2022]
Abstract
Many plants can establish symbioses with nitrogen-fixing bacteria, some of which lead to nodulation, including legumes. Indeed, in the rhizobium/legume symbiosis, new root organs, called nodules, are formed by the plant in order to host the rhizobia in protective conditions, optimized for nitrogen fixation. In this way, these plants can benefit from the reduction of atmospheric dinitrogen into ammonia by the hosted bacteria, and in exchange the plant provides the rhizobia with a carbon source. Since this symbiosis is costly for the plant it is highly regulated. Both legume nodule and lateral root organogenesis involve divisions of the root inner tissues, and both developmental programs are tightly controlled by plant hormones. In fact, most of the major plant hormones, such as auxin, cytokinins, abscisic acid, and strigolactones, control both lateral root formation and nodule organogenesis, but often in an opposite manner. This suggests that the sensitivity of legume plants to some phytohormones could be linked to the antagonism that exists between the processes of nodulation and lateral root formation. Here, we will review the implication of some major phytohormones in lateral root formation in legumes, compare them with their roles in nodulation, and discuss specificities and divergences from non-legume eudicot plants such as Arabidopsis thaliana.
Collapse
Affiliation(s)
- Sandra Bensmihen
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326 Castanet-Tolosan, France.
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326 Castanet-Tolosan, France.
| |
Collapse
|
28
|
Djordjevic MA, Mohd-Radzman NA, Imin N. Small-peptide signals that control root nodule number, development, and symbiosis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5171-81. [PMID: 26249310 DOI: 10.1093/jxb/erv357] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Many legumes have the capacity to enter into a symbiotic association with soil bacteria generically called 'rhizobia' that results in the formation of new lateral organs on roots called nodules within which the rhizobia fix atmospheric nitrogen (N). Up to 200 million tonnes of N per annum is fixed by this association. Therefore, this symbiosis plays an integral role in the N cycle and is exploited in agriculture to support the sustainable fixation of N for cropping and animal production in developing and developed nations. Root nodulation is an expendable developmental process and competency for nodulation is coupled to low-N conditions. Both nodule initiation and development is suppressed under high-N conditions. Although root nodule formation enables sufficient N to be fixed for legumes to grow under N-deficient conditions, the carbon cost is high and nodule number is tightly regulated by local and systemic mechanisms. How legumes co-ordinate nodule formation with the other main organs of nutrient acquisition, lateral roots, is not fully understood. Independent mechanisms appear to regulate lateral roots and nodules under low- and high-N regimes. Recently, several signalling peptides have been implicated in the local and systemic regulation of nodule and lateral root formation. Other peptide classes control the symbiotic interaction of rhizobia with the host. This review focuses on the roles played by signalling peptides during the early stages of root nodule formation, in the control of nodule number, and in the establishment of symbiosis. Here, we highlight the latest findings and the gaps in our understanding of these processes.
Collapse
Affiliation(s)
- Michael A Djordjevic
- Division of Plant Sciences, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra ACT 2601, Australia
| | - Nadiatul A Mohd-Radzman
- Division of Plant Sciences, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra ACT 2601, Australia
| | - Nijat Imin
- Division of Plant Sciences, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
29
|
Khan MIR, Trivellini A, Fatma M, Masood A, Francini A, Iqbal N, Ferrante A, Khan NA. Role of ethylene in responses of plants to nitrogen availability. FRONTIERS IN PLANT SCIENCE 2015; 6:927. [PMID: 26579172 PMCID: PMC4626634 DOI: 10.3389/fpls.2015.00927] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/14/2015] [Indexed: 05/05/2023]
Abstract
Ethylene is a plant hormone involved in several physiological processes and regulates the plant development during the whole life. Stressful conditions usually activate ethylene biosynthesis and signaling in plants. The availability of nutrients, shortage or excess, influences plant metabolism and ethylene plays an important role in plant adaptation under suboptimal conditions. Among the plant nutrients, the nitrogen (N) is one the most important mineral element required for plant growth and development. The availability of N significantly influences plant metabolism, including ethylene biology. The interaction between ethylene and N affects several physiological processes such as leaf gas exchanges, roots architecture, leaf, fruits, and flowers development. Low plant N use efficiency (NUE) leads to N loss and N deprivation, which affect ethylene biosynthesis and tissues sensitivity, inducing cell damage and ultimately lysis. Plants may respond differently to N availability balancing ethylene production through its signaling network. This review discusses the recent advances in the interaction between N availability and ethylene at whole plant and different organ levels, and explores how N availability induces ethylene biology and plant responses. Exogenously applied ethylene seems to cope the stress conditions and improves plant physiological performance. This can be explained considering the expression of ethylene biosynthesis and signaling genes under different N availability. A greater understanding of the regulation of N by means of ethylene modulation may help to increase NUE and directly influence crop productivity under conditions of limited N availability, leading to positive effects on the environment. Moreover, efforts should be focused on the effect of N deficiency or excess in fruit trees, where ethylene can have detrimental effects especially during postharvest.
Collapse
Affiliation(s)
- M. I. R. Khan
- Department of Botany, Aligarh Muslim UniversityAligarh, India
| | - Alice Trivellini
- Institute of Life Sciences, Scuola Superiore Sant’AnnaPisa, Italy
| | - Mehar Fatma
- Department of Botany, Aligarh Muslim UniversityAligarh, India
| | - Asim Masood
- Department of Botany, Aligarh Muslim UniversityAligarh, India
| | | | - Noushina Iqbal
- Department of Botany, Jamia Hamdard University New Delhi, India
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di MilanoMilan, Italy
| | - Nafees A. Khan
- Department of Botany, Aligarh Muslim UniversityAligarh, India
- *Correspondence: Nafees A. Khan,
| |
Collapse
|
30
|
Pellizzaro A, Clochard T, Cukier C, Bourdin C, Juchaux M, Montrichard F, Thany S, Raymond V, Planchet E, Limami AM, Morère-Le Paven MC. The nitrate transporter MtNPF6.8 (MtNRT1.3) transports abscisic acid and mediates nitrate regulation of primary root growth in Medicago truncatula. PLANT PHYSIOLOGY 2014; 166:2152-65. [PMID: 25367858 PMCID: PMC4256864 DOI: 10.1104/pp.114.250811] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/29/2014] [Indexed: 05/18/2023]
Abstract
Elongation of the primary root during postgermination of Medicago truncatula seedlings is a multigenic trait that is responsive to exogenous nitrate. A quantitative genetic approach suggested the involvement of the nitrate transporter MtNPF6.8 (for Medicago truncatula NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER Family6.8) in the inhibition of primary root elongation by high exogenous nitrate. In this study, the inhibitory effect of nitrate on primary root elongation, via inhibition of elongation of root cortical cells, was abolished in npf6.8 knockdown lines. Accordingly, we propose that MtNPF6.8 mediates nitrate inhibitory effects on primary root growth in M. truncatula. pMtNPF6.8:GUS promoter-reporter gene fusion in Agrobacterium rhizogenes-generated transgenic roots showed the expression of MtNPF6.8 in the pericycle region of primary roots and lateral roots, and in lateral root primordia and tips. MtNPF6.8 expression was insensitive to auxin and was stimulated by abscisic acid (ABA), which restored the inhibitory effect of nitrate in npf6.8 knockdown lines. It is then proposed that ABA acts downstream of MtNPF6.8 in this nitrate signaling pathway. Furthermore, MtNPF6.8 was shown to transport ABA in Xenopus spp. oocytes, suggesting an additional role of MtNPF6.8 in ABA root-to-shoot translocation. (15)NO3(-)-influx experiments showed that only the inducible component of the low-affinity transport system was affected in npf6.8 knockdown lines. This indicates that MtNPF6.8 is a major contributor to the inducible component of the low-affinity transport system. The short-term induction by nitrate of the expression of Nitrate Reductase1 (NR1) and NR2 (genes that encode two nitrate reductase isoforms) was greatly reduced in the npf6.8 knockdown lines, supporting a role of MtNPF6.8 in the primary nitrate response in M. truncatula.
Collapse
Affiliation(s)
- Anthoni Pellizzaro
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Thibault Clochard
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Caroline Cukier
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Céline Bourdin
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Marjorie Juchaux
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Françoise Montrichard
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Steeve Thany
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Valérie Raymond
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Elisabeth Planchet
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Anis M Limami
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Marie-Christine Morère-Le Paven
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| |
Collapse
|
31
|
de Jong M, George G, Ongaro V, Williamson L, Willetts B, Ljung K, McCulloch H, Leyser O. Auxin and strigolactone signaling are required for modulation of Arabidopsis shoot branching by nitrogen supply. PLANT PHYSIOLOGY 2014; 166:384-95. [PMID: 25059707 PMCID: PMC4149722 DOI: 10.1104/pp.114.242388] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/21/2014] [Indexed: 05/20/2023]
Abstract
The degree of shoot branching is strongly affected by environmental conditions, such as nutrient availability. Here we demonstrate that nitrate limitation reduces shoot branching in Arabidopsis (Arabidopsis thaliana) both by delaying axillary bud activation and by attenuating the basipetal sequence of bud activation that is triggered following floral transition. Ammonium supply has similar effects, suggesting that they are caused by plant nitrogen (N) status, rather than direct nitrate signaling. We identify increased auxin export from active shoot apices, resulting in increased auxin in the polar auxin transport stream of the main stem, as a likely cause for the suppression of basal branches. Consistent with this idea, in the auxin response mutant axr1 and the strigolactone biosynthesis mutant more axillary growth1, increased retention of basal branches on low N is associated with a failure to increase auxin in the main stem. The complex interactions between the hormones that regulate branching make it difficult to rule out other mechanisms of N action, such as up-regulation of strigolactone synthesis. However, the proposed increase in auxin export from active buds can also explain how reduced shoot branching is achieved without compromising root growth, leading to the characteristic shift in relative biomass allocation to the root when N is limiting.
Collapse
Affiliation(s)
- Maaike de Jong
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom (M.d.J., H.M., O.L.);Department of Biology, University of York, York YO10 5DD, United Kingdom (G.G., V.O., L.W., B.W., O.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden (K.L.)
| | - Gilu George
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom (M.d.J., H.M., O.L.);Department of Biology, University of York, York YO10 5DD, United Kingdom (G.G., V.O., L.W., B.W., O.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden (K.L.)
| | - Veronica Ongaro
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom (M.d.J., H.M., O.L.);Department of Biology, University of York, York YO10 5DD, United Kingdom (G.G., V.O., L.W., B.W., O.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden (K.L.)
| | - Lisa Williamson
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom (M.d.J., H.M., O.L.);Department of Biology, University of York, York YO10 5DD, United Kingdom (G.G., V.O., L.W., B.W., O.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden (K.L.)
| | - Barbara Willetts
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom (M.d.J., H.M., O.L.);Department of Biology, University of York, York YO10 5DD, United Kingdom (G.G., V.O., L.W., B.W., O.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden (K.L.)
| | - Karin Ljung
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom (M.d.J., H.M., O.L.);Department of Biology, University of York, York YO10 5DD, United Kingdom (G.G., V.O., L.W., B.W., O.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden (K.L.)
| | - Hayley McCulloch
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom (M.d.J., H.M., O.L.);Department of Biology, University of York, York YO10 5DD, United Kingdom (G.G., V.O., L.W., B.W., O.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden (K.L.)
| | - Ottoline Leyser
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom (M.d.J., H.M., O.L.);Department of Biology, University of York, York YO10 5DD, United Kingdom (G.G., V.O., L.W., B.W., O.L.); andUmeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden (K.L.)
| |
Collapse
|
32
|
Bourion V, Martin C, de Larambergue H, Jacquin F, Aubert G, Martin-Magniette ML, Balzergue S, Lescure G, Citerne S, Lepetit M, Munier-Jolain N, Salon C, Duc G. Unexpectedly low nitrogen acquisition and absence of root architecture adaptation to nitrate supply in a Medicago truncatula highly branched root mutant. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2365-80. [PMID: 24706718 PMCID: PMC4036509 DOI: 10.1093/jxb/eru124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
To complement N2 fixation through symbiosis, legumes can efficiently acquire soil mineral N through adapted root architecture. However, root architecture adaptation to mineral N availability has been little studied in legumes. Therefore, this study investigated the effect of nitrate availability on root architecture in Medicago truncatula and assessed the N-uptake potential of a new highly branched root mutant, TR185. The effects of varying nitrate supply on both root architecture and N uptake were characterized in the mutant and in the wild type. Surprisingly, the root architecture of the mutant was not modified by variation in nitrate supply. Moreover, despite its highly branched root architecture, TR185 had a permanently N-starved phenotype. A transcriptome analysis was performed to identify genes differentially expressed between the two genotypes. This analysis revealed differential responses related to the nitrate acquisition pathway and confirmed that N starvation occurred in TR185. Changes in amino acid content and expression of genes involved in the phenylpropanoid pathway were associated with differences in root architecture between the mutant and the wild type.
Collapse
Affiliation(s)
| | - Chantal Martin
- INRA, UMR1347 Agroécologie, BP 86510, F-21065 Dijon, France
| | | | | | | | - Marie-Laure Martin-Magniette
- INRA, UMR518 MIA, F-75231 Paris, France AgroParisTech, UMR MIA, F-75231 Paris, France INRA, UMR1165 URGV, F-91057 Evry, France UEVE, UMR URGV, F-91057 Evry, France CNRS, ERL8196 UMR URGV, F-91057 Evry, France
| | - Sandrine Balzergue
- INRA, UMR1165 URGV, F-91057 Evry, France UEVE, UMR URGV, F-91057 Evry, France CNRS, ERL8196 UMR URGV, F-91057 Evry, France
| | - Geoffroy Lescure
- Institut Jean-Pierre Bourgin, UMR1318 INRA/AgroParisTech, F-78026 Versailles, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, UMR1318 INRA/AgroParisTech, F-78026 Versailles, France
| | - Marc Lepetit
- USC1342 INRA, UMR113 IRD-CIRAD-SupAgro-UM2, Symbioses Tropicales et Méditerranéennes, Campus de Baillarguet, TA A-82/J, F-34398 Montpellier Cedex 5, France
| | | | | | - Gérard Duc
- INRA, UMR1347 Agroécologie, BP 86510, F-21065 Dijon, France
| |
Collapse
|
33
|
Foo E, Ferguson BJ, Reid JB. The potential roles of strigolactones and brassinosteroids in the autoregulation of nodulation pathway. ANNALS OF BOTANY 2014; 113:1037-45. [PMID: 24694828 PMCID: PMC3997646 DOI: 10.1093/aob/mcu030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS The number of nodules formed on a legume root system is under the strict genetic control of the autoregulation of nodulation (AON) pathway. Plant hormones are thought to play a role in AON; however, the involvement of two hormones recently described as having a largely positive role in nodulation, strigolactones and brassinosteroids, has not been examined in the AON process. METHODS A genetic approach was used to examine if strigolactones or brassinosteroids interact with the AON system in pea (Pisum sativum). Double mutants between shoot-acting (Psclv2, Psnark) and root-acting (Psrdn1) mutants of the AON pathway and strigolactone-deficient (Psccd8) or brassinosteroid-deficient (lk) mutants were generated and assessed for various aspects of nodulation. Strigolactone production by AON mutant roots was also investigated. KEY RESULTS Supernodulation of the roots was observed in both brassinosteroid- and strigolactone-deficient AON double-mutant plants. This is despite the fact that the shoots of these plants displayed classic strigolactone-deficient (increased shoot branching) or brassinosteroid-deficient (extreme dwarf) phenotypes. No consistent effect of disruption of the AON pathway on strigolactone production was found, but root-acting Psrdn1 mutants did produce significantly more strigolactones. CONCLUSIONS No evidence was found that strigolactones or brassinosteroids act downstream of the AON genes examined. While in pea the AON mutants are epistatic to brassinosteroid and strigolactone synthesis genes, we argue that these hormones are likely to act independently of the AON system, having a role in the promotion of nodule formation.
Collapse
Affiliation(s)
- E. Foo
- For correspondence. E-mail
| | | | | |
Collapse
|
34
|
Mohd-Radzman NA, Djordjevic MA, Imin N. Nitrogen modulation of legume root architecture signaling pathways involves phytohormones and small regulatory molecules. FRONTIERS IN PLANT SCIENCE 2013; 4:385. [PMID: 24098303 PMCID: PMC3787543 DOI: 10.3389/fpls.2013.00385] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/11/2013] [Indexed: 05/20/2023]
Abstract
Nitrogen, particularly nitrate is an important yield determinant for crops. However, current agricultural practice with excessive fertilizer usage has detrimental effects on the environment. Therefore, legumes have been suggested as a sustainable alternative for replenishing soil nitrogen. Legumes can uniquely form nitrogen-fixing nodules through symbiotic interaction with specialized soil bacteria. Legumes possess a highly plastic root system which modulates its architecture according to the nitrogen availability in the soil. Understanding how legumes regulate root development in response to nitrogen availability is an important step to improving root architecture. The nitrogen-mediated root development pathway starts with sensing soil nitrogen level followed by subsequent signal transduction pathways involving phytohormones, microRNAs and regulatory peptides that collectively modulate the growth and shape of the root system. This review focuses on the current understanding of nitrogen-mediated legume root architecture including local and systemic regulations by different N-sources and the modulations by phytohormones and small regulatory molecules.
Collapse
Affiliation(s)
| | | | - Nijat Imin
- *Correspondence: Nijat Imin, Division of Plant Sciences, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Linnaeus Building 134, Linnaeus Way, Canberra, ACT 0200, Australia e-mail:
| |
Collapse
|
35
|
Goh CH, Veliz Vallejos DF, Nicotra AB, Mathesius U. The impact of beneficial plant-associated microbes on plant phenotypic plasticity. J Chem Ecol 2013; 39:826-39. [PMID: 23892542 PMCID: PMC3738838 DOI: 10.1007/s10886-013-0326-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/29/2013] [Accepted: 07/09/2013] [Indexed: 10/28/2022]
Abstract
Plants show phenotypic plasticity in response to changing or extreme abiotic environments; but over millions of years they also have co-evolved to respond to the presence of soil microbes. Studies on phenotypic plasticity in plants have focused mainly on the effects of the changing environments on plants' growth and survival. Evidence is now accumulating that the presence of microbes can alter plant phenotypic plasticity in a broad range of traits in response to a changing environment. In this review, we discuss the effects of microbes on plant phenotypic plasticity in response to changing environmental conditions, and how this may affect plant fitness. By using a range of specific plant-microbe interactions as examples, we demonstrate that one way that microbes can alleviate the effect of environmental stress on plants and thus increase plant fitness is to remove the stress, e.g., nutrient limitation, directly. Furthermore, microbes indirectly affect plant phenotypic plasticity and fitness through modulation of plant development and defense responses. In doing so, microbes affect fitness by both increasing or decreasing the degree of phenotypic plasticity, depending on the phenotype and the environmental stress studied, with no clear difference between the effect of prokaryotic and eukaryotic microbes in general. Additionally, plants have the ability to modulate microbial behaviors, suggesting that they manipulate bacteria, enhancing interactions that help them cope with stressful environments. Future challenges remain in the identification of the many microbial signals that modulate phenotypic plasticity, the characterization of plant genes, e.g. receptors, that mediate the microbial effects on plasticity, and the elucidation of the molecular mechanisms that link phenotypic plasticity with fitness. The characterization of plant and microbial mutants defective in signal synthesis or perception, together with carefully designed glasshouse or field experiments that test various environmental stresses will be necessary to understand the link between molecular mechanisms controlling plastic phenotypes with the resulting effects on plant fitness.
Collapse
Affiliation(s)
- Chooi-Hua Goh
- Department of Plant Science, Australian National University, Canberra, ACT 0200 Australia
| | | | - Adrienne B. Nicotra
- Department of Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra, ACT 0200 Australia
| | - Ulrike Mathesius
- Department of Plant Science, Australian National University, Canberra, ACT 0200 Australia
| |
Collapse
|
36
|
Sardans J, Peñuelas J. The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system. PLANT PHYSIOLOGY 2012; 160:1741-61. [PMID: 23115250 PMCID: PMC3510107 DOI: 10.1104/pp.112.208785] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 10/29/2012] [Indexed: 05/21/2023]
Affiliation(s)
- Jordi Sardans
- Consejo Superior de Investigaciones Científicas, Global Ecology Unit, Centre de Recerca Ecològica i Aplicacions Forestats-Centre d'Estudis Avançats de Blanes-Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08913, Catalonia, Spain.
| | | |
Collapse
|