1
|
Brambilla M, Chiari G, Commisso M, Nerva L, Musetti R, Petraglia A, Degola F. Glutamate dehydrogenase in "Liverworld"-A study in selected species to explore a key enzyme of plant primary metabolism in Marchantiophyta. PHYSIOLOGIA PLANTARUM 2023; 175:e14071. [PMID: 38148220 DOI: 10.1111/ppl.14071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/28/2023]
Abstract
In plants, glutamate dehydrogenase (GDH) is an ubiquitous enzyme that catalyzes the reversible amination of 2-oxoglutarate in glutamate. It contributes to both the amino acid homeostasis and the management of intracellular ammonium, and it is regarded as a key player at the junction of carbon and nitrogen assimilation pathways. To date, information about the GDH of terrestrial plants refers to a very few species only. We focused on selected species belonging to the division Marchantiophyta, providing the first panoramic overview of biochemical and functional features of GDH in liverworts. Native electrophoretic analyses showed an isoenzymatic profile less complex than what was reported for Arabidposis thaliana and other angiosperms: the presence of a single isoform corresponding to an α-homohexamer, differently prone to thermal inactivation on a species- and organ-basis, was found. Sequence analysis conducted on amino acid sequences confirmed a high similarity of GDH in modern liverworts with the GDH2 protein of A. thaliana, strengthening the hypothesis that the duplication event that gave origin to GDH1-homolog gene from GDH2 occurred after the evolutionary bifurcation that separated bryophytes and tracheophytes. Experiments conducted on Marchantia polymorpha and Calypogeia fissa grown in vitro and compared to A. thaliana demonstrated through in gel activity detection and monodimensional Western Blot that the aminating activity of GDH resulted in strongly enhanced responses to ammonium excess in liverworts as well, even if at a different extent compared to Arabidopsis and other vascular species. The comparative analysis by bi-dimensional Western Blot suggested that the regulation of the enzyme could be, at least partially, untied from the protein post-translational pattern. Finally, immuno-electron microscopy revealed that the GDH enzyme localizes at the subcellular level in both mitochondria and chloroplasts of parenchyma and is specifically associated to the endomembrane system in liverworts.
Collapse
Affiliation(s)
- Martina Brambilla
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giorgio Chiari
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - Mauro Commisso
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Luca Nerva
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology (CREA-VE), Conegliano, Italy
| | - Rita Musetti
- Department of Land, Environment, Agriculture and Forestry, University of Padova, Padova, Italy
| | - Alessandro Petraglia
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - Francesca Degola
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
2
|
Steensma P, Eisenhut M, Colinas M, Rosado-Souza L, Fernie AR, Weber APM, Fitzpatrick TB. PYRIDOX(AM)INE 5'-PHOSPHATE OXIDASE3 of Arabidopsis thaliana maintains carbon/nitrogen balance in distinct environmental conditions. PLANT PHYSIOLOGY 2023; 193:1433-1455. [PMID: 37453131 PMCID: PMC10517258 DOI: 10.1093/plphys/kiad411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
The identification of factors that regulate C/N utilization in plants can make a substantial contribution to optimization of plant health. Here, we explored the contribution of pyridox(am)ine 5'-phosphate oxidase3 (PDX3), which regulates vitamin B6 homeostasis, in Arabidopsis (Arabidopsis thaliana). Firstly, N fertilization regimes showed that ammonium application rescues the leaf morphological phenotype of pdx3 mutant lines but masks the metabolite perturbance resulting from impairment in utilizing soil nitrate as a source of N. Without fertilization, pdx3 lines suffered a C/N imbalance and accumulated nitrogenous compounds. Surprisingly, exploration of photorespiration as a source of endogenous N driving this metabolic imbalance, by incubation under high CO2, further exacerbated the pdx3 growth phenotype. Interestingly, the amino acid serine, critical for growth and N management, alleviated the growth phenotype of pdx3 plants under high CO2, likely due to the requirement of pyridoxal 5'-phosphate for the phosphorylated pathway of serine biosynthesis under this condition. Triggering of thermomorphogenesis by growth of plants at 28 °C (instead of 22 °C) did not appear to require PDX3 function, and we observed that the consequent drive toward C metabolism counters the C/N imbalance in pdx3. Further, pdx3 lines suffered a salicylic acid-induced defense response, probing of which unraveled that it is a protective strategy mediated by nonexpressor of pathogenesis related1 (NPR1) and improves fitness. Overall, the study demonstrates the importance of vitamin B6 homeostasis as managed by the salvage pathway enzyme PDX3 to growth in diverse environments with varying nutrient availability and insight into how plants reprogram their metabolism under such conditions.
Collapse
Affiliation(s)
- Priscille Steensma
- Department of Plant Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Marion Eisenhut
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Maite Colinas
- Department of Plant Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Laise Rosado-Souza
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | | |
Collapse
|
3
|
Tercé-Laforgue T, Lothier J, Limami AM, Rouster J, Lea PJ, Hirel B. The Key Role of Glutamate Dehydrogenase 2 (GDH2) in the Control of Kernel Production in Maize ( Zea mays L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:2612. [PMID: 37514227 PMCID: PMC10385319 DOI: 10.3390/plants12142612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/02/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023]
Abstract
The agronomic potential of glutamate dehydrogenase 2 (GDH2) in maize kernel production was investigated by examining the impact of a mutation on the corresponding gene. Mu-insertion homozygous and heterozygous mutant lines lacking GDH2 activity were isolated and characterized at the biochemical, physiological and agronomic levels. In comparison to the wild type and to the homozygous ghd2 mutants, the heterozygous gdh2 mutant plants were characterized by a decrease in the root amino acid content, whereas in the leaves an increase of a number of phenolic compounds was observed. On average, a 30 to 40% increase in kernel yield was obtained only in the heterozygous gdh2 mutant lines when plants were grown in the field over two years. The importance of GDH2 in the control of plant productivity is discussed in relation to the physiological impact of the mutation on amino acid content, with primary carbon metabolism mostly occurring in the roots and secondary metabolism occurring in the leaves.
Collapse
Affiliation(s)
- Thérèse Tercé-Laforgue
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique et de L'Environnement (INRAE), CEDEX, 78026 Versailles, France
| | - Jérémy Lothier
- Univ Angers, Institut National de Recherche Pour L'Agriculture et L'Environnement (INRAE), Institut de Recherche en Horticulture et Semence (IRHS), 49007 Angers, France
| | - Anis M Limami
- Univ Angers, Institut National de Recherche Pour L'Agriculture et L'Environnement (INRAE), Institut de Recherche en Horticulture et Semence (IRHS), 49007 Angers, France
| | - Jacques Rouster
- BIOGEMMA-LIMAGRAIN, Site de la Garenne, Route d'Ennezat, CS 90126, 63720 Chappes, France
| | - Peter J Lea
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Bertrand Hirel
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique et de L'Environnement (INRAE), CEDEX, 78026 Versailles, France
| |
Collapse
|
4
|
Feng YX, Yang L, Lin YJ, Song Y, Yu XZ. Merging the occurrence possibility into gene co-expression network deciphers the importance of exogenous 2-oxoglutarate in improving the growth of rice seedlings under thiocyanate stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1086098. [PMID: 36909427 PMCID: PMC9995760 DOI: 10.3389/fpls.2023.1086098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/06/2023] [Indexed: 05/09/2023]
Abstract
Thiocyanate (SCN-) can find its way into cultivated fields, which might hamper the harmony in carbon and nitrogen metabolism (CNM) of plants, ebbing their quality and productivity. In the current study, we investigated the role of the exogenous application of 2-oxoglutarate (2-OG) in maintaining homeostasis of CNM in rice seedlings under SCN- stress. Results showed that SCN- exposure significantly repressed the gene expression and activities of CNM-related enzymes (e.g., phosphoenolpyruvate carboxylase, NADP-dependent isocitrate dehydrogenases, and isocitrate dehydrogenases) in rice seedlings, thereby reducing their relative growth rate (RGR). Exogenous application of 2-OG effectively mitigated the toxic effects of SCN- on rice seedlings, judged by the aforementioned parameters. The co-expression network analysis showed that genes activated in CNM pathways were categorized into four modules (Modules 1-4). In order to identify the key module activated in CNM in rice seedlings exposed to SCN-, the results from real-time quantitative PCR (RT-qPCR) tests were used to calculate the possibility of the occurrence of genes grouped in four different modules. Notably, Module 3 showed the highest occurrence probability, which is mainly related to N metabolism and 2-OG synthesis. We can conclude that exogenous application of 2-OG can modify the imbalance of CNM caused by SCN- exposure through regulating N metabolism and 2-OG synthesis in rice seedlings.
Collapse
|
5
|
Shelp BJ, Aghdam MS, Flaherty EJ. γ-Aminobutyrate (GABA) Regulated Plant Defense: Mechanisms and Opportunities. PLANTS (BASEL, SWITZERLAND) 2021; 10:1939. [PMID: 34579473 PMCID: PMC8468876 DOI: 10.3390/plants10091939] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
Global climate change and associated adverse abiotic and biotic stress conditions affect plant growth and development, and agricultural sustainability in general. Abiotic and biotic stresses reduce respiration and associated energy generation in mitochondria, resulting in the elevated production of reactive oxygen species (ROS), which are employed to transmit cellular signaling information in response to the changing conditions. Excessive ROS accumulation can contribute to cell damage and death. Production of the non-protein amino acid γ-aminobutyrate (GABA) is also stimulated, resulting in partial restoration of respiratory processes and energy production. Accumulated GABA can bind directly to the aluminum-activated malate transporter and the guard cell outward rectifying K+ channel, thereby improving drought and hypoxia tolerance, respectively. Genetic manipulation of GABA metabolism and receptors, respectively, reveal positive relationships between GABA levels and abiotic/biotic stress tolerance, and between malate efflux from the root and heavy metal tolerance. The application of exogenous GABA is associated with lower ROS levels, enhanced membrane stability, changes in the levels of non-enzymatic and enzymatic antioxidants, and crosstalk among phytohormones. Exogenous GABA may be an effective and sustainable tolerance strategy against multiple stresses under field conditions.
Collapse
Affiliation(s)
- Barry J. Shelp
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Morteza Soleimani Aghdam
- Department of Horticultural Science, Imam Khomeini International University, Qazvin 34148-96818, Iran;
| | - Edward J. Flaherty
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
6
|
Wei Y, Xiong S, Zhang Z, Meng X, Wang L, Zhang X, Yu M, Yu H, Wang X, Ma X. Localization, Gene Expression, and Functions of Glutamine Synthetase Isozymes in Wheat Grain ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:580405. [PMID: 33633754 PMCID: PMC7901976 DOI: 10.3389/fpls.2021.580405] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/07/2021] [Indexed: 06/08/2023]
Abstract
Glutamine synthetase (GS) plays a major role in plant nitrogen metabolism, but the roles of individual GS isoforms in grains are unknown. Here, the localization and expression of individual TaGS isozymes in wheat grain were probed with TaGS isoenzyme-specific antibodies, and the nitrogen metabolism of grain during the grain filling stage were investigated. Immunofluorescence revealed that TaGS1;1, TaGS1;3, and TaGS2 were expressed in different regions of the embryo. In grain transporting tissues, TaGS1;2 was localized in vascular bundle; TaGS1;2 and TaGS1;1 were in chalaza and placentochalaza; TaGS1;1 and TaGS1;3 were in endosperm transfer cells; and TaGS1;3 and TaGS2 were in aleurone layer. GS exhibited maximum activity and expression at 8 days after flowering (DAF) with peak glutamine content in grains; from then, NH 4 + increased largely from NO 3 - reduction, glutamate dehydrogenase (GDH) aminating activity increased continuously, and the activities of GS and glutamate synthase (GOGAT) decreased, while only TaGS1;3 kept a stable expression in different TaGS isozymes. Hence, GS-GOGAT cycle and GDH play different roles in NH 4 + assimilation of grain in different stages of grain development; TaGS1;3, located in aleurone layer and endosperm transfer cells, plays a key role in Gln into endosperm for gluten synthesis. At 30 DAF, grain amino acids are mainly transported from maternal phloem.
Collapse
Affiliation(s)
- Yihao Wei
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shuping Xiong
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zhiyong Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xiaodan Meng
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Lulu Wang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xiaojiao Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Meiqin Yu
- Department of Biochemistry and Molecular Biology, College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Haidong Yu
- Department of Biochemistry and Molecular Biology, College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Xiaochun Wang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Department of Biochemistry and Molecular Biology, College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Xinming Ma
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
7
|
Singh KK, Saha S, Kadiravana RC, Mazumdar D, Rai V, Ghosh S. Ammonium metabolism in Selaginella bryopteris in response to dehydration-rehydration and characterisation of desiccation tolerant, thermostable, cytosolic glutamine synthetase from plant. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:257-267. [PMID: 33059817 DOI: 10.1071/fp20144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Water deficit (WD) has adverse effects on plant growth, and acclimation requires responses allowing primary metabolism to continue. Resurrection plants can serve as model system to gain insight into metabolic regulation during WD. We herein report the response of a resurrection lycophyte, Selaginella bryopteris, to dehydration-rehydration cycle with emphasis on ammonium metabolism. Dehydration of S. bryopteris fronds resulted in decrease of total protein and increase of free ammonium levels and the effect was reversed on rehydration. The proline content increased twice after 24 h of dehydration, which again recovered to background levels comparable to that at full turgor state. The specific activity of glutamine synthetase (GS) didn't change significantly till 6 h and then declined by 21% after 24 h of dehydration, whereas specific activities of glutamate synthase (GOGAT) and aminating glutamate dehydrogenase (GDH) were enhanced significantly during dehydration. The deaminating activity of GDH also increased during dehydration albeit at a slower rate. Immunoblot analysis indicated overexpression of GS and GDH polypeptides during dehydration and their levels declined on rehydration. The results suggested significant role of GDH along with GS/GOGAT in production of nitrogen-rich amino acids for desiccation tolerance. Unlike higher plants S. bryopteris expressed GS only in cytosol. The enzyme had pH and temperature optima of 5.5 and 60°C, respectively, and it retained 96% activity on preincubation at 60°C for 30 min indicating thermostability. Hence, like higher plants the cytosolic GS from S. bryopteris has a conserved role in stress tolerance.
Collapse
Affiliation(s)
- Kamal K Singh
- Department of Biotechnology, University of North Bengal, Raja Rammohunpur, Siliguri-734013, India
| | - Shyamaprasad Saha
- Department of Microbiology, University of North Bengal, Raja Rammohunpur, Siliguri-734013, India
| | - Ram C Kadiravana
- Department of Biotechnology, University of North Bengal, Raja Rammohunpur, Siliguri-734013, India
| | - Deepika Mazumdar
- Department of Biotechnology, University of North Bengal, Raja Rammohunpur, Siliguri-734013, India
| | - Vijeta Rai
- Department of Biotechnology, University of North Bengal, Raja Rammohunpur, Siliguri-734013, India
| | - Shilpi Ghosh
- Department of Biotechnology, University of North Bengal, Raja Rammohunpur, Siliguri-734013, India; and Corresponding author. ;
| |
Collapse
|
8
|
Ortigosa F, Valderrama-Martín JM, Urbano-Gámez JA, García-Martín ML, Ávila C, Cánovas FM, Cañas RA. Inorganic Nitrogen Form Determines Nutrient Allocation and Metabolic Responses in Maritime Pine Seedlings. PLANTS 2020; 9:plants9040481. [PMID: 32283755 PMCID: PMC7238028 DOI: 10.3390/plants9040481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
Nitrate and ammonium are the main forms of inorganic nitrogen available to plants. The present study aimed to investigate the metabolic changes caused by ammonium and nitrate nutrition in maritime pine (Pinus pinaster Ait.). Seedlings were grown with five solutions containing different proportions of nitrate and ammonium. Their nitrogen status was characterized through analyses of their biomass, different biochemical and molecular markers as well as a metabolite profile using 1H-NMR. Ammonium-fed seedlings exhibited higher biomass than nitrate-fed-seedlings. Nitrate mainly accumulated in the stem and ammonium in the roots. Needles of ammonium-fed seedlings had higher nitrogen and amino acid contents but lower levels of enzyme activities related to nitrogen metabolism. Higher amounts of soluble sugars and L-arginine were found in the roots of ammonium-fed seedlings. In contrast, L-asparagine accumulated in the roots of nitrate-fed seedlings. The differences in the allocation of nitrate and ammonium may function as metabolic buffers to prevent interference with the metabolism of photosynthetic organs. The metabolite profiles observed in the roots suggest problems with carbon and nitrogen assimilation in nitrate-supplied seedlings. Taken together, this new knowledge contributes not only to a better understanding of nitrogen metabolism but also to improving aspects of applied mineral nutrition for conifers.
Collapse
Affiliation(s)
- Francisco Ortigosa
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain; (F.O.); (J.M.V.-M.); (J.A.U.-G.); (C.Á.); (F.M.C.)
| | - José Miguel Valderrama-Martín
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain; (F.O.); (J.M.V.-M.); (J.A.U.-G.); (C.Á.); (F.M.C.)
| | - José Alberto Urbano-Gámez
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain; (F.O.); (J.M.V.-M.); (J.A.U.-G.); (C.Á.); (F.M.C.)
| | - María Luisa García-Martín
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, 29590 Málaga, Spain;
| | - Concepción Ávila
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain; (F.O.); (J.M.V.-M.); (J.A.U.-G.); (C.Á.); (F.M.C.)
| | - Francisco M. Cánovas
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain; (F.O.); (J.M.V.-M.); (J.A.U.-G.); (C.Á.); (F.M.C.)
| | - Rafael A. Cañas
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain; (F.O.); (J.M.V.-M.); (J.A.U.-G.); (C.Á.); (F.M.C.)
- Correspondence: ; Tel.: +34-952-13-4272
| |
Collapse
|
9
|
Kuhnert F, Stefanski A, Overbeck N, Drews L, Reichert AS, Stühler K, Weber APM. Rapid Single-Step Affinity Purification of HA-Tagged Plant Mitochondria. PLANT PHYSIOLOGY 2020; 182:692-706. [PMID: 31818904 PMCID: PMC6997695 DOI: 10.1104/pp.19.00732] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 11/22/2019] [Indexed: 05/19/2023]
Abstract
Photosynthesis in plant cells would not be possible without the supportive role of mitochondria. However, isolating mitochondria from plant cells for physiological and biochemical analyses is a lengthy and tedious process. Established isolation protocols require multiple centrifugation steps and substantial amounts of starting material. To overcome these limitations, we tagged mitochondria in Arabidopsis (Arabidopsis thaliana) with a triple hemagglutinin tag for rapid purification via a single affinity-purification step. This protocol yields a substantial quantity of highly pure mitochondria from 1 g of Arabidopsis seedlings. The purified mitochondria were suitable for enzyme activity analyses and yielded sufficient amounts of proteins for deep proteomic profiling. We applied this method for the proteomic analysis of the Arabidopsis bou-2 mutant deficient in the mitochondrial Glu transporter À BOUT DE SOUFFLE (BOU) and identified 27 differentially expressed mitochondrial proteins compared with tagged Col-0 controls. Our work sets the stage for the development of advanced mitochondria isolation protocols for distinct cell types.
Collapse
Affiliation(s)
- Franziska Kuhnert
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Biomedical Research Center, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Nina Overbeck
- Molecular Proteomics Laboratory, Biomedical Research Center, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Leonie Drews
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biomedical Research Center, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
10
|
Cañas RA, Yesbergenova-Cuny Z, Belanger L, Rouster J, Brulé L, Gilard F, Quilleré I, Sallaud C, Hirel B. NADH-GOGAT Overexpression Does Not Improve Maize ( Zea mays L .) Performance Even When Pyramiding with NAD-IDH, GDH and GS. PLANTS (BASEL, SWITZERLAND) 2020; 9:E130. [PMID: 31973049 PMCID: PMC7076717 DOI: 10.3390/plants9020130] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 01/16/2023]
Abstract
Maize plants overexpressing NADH-GOGAT were produced in order to determine if boosting 2-Oxoglurate production used as a carbon skeleton for the biosynthesis of amino acids will improve plant biomass and kernel production. The NADH-GOGAT enzyme recycles glutamate and incorporates carbon skeletons into the ammonium assimilation pathway using the organic acid 2-Oxoglutarate as a substrate. Gene pyramiding was then conducted with NAD-IDH and NADH-GDH, two enzymes also involved in the synthesis of 2-Oxoglurate. NADH-GOGAT overexpression was detrimental for shoot biomass production but did not markedly affect kernel yield. Additional NAD-IDH and NADH-GDH activity did not improve plant performance. A decrease in kernel production was observed when NADH-GDH was pyramided to NADH-GOGAT and NAD-IDH. This decrease could not be restored even when additional cytosolic GS activity was present in the plants overexpressing the three enzymes producing 2-Oxoglutarate. Detailed leaf metabolic profiling of the different transgenic plants revealed that the NADH-GOGAT over-expressors were characterized by an accumulation of amino acids derived from glutamate and a decrease in the amount of carbohydrates further used to provide carbon skeletons for its synthesis. The study suggests that 2-Oxoglutarate synthesis is a key element acting at the interface of carbohydrate and amino acid metabolism and that its accumulation induces an imbalance of primary carbon and nitrogen metabolism that is detrimental for maize productivity.
Collapse
Affiliation(s)
- Rafael A. Cañas
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-AgroParisTech, RD10, 78026 Versailles, CEDEX, France (Z.Y.-C.); (L.B.); (L.B.); (I.Q.)
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain
| | - Zhazira Yesbergenova-Cuny
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-AgroParisTech, RD10, 78026 Versailles, CEDEX, France (Z.Y.-C.); (L.B.); (L.B.); (I.Q.)
| | - Léo Belanger
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-AgroParisTech, RD10, 78026 Versailles, CEDEX, France (Z.Y.-C.); (L.B.); (L.B.); (I.Q.)
| | - Jacques Rouster
- BIOGEMMA, GM Trait Discovery, Site de la Garenne, Route d’Ennezat, CS 90126, F-63720 Chappes, France; (J.R.); (C.S.)
| | - Lenaïg Brulé
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-AgroParisTech, RD10, 78026 Versailles, CEDEX, France (Z.Y.-C.); (L.B.); (L.B.); (I.Q.)
| | - Françoise Gilard
- IPS2/Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA), Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91190 Gif-sur-Yvette, France;
| | - Isabelle Quilleré
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-AgroParisTech, RD10, 78026 Versailles, CEDEX, France (Z.Y.-C.); (L.B.); (L.B.); (I.Q.)
| | - Christophe Sallaud
- BIOGEMMA, GM Trait Discovery, Site de la Garenne, Route d’Ennezat, CS 90126, F-63720 Chappes, France; (J.R.); (C.S.)
| | - Bertrand Hirel
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-AgroParisTech, RD10, 78026 Versailles, CEDEX, France (Z.Y.-C.); (L.B.); (L.B.); (I.Q.)
| |
Collapse
|
11
|
Identification of Phenotypic and Physiological Markers of Salt Stress Tolerance in Durum Wheat (Triticum Durum Desf.) through Integrated Analyses. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9120844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Salinity is one of the most important stresses that reduces plant growth and productivity in several parts of the world. Nine Tunisian durum wheat genotypes grown under hydroponic conditions were subjected to two levels of salt stress (100 and 170 mM NaCl) for 21 days. An integrative analysis revealing the impact of salinity on key phenotypic and physiological marker traits was then conducted. Principal component analysis grouped these traits into three different clusters corresponding to the absence of salt stress and the two levels of salt stress. This analysis also allowed the identification of genotypes exhibiting various levels of tolerance to NaCl. Among the nine genotypes of Triticum durum Desf., cultivar Om Rabiaa was the most tolerant whereas cultivar Mahmoudi genotype was the most sensitive. Following the multivariate analysis of the examined phenotypic and physiological traits, we found that shoot length, shoot fresh weight, leaf area, the whole-plant stable isotope ratios of nitrogen (δ15N), shoot ammonium and proline contents, and shoot glutamine synthetase activity could be used as markers for the selection of salt-tolerant wheat genotypes.
Collapse
|
12
|
Yang B, Chen M, Wang T, Chen X, Li Y, Wang X, Zhu W, Xia L, Hu X, Tian J. A metabolomic strategy revealed the role of JA and SA balance in Clematis terniflora DC. Response to UVB radiation and dark. PHYSIOLOGIA PLANTARUM 2019; 167:232-249. [PMID: 30467852 DOI: 10.1111/ppl.12883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Clematis terniflora DC. is a valuable resource with potential high pharmaceutical value. Proteomic, transcriptomic and metabolomic analyses of C. terniflora that has been exposed to high levels of UVB irradiation and dark conditions (HUVB + D) have revealed the mechanisms underlying its medicinal potential. However, the signal transduction pathways and the mechanisms of regulation for the accumulation of secondary metabolites remain unclear. In this study, we show that the jasmonic acid (JA) and salicylic acid (SA) signals were activated in C. terniflora in response to HUVB + D. Metabolomic analysis demonstrated that the perturbation in JA and SA balance led to additional reallocation of carbon and nitrogen resources. Evaluating the fold change ratios of differentially changed metabolites proved that JA signal enhanced the transformation of nitrogen to carbon through the 4-aminobutyric acid (GABA) shunt pathway, which increased the carbon reserve to be utilized in the production of secondary metabolites. However, SA signal induced the synthesis of proline, while avoiding the accumulation of secondary metabolites. Over all, the results indicate that the co-increase of JA and SA reconstructed the dynamic stability of transformation from nitrogen to carbon, which effectively enhanced the oxidative defense to HUVB + D in C. terniflora by increasing the secondary metabolites.
Collapse
Affiliation(s)
- Bingxian Yang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Meng Chen
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Tantan Wang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Xi Chen
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yaohan Li
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Xin Wang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Wei Zhu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Li'an Xia
- Benxi Hi-tech Industrial Development Zone, Benxi, China
| | - Xingjiang Hu
- Research Center for Clinical Pharmacy, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
- Education Ministry Key Laboratory for Biomedical Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Moreira TB, Shaw R, Luo X, Ganguly O, Kim HS, Coelho LGF, Cheung CYM, Rhys Williams TC. A Genome-Scale Metabolic Model of Soybean ( Glycine max) Highlights Metabolic Fluxes in Seedlings. PLANT PHYSIOLOGY 2019; 180:1912-1929. [PMID: 31171578 PMCID: PMC6670085 DOI: 10.1104/pp.19.00122] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/25/2019] [Indexed: 05/12/2023]
Abstract
Until they become photoautotrophic juvenile plants, seedlings depend upon the reserves stored in seed tissues. These reserves must be mobilized and metabolized, and their breakdown products must be distributed to the different organs of the growing seedling. Here, we investigated the mobilization of soybean (Glycine max) seed reserves during seedling growth by initially constructing a genome-scale stoichiometric model for this important crop plant and then adapting the model to reflect metabolism in the cotyledons and hypocotyl/root axis (HRA). A detailed analysis of seedling growth and alterations in biomass composition was performed over 4 d of postgerminative growth and used to constrain the stoichiometric model. Flux balance analysis revealed marked differences in metabolism between the two organs, together with shifts in primary metabolism occurring during different periods postgermination. In particular, from 48 h onward, cotyledons were characterized by the oxidation of fatty acids to supply carbon for the tricarboxylic acid cycle as well as production of sucrose and glutamate for export to the HRA, while the HRA was characterized by the use of a range of imported amino acids in protein synthesis and catabolic processes. Overall, the use of flux balance modeling provided new insight into well-characterized metabolic processes in an important crop plant due to their analysis within the context of a metabolic network and reinforces the relevance of the application of this technique to the analysis of complex plant metabolic systems.
Collapse
Affiliation(s)
- Thiago Batista Moreira
- Departament of Botany, University of Brasília, Campus Darcy Ribeiro, Asa Norte, Brasília, Brazil, 70910-900
| | - Rahul Shaw
- Division of Science, Yale-National University of Singapore College, Singapore, 138527
| | - Xinyu Luo
- Division of Science, Yale-National University of Singapore College, Singapore, 138527
| | - Oishik Ganguly
- Division of Science, Yale-National University of Singapore College, Singapore, 138527
| | - Hyung-Seok Kim
- Division of Science, Yale-National University of Singapore College, Singapore, 138527
| | | | | | | |
Collapse
|
14
|
Urea Addition Promotes the Metabolism and Utilization of Nitrogen in Cucumber. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9050262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nitrogen (N) forms include ammonium [NH4+-N], nitrate [NO3−-N], and urea [CO(NH2)2]. Urea is the most common nitrogen fertilizer in agriculture due to its inexpensive price and high N content. Although the reciprocal influence between NO3−-N and NH4+-N is well known, CO(NH2)2 interactions with these inorganic N forms have been poorly studied. We studied the effects of different nitrogen forms with equal nitrogen on dry matter, yield, enzyme activity, and gene expression levels in cucumber. NO3−-N treatment with equal CO(NH2)2 promoted nitrate reduction, urea utilization, and the GS/GOGAT cycle but reduced the nitrate content. UR-2, NR-2, NR-3, NiR, GOGAT-1-1, and GS-4 were upregulated in response to these changes. NH4+-N treatment with equal CO(NH2)2 promoted nitrogen metabolism and relieved the ammonia toxicity of pure NH4+-N treatment. UR-2, GOGAT-2-2, and GS-4 were upregulated, and GDH-3 was downregulated in response to these changes. Treatment with both NO3−-N with added equal CO(NH2)2 and NH4+-N with added equal CO(NH2)2 enhanced the activities of GOGAT, GS, and UR and the amino acid pathway of urea metabolism; manifested higher glutamate, protein, chlorophyll, and nitrogen contents; and improved dry matter weight. A greater proportion of dry matter was distributed to the fruit, generating significantly higher yields. Therefore, the addition of urea to ammonium or nitrate promoted N metabolism and N utilization in cucumber plants, especially treatments with 50% NO3−-N + 50% CO(NH2)2, as the recommended nitrogen form in this study.
Collapse
|
15
|
Tang Y, Li X, Lu W, Wei X, Zhang Q, Lv C, Song N. Enhanced photorespiration in transgenic rice over-expressing maize C 4 phosphoenolpyruvate carboxylase gene contributes to alleviating low nitrogen stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:577-588. [PMID: 30114676 DOI: 10.1016/j.plaphy.2018.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/25/2018] [Accepted: 08/08/2018] [Indexed: 05/27/2023]
Abstract
The objective of this study was to reveal the physiological and molecular mechanisms of low-nitrogen (N) tolerance in transgenic plant lines containing C4 phosphoenolpyruvate carboxylase (C4-PEPC) gene. The transgenic rice lines only over-expressing the maize C4-PEPC) (PC) and their untransformed wild type, Kitaake (WT), were used in this study. At different N levels, the dry weight, total N content, carbon and N levels, photorespiration-related enzymatic activities, gene expression levels and photorespiration-related product accumulations were measured, as were the transgenic lines' agronomic traits. The PC line, having lower total N and higher soluble sugar contents, was more tolerant to low-N stress than WT, which was consistent with its higher PEPC and lower N-assimilation-related enzyme activity levels. The photosynthetic parameters, enzymatic activity levels, transcripts and products related to photorespiration in PC were also greater than in WT under low-N conditions. This study showed that increased carbon levels in transgenic rice lines overexpressing C4-PEPC could help regulate the photorespiratory pathway under low-N conditions, conferring low-N tolerance and a higher grain yield per plant.
Collapse
Affiliation(s)
- Yuting Tang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Institute of Food Crops, Jiangsu Rice Engineering Research Center, National Center for Rice Improvement (Nanjing), Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xia Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Institute of Food Crops, Jiangsu Rice Engineering Research Center, National Center for Rice Improvement (Nanjing), Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China.
| | - Wei Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaodong Wei
- Institute of Food Crops, Jiangsu Rice Engineering Research Center, National Center for Rice Improvement (Nanjing), Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Qijun Zhang
- Institute of Food Crops, Jiangsu Rice Engineering Research Center, National Center for Rice Improvement (Nanjing), Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Chuangen Lv
- Institute of Food Crops, Jiangsu Rice Engineering Research Center, National Center for Rice Improvement (Nanjing), Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Ningxi Song
- Institute of Food Crops, Jiangsu Rice Engineering Research Center, National Center for Rice Improvement (Nanjing), Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
16
|
Li Y, Xu X, Qu R, Zhang G, Rajoka MSR, Shao D, Jiang C, Shi J. Heterologous expression of Oenococcus oeni sHSP20 confers temperature stress tolerance in Escherichia coli. Cell Stress Chaperones 2018; 23:653-662. [PMID: 29359265 PMCID: PMC6045537 DOI: 10.1007/s12192-018-0874-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 12/11/2022] Open
Abstract
Small heat shock proteins (sHSPs) are heat shock proteins sized 12-43 kDa that can protect proteins from denaturation, particularly under high temperature; sHSPs thus increase the heat tolerance capability of an organisms enabling survival in adverse climates. sHSP20 is overexpressed in Oenococcus oeni in response to low temperatures. However, we found that overexpression of sHSP20 in Escherichia coli BL21 increased the microbial survival ratio at 50 °C by almost 2 h. Adding sHSP20 to the glutamate dehydrogenase solution significantly increased the stability of the enzyme at high temperature (especially at 60-70 °C), low pH values (especially below 6.0), and high concentration of metal ions of Ga2+, Zn2+, Mn2+, and Fe3+. Notably, the coexpression of sHSP20 significantly enhanced soluble expression of laccase from Phomopsis sp. XP-8 (CCTCCM209291) in E. coli without codon optimization, as well as the activity and heat stability of the expressed enzyme. In addition to the chaperone activity of sHSP20 in the gene containing host in vivo and the enzyme heat stability in vitro, our study indicated the capability of coexpression of sHSP20 to increase the efficiency of prokaryotic expression of fungal genes and the activity of expressed enzymes. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi People’s Republic of China
| | - Xiaoguang Xu
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi People’s Republic of China
| | - Rui Qu
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi People’s Republic of China
| | - Guoqiang Zhang
- College of Food Science, Agricultural and Animal Husbandry College of Tibet University, Linzhi, 860000 Xi Zang People’s Republic of China
| | - Muhammad Shahid Riaz Rajoka
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi People’s Republic of China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi People’s Republic of China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi People’s Republic of China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi People’s Republic of China
| |
Collapse
|
17
|
Guo H, Wang H, Liu Q, An H, Liu C, Xia X, Yin W. 15N-labeled ammonium nitrogen uptake and physiological responses of poplar exposed to PM 2.5 particles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:500-508. [PMID: 27730508 DOI: 10.1007/s11356-016-7620-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
Abstract
Air pollution caused by particulate matter with aerodynamic diameters less than 2.5 μm (PM2.5) is a serious environmental problem. Plants can improve air quality by removing PM2.5 from the atmosphere. However, direct evidence of PM2.5 absorption and assimilation into plants has not yet been found. In this study, we demonstrate that 15NH4+ in PM2.5 was absorbed by poplar leaves in low and high PM2.5 treatment groups (namely, LPT and HPT). Then, 15N was subsequently transferred to other parts of the treated seedlings as shown by 15N tracing and simulated PM2.5 generation. 15N and total N contents were the highest in high pollution treatment (HPT), followed by that in low pollution treatment (LPT) and the control. Glutamate dehydrogenase (GDH) contributed more to NH4+ assimilation than glutamine synthetase and glutamate synthase in the leaves of treated seedlings. GDH aminating activity was induced upon NH4+ exposure whereas GDH deaminating activity was repressed in both LPT and HPT, suggesting that poplar seedlings can alleviate NH4+ toxicity by enhancing NH4+ assimilation. At the end of PM2.5 treatment period, the decreased amino acid content in the treated seedlings was attributed to the probably altered balance of amino acid metabolism. The decline in the net photosynthetic rate (Pn) was accompanied by the decrease in the stomatal conductance in poplar leaves with the extension of PM2.5 treatment time, indicating that stomatal limitation is a major reason for Pn reduction. This study may provide novel insights into the relationship between PM2.5 pollution and plants.
Collapse
Affiliation(s)
- Huihong Guo
- College of Biological Science and Biotechnology, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing, 100083, China
| | - Hui Wang
- College of Biological Science and Biotechnology, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing, 100083, China
| | - Qingqian Liu
- College of Biological Science and Biotechnology, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing, 100083, China
| | - Hailong An
- College of Biological Science and Biotechnology, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing, 100083, China
| | - Chao Liu
- College of Biological Science and Biotechnology, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing, 100083, China
| | - Xinli Xia
- College of Biological Science and Biotechnology, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing, 100083, China.
| | - Weilun Yin
- College of Biological Science and Biotechnology, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
18
|
Davenport S, Le Lay P, Sanchez-Tamburrrino JP. Nitrate metabolism in tobacco leaves overexpressing Arabidopsis nitrite reductase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:96-107. [PMID: 26447683 DOI: 10.1016/j.plaphy.2015.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 05/07/2023]
Abstract
Primary nitrogen assimilation in plants includes the reduction of nitrite to ammonium in the chloroplasts by the enzyme nitrite reductase (NiR EC:1.7.7.1) or in the plastids of non-photosynthetic organs. Here we report on a study overexpressing the Arabidopsis thaliana NiR (AtNiR) gene in tobacco plants under the control of a constitutive promoter (CERV - Carnation Etched Ring Virus). The aim was to overexpress AtNiR in an attempt to alter the level of residual nitrite in the leaf which can act as precursor to the formation of nitrosamines. The impact of increasing the activity of AtNiR produced an increase in leaf protein and a stay-green phenotype in the primary transformed AtNiR population. Investigation of the T1 homozygous population demonstrated elevated nitrate reductase (NR) activity, reductions in leaf nitrite and nitrate and the amino acids proline, glutamine and glutamate. Chlorophyl content of the transgenic lines was increased, as evidenced by the stay-green phenotype. This reveals the importance of NiR in primary nitrogen assimilation and how modification of this key enzyme affects both the nitrogen and carbon metabolism of tobacco plants.
Collapse
Affiliation(s)
- Susie Davenport
- British American Tobacco, R&D Cambridge, 210 The Science Park, Cambridge, CB4 0WA, UK.
| | - Pascaline Le Lay
- British American Tobacco, R&D Cambridge, 210 The Science Park, Cambridge, CB4 0WA, UK
| | | |
Collapse
|
19
|
Tercé-Laforgue T, Clément G, Marchi L, Restivo FM, Lea PJ, Hirel B. Resolving the Role of Plant NAD-Glutamate Dehydrogenase: III. Overexpressing Individually or Simultaneously the Two Enzyme Subunits Under Salt Stress Induces Changes in the Leaf Metabolic Profile and Increases Plant Biomass Production. PLANT & CELL PHYSIOLOGY 2015; 56:1918-29. [PMID: 26251210 DOI: 10.1093/pcp/pcv114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/31/2015] [Indexed: 05/03/2023]
Abstract
NAD-dependent glutamate dehydrogenase (NAD-GDH) of higher plants has a central position at the interface between carbon and nitrogen metabolism due to its ability to carry out the deamination of glutamate. In order to obtain a better understanding of the physiological function of NAD-GDH under salt stress conditions, transgenic tobacco (Nicotiana tabacum L.) plants that overexpress two genes from Nicotiana plumbaginifolia individually (GDHA and GDHB) or simultaneously (GDHA/B) were grown in the presence of 50 mM NaCl. In the different GDH overexpressors, the NaCl treatment induced an additional increase in GDH enzyme activity, indicating that a post-transcriptional mechanism regulates the final enzyme activity under salt stress conditions. A greater shoot and root biomass production was observed in the three types of GDH overexpressors following growth in 50 mM NaCl, when compared with the untransformed plants subjected to the same salinity stress. Changes in metabolites representative of the plant carbon and nitrogen status were also observed. They were mainly characterized by an increased amount of starch present in the leaves of the GDH overexpressors as compared with the wild type when plants were grown in 50 mM NaCl. Metabolomic analysis revealed that overexpressing the two genes GDHA and GDHB, individually or simultaneously, induced a differential accumulation of several carbon- and nitrogen-containing molecules involved in a variety of metabolic, developmental and stress-responsive processes. An accumulation of digalactosylglycerol, erythronate and porphyrin was found in the GDHA, GDHB and GDHA/B overexpressors, suggesting that these molecules could contribute to the improved performance of the transgenic plants under salinity stress conditions.
Collapse
Affiliation(s)
- Thérèse Tercé-Laforgue
- Adaptation des Plantes à leur Environnement, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, RD 10, 78026 Versailles cedex, France
| | - Gilles Clément
- Adaptation des Plantes à leur Environnement, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, RD 10, 78026 Versailles cedex, France
| | - Laura Marchi
- Dipartimento di Bioscienze, Università di Parma, Parco Area delle Scienze 11/A, 43100 Parma, Italy
| | - Francesco M Restivo
- Dipartimento di Bioscienze, Università di Parma, Parco Area delle Scienze 11/A, 43100 Parma, Italy
| | - Peter J Lea
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Bertrand Hirel
- Adaptation des Plantes à leur Environnement, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, RD 10, 78026 Versailles cedex, France
| |
Collapse
|
20
|
Ferraro G, D'Angelo M, Sulpice R, Stitt M, Valle EM. Reduced levels of NADH-dependent glutamate dehydrogenase decrease the glutamate content of ripe tomato fruit but have no effect on green fruit or leaves. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3381-9. [PMID: 25878356 DOI: 10.1093/jxb/erv150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Glutamate (Glu) is a taste enhancer that contributes to the characteristic flavour of foods. In fruit of tomato (Solanum lycopersicum L.), the Glu content increases dramatically during the ripening process, becoming the most abundant free amino acid when the fruit become red. There is also a concomitant increase in NADH-dependent glutamate dehydrogenase (GDH) activity during the ripening transition. This enzyme is located in the mitochondria and catalyses the reversible amination of 2-oxoglutarate to Glu. To investigate the potential effect of GDH on Glu metabolism, the abundance of GDH was altered by artificial microRNA technology. Efficient silencing of all the endogenous SlGDH genes was achieved, leading to a dramatic decrease in total GDH activity. This decrease in GDH activity did not lead to any clear morphological or metabolic phenotype in leaves or green fruit. However, red fruit on the transgenic plants showed markedly reduced levels of Glu and a large increase in aspartate, glucose and fructose content in comparison to wild-type fruit. These results suggest that GDH is involved in the synthesis of Glu in tomato fruit during the ripening processes. This contrasts with the biological role ascribed to GDH in many other tissues and species. Overall, these findings suggest that GDH has a major effect on the control of metabolic composition during tomato fruit ripening, but not at other stages of development.
Collapse
Affiliation(s)
- Gisela Ferraro
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Ocampo y Esmeralda, Predio CCT, Rosario 2000, Argentina
| | - Matilde D'Angelo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Ocampo y Esmeralda, Predio CCT, Rosario 2000, Argentina
| | - Ronan Sulpice
- NUI Galway, Plant Systems Biology Lab, Plant and AgriBiosciences Research Centre, Botany and Plant Science, Galway, Ireland
| | - Mark Stitt
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Estela M Valle
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Ocampo y Esmeralda, Predio CCT, Rosario 2000, Argentina
| |
Collapse
|
21
|
Bykova NV, Møller IM, Gardeström P, Igamberdiev AU. The function of glycine decarboxylase complex is optimized to maintain high photorespiratory flux via buffering of its reaction products. Mitochondrion 2014; 19 Pt B:357-64. [PMID: 24444663 DOI: 10.1016/j.mito.2014.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 12/29/2022]
Abstract
Oxidation of glycine in photorespiratory pathway is the major flux through mitochondria of C3 plants in the light. It sustains increased intramitochondrial concentrations of NADH and NADPH, which are required to engage the internal rotenone-insensitive NAD(P)H dehydrogenases and the alternative oxidase. We discuss here possible mechanisms of high photorespiratory flux maintenance in mitochondria and suggest that it is fulfilled under conditions where the concentrations of glycine decarboxylase reaction products NADH and CO2 achieve an equilibrium provided by malate dehydrogenase and carbonic anhydrase, respectively. This results in the removal of these products from the glycine decarboxylase multienzyme active sites and in the maintenance of their concentrations at levels sufficiently low to prevent substrate inhibition of the reaction.
Collapse
Affiliation(s)
- Natalia V Bykova
- Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg, MB, R3T 2M9, Canada
| | - Ian M Møller
- Department of Molecular Biology and Genetics, Aarhus University, DK-4200 Slagelse, Denmark
| | - Per Gardeström
- Department of Plant Physiology, Umeå Plant Science Centre, University of Umeå, S-901 87 Umeå, Sweden
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
22
|
Tercé-Laforgue T, Bedu M, Dargel-Grafin C, Dubois F, Gibon Y, Restivo FM, Hirel B. Resolving the role of plant glutamate dehydrogenase: II. Physiological characterization of plants overexpressing the two enzyme subunits individually or simultaneously. PLANT & CELL PHYSIOLOGY 2013; 54:1635-47. [PMID: 23893023 DOI: 10.1093/pcp/pct108] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Glutamate dehydrogenase (GDH; EC 1.4.1.2) is able to carry out the deamination of glutamate in higher plants. In order to obtain a better understanding of the physiological function of GDH in leaves, transgenic tobacco (Nicotiana tabacum L.) plants were constructed that overexpress two genes from Nicotiana plumbaginifolia (GDHA and GDHB under the control of the Cauliflower mosiac virus 35S promoter), which encode the α- and β-subunits of GDH individually or simultaneously. In the transgenic plants, the GDH protein accumulated in the mitochondria of mesophyll cells and in the mitochondria of the phloem companion cells (CCs), where the native enzyme is normally expressed. Such a shift in the cellular location of the GDH enzyme induced major changes in carbon and nitrogen metabolite accumulation and a reduction in growth. These changes were mainly characterized by a decrease in the amount of sucrose, starch and glutamine in the leaves, which was accompanied by an increase in the amount of nitrate and Chl. In addition, there was an increase in the content of asparagine and a decrease in proline. Such changes may explain the lower plant biomass determined in the GDH-overexpressing lines. Overexpressing the two genes GDHA and GDHB individually or simultaneously induced a differential accumulation of glutamate and glutamine and a modification of the glutamate to glutamine ratio. The impact of the metabolic changes occurring in the different types of GDH-overexpressing plants is discussed in relation to the possible physiological function of each subunit when present in the form of homohexamers or heterohexamers.
Collapse
Affiliation(s)
- Thérèse Tercé-Laforgue
- Adaptation des Plantes à leur Environnement, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, RD 10, 78026 Versailles cedex, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Fontaine JX, Tercé-Laforgue T, Bouton S, Pageau K, Lea PJ, Dubois F, Hirel B. Further insights into the isoenzyme composition and activity of glutamate dehydrogenase in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2013; 8:e23329. [PMID: 23299333 PMCID: PMC3676500 DOI: 10.4161/psb.23329] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Following the discovery that in Arabidopsis, a third isoenzyme of NADH-dependent glutamate dehydrogenase (GDH) is expressed in the mitochondria of the root companion cells, we have re-examined the GDH isoenzyme composition. By analyzing the NADH-GDH isoenzyme composition of single, double and triple mutants deficient in the expression of the three genes encoding the enzyme, we have found that the α, β and γ polypeptides that comprise the enzyme can be assembled into a complex combination of heterohexamers in roots. Moreover, we observed that when one or two of the three root isoenzymes were missing from the mutants, the remaining isoenzymes compensated for this deficiency. The significance of such complexity is discussed in relation to the metabolic and signaling function of the NADH-GDH enzyme. Although it has been shown that a fourth gene encoding a NADPH-dependent enzyme is present in Arabidopsis, we were not able to detect corresponding enzyme activity, even in the triple mutant totally lacking NADH-GDH activity.
Collapse
Affiliation(s)
- Jean-Xavier Fontaine
- Equipe d’Accueil 3900; Biologie des Plantes et Innovation (BIOPI); Faculté de Pharmacie; Picardie, France
| | - Thérèse Tercé-Laforgue
- Adaptation des Plantes à leur Environnement; Unité Mixte de Recherche 1318; Institut Jean-Pierre Bourgin; Institut National de la Recherche Agronomique (INRA); Centre de Versailles-Grignon; Versailles, France
| | - Sophie Bouton
- Equipe d’Accueil 3900; Biologie des Plantes et Innovation (BIOPI); Faculté de Pharmacie; Picardie, France
| | - Karine Pageau
- Equipe d’Accueil 3900; Biologie des Plantes et Innovation (BIOPI); Faculté de Pharmacie; Picardie, France
| | - Peter J. Lea
- Lancaster Environment Centre; Lancaster University; Lancaster, UK
| | - Frédéric Dubois
- Equipe d’Accueil Ecologie et Dynamique des Systèmes Antropisés (EDYSAN); Agroécologie, Ecophysiologie et Biologie intégrative (AEB); Faculté des Sciences; Amiens, France
| | - Bertrand Hirel
- Adaptation des Plantes à leur Environnement; Unité Mixte de Recherche 1318; Institut Jean-Pierre Bourgin; Institut National de la Recherche Agronomique (INRA); Centre de Versailles-Grignon; Versailles, France
- Correspondence to: Bertrand Hirel,
| |
Collapse
|
24
|
Fontaine JX, Tercé-Laforgue T, Armengaud P, Clément G, Renou JP, Pelletier S, Catterou M, Azzopardi M, Gibon Y, Lea PJ, Hirel B, Dubois F. Characterization of a NADH-dependent glutamate dehydrogenase mutant of Arabidopsis demonstrates the key role of this enzyme in root carbon and nitrogen metabolism. THE PLANT CELL 2012; 24:4044-65. [PMID: 23054470 PMCID: PMC3517235 DOI: 10.1105/tpc.112.103689] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The role of NADH-dependent glutamate dehydrogenase (GDH) was investigated by studying the physiological impact of a complete lack of enzyme activity in an Arabidopsis thaliana plant deficient in three genes encoding the enzyme. This study was conducted following the discovery that a third GDH gene is expressed in the mitochondria of the root companion cells, where all three active GDH enzyme proteins were shown to be present. A gdh1-2-3 triple mutant was constructed and exhibited major differences from the wild type in gene transcription and metabolite concentrations, and these differences appeared to originate in the roots. By placing the gdh triple mutant under continuous darkness for several days and comparing it to the wild type, the evidence strongly suggested that the main physiological function of NADH-GDH is to provide 2-oxoglutarate for the tricarboxylic acid cycle. The differences in key metabolites of the tricarboxylic acid cycle in the triple mutant versus the wild type indicated that, through metabolic processes operating mainly in roots, there was a strong impact on amino acid accumulation, in particular alanine, γ-aminobutyrate, and aspartate in both roots and leaves. These results are discussed in relation to the possible signaling and physiological functions of the enzyme at the interface of carbon and nitrogen metabolism.
Collapse
Affiliation(s)
- Jean-Xavier Fontaine
- Equipe d’Accueil 3900, Biologie des Plantes et Contrôle des Insectes Ravageurs, Faculté de Pharmacie, 80039 Amiens cedex 1, France
| | - Thérèse Tercé-Laforgue
- Adaptation des Plantes à leur Environnement, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, 78026 Versailles cedex, France
| | - Patrick Armengaud
- Adaptation des Plantes à leur Environnement, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, 78026 Versailles cedex, France
| | - Gilles Clément
- Plateau Technique Spécifique de Chimie du Végétal, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, 78026 Versailles cedex, France
| | - Jean-Pierre Renou
- Génomique Fonctionnelle d’Arabidopsis, Institut National de la Recherche Agronomique–Centre National de la Recherche Scientifique, Unité de Recherche sur les Génomes Végétaux, 91057 Evry cedex, France
| | - Sandra Pelletier
- Génomique Fonctionnelle d’Arabidopsis, Institut National de la Recherche Agronomique–Centre National de la Recherche Scientifique, Unité de Recherche sur les Génomes Végétaux, 91057 Evry cedex, France
| | - Manuella Catterou
- Equipe d’Accueil Ecologie et Dynamique des Systèmes Antropisés, Agroécologie, Ecophysiologie et Biologie Intégrative, Faculté des Sciences, 80039 Amiens cedex 1, France
| | - Marianne Azzopardi
- Adaptation des Plantes à leur Environnement, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, 78026 Versailles cedex, France
| | - Yves Gibon
- Centre Institut National de la Recherche Agronomique de Bordeaux-Aquitaine, Unité Mixte Recherche 619, Biologie du Fruit, 33883 Villenave d'Ornon cedex, France
| | - Peter J. Lea
- Department of Plant Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Bertrand Hirel
- Adaptation des Plantes à leur Environnement, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, 78026 Versailles cedex, France
- Address correspondence to
| | - Frédéric Dubois
- Equipe d’Accueil Ecologie et Dynamique des Systèmes Antropisés, Agroécologie, Ecophysiologie et Biologie Intégrative, Faculté des Sciences, 80039 Amiens cedex 1, France
| |
Collapse
|
25
|
Ferraro G, Bortolotti S, Mortera P, Schlereth A, Stitt M, Carrari F, Kamenetzky L, Valle EM. Novel glutamate dehydrogenase genes show increased transcript and protein abundances in mature tomato fruits. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:899-907. [PMID: 22459323 DOI: 10.1016/j.jplph.2012.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 05/13/2023]
Abstract
NAD(P)H-glutamate dehydrogenase (GDH, EC 1.4.1.3) contributes to the control of glutamate homeostasis in all living organisms. In bacteria and animals, GDH is a homohexamer allosterically regulated, whereas in plants NADH-GDH (EC 1.4.1.2) is also found as heterohexamer of α- and β-subunits, but its regulation remains undefined. In tomato (Solanum lycopersicum), GDH activity increases during the fruit ripening along with the content of free glutamate, the most abundant amino acid of ripe fruit involved in conferring the genuine tomato flavour. In this work, novel Slgdh-NAD genes were identified in the recently deciphered tomato genome: three encoding the α-subunit (Slgdh-NAD;A1-3) and one additional gene encoding the β-subunit of GDH (Slgdh-NAD;B1) isolated from a genomic library. These genes are located in different chromosomes. Slgdh-NAD;A1-3 show conserved structures, whereas Slgdh-NAD;B1 includes a novel 5'-untranslated exon. Slgdh-NAD;A1-3 transcripts were detected in all tomato tissues examined, showing the highest levels in mature green fruits, contrasting with Slgdh-NAD;B1 transcripts which were detected mainly in roots or in mature fruits when treated with glutamate, NaCl or salicylic acid. Analyses of GDH activity and protein distribution in different tissues of the Micro-Tom cultivar showed that only the active homohexamer of GDH β-subunits was detected in roots while heterohexamers of GDH α- and β-subunits were found in fruits. These results indicate that GDH β-subunit could modulate the heteromeric isoforms of GDH in response to the environment and physiology of the tomato fruit. This information is relevant to manipulate glutamate contents in tomato fruits genetically.
Collapse
Affiliation(s)
- Gisela Ferraro
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha, 531, S2002LRK Rosario, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Krapp A, Berthomé R, Orsel M, Mercey-Boutet S, Yu A, Castaings L, Elftieh S, Major H, Renou JP, Daniel-Vedele F. Arabidopsis roots and shoots show distinct temporal adaptation patterns toward nitrogen starvation. PLANT PHYSIOLOGY 2011; 157:1255-82. [PMID: 21900481 PMCID: PMC3252138 DOI: 10.1104/pp.111.179838] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nitrogen (N) is an essential macronutrient for plants. N levels in soil vary widely, and plants have developed strategies to cope with N deficiency. However, the regulation of these adaptive responses and the coordinating signals that underlie them are still poorly understood. The aim of this study was to characterize N starvation in adult Arabidopsis (Arabidopsis thaliana) plants in a spatiotemporal manner by an integrative, multilevel global approach analyzing growth, metabolites, enzyme activities, and transcript levels. We determined that the remobilization of N and carbon compounds to the growing roots occurred long before the internal N stores became depleted. A global metabolite analysis by gas chromatography-mass spectrometry revealed organ-specific differences in the metabolic adaptation to complete N starvation, for example, for several tricarboxylic acid cycle intermediates, but also for carbohydrates, secondary products, and phosphate. The activities of central N metabolism enzymes and the capacity for nitrate uptake adapted to N starvation by favoring N remobilization and by increasing the high-affinity nitrate uptake capacity after long-term starvation. Changes in the transcriptome confirmed earlier studies and added a new dimension by revealing specific spatiotemporal patterns and several unknown N starvation-regulated genes, including new predicted small RNA genes. No global correlation between metabolites, enzyme activities, and transcripts was evident. However, this multilevel spatiotemporal global study revealed numerous new patterns of adaptation mechanisms to N starvation. In the context of a sustainable agriculture, this work will give new insight for the production of crops with increased N use efficiency.
Collapse
Affiliation(s)
- Anne Krapp
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, F-78026 Versailles cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Suppression of glutamate synthase genes significantly affects carbon and nitrogen metabolism in rice (Oryza sativa L.). SCIENCE CHINA-LIFE SCIENCES 2011; 54:651-63. [PMID: 21748588 DOI: 10.1007/s11427-011-4191-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
Abstract
Rice (Oryza sativa) glutamate synthase (GOGAT, EC 1.4.1.14) enzymes have been proposed to have great potential for improving nitrogen use efficiency, but their functions in vivo and their effects on carbon and nitrogen metabolism have not been systematically explored. In this research, we analyzed transcriptional profiles of rice GOGAT genes using a genome-wide microarray database, and investigated the effects of suppression of glutamate synthase genes on carbon and nitrogen metabolism using GOGAT co-suppressed rice plants. Transcriptional profiles showed that rice GOGAT genes were expressed differently in various tissues and organs, which suggested that they have different roles in vivo. Compared with the wild-type, tiller number, total shoot dry weight, and yield of GOGAT co-suppressed plants were significantly decreased. Physiological and biochemical studies showed that the contents of nitrate, several kinds of free amino acids, chlorophyll, sugars, sugar phosphates, and pyridine nucleotides were significantly decreased in leaves of GOGAT co-suppressed plants, but the contents of free ammonium, 2-oxoglutarate, and isocitrate in leaves were increased. We conclude that GOGATs play essential roles in carbon and nitrogen metabolism, and that they are indispensable for efficient nitrogen assimilation in rice.
Collapse
|
28
|
Lee CP, Eubel H, O'Toole N, Millar AH. Combining proteomics of root and shoot mitochondria and transcript analysis to define constitutive and variable components in plant mitochondria. PHYTOCHEMISTRY 2011; 72:1092-108. [PMID: 21296373 DOI: 10.1016/j.phytochem.2010.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/28/2010] [Accepted: 12/03/2010] [Indexed: 05/08/2023]
Abstract
Mitochondria undertake respiration in plant cells, but through metabolic plasticity utilize differ proportions of substrates and deliver different proportions of products to cellular metabolic and biosynthetic pathways. In Arabidopsis the mitochondrial proteome from shoots and cell culture have been reported, but there has been little information on mitochondria in roots. We compare the root mitochondrial proteome with mitochondria isolated from photosynthetic shoots to define the role of protein abundance in these differences. The major differences observed were in the abundance and/or activities of enzymes in the TCA cycle and the mitochondrial enzymes involved in photorespiration. Metabolic pathways linked to TCA cycle and photorespiration were also altered, namely cysteine, formate and one-carbon metabolism, as well as amino acid metabolism focused on 2-oxoglutarate generation. Comparisons to microarray analysis of these same tissues showed a positive correlation between mRNA and mitochondrial protein abundance, but still ample evidence for the role of post-transcriptional processes in defining mitochondrial composition. Broader comparisons of transcript abundances for mitochondrial components across Arabidopsis tissues provided additional evidence for specialization of plant mitochondria, and clustering of these data in functional groups showed the constitutive vs variably expressed components of plant mitochondria.
Collapse
Affiliation(s)
- Chun Pong Lee
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | | | | | | |
Collapse
|
29
|
Perassolo M, Quevedo CV, Busto VD, Giulietti AM, Talou JR. Role of reactive oxygen species and proline cycle in anthraquinone accumulation in Rubia tinctorum cell suspension cultures subjected to methyl jasmonate elicitation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:758-63. [PMID: 21511484 DOI: 10.1016/j.plaphy.2011.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 03/30/2011] [Indexed: 05/02/2023]
Abstract
Elicitors are compounds or factors capable of triggering a defense response in plants. This kind of response involves signal transduction pathways, second messengers and events such as Reactive Oxygen Species (ROS) generation, proline accumulation and secondary metabolite production. Anthraquinone (AQs) biosynthesis in Rubia tinctorum L. involves different metabolic routes, including shikimate and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways. It has been proposed that the proline cycle could be coupled with the pentose phosphate pathway (PPP), since the NADP+ generated by this cycle could act as a cofactor of the first enzymes of the PPP. The end-product of this pathway is erithrose-4-phosphate, which becomes the substrate of the shikimate pathway. The aim of this work was to study the effect of methyl jasmonate (MeJ), a well-known endogenous elicitor, on the PPP, the proline cycle and AQs production in R. tinctorum cell suspension cultures, and to elucidate the role of ROS in MeJ elicitation. Treatment with MeJ resulted in AQs as well as proline accumulation, which was mimicked by the treatment with a H₂O₂-generating system. Both MeJ-induced effects were abolished in the presence of diphenyliodonium (DPI), a NADPH oxidase inhibitor (main source of ROS). Treatment with the elicitor failed to induce PPP; therefore, this route did not turn out to be limiting the carbon flux to the shikimate pathway.
Collapse
Affiliation(s)
- María Perassolo
- Cátedra de Microbiología Industrial y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
30
|
Lee CP, Eubel H, Millar AH. Diurnal changes in mitochondrial function reveal daily optimization of light and dark respiratory metabolism in Arabidopsis. Mol Cell Proteomics 2010; 9:2125-39. [PMID: 20601493 DOI: 10.1074/mcp.m110.001214] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Biomass production by plants is often negatively correlated with respiratory rate, but the value of this rate changes dramatically during diurnal cycles, and hence, biomass is the cumulative result of complex environment-dependent metabolic processes. Mitochondria in photosynthetic plant tissues undertake substantially different metabolic roles during light and dark periods that are dictated by substrate availability and the functional capacity of mitochondria defined by their protein composition. We surveyed the heterogeneity of the mitochondrial proteome and its function during a typical night and day cycle in Arabidopsis shoots. This used a staged, quantitative analysis of the proteome across 10 time points covering 24 h of the life of 3-week-old Arabidopsis shoots grown under 12-h dark and 12-h light conditions. Detailed analysis of enzyme capacities and substrate-dependent respiratory processes of isolated mitochondria were also undertaken during the same time course. Together these data reveal a range of dynamic changes in mitochondrial capacity and uncover day- and night-enhanced protein components. Clear diurnal changes were evident in mitochondrial capacities to drive the TCA cycle and to undertake functions associated with nitrogen and sulfur metabolism, redox poise, and mitochondrial antioxidant defense. These data quantify the nature and nuances of a daily rhythm in Arabidopsis mitochondrial respiratory capacity.
Collapse
Affiliation(s)
- Chun Pong Lee
- Australian Research Council Centre of Excellence in Plant Energy Biology, Molecular and Chemical Sciences Building M310 University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | | | | |
Collapse
|
31
|
Labboun S, Tercé-Laforgue T, Roscher A, Bedu M, Restivo FM, Velanis CN, Skopelitis DS, Moshou PN, Roubelakis-Angelakis KA, Suzuki A, Hirel B. Resolving the role of plant glutamate dehydrogenase. I. In vivo real time nuclear magnetic resonance spectroscopy experiments. PLANT & CELL PHYSIOLOGY 2009; 50:1761-73. [PMID: 19690000 PMCID: PMC2759343 DOI: 10.1093/pcp/pcp118] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 08/11/2009] [Indexed: 05/18/2023]
Abstract
In higher plants the glutamate dehydrogenase (GDH) enzyme catalyzes the reversible amination of 2-oxoglutarate to form glutamate, using ammonium as a substrate. For a better understanding of the physiological function of GDH either in ammonium assimilation or in the supply of 2-oxoglutarate, we used transgenic tobacco (Nicotiana tabacum L.) plants overexpressing the two genes encoding the enzyme. An in vivo real time (15)N-nuclear magnetic resonance (NMR) spectroscopy approach allowed the demonstration that, when the two GDH genes were overexpressed individually or simultaneously, the transgenic plant leaves did not synthesize glutamate in the presence of ammonium when glutamine synthetase (GS) was inhibited. In contrast we confirmed that the primary function of GDH is to deaminate Glu. When the two GDH unlabeled substrates ammonium and Glu were provided simultaneously with either [(15)N]Glu or (15)NH(4)(+) respectively, we found that the ammonium released from the deamination of Glu was reassimilated by the enzyme GS, suggesting the occurrence of a futile cycle recycling both ammonium and Glu. Taken together, these results strongly suggest that the GDH enzyme, in conjunction with NADH-GOGAT, contributes to the control of leaf Glu homeostasis, an amino acid that plays a central signaling and metabolic role at the interface of the carbon and nitrogen assimilatory pathways. Thus, in vivo NMR spectroscopy appears to be an attractive technique to follow the flux of metabolites in both normal and genetically modified plants.
Collapse
Affiliation(s)
- Soraya Labboun
- Génie Enzymatique et Cellulaire, UMR CNRS 6022, UFR des Sciences, Université de Picardie Jules Verne, 33, Rue Saint-Leu, 80039 Amiens cedex, France
| | - Thérèse Tercé-Laforgue
- Unité de Nutrition Azotée des Plantes, Unité de Recherche 511, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France
| | - Albrecht Roscher
- Génie Enzymatique et Cellulaire, UMR CNRS 6022, UFR des Sciences, Université de Picardie Jules Verne, 33, Rue Saint-Leu, 80039 Amiens cedex, France
| | - Magali Bedu
- Unité de Nutrition Azotée des Plantes, Unité de Recherche 511, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France
| | - Francesco M. Restivo
- Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, Parco Area delle Scienze 11/A, 43100 Parma, Italy
| | | | | | | | | | - Akira Suzuki
- Unité de Nutrition Azotée des Plantes, Unité de Recherche 511, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France
| | - Bertrand Hirel
- Unité de Nutrition Azotée des Plantes, Unité de Recherche 511, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Institut Jean-Pierre Bourgin, 78026 Versailles cedex, France
| |
Collapse
|
32
|
Teixeira J, Fidalgo F. Salt stress affects glutamine synthetase activity and mRNA accumulation on potato plants in an organ-dependent manner. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:807-13. [PMID: 19481951 DOI: 10.1016/j.plaphy.2009.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 05/01/2009] [Accepted: 05/12/2009] [Indexed: 05/12/2023]
Abstract
Ammonium assimilation into glutamine and glutamate is vital for plant growth as these are precursors for almost all nitrogenous compounds. Ammonium can be assimilated onto nitrogenous organic compounds by the concerted action of two enzymes that compose the glutamine synthetase (GS, EC 6.3.1.2) - glutamate synthase (Fd-GOGAT, EC 1.4.7.1; NADH-GOGAT, EC 1.4.1.14) cycle. Ammonium may also be directly incorporated into glutamate by the glutamate dehydrogenase (GDH, EC 1.4.1.2) aminating reaction. However, as GDH reversibly deaminates glutamate, its physiological role in vivo remains controversial. Potato has been classified as moderately tolerant to salinity. Potato GS is encoded by a small multigene family which is differentially regulated in an organ and age-dependent way. In this study, the effect of increasing concentrations of salinity in the soil in GS activity and gene-specific mRNA accumulation levels were studied on potato leaves and roots, as well as the biochemical parameters protein, chlorophyll, lipid peroxidation and proline levels, in order to evaluate the severity of the imposed stress. The data obtained suggests that when potato plants are subjected to salt stress, increased ammonium assimilation occurs in roots, due to an increased GS accumulation, along with a decreased assimilation in leaves. Regarding GS gene-specific mRNA accumulation, an organ-dependent response was also observed that contributes for the detected alteration in the ammonium assimilatory metabolism. This response may be a key feature for future genetic manipulations in order to increase crop productivity in salty soils. The possible contribution of GDH for ammonia assimilation was also investigated.
Collapse
Affiliation(s)
- Jorge Teixeira
- Faculty of Sciences of the University of Porto, Botany Department, Porto, Portugal.
| | | |
Collapse
|
33
|
Fontaine JX, Ravel C, Pageau K, Heumez E, Dubois F, Hirel B, Le Gouis J. A quantitative genetic study for elucidating the contribution of glutamine synthetase, glutamate dehydrogenase and other nitrogen-related physiological traits to the agronomic performance of common wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:645-62. [PMID: 19513687 DOI: 10.1007/s00122-009-1076-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 05/15/2009] [Indexed: 05/03/2023]
Abstract
To better understand the genetic variability for nitrogen use efficiency in winter wheat is a necessity in the frame of the present economic and ecological context. The objective of this work was to investigate the role of the enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH), and other nitrogen (N)-related physiological traits in the control of agronomic performance in wheat. A quantitative genetics approach was developed using the Arche x Récital population of doubled haploid lines grown for 3 years in the field. GS and GDH activities, ammonium, amino acid and protein contents were measured at different stages of plant development in different organs after flowering. Significant genotypic effects were observed for all measured physiological and agronomical traits. Heading date was negatively correlated with ammonium, amino acid, protein contents and GS activity in the flag leaf lamina. Grain protein content was positively correlated with both ammonium and amino acid content, and to a lesser extent with soluble protein content and GS activity. A total of 148 quantitative trait loci (QTLs) were detected, 104 QTLs for physiological traits and 44 QTLs for agronomic traits. Twenty-six QTLs were detected for GDH activity spread over 13 chromosomes and 25 QTLs for GS activity spread over 12 chromosomes. We found only a co-localization between a QTL for GS activity and GSe, a structural gene encoding cytosolic GS on chromosome 4B. A coincidence between a QTL for GDH activity and a gene encoding GDH was also found on chromosome 2B. QTL regions combining both physiological and agronomical QTLs were mainly identified on linkage groups 2A, 2B, 2D, 5A, 5B and 5D. This approach allowed us to propose possible functions of physiological traits to explain the variation observed for agronomic traits including yield and its components.
Collapse
Affiliation(s)
- Jean-Xavier Fontaine
- Faculté des sciences, UPJV EA3900 BioPI, Nitrogen Metabolism, 33 rue Saint Leu, 80039, Amiens Cedex, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Hong Y, Devaiah SP, Bahn S, Thamasandra BN, Li M, Welti R, Wang X. Phospholipase D epsilon and phosphatidic acid enhance Arabidopsis nitrogen signaling and growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:376-87. [PMID: 19143999 PMCID: PMC4076113 DOI: 10.1111/j.1365-313x.2009.03788.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Activation of phospholipase D (PLD) produces phosphatidic acid (PA), a lipid messenger implicated in cell growth and proliferation, but direct evidence for PLD and PA promotion of growth at the organism level is lacking. Here we characterize a new PLD gene, PLD epsilon, and show that it plays a role in promoting Arabidopsis growth. PLD epsilon is mainly associated with the plasma membrane, and is the most permissive of all PLDs tested with respect to its activity requirements. Knockout (KO) of PLD epsilon decreases root growth and biomass accumulation, whereas over-expression (OE) of PLD epsilon enhances root growth and biomass accumulation. The level of PA was higher in OE plants, but lower in KO plants than in wild-type plants, and suppression of PLD-mediated PA formation by alcohol alleviated the growth-promoting effect of PLD epsilon. OE and KO of PLD epsilon had opposite effects on lateral root elongation in response to nitrogen. Increased expression of PLD epsilon also promoted root hair elongation and primary root growth under severe nitrogen deprivation. The results suggest that PLD epsilon and PA promote organism growth and play a role in nitrogen signaling. The lipid-signaling process may play a role in connecting membrane sensing of nutrient status to increased plant growth and biomass production.
Collapse
Affiliation(s)
- Yueyun Hong
- Department of Biology, University of Missouri, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Shivakumar P. Devaiah
- Department of Biology, University of Missouri, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - SungChul Bahn
- Department of Biology, University of Missouri, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Bharath N. Thamasandra
- Department of Biology, University of Missouri, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Maoyin Li
- Department of Biology, University of Missouri, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Ruth Welti
- Division of Biology, Kansas State University, Manhattan, KS 66502, USA
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Corresponding author: Xuemin Wang, University of Missouri, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA, Telephone: (314) 587-1419; Fax: (314) 587-1519;
| |
Collapse
|
35
|
Chaffei-Haouari C, Carrayol E, Ghorbel MH, Gouia H. Physiological and biochemical effects of cadmium toxicity in enzymes involved in nitrogen and amino—acid metabolism in tomato plants. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/12538078.2009.10516172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Ponce-Valadez M, Watkins CB. Fermentation and malate metabolism in response to elevated CO2 concentrations in two strawberry cultivars. PHYSIOLOGIA PLANTARUM 2008; 134:121-133. [PMID: 18494736 DOI: 10.1111/j.1399-3054.2008.01108.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Concentrations of acetaldehyde, ethanol, ethyl acetate (EA), organic acids and activities and gene expression of alcohol dehydrogenase (ADH; EC 1.1.1.1), pyruvate decarboxylase (PDC; EC 4.1.1.1), alcohol acyltransferase (AAT; EC 1.4.1.14), malate dehydrogenase (MDH; EC 1.1.1.37), malic enzyme (ME; EC 1.1.1.40) and glutamate dehydrogenase (EC 1.4.1.14) were investigated in two strawberry (Fragaria x ananassa Duch) cultivars with different responses to CO(2) during storage. 'Jewel' fruit treated with CO(2) accumulated acetaldehyde and ethanol but little EA, while 'Cavendish' accumulated little acetaldehyde or ethanol but accumulated EA. In CO(2)-treated fruit, PDC activity was positively correlated with EA accumulation in 'Jewel' but not in 'Cavendish', while no differential effect of atmosphere was observed on its gene expression. ADH activity and gene expression show a correlation with ethanol accumulation in 'Cavendish'. In 'Jewel', there was a positive correlation between ADH gene expression and enzyme activity; however, this correlation does not explain ethanol accumulation in this cultivar. EA accumulation did not show any correlation with AAT activity and gene expression in any of the cultivars. Succinate concentrations were highest and those of malate lowest in CO(2)-treated fruit of both cultivars, but MDH and ME activities were not affected by CO(2). Gene expression of MDH and ME were not affected by atmosphere in 'Cavendish', although in 'Jewel' the MDH expression was slightly lower in CO(2)- than air-treated fruit. The results of this study show that differences in fermentation products and malate accumulation in CO(2)-treated strawberry fruit are not consistently correlated with enzyme activities and gene expression.
Collapse
|
37
|
Lee CP, Eubel H, O'Toole N, Millar AH. Heterogeneity of the Mitochondrial Proteome for Photosynthetic and Non-photosynthetic Arabidopsis Metabolism. Mol Cell Proteomics 2008; 7:1297-316. [DOI: 10.1074/mcp.m700535-mcp200] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
38
|
Diaz C, Lemaître T, Christ A, Azzopardi M, Kato Y, Sato F, Morot-Gaudry JF, Le Dily F, Masclaux-Daubresse C. Nitrogen recycling and remobilization are differentially controlled by leaf senescence and development stage in Arabidopsis under low nitrogen nutrition. PLANT PHYSIOLOGY 2008; 147:1437-49. [PMID: 18467460 PMCID: PMC2442554 DOI: 10.1104/pp.108.119040] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 04/26/2008] [Indexed: 05/18/2023]
Abstract
Five recombinant inbred lines (RILs) of Arabidopsis (Arabidopsis thaliana), previously selected from the Bay-0 x Shahdara RIL population on the basis of differential leaf senescence phenotypes (from early senescing to late senescing) when cultivated under nitrogen (N)-limiting conditions, were analyzed to monitor metabolic markers related to N assimilation and N remobilization pathways. In each RIL, a decrease of total N, free amino acid, and soluble protein contents with leaf aging was observed. In parallel, the expression of markers for N remobilization such as cytosolic glutamine synthetase, glutamate dehydrogenase, and CND41-like protease was increased. This increase occurred earlier and more rapidly in early-senescing lines than in late-senescing lines. We measured the partitioning of (15)N between sink and source leaves during the vegetative stage of development using (15)N tracing and showed that N remobilization from the source leaves to the sink leaves was more efficient in the early-senescing lines. The N remobilization rate was correlated with leaf senescence severity at the vegetative stage. Experiments of (15)N tracing at the reproductive stage showed, however, that the rate of N remobilization from the rosettes to the flowering organs and to the seeds was similar in early- and late-senescing lines. At the reproductive stage, N remobilization efficiency did not depend on senescence phenotypes but was related to the ratio between the biomasses of the sink and the source organs.
Collapse
Affiliation(s)
- Céline Diaz
- Unité de Nutrition Azotée des Plantes, UR511, INRA, F-78000 Versailles, France
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Miyashita Y, Good AG. NAD(H)-dependent glutamate dehydrogenase is essential for the survival of Arabidopsis thaliana during dark-induced carbon starvation. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:667-80. [PMID: 18296429 DOI: 10.1093/jxb/erm340] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Interconversion between glutamate and 2-oxoglutarate, which can be catalysed by glutamate dehydrogenase (GDH), is a key reaction in plant carbon (C) and nitrogen (N) metabolism. However, the physiological role of plant GDH has been a controversial issue for several decades. To elucidate the function of GDH, the expression of GDH in various tissues of Arabidopsis thaliana was studied. Results suggested that the expression of two Arabidopsis GDH genes was differently regulated depending on the organ/tissue types and cellular C availability. Moreover, Arabidopsis mutants defective in GDH genes were identified and characterized. The two isolated mutants, gdh1-2 and gdh2-1, were crossed to make a double knockout mutant, gdh1-2/gdh2-1, which contained negligible levels of NAD(H)-dependent GDH activity. Phenotypic analysis on these mutants revealed an increased susceptibility of gdh1-2/gdh2-1 plants to C-deficient conditions. This conditional phenotype of the double knockout mutant supports the catabolic role of GDH and its role in fuelling the TCA cycle during C starvation. The reduced rate of glutamate catabolism in the gdh2-1 and gdh1-2/gdh2-1 plants was also evident by the growth retardation of these mutants when glutamate was supplied as the alternative N source. Furthermore, amino acid profiles during prolonged dark conditions were significantly different between WT and the gdh mutant plants. For instance, glutamate levels increased in WT plants but decreased in gdh1-2/gdh2-1 plants, and aberrant accumulation of several amino acids was detected in the gdh1-2/gdh2-1 plants. These results suggest that GDH plays a central role in amino acid breakdown under C-deficient conditions.
Collapse
Affiliation(s)
- Yo Miyashita
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | | |
Collapse
|
40
|
Skopelitis DS, Paranychianakis NV, Kouvarakis A, Spyros A, Stephanou EG, Roubelakis-Angelakis KA. The isoenzyme 7 of tobacco NAD(H)-dependent glutamate dehydrogenase exhibits high deaminating and low aminating activities in vivo. PLANT PHYSIOLOGY 2007; 145:1726-34. [PMID: 17932305 PMCID: PMC2151676 DOI: 10.1104/pp.107.107813] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 09/24/2007] [Indexed: 05/18/2023]
Abstract
Following the discovery of glutamine synthetase/glutamate (Glu) synthase, the physiological roles of Glu dehydrogenase (GDH) in nitrogen metabolism in plants remain obscure and is the subject of considerable controversy. Recently, transgenics were used to overexpress the gene encoding for the beta-subunit polypeptide of GDH, resulting in the GDH-isoenzyme 1 deaminating in vivo Glu. In this work, we present transgenic tobacco (Nicotiana tabacum) plants overexpressing the plant gdh gene encoding for the alpha-subunit polypeptide of GDH. The levels of transcript correlated well with the levels of total GDH protein, the alpha-subunit polypeptide, and the abundance of GDH-anionic isoenzymes. Assays of transgenic plant extracts revealed high in vitro aminating and low deaminating activities. However, gas chromatography/mass spectrometry analysis of the metabolic fate of (15)NH(4) or [(15)N]Glu revealed that GDH-isoenzyme 7 mostly deaminates Glu and also exhibits low ammonium assimilating activity. These and previous results firmly establish the direction of the reactions catalyzed by the anionic and cationic isoenzymes of GDH in vivo under normal growth conditions and reveal a paradox between the in vitro and in vivo enzyme activities.
Collapse
|
41
|
Debouba M, Gouia H, Valadier MH, Ghorbel MH, Suzuki A. Salinity-induced tissue-specific diurnal changes in nitrogen assimilatory enzymes in tomato seedlings grown under high or low nitrate medium. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2006; 44:409-19. [PMID: 16889971 DOI: 10.1016/j.plaphy.2006.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Indexed: 05/11/2023]
Abstract
We studied the salt stress (100 mM NaCl) effects on the diurnal changes in N metabolism enzymes in tomato seedlings (Lycopersicon esculentum Mill. cv. Chibli F1) that were grown under high nitrogen (HN, 5 mM NO(3)(-)) or low nitrogen (LN, 0.1 mM NO(3)(-)). NaCl stress led to a decrease in plant DW production and leaf surface to higher extent in HN than in LN plants. Total leaf chlorophyll (Chl) content was decreased by salinity in HN plants, but unchanged in LN plants. Soluble protein content was decreased by salt in the leaves from HN and LN plants, but increased in the stems-petioles from LN plants. Nitrate reductase (NR, EC 1.6.1.6) showed an activity peak during first part of the light period, but no diurnal changes were observed for the nitrite reductase (NiR, EC 1.7.7.1) activity. Glutamine synthetase (GS, EC 6.3.1.2) and glutamate synthase (Fd-GOGAT, EC 1.4.7.1) activities increased in HN plant leaves during the second part of the light period, probably when enough ammonium is produced by nitrate reduction. NR and NiR activities in the leaves were more decreased by NaCl in LN than in HN plants, whereas the opposite response was obtained for the GS activity. Fd-GOGAT activity was inhibited by NaCl in HN plant leaves, while salinity did not shift the peak of the NR and Fd-GOGAT activities during a diurnal cycle. The induction by NaCl stress occurred for the NR and GS activities in the roots of both HN and LN plants. Glutamate dehydrogenase (GDH, EC 1.4.1.2) activity shifted from the deaminating activity to the aminating activity in all tissues of HN plants. In LN plants, both aminating and deaminating activities were increased by salinity in the leaves and roots. The differences in the sensitivity to NaCl between HN and LN plants are discussed in relation to the N metabolism status brought on by salt stress.
Collapse
Affiliation(s)
- M Debouba
- Unité de Recherche Nutrition et Métabolisme Azotés et Proteines de Stress 99/C09-20, Département de Biologie, Faculté des Sciences de Tunis, Tunisia
| | | | | | | | | |
Collapse
|
42
|
Fontaine JX, Saladino F, Agrimonti C, Bedu M, Tercé-Laforgue T, Tétu T, Hirel B, Restivo FM, Dubois F. Control of the synthesis and subcellular targeting of the two GDH genes products in leaves and stems of Nicotiana plumbaginifolia and Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2006; 47:410-8. [PMID: 16418233 DOI: 10.1093/pcp/pcj008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although the physiological role of the enzyme glutamate dehydrogenase which catalyses in vitro the reversible amination of 2-oxoglutarate to glutamate remains to be elucidated, it is now well established that in higher plants the enzyme preferentially occurs in the mitochondria of phloem companion cells. The Nicotiana plumbaginifolia and Arabidopis thaliana enzyme is encoded by two distinct genes encoding either an alpha- or a beta-subunit. Using antisense plants and mutants impaired in the expression of either of the two genes, we showed that in leaves and stems both the alpha- and beta-subunits are targeted to the mitochondria of the companion cells. In addition, we found in both species that there is a compensatory mechanism up-regulating the expression of the alpha-subunit in the stems when the expression of the beta-subunit is impaired in the leaves, and of the beta-subunit in the leaves when the expression of the alpha-subunit is impaired in the stems. When one of the two genes encoding glutamate dehydrogenase is ectopically expressed, the corresponding protein is targeted to the mitochondria of both leaf and stem parenchyma cells and its production is increased in the companion cells. These results are discussed in relation to the possible signalling and/or physiological function of the enzyme which appears to be coordinated in leaves and stems.
Collapse
Affiliation(s)
- Jean-Xavier Fontaine
- Laboratoire d'Androgénèse et Biotechnologie Végétale, Université de Picardie Jules Verne, Amiens, France
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Masclaux-Daubresse C, Reisdorf-Cren M, Pageau K, Lelandais M, Grandjean O, Kronenberger J, Valadier MH, Feraud M, Jouglet T, Suzuki A. Glutamine synthetase-glutamate synthase pathway and glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in tobacco. PLANT PHYSIOLOGY 2006; 140:444-56. [PMID: 16407450 PMCID: PMC1361315 DOI: 10.1104/pp.105.071910] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 10/31/2005] [Accepted: 12/05/2005] [Indexed: 05/06/2023]
Abstract
Glutamate (Glu) metabolism and amino acid translocation were investigated in the young and old leaves of tobacco (Nicotiana tabacum L. cv Xanthi) using [15N]ammonium and [2-15N]Glu tracers. Regardless of leaf age, [15N]ammonium assimilation occurred via glutamine synthetase (GS; EC 6.1.1.3) and Glu synthase (ferredoxin [Fd]-GOGAT; EC 1.4.7.1; NADH-GOGAT; EC 1.4.1.14), both in the light and darkness, and it did not depend on Glu dehydrogenase (GDH; EC 1.4.1.2). The [15N]ammonium and ammonium accumulation patterns support the role of GDH in the deamination of [2-15N]Glu to provide 2-oxoglutarate and [15N]ammonium. In the dark, excess [15N]ammonium was incorporated into asparagine that served as an additional detoxification molecule. The constant Glu levels in the phloem sap suggested that Glu was continuously synthesized and supplied into the phloem regardless of leaf age. Further study using transgenic tobacco lines, harboring the promoter of the GLU1 gene (encoding Arabidopsis [Arabidopsis thaliana] Fd-GOGAT) fused to a GUS reporter gene, revealed that the expression of Fd-GOGAT remained higher in young leaves compared to old leaves, and higher in the veins compared to the mesophyll. Confocal laser-scanning microscopy localized the Fd-GOGAT protein to the phloem companion cells-sieve element complex in the leaf veins. The results are consistent with a role of Fd-GOGAT in supplying Glu for the synthesis and transport of amino acids. Taken together, the data provide evidence that the GS-GOGAT pathway and GDH play distinct roles in the source-sink nitrogen cycle of tobacco leaves.
Collapse
Affiliation(s)
- Céline Masclaux-Daubresse
- Unité de Nutrition Azotée des Plantes, Institut National de la Recherche Agronomique, 78026 Versailles cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Schneidereit J, Häusler RE, Fiene G, Kaiser WM, Weber APM. Antisense repression reveals a crucial role of the plastidic 2-oxoglutarate/malate translocator DiT1 at the interface between carbon and nitrogen metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:206-24. [PMID: 16367965 DOI: 10.1111/j.1365-313x.2005.02594.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ammonia assimilation by the plastidic glutamine synthetase/glutamate synthase system requires 2-oxoglutarate (2-OG) as a carbon precursor. Plastids depend on 2-OG import from the cytosol. A plastidic dicarboxylate translocator 1-[2-OG/malate translocator (DiT1)] has been identified and its substrate specificity and kinetic constants have been analyzed in vitro. However, the role of DiT1 in intact plants and its significance for ammonia assimilation remained uncertain. Here, to study the role of DiT1 in intact plants, its expression was antisense-repressed in transgenic tobacco plants. This resulted in a reduced transport capacity for 2-OG across the plastid envelope membrane. In consequence, allocation of carbon precursors to amino acid synthesis was impaired, organic acids accumulated and protein content, photosynthetic capacity and sugar pools in leaves were strongly decreased. The phenotype was consistent with a role of DIT1 in both, primary ammonia assimilation and the re-assimilation of ammonia resulting from the photorespiratory carbon cycle. Unexpectedly, the in situ rate of nitrate reduction was extremely low in alpha-DiT1 leaves, although nitrate reductase (NR) expression and activity remained high. We hypothesize that this discrepancy between extractable NR activity and in situ nitrate reduction is due to substrate limitation of NR. These findings and the severe phenotype of the antisense plants point to a crucial role of DiT1 at the interface between carbon and nitrogen metabolism.
Collapse
Affiliation(s)
- Jörg Schneidereit
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
45
|
Fettke J, Eckermann N, Tiessen A, Geigenberger P, Steup M. Identification, subcellular localization and biochemical characterization of water-soluble heteroglycans (SHG) in leaves of Arabidopsis thaliana L.: distinct SHG reside in the cytosol and in the apoplast. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:568-85. [PMID: 16098110 DOI: 10.1111/j.1365-313x.2005.02475.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Water-soluble heteroglycans (SHG) were isolated from leaves of wild-type Arabidopsis thaliana L. and from two starch-deficient mutants. Major constituents of the SHG are arabinose, galactose, rhamnose, and glucose. SHG was separated into low (<10 kDa; SHG(S)) and high (>10 kDa; SHG(L)) molecular weight compounds. SHG(S) was resolved into approximately 25 distinct oligoglycans by ion exchange chromatography. SHG(L) was further separated into two subfractions, designated as subfraction I and II, by field flow fractionation. For the intracellular localization of the various SHG compounds several approaches were chosen: first, leaf material was subjected to non-aqueous fractionation. The apolar gradient fractions were characterized by monitoring markers and were used as starting material for the SHG isolation. Subfraction I and SHG(S) exhibited a distribution similar to that of cytosolic markers whereas subfraction II cofractionated with crystalline cellulose. Secondly, intact organelles were isolated and used for SHG isolation. Preparations of intact organelles (mitochondria plus peroxisomes) contained no significant amount of any heteroglycan. In isolated intact microsomes a series of oligoglycans was recovered but neither subfraction I nor II. In in vitro assays using glucose 1-phosphate and recombinant cytosolic (Pho 2) phosphorylase both SHG(S) and subfraction I acted as glucosyl acceptor whereas subfraction II was essentially inactive. Rabbit muscle phosphorylase a did not utilize any of the plant glycans indicating a specific Pho 2-glycan interaction. As revealed by in vivo labeling experiments using 14CO2 carbon fluxes into subfraction I and II differed. Furthermore, in leaves the pool size of subfraction I varied during the light-dark regime.
Collapse
Affiliation(s)
- Joerg Fettke
- Department of Plant Physiology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, D-14476 Potsdam-Golm, Germany
| | | | | | | | | |
Collapse
|
46
|
Kichey T, Le Gouis J, Sangwan B, Hirel B, Dubois F. Changes in the Cellular and Subcellular Localization of Glutamine Synthetase and Glutamate Dehydrogenase During Flag Leaf Senescence in Wheat (Triticum aestivum L.). ACTA ACUST UNITED AC 2005; 46:964-74. [PMID: 15840646 DOI: 10.1093/pcp/pci105] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In order to improve our understanding of the regulation of nitrogen assimilation and recycling in wheat (Triticum aestivum L.), we studied the localization of plastidic (GS2) and cytosolic (GS1) glutamine synthetase isoenzymes and of glutamate dehydrogenase (GDH) during natural senescence of the flag leaf and in the stem. In mature flag leaves, large amounts of GS1 were detected in the connections between the mestome sheath cells and the vascular cells, suggesting an active transfer of nitrogen organic molecules within the vascular system in the mature flag leaf. Parallel to leaf senescence, an increase of a GS1 polypeptide (GS1b) was detected in the mesophyll cytosol of senescing leaves, while the GS protein content represented by another polypetide (GS1a) in the phloem companion cells remained practically constant in both leaves and stems. Both GDH aminating activity and protein content were strongly induced in senescing flag leaves. The induction occurred both in the mitochondria and in the cytosol of phloem companion cells, suggesting that the shift in GDH cellular compartmentation is important during leaf nitrogen remobilization although the metabolic or sensing role of the enzyme remains to be elucidated. Taken together, our results suggest that in wheat, nitrogen assimilation and recycling are compartmentalized between the mesophyll and the vasculature, and are shifted in different cellular compartments within these two tissues during the transition of sink leaves to source leaves.
Collapse
Affiliation(s)
- Thomas Kichey
- Laboratoire d'Androgenèse et Biotechnologie Végétale, Université de Picardie Jules Verne, 33, Rue saint-Leu, 80039 Amiens Cedex, France
| | | | | | | | | |
Collapse
|
47
|
Gibon Y, Blaesing OE, Hannemann J, Carillo P, Höhne M, Hendriks JHM, Palacios N, Cross J, Selbig J, Stitt M. A Robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. THE PLANT CELL 2004; 16:3304-25. [PMID: 15548738 PMCID: PMC535875 DOI: 10.1105/tpc.104.025973] [Citation(s) in RCA: 393] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Accepted: 09/03/2004] [Indexed: 05/17/2023]
Abstract
A platform has been developed to measure the activity of 23 enzymes that are involved in central carbon and nitrogen metabolism in Arabidopsis thaliana. Activities are assayed in optimized stopped assays and the product then determined using a suite of enzyme cycling assays. The platform requires inexpensive equipment, is organized in a modular manner to optimize logistics, calculates results automatically, combines high sensitivity with throughput, can be robotized, and has a throughput of three to four activities in 100 samples per person/day. Several of the assays, including those for sucrose phosphate synthase, ADP glucose pyrophosphorylase (AGPase), ferredoxin-dependent glutamate synthase, glycerokinase, and shikimate dehydrogenase, provide large advantages over previous approaches. This platform was used to analyze the diurnal changes of enzyme activities in wild-type Columbia-0 (Col-0) and the starchless plastid phosphoglucomutase (pgm) mutant, and in Col-0 during a prolongation of the night. The changes of enzyme activities were compared with the changes of transcript levels determined with the Affymetrix ATH1 array. Changes of transcript levels typically led to strongly damped changes of enzyme activity. There was no relation between the amplitudes of the diurnal changes of transcript and enzyme activity. The largest diurnal changes in activity were found for AGPase and nitrate reductase. Examination of the data and comparison with the literature indicated that these are mainly because of posttranslational regulation. The changes of enzyme activity are also strongly delayed, with the delay varying from enzyme to enzyme. It is proposed that enzyme activities provide a quasi-stable integration of regulation at several levels and provide useful data for the characterization and diagnosis of different physiological states. As an illustration, a decision tree constructed using data from Col-0 during diurnal changes and a prolonged dark treatment was used to show that, irrespective of the time of harvest during the diurnal cycle, the pgm mutant resembles a wild-type plant that has been exposed to a 3 d prolongation of the night.
Collapse
Affiliation(s)
- Yves Gibon
- Max Planck Institute of Molecular Plant Physiology, Science Park Golm, 14476 Golm-Potsdam, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tercé-Laforgue T, Dubois F, Ferrario-Méry S, de Crecenzo MAP, Sangwan R, Hirel B. Glutamate dehydrogenase of tobacco is mainly induced in the cytosol of phloem companion cells when ammonia is provided either externally or released during photorespiration. PLANT PHYSIOLOGY 2004; 136:4308-17. [PMID: 15563623 PMCID: PMC535860 DOI: 10.1104/pp.104.047548] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 10/12/2004] [Accepted: 10/14/2004] [Indexed: 05/18/2023]
Abstract
Glutamate (Glu) dehydrogenase (GDH) catalyses the reversible amination of 2-oxoglutarate for the synthesis of Glu using ammonium as a substrate. This enzyme preferentially occurs in the mitochondria of companion cells of a number of plant species grown on nitrate as the sole nitrogen source. For a better understanding of the controversial role of GDH either in ammonium assimilation or in the supply of 2-oxoglutarate (F. Dubois, T. Terce-Laforgue, M.B. Gonzalez-Moro, M.B. Estavillo, R. Sangwan, A. Gallais, B. Hirel [2003] Plant Physiol Biochem 41: 565-576), we studied the localization of GDH in untransformed tobacco (Nicotiana tabacum) plants grown either on low nitrate or on ammonium and in ferredoxin-dependent Glu synthase antisense plants. Production of GDH and its activity were strongly induced when plants were grown on ammonium as the sole nitrogen source. The induction mainly occurred in highly vascularized organs such as stems and midribs and was likely to be due to accumulation of phloem-translocated ammonium in the sap. GDH induction occurred when ammonia was applied externally to untransformed control plants or resulted from photorespiratory activity in transgenic plants down-regulated for ferredoxin-dependent Glu synthase. GDH was increased in the mitochondria and appeared in the cytosol of companion cells. Taken together, our results suggest that the enzyme plays a dual role in companion cells, either in the mitochondria when mineral nitrogen availability is low or in the cytosol when ammonium concentration increases above a certain threshold.
Collapse
Affiliation(s)
- Thérèse Tercé-Laforgue
- Unité de Nutrition Azotée des Plantes, Institut National de la Recherche Agronomique, 78026 Versailles cedex, France
| | | | | | | | | | | |
Collapse
|
49
|
Chaffei C, Pageau K, Suzuki A, Gouia H, Ghorbel MH, Masclaux-Daubresse C. Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. PLANT & CELL PHYSIOLOGY 2004; 45:1681-93. [PMID: 15574844 DOI: 10.1093/pcp/pch192] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Tomato (Lycopersicon esculentum) seedlings were grown in the presence of cadmium. After 1 week of Cd treatment, a sharp decline in biomass accumulation in the leaves and roots was observed, together with a decrease in the rate of photosynthetic activity due to both Rubisco and chlorophyll degradation and stomata closure. Cadmium induced a significant decrease in nitrate content and inhibition of the activities of nitrate reductase, nitrite reductase, glutamine synthetase (GS) and ferredoxin-glutamate synthase. An increase in NADH-glutamate synthase and NADH-glutamate dehydrogenase activity was observed in parallel. The accumulation of ammonium into the tissues of treated plants was accompanied by a loss of total protein and the accumulation of amino acids. Gln represented the major amino acid transported through xylem sap of Cd-treated and control plants. Cadmium treatment increased the total amino acid content in the phloem, maintaining Gln/Glu ratios. Western and Northern blot analysis of Cd-treated plants showed a decrease in chloroplastic GS protein and mRNA and an increase in cytosolic GS and glutamate dehydrogenase transcripts and proteins. An increase in asparagine synthetase mRNA was observed in roots, in parallel with a strong increase in asparagine. Taken together, these results suggest that the plant response to Cd stress involved newly induced enzymes dedicated to coordinated leaf nitrogen remobilization and root nitrogen storage.
Collapse
Affiliation(s)
- Chiraz Chaffei
- Unité de Nutrition Azotée des Plantes, INRA, route de Saint Cyr, 78026 Versailles, France
| | | | | | | | | | | |
Collapse
|
50
|
Tercé-Laforgue T, Mäck G, Hirel B. New insights towards the function of glutamate dehydrogenase revealed during source-sink transition of tobacco (Nicotiana tabacum) plants grown under different nitrogen regimes. PHYSIOLOGIA PLANTARUM 2004; 120:220-228. [PMID: 15032856 DOI: 10.1111/j.0031-9317.2004.0241.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The metabolic, biochemical and molecular events occurring in the different leaf stages along the main axis of tobacco (Nicotiana tabacum) plants grown either on a nitrogen-rich medium, on a medium containing ammonium as sole nitrogen source or on a nitrogen-depleted medium, are presented. This study shows that the highest induction of cytosolic glutamine synthetase (GS1) protein and transcript occurs when nitrogen remobilization is maximal as the result of nitrogen starvation, whereas both glutamate dehydrogenase (GDH) transcript and activity remain at a very low level. In contrast, GDH is highly induced when plants are grown on ammonium as sole nitrogen source, a physiological situation during which leaf protein nitrogen remobilization is limited. It is therefore concluded that GDH does not play a direct role during the process of nitrogen remobilization but is rather induced following a built up of ammonium provided externally or released as the result of protein hydrolysis during natural leaf senescence.
Collapse
Affiliation(s)
- Thérèse Tercé-Laforgue
- Unité de Nutrition Azotée des Plantes, INRA, Centre de Versailles, Route de Saint Cyr, F-78026 Versailles Cedex, France
| | | | | |
Collapse
|