1
|
Martínez-Rivas FJ, Fernie AR. Metabolomics to understand metabolic regulation underpinning fruit ripening, development, and quality. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1726-1740. [PMID: 37864494 PMCID: PMC10938048 DOI: 10.1093/jxb/erad384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
Classically fruit ripening and development was studied using genetic approaches, with understanding of metabolic changes that occurred in concert largely focused on a handful of metabolites including sugars, organic acids, cell wall components, and phytohormones. The advent and widespread application of metabolomics has, however, led to far greater understanding of metabolic components that play a crucial role not only in this process but also in influencing the organoleptic and nutritive properties of the fruits. Here we review how the study of natural variation, mutants, transgenics, and gene-edited fruits has led to a considerable increase in our understanding of these aspects. We focus on fleshy fruits such as tomato but also review berries, receptacle fruits, and stone-bearing fruits. Finally, we offer a perspective as to how comparative analyses and machine learning will likely further improve our comprehension of the functional importance of various metabolites in the future.
Collapse
Affiliation(s)
- Félix Juan Martínez-Rivas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
2
|
Caldana C, Carrari F, Fernie AR, Sampathkumar A. How metabolism and development are intertwined in space and time. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:347-359. [PMID: 37433681 DOI: 10.1111/tpj.16391] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
Developmental transitions, occurring throughout the life cycle of plants, require precise regulation of metabolic processes to generate the energy and resources necessary for the committed growth processes. In parallel, the establishment of new cells, tissues, and even organs, alongside their differentiation provoke profound changes in metabolism. It is increasingly being recognized that there is a certain degree of feedback regulation between the components and products of metabolic pathways and developmental regulators. The generation of large-scale metabolomics datasets during developmental transitions, in combination with molecular genetic approaches has helped to further our knowledge on the functional importance of metabolic regulation of development. In this perspective article, we provide insights into studies that elucidate interactions between metabolism and development at the temporal and spatial scales. We additionally discuss how this influences cell growth-related processes. We also highlight how metabolic intermediates function as signaling molecules to direct plant development in response to changing internal and external conditions.
Collapse
Affiliation(s)
- Camila Caldana
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Fernando Carrari
- Facultad de Agronomía, Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Arun Sampathkumar
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
3
|
Li J, Shen Y. A clathrin-related protein FaRRP1/SCD2 integrates ABA trafficking and signaling to regulate strawberry fruit ripening. J Biol Chem 2023; 299:105250. [PMID: 37714466 PMCID: PMC10582773 DOI: 10.1016/j.jbc.2023.105250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023] Open
Abstract
Abscisic acid (ABA) is a critical regulator for nonclimacteric fruit ripening such as in the model plant of strawberry (Fragaria × ananassa). Although FaRRP1 is proposed to participate in clathrin-mediated endocytosis of ABA, its action molecular mechanisms in ABA signaling are not fully understood. Here, using our isolated FaRRP1 (ripening-regulation protein) and candidate ABA receptor FaPYL2 and FaABAR from strawberry fruit, a series of silico and molecular interaction analyses demonstrate that they all bind to ABA, and FaRRP1 binds both FaPYL2 and FaABAR; by contrast, the binding affinity of FaRRP1 to FaPYL2 is relatively higher. Interestingly, the binding of FaRRP1 to FaPYL2 and FaABAR affects the perception affinity to ABA. Furthermore, exogenous ABA application and FaRRP1 transgenic analyses confirm that FaRRP1 participates in clathrin-mediated endocytosis and vesicle transport. Importantly, FaRRP1, FaPYL2, and FaABAR all trigger the initiation of strawberry fruit ripening at physiological and molecular levels. In conclusion, FaRRP1 not only binds to ABA but also affects the binding affinity of FaPYL2 and FaABAR to ABA, thus promoting strawberry fruit ripening. Our findings provide novel insights into the role of FaRRP1 in ABA trafficking and signaling, at least in strawberry, a model plant for nonclimacteric fruit ripening.
Collapse
Affiliation(s)
- Jiajing Li
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China.
| |
Collapse
|
4
|
Skirycz A, Fernie AR. Past accomplishments and future challenges of the multi-omics characterization of leaf growth. PLANT PHYSIOLOGY 2022; 189:473-489. [PMID: 35325227 PMCID: PMC9157134 DOI: 10.1093/plphys/kiac136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The advent of omics technologies has revolutionized biology and advanced our understanding of all biological processes, including major developmental transitions in plants and animals. Here, we review the vast knowledge accumulated concerning leaf growth in terms of transcriptional regulation before turning our attention to the historically less well-characterized alterations at the protein and metabolite level. We will then discuss how the advent of biochemical methods coupled with metabolomics and proteomics can provide insight into the protein-protein and protein-metabolite interactome of the growing leaves. We finally highlight the substantial challenges in detection, spatial resolution, integration, and functional validation of the omics results, focusing on metabolomics as a prerequisite for a comprehensive understanding of small-molecule regulation of plant growth.
Collapse
Affiliation(s)
- Aleksandra Skirycz
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
- Boyce Thompson Institute, Ithaca, New York 14853, USA
- Cornell University, Ithaca, New York 14853, USA
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| |
Collapse
|
5
|
Esposito S, Aiese Cigliano R, Cardi T, Tripodi P. Whole-genome resequencing reveals genomic footprints of Italian sweet and hot pepper heirlooms giving insight into genes underlying key agronomic and qualitative traits. BMC Genom Data 2022; 23:21. [PMID: 35337259 PMCID: PMC8957157 DOI: 10.1186/s12863-022-01039-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Pepper is a major crop species of the Solanaceae family, largely appreciated for its high nutritional and healthy contribution to human diets. In the Mediterranean basin, the favorable pedoclimatic conditions enhanced the selection of several diversified landraces cultivated pepper (Capsicum annuum), for whom Italy can be considered a main pole of diversification. Hence, a survey of traditional C. annuum genetic resources is essential for deep understanding of such diversity and for applications in genomics assisted breeding. Here, we report whole-genome resequencing analyses of two sweet and two pungent genotypes highly diffused in South Italy and representative of the variability for shape, colour and nutritional properties. RESULTS The four genomes were reconstructed at a chromosomal scale using a reference-guided approach, based on a dataset of 2.6 billion paired-end reads, corresponding to 20× genome coverage and a mapping rate above 99% for a final genomes size of approximately 3 Gb. After five iterations of variant calling, a total of 29,258,818 single nucleotide polymorphisms (SNPs) and 1,879,112 InDels, were identified. Substantial differences were observed among the four genomes based on geographical origin, with chromosomes 9 and 11 showing more polymorphisms in the accessions with higher fruit weight and absence of pungency. Among the identified variants, a small private indel (T - > TA) shared between sweet and big fruits accessions induces a frameshift with the generation of a new stop codon in a gene annotated as extensin, whereas two private SNPs within hot types were identified in 1-aminocyclopropane-1-carboxylate oxidase (ACO), a key gene involved in fruit ripening. The estimation of repetitive elements highlights a preponderant presence of Long Terminal Repeats (LTRs), the majority of which belonged to Gypsy superfamily. By comparing the four genomes with publicly available references including 'CM334' and Zunla-1 highlight the presence of 49,475 shared gene families. CONCLUSIONS The new genomic sequences aim to enrich the whole genome information of pepper local varieties, providing a valuable tool for precision gene mapping, marker discovery, comparative studies. Such knowledge widens the frontiers to understand the selection history of Italian pepper landraces toward the recognition of specificity local agri-food products marks.
Collapse
Affiliation(s)
- Salvatore Esposito
- CREA Research Centre for Cereal and Industrial Crops, S.S. 673, km 25.200, 71122, Foggia, Italy
| | | | - Teodoro Cardi
- CNR-IBBR, Institute of Biosciences and Bioresources, via Università 133, 80055, Portici, Italy
- CREA Research Centre for Vegetable and Ornamental Crops, Via dei Cavalleggeri 25, 84098, Pontecagnano Faiano, SA, Italy
| | - Pasquale Tripodi
- CREA Research Centre for Vegetable and Ornamental Crops, Via dei Cavalleggeri 25, 84098, Pontecagnano Faiano, SA, Italy.
| |
Collapse
|
6
|
Dashbaldan S, Rogowska A, Pączkowski C, Szakiel A. Distribution of Triterpenoids and Steroids in Developing Rugosa Rose ( Rosarugosa Thunb.) Accessory Fruit. Molecules 2021; 26:molecules26175158. [PMID: 34500591 PMCID: PMC8433923 DOI: 10.3390/molecules26175158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Triterpenoids and steroids are considered to be important for the fruit quality and health-promoting properties for the consumers. The aim of the study was the determination of the changes in triterpenoid and steroid biosynthesis and the accumulation in hypanthium and achenes of rugosa rose (Rosa rugosa Thunb.) hip during fruit development and ripening at three different phenological stages (young fruits, fully developed unripe fruits, and matured fruits). Triterpenoids and steroids were also determined in the peel and the pulp of the matured hips. The obtained results indicated that the distribution of the analyzed compounds in different fruit tissues is a selective process. The increased rate of hydroxylation of triterpenoids, the deposition of hydroxylated acids in fruit surface layer, and the continuous biosynthesis of phytosterols in achenes versus its gradual repression in hypanthium accompanied by the accumulation of their biosynthetic intermediates and ketone derivatives seem to be characteristic metabolic features of maturation of rugosa rose accessory fruit. These observations, apart from providing the important data on metabolic modifications occurring in developing fruits, might have a practical application in defining fruit parts, particularly rich in bioactive constituents, to enable the development of novel functional products.
Collapse
Affiliation(s)
- Soyol Dashbaldan
- Department of Plant Biochemistry, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warsaw, Poland; (S.D.); (A.R.); (C.P.)
- School of Industrial Technology, Mongolian University of Science and Technology, 8nd Khoroo, Baga Toiruu 34, Sukhbaatar District, Ulaanbaatar 14191, Mongolia
| | - Agata Rogowska
- Department of Plant Biochemistry, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warsaw, Poland; (S.D.); (A.R.); (C.P.)
| | - Cezary Pączkowski
- Department of Plant Biochemistry, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warsaw, Poland; (S.D.); (A.R.); (C.P.)
| | - Anna Szakiel
- Department of Plant Biochemistry, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warsaw, Poland; (S.D.); (A.R.); (C.P.)
- Correspondence: ; Tel.: +48-225543316
| |
Collapse
|
7
|
Guevara L, Domínguez-Anaya MÁ, Ortigosa A, González-Gordo S, Díaz C, Vicente F, Corpas FJ, Pérez del Palacio J, Palma JM. Identification of Compounds with Potential Therapeutic Uses from Sweet Pepper ( Capsicum annuum L.) Fruits and Their Modulation by Nitric Oxide (NO). Int J Mol Sci 2021; 22:ijms22094476. [PMID: 33922964 PMCID: PMC8123290 DOI: 10.3390/ijms22094476] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Plant species are precursors of a wide variety of secondary metabolites that, besides being useful for themselves, can also be used by humans for their consumption and economic benefit. Pepper (Capsicum annuum L.) fruit is not only a common food and spice source, it also stands out for containing high amounts of antioxidants (such as vitamins C and A), polyphenols and capsaicinoids. Particular attention has been paid to capsaicin, whose anti-inflammatory, antiproliferative and analgesic activities have been reported in the literature. Due to the potential interest in pepper metabolites for human use, in this project, we carried out an investigation to identify new bioactive compounds of this crop. To achieve this, we applied a metabolomic approach, using an HPLC (high-performance liquid chromatography) separative technique coupled to metabolite identification by high resolution mass spectrometry (HRMS). After chromatographic analysis and data processing against metabolic databases, 12 differential bioactive compounds were identified in sweet pepper fruits, including quercetin and its derivatives, L-tryptophan, phytosphingosin, FAD, gingerglycolipid A, tetrahydropentoxylin, blumenol C glucoside, colnelenic acid and capsoside A. The abundance of these metabolites varied depending on the ripening stage of the fruits, either immature green or ripe red. We also studied the variation of these 12 metabolites upon treatment with exogenous nitric oxide (NO), a free radical gas involved in a good number of physiological processes in higher plants such as germination, growth, flowering, senescence, and fruit ripening, among others. Overall, it was found that the content of the analyzed metabolites depended on the ripening stage and on the presence of NO. The metabolic pattern followed by quercetin and its derivatives, as a consequence of the ripening stage and NO treatment, was also corroborated by transcriptomic analysis of genes involved in the synthesis of these compounds. This opens new research perspectives on the pepper fruit’s bioactive compounds with nutraceutical potentiality, where biotechnological strategies can be applied for optimizing the level of these beneficial compounds.
Collapse
Affiliation(s)
- Lucía Guevara
- Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (L.G.); (M.Á.D.-A.); (A.O.); (S.G.-G.); (F.J.C.)
| | - María Ángeles Domínguez-Anaya
- Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (L.G.); (M.Á.D.-A.); (A.O.); (S.G.-G.); (F.J.C.)
| | - Alba Ortigosa
- Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (L.G.); (M.Á.D.-A.); (A.O.); (S.G.-G.); (F.J.C.)
| | - Salvador González-Gordo
- Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (L.G.); (M.Á.D.-A.); (A.O.); (S.G.-G.); (F.J.C.)
| | - Caridad Díaz
- Department of Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain; (C.D.); (F.V.); (J.P.d.P.)
| | - Francisca Vicente
- Department of Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain; (C.D.); (F.V.); (J.P.d.P.)
| | - Francisco J. Corpas
- Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (L.G.); (M.Á.D.-A.); (A.O.); (S.G.-G.); (F.J.C.)
| | - José Pérez del Palacio
- Department of Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain; (C.D.); (F.V.); (J.P.d.P.)
| | - José M. Palma
- Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (L.G.); (M.Á.D.-A.); (A.O.); (S.G.-G.); (F.J.C.)
- Correspondence: ; Tel.: +34-958-181-1600; Fax: +34-958-181-609
| |
Collapse
|
8
|
Roch L, Prigent S, Klose H, Cakpo CB, Beauvoit B, Deborde C, Fouillen L, van Delft P, Jacob D, Usadel B, Dai Z, Génard M, Vercambre G, Colombié S, Moing A, Gibon Y. Biomass composition explains fruit relative growth rate and discriminates climacteric from non-climacteric species. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5823-5836. [PMID: 32592486 PMCID: PMC7540837 DOI: 10.1093/jxb/eraa302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/23/2020] [Indexed: 05/13/2023]
Abstract
Fleshy fruits are very varied, whether in terms of their composition, physiology, or rate and duration of growth. To understand the mechanisms that link metabolism to phenotypes, which would help the targeting of breeding strategies, we compared eight fleshy fruit species during development and ripening. Three herbaceous (eggplant, pepper, and cucumber), three tree (apple, peach, and clementine) and two vine (kiwifruit and grape) species were selected for their diversity. Fruit fresh weight and biomass composition, including the major soluble and insoluble components, were determined throughout fruit development and ripening. Best-fitting models of fruit weight were used to estimate relative growth rate (RGR), which was significantly correlated with several biomass components, especially protein content (R=84), stearate (R=0.72), palmitate (R=0.72), and lignocerate (R=0.68). The strong link between biomass composition and RGR was further evidenced by generalized linear models that predicted RGR with R-values exceeding 0.9. Comparison of the fruit also showed that climacteric fruit (apple, peach, kiwifruit) contained more non-cellulosic cell-wall glucose and fucose, and more starch, than non-climacteric fruit. The rate of starch net accumulation was also higher in climacteric fruit. These results suggest that the way biomass is constructed has a major influence on performance, especially growth rate.
Collapse
Affiliation(s)
- Léa Roch
- UMR 1332 Biologie du Fruit et Pathologie, INRAE, Univ. Bordeaux, INRAE Nouvelle Aquitaine – Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
| | - Sylvain Prigent
- UMR 1332 Biologie du Fruit et Pathologie, INRAE, Univ. Bordeaux, INRAE Nouvelle Aquitaine – Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
| | - Holger Klose
- Institute for Biology, BioSC, RWTH Aachen University, Worringer Weg, Aachen, Germany
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | - Bertrand Beauvoit
- UMR 1332 Biologie du Fruit et Pathologie, INRAE, Univ. Bordeaux, INRAE Nouvelle Aquitaine – Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
| | - Catherine Deborde
- UMR 1332 Biologie du Fruit et Pathologie, INRAE, Univ. Bordeaux, INRAE Nouvelle Aquitaine – Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, INRAE, Univ. Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
| | - Laetitia Fouillen
- Bordeaux Metabolome, MetaboHUB, INRAE, Univ. Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
- UMR 5200, CNRS, Univ. Bordeaux, Laboratoire de Biogenèse Membranaire, Avenue Edouard Bourlaux, Villenave d’Ornon, France
| | - Pierre van Delft
- Bordeaux Metabolome, MetaboHUB, INRAE, Univ. Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
- UMR 5200, CNRS, Univ. Bordeaux, Laboratoire de Biogenèse Membranaire, Avenue Edouard Bourlaux, Villenave d’Ornon, France
| | - Daniel Jacob
- UMR 1332 Biologie du Fruit et Pathologie, INRAE, Univ. Bordeaux, INRAE Nouvelle Aquitaine – Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, INRAE, Univ. Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
| | - Björn Usadel
- Institute for Biology, BioSC, RWTH Aachen University, Worringer Weg, Aachen, Germany
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Zhanwu Dai
- UMR 1287 EGFV, INRAE, Univ. Bordeaux, Bordeaux Sci Agro, Villenave d’Ornon, France
| | | | | | - Sophie Colombié
- UMR 1332 Biologie du Fruit et Pathologie, INRAE, Univ. Bordeaux, INRAE Nouvelle Aquitaine – Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
| | - Annick Moing
- UMR 1332 Biologie du Fruit et Pathologie, INRAE, Univ. Bordeaux, INRAE Nouvelle Aquitaine – Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, INRAE, Univ. Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
| | - Yves Gibon
- UMR 1332 Biologie du Fruit et Pathologie, INRAE, Univ. Bordeaux, INRAE Nouvelle Aquitaine – Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, INRAE, Univ. Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
| |
Collapse
|
9
|
Antioxidant Profile of Pepper ( Capsicum annuum L.) Fruits Containing Diverse Levels of Capsaicinoids. Antioxidants (Basel) 2020; 9:antiox9090878. [PMID: 32957493 PMCID: PMC7554748 DOI: 10.3390/antiox9090878] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
Capsicum is the genus where a number of species and varieties have pungent features due to the exclusive content of capsaicinoids such as capsaicin and dihydrocapsaicin. In this work, the main enzymatic and non-enzymatic systems in pepper fruits from four varieties with different pungent capacity have been investigated at two ripening stages. Thus, a sweet pepper variety (Melchor) from California-type fruits and three autochthonous Spanish varieties which have different pungency levels were used, including Piquillo, Padrón and Alegría riojana. The capsaicinoids contents were determined in the pericarp and placenta from fruits, showing that these phenyl-propanoids were mainly localized in placenta. The activity profiles of catalase, total and isoenzymatic superoxide dismutase (SOD), the enzymes of the ascorbate–glutathione cycle (AGC) and four NADP-dehydrogenases indicate that some interaction with capsaicinoid metabolism seems to occur. Among the results obtained on enzymatic antioxidants, the role of Fe-SOD and the glutathione reductase from the AGC is highlighted. Additionally, it was found that ascorbate and glutathione contents were higher in those pepper fruits which displayed the greater contents of capsaicinoids. Taken together, all these data indicate that antioxidants may contribute to preserve capsaicinoids metabolism to maintain their functionality in a framework where NADPH is perhaps playing an essential role.
Collapse
|
10
|
Cakpo CB, Vercambre G, Baldazzi V, Roch L, Dai Z, Valsesia P, Memah MM, Colombié S, Moing A, Gibon Y, Génard M. Model-assisted comparison of sugar accumulation patterns in ten fleshy fruits highlights differences between herbaceous and woody species. ANNALS OF BOTANY 2020; 126:455-470. [PMID: 32333754 PMCID: PMC7424760 DOI: 10.1093/aob/mcaa082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/23/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS Sugar concentration is a key determinant of fruit quality. Soluble sugars and starch concentrations in fruits vary greatly from one species to another. The aim of this study was to investigate similarities and differences in sugar accumulation strategies across ten contrasting fruit species using a modelling approach. METHODS We developed a coarse-grained model of primary metabolism based on the description of the main metabolic and hydraulic processes (synthesis of compounds other than sugar and starch, synthesis and hydrolysis of starch, and water dilution) involved in the accumulation of soluble sugars during fruit development. KEY RESULTS Statistical analyses based on metabolic rates separated the species into six groups according to the rate of synthesis of compounds other than sugar and starch. Herbaceous species (cucumber, tomato, eggplant, pepper and strawberry) were characterized by a higher synthesis rate than woody species (apple, nectarine, clementine, grape and kiwifruit). Inspection of the dynamics of the processes involved in sugar accumulation revealed that net sugar importation, metabolism and dilution processes were remarkably synchronous in most herbaceous plants, whereas in kiwifruit, apple and nectarine, processes related to starch metabolism were temporally separated from other processes. Strawberry, clementine and grape showed a distinct dynamic compared with all other species. CONCLUSIONS Overall, these results provide fresh insights into species-specific regulatory strategies and into the role of starch metabolism in the accumulation of soluble sugars in fleshy fruits. In particular, inter-specific differences in development period shape the co-ordination of metabolic processes and affect priorities for carbon allocation across species. The six metabolic groups identified by our analysis do not show a clear separation into climacteric and non-climacteric species, possibly suggesting that the metabolic processes related to sugar concentration are not greatly affected by ethylene-associated events.
Collapse
Affiliation(s)
- Coffi Belmys Cakpo
- INRAE, UR1115, Unité Plantes et Systèmes de Culture Horticoles, Avignon, France
| | - Gilles Vercambre
- INRAE, UR1115, Unité Plantes et Systèmes de Culture Horticoles, Avignon, France
| | - Valentina Baldazzi
- INRAE, UR1115, Unité Plantes et Systèmes de Culture Horticoles, Avignon, France
- Université Côte d’Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
- Université Côte d’Azur, Inria, INRAE, Sorbonne Université, BIOCORE, Sophia-Antipolis, France
| | - Léa Roch
- INRAE, Univ. Bordeaux, UMR1332 Biologie du Fruit et Pathologie, Villenave d’Ornon, France
| | - Zhanwu Dai
- EGFV, Bordeaux Sciences Agro, INRAE, Université de Bordeaux, Villenave d’Ornon, France
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Pierre Valsesia
- INRAE, UR1115, Unité Plantes et Systèmes de Culture Horticoles, Avignon, France
| | | | - Sophie Colombié
- INRAE, Univ. Bordeaux, UMR1332 Biologie du Fruit et Pathologie, Villenave d’Ornon, France
| | - Annick Moing
- INRAE, Univ. Bordeaux, UMR1332 Biologie du Fruit et Pathologie, Villenave d’Ornon, France
- Bordeaux Metabolome Facility– MetaboHUB, Villenave d’Ornon, France
| | - Yves Gibon
- INRAE, Univ. Bordeaux, UMR1332 Biologie du Fruit et Pathologie, Villenave d’Ornon, France
| | - Michel Génard
- INRAE, UR1115, Unité Plantes et Systèmes de Culture Horticoles, Avignon, France
| |
Collapse
|
11
|
Calumpang CLF, Saigo T, Watanabe M, Tohge T. Cross-Species Comparison of Fruit-Metabolomics to Elucidate Metabolic Regulation of Fruit Polyphenolics Among Solanaceous Crops. Metabolites 2020; 10:E209. [PMID: 32438728 PMCID: PMC7281770 DOI: 10.3390/metabo10050209] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/03/2020] [Accepted: 05/14/2020] [Indexed: 11/24/2022] Open
Abstract
Many solanaceous crops are an important part of the human daily diet. Fruit polyphenolics are plant specialized metabolites that are recognized for their human health benefits and their defensive role against plant abiotic and biotic stressors. Flavonoids and chlorogenates are the major polyphenolic compounds found in solanaceous fruits that vary in quantity, physiological function, and structural diversity among and within plant species. Despite their biological significance, the elucidation of metabolic shifts of polyphenols during fruit ripening in different fruit tissues, has not yet been well-characterized in solanaceous crops, especially at a cross-species and cross-cultivar level. Here, we performed a cross-species comparison of fruit-metabolomics to elucidate the metabolic regulation of fruit polyphenolics from three representative crops of Solanaceae (tomato, eggplant, and pepper), and a cross-cultivar comparison among different pepper cultivars (Capsicum annuum cv.) using liquid chromatography-mass spectrometry (LC-MS). We observed a metabolic trade-off between hydroxycinnamates and flavonoids in pungent pepper and anthocyanin-type pepper cultivars and identified metabolic signatures of fruit polyphenolics in each species from each different tissue-type and fruit ripening stage. Our results provide additional information for metabolomics-assisted crop improvement of solanaceous fruits towards their improved nutritive properties and enhanced stress tolerance.
Collapse
Affiliation(s)
| | | | | | - Takayuki Tohge
- Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan; (C.L.F.C.); (T.S.); (M.W.)
| |
Collapse
|
12
|
Gaston A, Osorio S, Denoyes B, Rothan C. Applying the Solanaceae Strategies to Strawberry Crop Improvement. TRENDS IN PLANT SCIENCE 2020; 25:130-140. [PMID: 31699520 DOI: 10.1016/j.tplants.2019.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/20/2019] [Accepted: 10/03/2019] [Indexed: 05/24/2023]
Abstract
Strawberry is a fruit crop species of major horticultural importance, for which fruit quality and the control of flowering (for fruit yield), runnering (for vegetative propagation), and the trade-off between the two are main breeding targets. The octoploid cultivated strawberry has a limited genetic basis. This raises the question of how to identify important gene targets and successfully exploit them for strawberry improvement. In this Opinion article we propose to apply to woodland strawberry, a wild diploid species displaying wide diversity, the strategies successfully employed in recent years for the identification of genetic variations underlying fruit quality and fruit yield traits in solanaceous crops (tomato, potato). Next we propose to use gene editing technologies to translate the findings to cultivated strawberry.
Collapse
Affiliation(s)
- Amelia Gaston
- INRA and University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Sonia Osorio
- Department of Molecular Biology and Biochemistry, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', University of Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, 29071 Málaga, Spain
| | - Béatrice Denoyes
- INRA and University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France.
| | - Christophe Rothan
- INRA and University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France.
| |
Collapse
|
13
|
Rodríguez-Ruiz M, González-Gordo S, Cañas A, Campos MJ, Paradela A, Corpas FJ, Palma JM. Sweet Pepper ( Capsicum annuum L.) Fruits Contain an Atypical Peroxisomal Catalase That is Modulated by Reactive Oxygen and Nitrogen Species. Antioxidants (Basel) 2019; 8:E374. [PMID: 31487955 PMCID: PMC6769641 DOI: 10.3390/antiox8090374] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/20/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
During the ripening of sweet pepper (Capsicum annuum L.) fruits, in a genetically controlled scenario, enormous metabolic changes occur that affect the physiology of most cell compartments. Peroxisomal catalase gene expression decreases after pepper fruit ripening, while the enzyme is also susceptible to undergo post-translational modifications (nitration, S-nitrosation, and oxidation) promoted by reactive oxygen and nitrogen species (ROS/RNS). Unlike most plant catalases, the pepper fruit enzyme acts as a homodimer, with an atypical native molecular mass of 125 to 135 kDa and an isoelectric point of 7.4, which is higher than that of most plant catalases. These data suggest that ROS/RNS could be essential to modulate the role of catalase in maintaining basic cellular peroxisomal functions during pepper fruit ripening when nitro-oxidative stress occurs. Using catalase from bovine liver as a model and biotin-switch labeling, in-gel trypsin digestion, and nanoliquid chromatography coupled with mass spectrometry, it was found that Cys377 from the bovine enzyme could potentially undergo S-nitrosation. To our knowledge, this is the first report of a cysteine residue from catalase that can be post-translationally modified by S-nitrosation, which makes it especially important to find the target points where the enzyme can be modulated under either physiological or adverse conditions.
Collapse
Affiliation(s)
- Marta Rodríguez-Ruiz
- Group Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain.
| | - Salvador González-Gordo
- Group Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain.
| | - Amanda Cañas
- Group Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain.
| | - María Jesús Campos
- Group Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain.
| | - Alberto Paradela
- Proteomics Core Facility, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain.
| | - Francisco J Corpas
- Group Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain.
| | - José M Palma
- Group Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain.
| |
Collapse
|
14
|
Roch L, Dai Z, Gomès E, Bernillon S, Wang J, Gibon Y, Moing A. Fruit Salad in the Lab: Comparing Botanical Species to Help Deciphering Fruit Primary Metabolism. FRONTIERS IN PLANT SCIENCE 2019; 10:836. [PMID: 31354750 PMCID: PMC6632546 DOI: 10.3389/fpls.2019.00836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 06/12/2019] [Indexed: 05/08/2023]
Abstract
Although fleshy fruit species are economically important worldwide and crucial for human nutrition, the regulation of their fruit metabolism remains to be described finely. Fruit species differ in the origin of the tissue constituting the flesh, duration of fruit development, coordination of ripening changes (climacteric vs. non-climacteric type) and biochemical composition at ripeness is linked to sweetness and acidity. The main constituents of mature fruit result from different strategies of carbon transport and metabolism. Thus, the timing and nature of phloem loading and unloading can largely differ from one species to another. Furthermore, accumulations and transformations of major soluble sugars, organic acids, amino acids, starch and cell walls are very variable among fruit species. Comparing fruit species therefore appears as a valuable way to get a better understanding of metabolism. On the one hand, the comparison of results of studies about species of different botanical families allows pointing the drivers of sugar or organic acid accumulation but this kind of comparison is often hampered by heterogeneous analysis approaches applied in each study and incomplete dataset. On the other hand, cross-species studies remain rare but have brought new insights into key aspects of primary metabolism regulation. In addition, new tools for multi-species comparisons are currently emerging, including meta-analyses or re-use of shared metabolic or genomic data, and comparative metabolic flux or process-based modeling. All these approaches contribute to the identification of the metabolic factors that influence fruit growth and quality, in order to adjust their levels with breeding or cultural practices, with respect to improving fruit traits.
Collapse
Affiliation(s)
- Léa Roch
- UMR1332 Biologie du Fruit et Pathologie, Centre INRA de Bordeaux, INRA, Université de Bordeaux, Bordeaux, France
| | - Zhanwu Dai
- UMR 1287 EGFV, INRA, Bordeaux Sciences Agro, Université de Bordeaux, Bordeaux, France
| | - Eric Gomès
- UMR 1287 EGFV, INRA, Bordeaux Sciences Agro, Université de Bordeaux, Bordeaux, France
| | - Stéphane Bernillon
- UMR1332 Biologie du Fruit et Pathologie, Centre INRA de Bordeaux, INRA, Université de Bordeaux, Bordeaux, France
- Plateforme Métabolome Bordeaux, CGFB, MetaboHUB-PHENOME, IBVM, Centre INRA de Bordeaux, Bordeaux, France
| | - Jiaojiao Wang
- UMR1332 Biologie du Fruit et Pathologie, Centre INRA de Bordeaux, INRA, Université de Bordeaux, Bordeaux, France
| | - Yves Gibon
- UMR1332 Biologie du Fruit et Pathologie, Centre INRA de Bordeaux, INRA, Université de Bordeaux, Bordeaux, France
- Plateforme Métabolome Bordeaux, CGFB, MetaboHUB-PHENOME, IBVM, Centre INRA de Bordeaux, Bordeaux, France
| | - Annick Moing
- UMR1332 Biologie du Fruit et Pathologie, Centre INRA de Bordeaux, INRA, Université de Bordeaux, Bordeaux, France
- Plateforme Métabolome Bordeaux, CGFB, MetaboHUB-PHENOME, IBVM, Centre INRA de Bordeaux, Bordeaux, France
| |
Collapse
|
15
|
Zuo J, Wang Y, Zhu B, Luo Y, Wang Q, Gao L. Network analysis of noncoding RNAs in pepper provides insights into fruit ripening control. Sci Rep 2019; 9:8734. [PMID: 31217463 PMCID: PMC6584694 DOI: 10.1038/s41598-019-45427-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/06/2019] [Indexed: 01/21/2023] Open
Abstract
Pepper is an important vegetable worldwide and is a model plant for nonclimacteric fleshy fruit ripening. Drastic visual changes and internal biochemical alterations are involved in fruit coloration, flavor, texture, aroma, and palatability to animals during the pepper fruit ripening process. To explore the regulation of bell pepper fruit ripening by noncoding RNAs (ncRNAs), we examined their expression profiles; 43 microRNAs (miRNAs), 125 circular RNAs (circRNAs), 366 long noncoding RNAs (lncRNAs), and 3266 messenger RNAs (mRNAs) were differentially expressed (DE) in mature green and red ripe fruit. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the targets of the DE ncRNAs and DE mRNAs included several kinds of transcription factors (TFs) (ERF, bHLH, WRKY, MYB, NAC, bZIP, and ARF), enzymes involved in cell wall metabolism (beta-galactosidase, beta-glucosidase, beta-amylase, chitinase, pectate lyase (PL), pectinesterase (PE) and polygalacturonase (PG)), enzymes involved in fruit color accumulation (bifunctional 15-cis-phytoene synthase, 9-cis-epoxycarotenoid dioxygenase, beta-carotene hydroxylase and carotene epsilon-monooxygenase), enzymes associated with fruit flavor and aroma (glutamate-1-semialdehyde 2,1-aminomutase, anthocyanin 5-aromatic acyltransferase, and eugenol synthase 1) and enzymes involved in the production of ethylene (ET) (ACO1/ACO4) as well as other plant hormones such as abscisic acid (ABA), auxin (IAA), and gibberellic acid (GA). Based on accumulation profiles, a network of ncRNAs and mRNAs associated with bell pepper fruit ripening was developed that provides a foundation for further developing a more refined understanding of the molecular biology of fruit ripening.
Collapse
Affiliation(s)
- Jinhua Zuo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing, Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China. .,Boyce Thompson Institute for Plant Research, Cornell University Campus, Ithaca, NY, 14853, USA.
| | - Yunxiang Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
| | - Benzhong Zhu
- Laboratory of Postharvest Molecular Biology of Fruits and Vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yunbo Luo
- Laboratory of Postharvest Molecular Biology of Fruits and Vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Qing Wang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing, Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Lipu Gao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing, Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
16
|
Dubey M, Jaiswal V, Rawoof A, Kumar A, Nitin M, Chhapekar SS, Kumar N, Ahmad I, Islam K, Brahma V, Ramchiary N. Identification of genes involved in fruit development/ripening in Capsicum and development of functional markers. Genomics 2019; 111:1913-1922. [PMID: 30615924 DOI: 10.1016/j.ygeno.2019.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/27/2018] [Accepted: 01/02/2019] [Indexed: 01/25/2023]
Abstract
The molecular mechanism of the underlying genes involved in the process of fruit ripening in Capsicum (family Solanaceae) is not clearly known. In the present study, we identified orthologs of 32 fruit development/ripening genes of tomato in Capsicum, and validated their expression in fruit development stages in C. annuum, C. frutescens, and C. chinense. In silico expression analysis using transcriptome data identified a total of 12 out of 32 genes showing differential expression during different stages of fruit development in Capsicum. Real time expression identified gene LOC107847473 (ortholog of MADS-RIN) had substantially higher expression (>500 folds) in breaker and mature fruits, which suggested the non-climacteric ripening behaviour of Capsicum. However, differential expression of Ehtylene receptor 2-like (LOC107873245) gene during fruit maturity supported the climacteric behaviour of only C. frutescens (hot pepper). Furthermore, development of 49 gene based simple sequence repeat (SSR) markers would help in selection of identified genes in Capsicum breeding.
Collapse
Affiliation(s)
- Meenakshi Dubey
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Department of Biotechnology, Delhi Technological University, Delhi 110042, India
| | - Vandana Jaiswal
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abdul Rawoof
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ajay Kumar
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kararagod 671316, India
| | - Mukesh Nitin
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sushil Satish Chhapekar
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nitin Kumar
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Department of Bioengineering and Technology, Institute of Science and Technology, Gauhati University, Gopinath Bordoloi Nagar, Guwahati 781014, India
| | - Ilyas Ahmad
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Khushbu Islam
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Vijaya Brahma
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nirala Ramchiary
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Department of Biotechnology, Delhi Technological University, Delhi 110042, India.
| |
Collapse
|
17
|
Batista-Silva W, Nascimento VL, Medeiros DB, Nunes-Nesi A, Ribeiro DM, Zsögön A, Araújo WL. Modifications in Organic Acid Profiles During Fruit Development and Ripening: Correlation or Causation? FRONTIERS IN PLANT SCIENCE 2018; 9:1689. [PMID: 30524461 PMCID: PMC6256983 DOI: 10.3389/fpls.2018.01689] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/31/2018] [Indexed: 05/21/2023]
Abstract
The pivotal role of phytohormones during fruit development and ripening is considered established knowledge in plant biology. Perhaps less well-known is the growing body of evidence suggesting that organic acids play a key function in plant development and, in particular, in fruit development, maturation and ripening. Here, we critically review the connection between organic acids and the development of both climacteric and non-climacteric fruits. By analyzing the metabolic content of different fruits during their ontogenetic trajectory, we noticed that the content of organic acids in the early stages of fruit development is directly related to the supply of substrates for respiratory processes. Although different organic acid species can be found during fruit development in general, it appears that citrate and malate play major roles in this process, as they accumulate on a broad range of climacteric and non-climacteric fruits. We further highlight the functional significance of changes in organic acid profile in fruits due to either the manipulation of fruit-specific genes or the use of fruit-specific promoters. Despite the complexity behind the fluctuation in organic acid content during fruit development and ripening, we extend our understanding on the importance of organic acids on fruit metabolism and the need to further boost future research. We suggest that engineering organic acid metabolism could improve both qualitative and quantitative traits of crop fruits.
Collapse
Affiliation(s)
- Willian Batista-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Vitor L. Nascimento
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - David B. Medeiros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Dimas M. Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Agustín Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Wagner L. Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
18
|
Hou BZ, Li CL, Han YY, Shen YY. Characterization of the hot pepper (Capsicum frutescens) fruit ripening regulated by ethylene and ABA. BMC PLANT BIOLOGY 2018; 18:162. [PMID: 30097017 DOI: 10.1186/s12870-018-1377-1373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 07/30/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Ripening of fleshy fruits has been classically defined as climacteric or non-climacteric. Both types of ripening are controlled by plant hormones, notably by ethylene in climacteric ripening and by abscisic acid (ABA) in non-climacteric ripening. In pepper (Capsicum), fruit ripening has been widely classified as non-climacteric, but the ripening of the hot pepper fruit appears to be climacteric. To date, how to regulate the hot pepper fruit ripening through ethylene and ABA remains unclear. RESULTS Here, we examined ripening of the hot pepper (Capsicum frutescens) fruit during large green (LG), initial colouring (IC), brown (Br), and full red (FR) stages. We found a peak of ethylene emission at the IC stage, followed by a peak respiratory quotient at the Br stage. By contrast, ABA levels increased slowly before the Br stage, then increased sharply and reached a maximum level at the FR stage. Exogenous ethylene promoted colouration, but exogenous ABA did not. Unexpectedly, fluridone, an inhibitor of ABA biosynthesis, promoted colouration. RNA-sequencing data obtained from the four stages around ripening showed that ACO3 and NCED1/3 gene expression determined ethylene and ABA levels, respectively. Downregulation of ACO3 and NCED1/3 expression by virus-induced gene silencing (VIGS) inhibited and promoted colouration, respectively, as evidenced by changes in carotenoid, ABA, and ethylene levels, as well as carotenoid biosynthesis-related gene expression. Importantly, the retarded colouration in ACO3-VIGS fruits was rescued by exogenous ethylene. CONCLUSIONS Ethylene positively regulates the hot pepper fruit colouration, while inhibition of ABA biosynthesis promotes colouration, suggesting a role of ABA in de-greening. Our findings provide new insights into processes of fleshy fruit ripening regulated by ABA and ethylene, focusing on ethylene in carotenoid biosynthesis and ABA in chlorophyll degradation.
Collapse
Affiliation(s)
- Bing-Zhu Hou
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Chun-Li Li
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Ying-Yan Han
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Yuan-Yue Shen
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
19
|
Hou BZ, Li CL, Han YY, Shen YY. Characterization of the hot pepper (Capsicum frutescens) fruit ripening regulated by ethylene and ABA. BMC PLANT BIOLOGY 2018; 18:162. [PMID: 30097017 PMCID: PMC6086059 DOI: 10.1186/s12870-018-1377-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 07/30/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Ripening of fleshy fruits has been classically defined as climacteric or non-climacteric. Both types of ripening are controlled by plant hormones, notably by ethylene in climacteric ripening and by abscisic acid (ABA) in non-climacteric ripening. In pepper (Capsicum), fruit ripening has been widely classified as non-climacteric, but the ripening of the hot pepper fruit appears to be climacteric. To date, how to regulate the hot pepper fruit ripening through ethylene and ABA remains unclear. RESULTS Here, we examined ripening of the hot pepper (Capsicum frutescens) fruit during large green (LG), initial colouring (IC), brown (Br), and full red (FR) stages. We found a peak of ethylene emission at the IC stage, followed by a peak respiratory quotient at the Br stage. By contrast, ABA levels increased slowly before the Br stage, then increased sharply and reached a maximum level at the FR stage. Exogenous ethylene promoted colouration, but exogenous ABA did not. Unexpectedly, fluridone, an inhibitor of ABA biosynthesis, promoted colouration. RNA-sequencing data obtained from the four stages around ripening showed that ACO3 and NCED1/3 gene expression determined ethylene and ABA levels, respectively. Downregulation of ACO3 and NCED1/3 expression by virus-induced gene silencing (VIGS) inhibited and promoted colouration, respectively, as evidenced by changes in carotenoid, ABA, and ethylene levels, as well as carotenoid biosynthesis-related gene expression. Importantly, the retarded colouration in ACO3-VIGS fruits was rescued by exogenous ethylene. CONCLUSIONS Ethylene positively regulates the hot pepper fruit colouration, while inhibition of ABA biosynthesis promotes colouration, suggesting a role of ABA in de-greening. Our findings provide new insights into processes of fleshy fruit ripening regulated by ABA and ethylene, focusing on ethylene in carotenoid biosynthesis and ABA in chlorophyll degradation.
Collapse
Affiliation(s)
- Bing-Zhu Hou
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206 China
| | - Chun-Li Li
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206 China
| | - Ying-Yan Han
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206 China
| | - Yuan-Yue Shen
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206 China
| |
Collapse
|
20
|
Palma JM, Ruiz C, Corpas FJ. A Simple and Useful Method to Apply Exogenous NO Gas to Plant Systems: Bell Pepper Fruits as a Model. Methods Mol Biol 2018; 1747:3-11. [PMID: 29600446 DOI: 10.1007/978-1-4939-7695-9_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is involved many physiological plant processes, including germination, growth and development of roots, flower setting and development, senescence, and fruit ripening. In the latter physiological process, NO has been reported to play an opposite role to ethylene. Thus, treatment of fruits with NO may lead to delay ripening independently of whether they are climacteric or nonclimacteric. In many cases different methods have been reported to apply NO to plant systems involving sodium nitroprusside, NONOates, DETANO, or GSNO to investigate physiological and molecular consequences. In this chapter a method to treat plant materials with NO is provided using bell pepper fruits as a model. This method is cheap, free of side effects, and easy to apply since it only requires common chemicals and tools available in any biology laboratory.
Collapse
Affiliation(s)
- José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| | - Carmelo Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
21
|
Lim S, Lee JG, Lee EJ. Comparison of fruit quality and GC–MS-based metabolite profiling of kiwifruit ‘Jecy green’: Natural and exogenous ethylene-induced ripening. Food Chem 2017; 234:81-92. [DOI: 10.1016/j.foodchem.2017.04.163] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 11/28/2022]
|
22
|
Rodríguez-Ruiz M, Mioto P, Palma JM, Corpas FJ. S -nitrosoglutathione reductase (GSNOR) activity is down-regulated during pepper ( Capsicum annuum L.) fruit ripening. Nitric Oxide 2017; 68:51-55. [DOI: 10.1016/j.niox.2016.12.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 11/29/2022]
|
23
|
Tieman D. Transcriptional control of strawberry ripening - two to tango. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4407-4409. [PMID: 28981789 PMCID: PMC5853332 DOI: 10.1093/jxb/erx285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This article comments on: Molina-Hidalgo FJ, Medina-Puche L, Cañete-Gomez CJ, et al. 2017. The fruit-specific transcription factor FaDOF2 regulates the production of eugenol in ripe fruit receptacles. Journal of Experimental Botany 68, 4529–4543.
Collapse
Affiliation(s)
- Denise Tieman
- University of Florida, Department of Horticultural Sciences, Gainsville, FL, USA
- Correspondence:
| |
Collapse
|
24
|
Ainalidou A, Tanou G, Belghazi M, Samiotaki M, Diamantidis G, Molassiotis A, Karamanoli K. Integrated analysis of metabolites and proteins reveal aspects of the tissue-specific function of synthetic cytokinin in kiwifruit development and ripening. J Proteomics 2016; 143:318-333. [DOI: 10.1016/j.jprot.2016.02.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 02/12/2016] [Accepted: 02/17/2016] [Indexed: 12/30/2022]
|
25
|
Dai Z, Wu H, Baldazzi V, van Leeuwen C, Bertin N, Gautier H, Wu B, Duchêne E, Gomès E, Delrot S, Lescourret F, Génard M. Inter-Species Comparative Analysis of Components of Soluble Sugar Concentration in Fleshy Fruits. FRONTIERS IN PLANT SCIENCE 2016; 7:649. [PMID: 27242850 PMCID: PMC4872523 DOI: 10.3389/fpls.2016.00649] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/28/2016] [Indexed: 05/03/2023]
Abstract
The soluble sugar concentration of fleshy fruit is a key determinant of fleshy fruit quality. It affects directly the sweetness of fresh fruits and indirectly the properties of processed products (e.g., alcohol content in wine). Despite considerable divergence among species, soluble sugar accumulation in a fruit results from the complex interplay of three main processes, namely sugar import, sugar metabolism, and water dilution. Therefore, inter-species comparison would help to identify common and/or species-specific modes of regulation in sugar accumulation. For this purpose, a process-based mathematical framework was used to compare soluble sugar accumulation in three fruits: grape, tomato, and peach. Representative datasets covering the time course of sugar accumulation during fruit development were collected. They encompassed 104 combinations of species (3), genotypes (30), and growing conditions (19 years and 16 nutrient and environmental treatments). At maturity, grape showed the highest soluble sugar concentrations (16.5-26.3 g/100 g FW), followed by peach (2.2 to 20 g/100 g FW) and tomato (1.4 to 5 g/100 g FW). Main processes determining soluble sugar concentration were decomposed into sugar importation, metabolism, and water dilution with the process-based analysis. Different regulation modes of soluble sugar concentration were then identified, showing either import-based, dilution-based, or import and dilution dual-based. Firstly, the higher soluble sugar concentration in grape than in tomato is a result of higher sugar importation. Secondly, the higher soluble sugar concentration in grape than in peach is due to a lower water dilution. The third mode of regulation is more complicated than the first two, with differences both in sugar importation and water dilution (grape vs. cherry tomato; cherry tomato vs. peach; peach vs. tomato). On the other hand, carbon utilization for synthesis of non-soluble sugar compounds (namely metabolism) was conserved among the three fruit species. These distinct modes appear to be quite species-specific, but the intensity of the effect may significantly vary depending on the genotype and management practices. These results provide novel insights into the drivers of differences in soluble sugar concentration among fleshy fruits.
Collapse
Affiliation(s)
- Zhanwu Dai
- EGFV, Bordeaux Sciences Agro, INRA, Université de BordeauxVillenave d’Ornon, France
| | - Huan Wu
- EGFV, Bordeaux Sciences Agro, INRA, Université de BordeauxVillenave d’Ornon, France
| | | | | | - Nadia Bertin
- INRA, UR1115, Plantes et Systèmes de Culture HorticolesAvignon, France
| | - Hélène Gautier
- INRA, UR1115, Plantes et Systèmes de Culture HorticolesAvignon, France
| | - Benhong Wu
- Institute of Botany – Chinese Academy of SciencesBeijing, China
| | | | - Eric Gomès
- EGFV, Bordeaux Sciences Agro, INRA, Université de BordeauxVillenave d’Ornon, France
| | - Serge Delrot
- EGFV, Bordeaux Sciences Agro, INRA, Université de BordeauxVillenave d’Ornon, France
| | | | - Michel Génard
- INRA, UR1115, Plantes et Systèmes de Culture HorticolesAvignon, France
| |
Collapse
|
26
|
Orf I, Timm S, Bauwe H, Fernie AR, Hagemann M, Kopka J, Nikoloski Z. Can cyanobacteria serve as a model of plant photorespiration? - a comparative meta-analysis of metabolite profiles. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2941-2952. [PMID: 26969741 DOI: 10.1093/jxb/erw068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Photorespiration is a process that is crucial for the survival of oxygenic phototrophs in environments that favour the oxygenation reaction of Rubisco. While photorespiration is conserved among cyanobacteria, algae, and embryophytes, it evolved to different levels of complexity in these phyla. The highest complexity is found in embryophytes, where the pathway involves four cellular compartments and respective transport processes. The complexity of photorespiration in embryophytes raises the question whether a simpler system, such as cyanobacteria, may serve as a model to facilitate our understanding of the common key aspects of photorespiration. In this study, we conducted a meta-analysis of publicly available metabolite profiles from the embryophyte Arabidopsis thaliana and the cyanobacterium Synechocystis sp. PCC 6803 grown under conditions that either activate or suppress photorespiration. The comparative meta-analysis evaluated the similarity of metabolite profiles, the variability of metabolite pools, and the patterns of metabolite ratios. Our results show that the metabolic signature of photorespiration is in part conserved between the compared model organisms under conditions that favour the oxygenation reaction. Therefore, our findings support the claim that cyanobacteria can serve as prokaryotic models of photorespiration in embryophytes.
Collapse
Affiliation(s)
- Isabel Orf
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam OT Golm, Germany
| | - Stefan Timm
- Universität Rostock, Abteilung Pflanzenphysiologie, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Hermann Bauwe
- Universität Rostock, Abteilung Pflanzenphysiologie, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam OT Golm, Germany
| | - Martin Hagemann
- Universität Rostock, Abteilung Pflanzenphysiologie, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam OT Golm, Germany
| | - Zoran Nikoloski
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam OT Golm, Germany
| |
Collapse
|
27
|
Botton A, Rasori A, Ziliotto F, Moing A, Maucourt M, Bernillon S, Deborde C, Petterle A, Varotto S, Bonghi C. The peach HECATE3-like gene FLESHY plays a double role during fruit development. PLANT MOLECULAR BIOLOGY 2016; 91:97-114. [PMID: 26846510 DOI: 10.1007/s11103-016-0445-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/28/2016] [Indexed: 05/10/2023]
Abstract
Tight control of cell/tissue identity is essential for a correct and functional organ patterning, an important component of overall fruit development and eventual maturation and ripening. Despite many investigations regarding the molecular determinants of cell identity in fruits of different species, a useful model able to depict the regulatory networks governing this relevant part of fruit development is still missing. Here we described the peach fruit as a system to link the phenotype of a slow ripening (SR) selection to an altered transcriptional regulation of genes involved in determination of mesocarp cell identity providing insight toward molecular regulation of fruit tissue formation. Morpho-anatomical observations and metabolomics analyses performed during fruit development on the reference cultivar Fantasia, compared to SR, revealed that the mesocarp of SR maintained typical immaturity traits (e.g. small cell size, high amino acid contents and reduced sucrose) throughout development, along with a strong alteration of phenylpropanoid contents, resulting in accumulation of phenylalanine and lignin. These findings suggest that the SR mesocarp is phenotypically similar to a lignifying endocarp. To test this hypothesis, the expression of genes putatively involved in determination of drupe tissues identity was assessed. Among these, the peach HEC3-like gene FLESHY showed a strongly altered expression profile consistent with pit hardening and fruit ripening, generated at a post-transcriptional level. A double function for FLESHY in channelling the phenylpropanoid pathway to either lignin or flavour/aroma is suggested, along with its possible role in triggering auxin-ethylene cross talk at the start of ripening.
Collapse
Affiliation(s)
- Alessandro Botton
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, viale dell'Università, 16, Agripolis, 35020, Legnaro, Italy
| | - Angela Rasori
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, viale dell'Università, 16, Agripolis, 35020, Legnaro, Italy
| | - Fiorenza Ziliotto
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, viale dell'Università, 16, Agripolis, 35020, Legnaro, Italy
| | - Annick Moing
- UMR1332 Biologie du Fruit et Pathologie, INRA, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, IBVM, Centre INRA Bordeaux, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France
| | - Mickaël Maucourt
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, IBVM, Centre INRA Bordeaux, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France
- UMR1332 Biologie du Fruit et Pathologie, University of Bordeaux, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France
| | - Stéphane Bernillon
- UMR1332 Biologie du Fruit et Pathologie, INRA, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, IBVM, Centre INRA Bordeaux, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France
| | - Catherine Deborde
- UMR1332 Biologie du Fruit et Pathologie, INRA, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, IBVM, Centre INRA Bordeaux, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France
| | - Anna Petterle
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, viale dell'Università, 16, Agripolis, 35020, Legnaro, Italy
| | - Serena Varotto
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, viale dell'Università, 16, Agripolis, 35020, Legnaro, Italy
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, viale dell'Università, 16, Agripolis, 35020, Legnaro, Italy.
| |
Collapse
|
28
|
Dai Z, Wu H, Baldazzi V, van Leeuwen C, Bertin N, Gautier H, Wu B, Duchêne E, Gomès E, Delrot S, Lescourret F, Génard M. Inter-Species Comparative Analysis of Components of Soluble Sugar Concentration in Fleshy Fruits. FRONTIERS IN PLANT SCIENCE 2016. [PMID: 27242850 DOI: 10.3389/fcls.2016.00649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The soluble sugar concentration of fleshy fruit is a key determinant of fleshy fruit quality. It affects directly the sweetness of fresh fruits and indirectly the properties of processed products (e.g., alcohol content in wine). Despite considerable divergence among species, soluble sugar accumulation in a fruit results from the complex interplay of three main processes, namely sugar import, sugar metabolism, and water dilution. Therefore, inter-species comparison would help to identify common and/or species-specific modes of regulation in sugar accumulation. For this purpose, a process-based mathematical framework was used to compare soluble sugar accumulation in three fruits: grape, tomato, and peach. Representative datasets covering the time course of sugar accumulation during fruit development were collected. They encompassed 104 combinations of species (3), genotypes (30), and growing conditions (19 years and 16 nutrient and environmental treatments). At maturity, grape showed the highest soluble sugar concentrations (16.5-26.3 g/100 g FW), followed by peach (2.2 to 20 g/100 g FW) and tomato (1.4 to 5 g/100 g FW). Main processes determining soluble sugar concentration were decomposed into sugar importation, metabolism, and water dilution with the process-based analysis. Different regulation modes of soluble sugar concentration were then identified, showing either import-based, dilution-based, or import and dilution dual-based. Firstly, the higher soluble sugar concentration in grape than in tomato is a result of higher sugar importation. Secondly, the higher soluble sugar concentration in grape than in peach is due to a lower water dilution. The third mode of regulation is more complicated than the first two, with differences both in sugar importation and water dilution (grape vs. cherry tomato; cherry tomato vs. peach; peach vs. tomato). On the other hand, carbon utilization for synthesis of non-soluble sugar compounds (namely metabolism) was conserved among the three fruit species. These distinct modes appear to be quite species-specific, but the intensity of the effect may significantly vary depending on the genotype and management practices. These results provide novel insights into the drivers of differences in soluble sugar concentration among fleshy fruits.
Collapse
Affiliation(s)
- Zhanwu Dai
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux Villenave d'Ornon, France
| | - Huan Wu
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux Villenave d'Ornon, France
| | | | | | - Nadia Bertin
- INRA, UR1115, Plantes et Systèmes de Culture Horticoles Avignon, France
| | - Hélène Gautier
- INRA, UR1115, Plantes et Systèmes de Culture Horticoles Avignon, France
| | - Benhong Wu
- Institute of Botany - Chinese Academy of Sciences Beijing, China
| | | | - Eric Gomès
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux Villenave d'Ornon, France
| | - Serge Delrot
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux Villenave d'Ornon, France
| | | | - Michel Génard
- INRA, UR1115, Plantes et Systèmes de Culture Horticoles Avignon, France
| |
Collapse
|
29
|
Cuadros-Inostroza A, Ruíz-Lara S, González E, Eckardt A, Willmitzer L, Peña-Cortés H. GC-MS metabolic profiling of Cabernet Sauvignon and Merlot cultivars during grapevine berry development and network analysis reveals a stage- and cultivar-dependent connectivity of primary metabolites. Metabolomics 2016; 12:39. [PMID: 26848290 PMCID: PMC4723623 DOI: 10.1007/s11306-015-0927-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 10/10/2015] [Indexed: 11/06/2022]
Abstract
Information about the total chemical composition of primary metabolites during grape berry development is scarce, as are comparative studies trying to understand to what extent metabolite modifications differ between cultivars during ripening. Thus, correlating the metabolic profiles with the changes occurring in berry development and ripening processes is essential to progress in their comprehension as well in the development of new approaches to improve fruit attributes. Here, the developmental metabolic profiling analysis across six stages from flowering to fully mature berries of two cultivars, Cabernet Sauvignon and Merlot, is reported at metabolite level. Based on a gas chromatography-mass spectrometry untargeted approach, 115 metabolites were identified and relative quantified in both cultivars. Sugars and amino acids levels show an opposite behaviour in both cultivars undergoing a highly coordinated shift of metabolite associated to primary metabolism during the stages involved in growth, development and ripening of berries. The changes are characteristic for each stage, the most pronounced ones occuring at fruit setting and pre-Veraison. They are associated to a reduction of the levels of metabolites present in the earlier corresponding stage, revealing a required catabolic activity of primary metabolites for grape berry developmental process. Network analysis revealed that the network connectivity of primary metabolites is stage- and cultivar-dependent, suggesting differences in metabolism regulation between both cultivars as the maturity process progresses. Furthermore, network analysis may represent an appropriate method to display the association between primary metabolites during berry developmental processes among different grapevine cultivars and for identifying potential biologically relevant metabolites.
Collapse
Affiliation(s)
- Alvaro Cuadros-Inostroza
- Max-Planck Institute for Plant Molecular Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- MetasysX, Am Mühlenberg 11, 14476 Potsdam-Golm, Germany
| | - Simón Ruíz-Lara
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Enrique González
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Aenne Eckardt
- Max-Planck Institute for Plant Molecular Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Lothar Willmitzer
- Max-Planck Institute for Plant Molecular Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Hugo Peña-Cortés
- Max-Planck Institute for Plant Molecular Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
30
|
Feng Y, Liu M, Ouyang Y, Zhao X, Ju Y, Fang Y. Comparative study of aromatic compounds in fruit wines from raspberry, strawberry, and mulberry in central Shaanxi area. Food Nutr Res 2015; 59:29290. [PMID: 26617387 PMCID: PMC4663194 DOI: 10.3402/fnr.v59.29290] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Although grape wines have firmly dominated the production and consumption markets of fruit wines, raspberry, strawberry, and mulberry have been utilized to make wines because of their joyful aroma and high contents of polyphenolic phytochemicals and essential fatty acids. However, little is known about aromatic compounds of the wines produced from these three fruits. METHODS The aromatic composition of fruit wines produced from raspberry, strawberry, mulberry, and red grape was analyzed by GC-MS. Odor activity values (OAVs) and relative odor contributions (ROCs) were used to estimate the sensory contribution of the aromatic compounds to the overall flavor of the wines. RESULTS In strawberry, raspberry, and mulberry wines, 27, 30, and 31 odorants were detected, respectively. Alcohols formed the most abundant group, followed by esters and acids. The grape wine contained a wider variety (16 types) of alcohols, and 4-methyl-2-pentanol and 2,3-butanediol were not present in the three fruit wines. The quantity of esters in raspberry (1.54%) and mulberry wines (2.08%) were higher than those of strawberry wine (0.78%), and mulberry wine contained more types of esters. There were no significant differences of acids between the three fruit wines and the control wine. In addition, 2-heptanone, 2-octanone, 2-nonanone, and 2-undecanone were unique to raspberry wine, and nonanal was present only in mulberry wine. The indistinguishable aroma of the three fruit wines was attributed to the dominance of fruity and floral odor components derived from ethyl esters of fatty acids and their contributions to the global aroma of the three fruit wines. CONCLUSION The present study demonstrated that there were significant differences in the volatile components of fruit wines made from raspberry, strawberry, and mulberry. The aroma compounds were more abundant in the raspberry and mulberry wines than in the strawberry wine, but the quality of strawberry wine was superior to raspberry and mulberry wines.
Collapse
Affiliation(s)
- Yiming Feng
- College of Enology, Northwest A&F University, Yangling, China
| | - Min Liu
- College of Enology, Northwest A&F University, Yangling, China
| | - Yanan Ouyang
- College of Enology, Northwest A&F University, Yangling, China
| | - Xianfang Zhao
- College of Enology, Northwest A&F University, Yangling, China
| | - Yanlun Ju
- College of Enology, Northwest A&F University, Yangling, China
| | - Yulin Fang
- College of Enology, Northwest A&F University, Yangling, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China;
| |
Collapse
|
31
|
Glucocorticoid (dexamethasone)-induced metabolome changes in healthy males suggest prediction of response and side effects. Sci Rep 2015; 5:15954. [PMID: 26526738 PMCID: PMC4630650 DOI: 10.1038/srep15954] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/05/2015] [Indexed: 02/06/2023] Open
Abstract
Glucocorticoids are indispensable anti-inflammatory and decongestant drugs with high prevalence of use at (~)0.9% of the adult population. Better holistic insights into glucocorticoid-induced changes are crucial for effective use as concurrent medication and management of adverse effects. The profiles of 214 metabolites from plasma of 20 male healthy volunteers were recorded prior to and after ingestion of a single dose of 4 mg dexamethasone (+20 mg pantoprazole). Samples were drawn at three predefined time points per day: seven untreated (day 1 midday - day 3 midday) and four treated (day 3 evening - day 4 evening) per volunteer. Statistical analysis revealed tremendous impact of dexamethasone on the metabolome with 150 of 214 metabolites being significantly deregulated on at least one time point after treatment (ANOVA, Benjamini-Hochberg corrected, q < 0.05). Inter-person variability was high and remained uninfluenced by treatment. The clearly visible circadian rhythm prior to treatment was almost completely suppressed and deregulated by dexamethasone. The results draw a holistic picture of the severe metabolic deregulation induced by single-dose, short-term glucocorticoid application. The observed metabolic changes suggest a potential for early detection of severe side effects, raising hope for personalized early countermeasures increasing quality of life and reducing health care costs.
Collapse
|
32
|
Lee HJ, Suh DH, Jung ES, Park HM, Jung GY, Do SG, Lee CH. Metabolomics of Lonicera caerulea fruit during ripening and its relationship with color and antioxidant activity. Food Res Int 2015; 78:343-351. [PMID: 28433302 DOI: 10.1016/j.foodres.2015.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/12/2015] [Accepted: 09/15/2015] [Indexed: 01/02/2023]
Abstract
We performed mass spectrometry-based metabolites profiling in Lonicera caerulea fruits according to seven ripening stages. During ripening, fruit color significantly changed from green to red, with sugars, organic acids, phenolic acids, anthocyanins, and flavonoids significantly altered. In particular, the contents of cyanidin-3-glucoside, peonidin-glucoside, peonidin-3-rutinoside and cyanidin-3-rutinoside, which are closely associated with color, were elevated from stages four to seven. The changes of antioxidant activity during ripening were similar to those of total phenolic and flavonoid contents. L. caerulea fruits at stage six (pale-purple) had higher antioxidant activity and total phenolic and flavonoid contents with higher cyanidin-3,5-diglucoside contents than those at stage seven (fully purple). From this study, we revealed the changes in the contents of primary and secondary metabolites with antioxidant properties during ripening, and these results could be helpful to determine the optimal harvest stage of L. caerulea fruit.
Collapse
Affiliation(s)
- Heon Joong Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong Ho Suh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Eun Sung Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hye Min Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Ga-Young Jung
- Wellness R & D Center, Univera, Inc., Seoul 04782, Republic of Korea
| | - Seon-Gil Do
- Wellness R & D Center, Univera, Inc., Seoul 04782, Republic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
33
|
Oliveira MG, Mazorra LM, Souza AF, Silva GMC, Correa SF, Santos WC, Saraiva KDC, Teixeira AJ, Melo DF, Silva MG, Silva MAP, Arrabaça JDC, Costa JH, Oliveira JG. Involvement of AOX and UCP pathways in the post-harvest ripening of papaya fruits. JOURNAL OF PLANT PHYSIOLOGY 2015; 189:42-50. [PMID: 26513459 DOI: 10.1016/j.jplph.2015.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/25/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
Enhanced respiration during ripening in climacteric fruits is sometimes associated with an uncoupling between the ATP synthesis and the mitochondrial electron transport chain. While the participation of two energy-dissipating systems, one of which is mediated by the alternative oxidase (AOX) and the other mediated by the uncoupling protein (UCP), has been linked to fruit ripening, the relation between the activation of both mitochondrial uncoupling systems with the transient increase of ethylene synthesis (ethylene peak) remains unclear. To elucidate this question, ethylene emission and the two uncoupling (AOX and UCP) pathways were monitored in harvested papaya fruit during the ripening, from green to fully yellow skin. The results confirmed the typical climacteric behavior for papaya fruit: an initial increase in endogenous ethylene emission which reaches a maximum (peak) in the intermediate ripening stage, before finally declining to a basal level in ripe fruit. Respiration of intact fruit also increased and achieved higher levels at the end of ripening. On the other hand, in purified mitochondria extracted from fruit pulp the total respiration and respiratory control decrease while an increase in the participation of AOX and UCP pathways was markedly evident during papaya ripening. There was an increase in the AOX capacity during the transition from green fruit to the intermediate stage that accompanied the transient ethylene peak, while the O2 consumption triggered by UCP activation increased by 80% from the beginning to end stage of fruit ripening. Expression analyses of AOX (AOX1 and 2) and UCP (UCP1-5) genes revealed that the increases in the AOX and UCP capacities were linked to a higher expression of AOX1 and UCP (mainly UCP1) genes, respectively. In silico promoter analyses of both genes showed the presence of ethylene-responsive cis-elements in UCP1 and UCP2 genes. Overall, the data suggest a differential activation of AOX and UCP pathways in regulation related to the ethylene peak and induction of specific genes such as AOX1 and UCP1.
Collapse
Affiliation(s)
- M G Oliveira
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - L M Mazorra
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - A F Souza
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - G M C Silva
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - S F Correa
- Laboratório de Ciências Físicas, Universidade Estadual no Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - W C Santos
- Laboratório de Ciências Físicas, Universidade Estadual no Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - K D C Saraiva
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE 60455760, Brazil
| | - A J Teixeira
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - D F Melo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE 60455760, Brazil
| | - M G Silva
- Laboratório de Ciências Físicas, Universidade Estadual no Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil
| | - M A P Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG 36570000, Brazil
| | - J D C Arrabaça
- Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749016, Portugal
| | - J H Costa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE 60455760, Brazil
| | - J G Oliveira
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013602, Brazil.
| |
Collapse
|
34
|
Tanou G, Minas IS, Karagiannis E, Tsikou D, Audebert S, Papadopoulou KK, Molassiotis A. The impact of sodium nitroprusside and ozone in kiwifruit ripening physiology: a combined gene and protein expression profiling approach. ANNALS OF BOTANY 2015; 116:649-662. [PMID: 26159933 DOI: 10.1093/aob/mcv107649-662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/29/2015] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIMS Despite their importance in many aspects of plant physiology, information about the function of oxidative and, particularly, of nitrosative signalling in fruit biology is limited. This study examined the possible implications of O3 and sodium nitroprusside (SNP) in kiwifruit ripening, and their interacting effects. It also aimed to investigate changes in the kiwifruit proteome in response to SNP and O3 treatments, together with selected transcript analysis, as a way to enhance our understanding of the fruit ripening syndrome. METHODS Kiwifruits following harvest were pre-treated with 100 μm SNP, then cold-stored (0 °C, relative humidity 95 %) for either 2 or 6 months in the absence or in the presence of O3 (0·3 μL L(-1)), and subsequently were allowed to ripen at 20 °C. The ripening behaviour of fruit was characterized using several approaches: together with ethylene production, several genes, enzymes and metabolites involved in ethylene biosynthesis were analysed. Kiwifruit proteins were identified using 2-D electrophoresis coupled with nanoliquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Expression patterns of kiwifruit ripening-related genes were also analysed using real-time quantitative reverse transcription-PCR (RT-qPCR). KEY RESULTS O3 treatment markedly delayed fruit softening and depressed the ethylene biosynthetic mechanism. Although SNP alone was relatively ineffective in regulating ripening, SNP treatment prior to O3 exposure attenuated the O3-induced ripening inhibition. Proteomic analysis revealed a considerable overlap between proteins affected by both SNP and O3. Consistent with this, the temporal dynamics in the expression of selected kiwifruit ripening-related genes were noticeably different between individual O3 and combined SNP and O3 treatments. CONCLUSIONS This study demonstrates that O3-induced ripening inhibition could be reversed by SNP and provides insights into the interaction between oxidative and nitrosative signalling in climacteric fruit ripening.
Collapse
Affiliation(s)
- Georgia Tanou
- School of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Ioannis S Minas
- School of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Evangelos Karagiannis
- School of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Daniela Tsikou
- Department of Biochemistry and Biotechnology, University of Thessaly, 41221 Larissa, Greece and
| | - Stéphane Audebert
- CRCM, INSERM U1068, Institute Paoli-Calmettes, Aix-Marseille University, UM105, CNRS, UMR7258, 163 Luminy Av.F-13009 Marseille, France
| | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, 41221 Larissa, Greece and
| | - Athanassios Molassiotis
- School of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece,
| |
Collapse
|
35
|
Palma JM, Sevilla F, Jiménez A, del Río LA, Corpas FJ, Álvarez de Morales P, Camejo DM. Physiology of pepper fruit and the metabolism of antioxidants: chloroplasts, mitochondria and peroxisomes. ANNALS OF BOTANY 2015; 116:627-36. [PMID: 26220658 PMCID: PMC4578004 DOI: 10.1093/aob/mcv121] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/04/2015] [Accepted: 06/25/2015] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Pepper (Capsicum annuum) contains high levels of antioxidants, such as vitamins A and C and flavonoids. However, information on the role of these beneficial compounds in the physiology of pepper fruit remains scarce. Recent studies have shown that antioxidants in ripe pepper fruit play a key role in responses to temperature changes, and the redox state at the time of harvest affects the nutritional value for human consumption. In this paper, the role of antioxidant metabolism of pepper fruit during ripening and in the response to low temperature is addressed, paying particular attention to ascorbate, NADPH and the superoxide dismutase enzymatic system. The participation of chloroplasts, mitochondria and peroxisomes in the ripening process is also investigated. SCOPE AND RESULTS Important changes occur at a subcellular level during ripening of pepper fruit. Chloroplasts turn into chromoplasts, with drastic conversion of their metabolism, and the role of the ascorbate-glutathione cycle is essential. In mitochondria from red fruits, higher ascorbate peroxidase (APX) and Mn-SOD activities are involved in avoiding the accumulation of reactive oxygen species in these organelles during ripening. Peroxisomes, whose antioxidant capacity at fruit ripening is substantially affected, display an atypical metabolic pattern during this physiological stage. In spite of these differences observed in the antioxidative metabolism of mitochondria and peroxisomes, proteomic analysis of these organelles, carried out by 2-D electrophoresis and MALDI-TOF/TOF and provided here for the first time, reveals no changes between the antioxidant metabolism from immature (green) and ripe (red) fruits. CONCLUSIONS Taken together, the results show that investigation of molecular and enzymatic antioxidants from cell compartments, especially chloroplasts, mitochondria and peroxisomes, is a useful tool to study the physiology of pepper fruit, particularly in the context of expanding their shelf-life after harvest and in maintaining their nutritional value.
Collapse
Affiliation(s)
- José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain and
| | - Francisca Sevilla
- Group of Abiotic Stress, Production and Quality, Department of Biology of Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain
| | - Ana Jiménez
- Group of Abiotic Stress, Production and Quality, Department of Biology of Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain
| | - Luis A del Río
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain and
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain and
| | - Paz Álvarez de Morales
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain and
| | - Daymi M Camejo
- Group of Abiotic Stress, Production and Quality, Department of Biology of Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain
| |
Collapse
|
36
|
Tanou G, Minas IS, Karagiannis E, Tsikou D, Audebert S, Papadopoulou KK, Molassiotis A. The impact of sodium nitroprusside and ozone in kiwifruit ripening physiology: a combined gene and protein expression profiling approach. ANNALS OF BOTANY 2015; 116:649-62. [PMID: 26159933 PMCID: PMC4578001 DOI: 10.1093/aob/mcv107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/29/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS Despite their importance in many aspects of plant physiology, information about the function of oxidative and, particularly, of nitrosative signalling in fruit biology is limited. This study examined the possible implications of O3 and sodium nitroprusside (SNP) in kiwifruit ripening, and their interacting effects. It also aimed to investigate changes in the kiwifruit proteome in response to SNP and O3 treatments, together with selected transcript analysis, as a way to enhance our understanding of the fruit ripening syndrome. METHODS Kiwifruits following harvest were pre-treated with 100 μm SNP, then cold-stored (0 °C, relative humidity 95 %) for either 2 or 6 months in the absence or in the presence of O3 (0·3 μL L(-1)), and subsequently were allowed to ripen at 20 °C. The ripening behaviour of fruit was characterized using several approaches: together with ethylene production, several genes, enzymes and metabolites involved in ethylene biosynthesis were analysed. Kiwifruit proteins were identified using 2-D electrophoresis coupled with nanoliquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Expression patterns of kiwifruit ripening-related genes were also analysed using real-time quantitative reverse transcription-PCR (RT-qPCR). KEY RESULTS O3 treatment markedly delayed fruit softening and depressed the ethylene biosynthetic mechanism. Although SNP alone was relatively ineffective in regulating ripening, SNP treatment prior to O3 exposure attenuated the O3-induced ripening inhibition. Proteomic analysis revealed a considerable overlap between proteins affected by both SNP and O3. Consistent with this, the temporal dynamics in the expression of selected kiwifruit ripening-related genes were noticeably different between individual O3 and combined SNP and O3 treatments. CONCLUSIONS This study demonstrates that O3-induced ripening inhibition could be reversed by SNP and provides insights into the interaction between oxidative and nitrosative signalling in climacteric fruit ripening.
Collapse
Affiliation(s)
- Georgia Tanou
- School of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Ioannis S Minas
- School of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Evangelos Karagiannis
- School of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Daniela Tsikou
- Department of Biochemistry and Biotechnology, University of Thessaly, 41221 Larissa, Greece and
| | - Stéphane Audebert
- CRCM, INSERM U1068, Institute Paoli-Calmettes, Aix-Marseille University, UM105, CNRS, UMR7258, 163 Luminy Av.F-13009 Marseille, France
| | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, 41221 Larissa, Greece and
| | - Athanassios Molassiotis
- School of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece,
| |
Collapse
|
37
|
Tohge T, Fernie AR. Metabolomics-Inspired Insight into Developmental, Environmental and Genetic Aspects of Tomato Fruit Chemical Composition and Quality. PLANT & CELL PHYSIOLOGY 2015; 56:1681-96. [PMID: 26228272 DOI: 10.1093/pcp/pcv093] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/12/2015] [Indexed: 05/20/2023]
Abstract
Tomato was one of the first plant species to be evaluated using metabolomics and remains one of the best characterized, with tomato fruit being both an important source of nutrition in the human diet and a valuable model system for the development of fleshy fruits. Additionally, given the broad habitat range of members of the tomato clade and the extensive use of exotic germplasm in tomato genetic research, it represents an excellent genetic model system for understanding both metabolism per se and the importance of various metabolites in conferring stress tolerance. This review summarizes technical approaches used to characterize the tomato metabolome to date and details insights into metabolic pathway structure and regulation that have been obtained via analysis of tissue samples taken under different developmental or environmental circumstance as well as following genetic perturbation. Particular attention is paid to compounds of importance for nutrition or the shelf-life of tomatoes. We propose furthermore how metabolomics information can be coupled to the burgeoning wealth of genome sequence data from the tomato clade to enhance further our understanding of (i) the shifts in metabolic regulation occurring during development and (ii) specialization of metabolism within the tomato clade as a consequence of either adaptive evolution or domestication.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
38
|
Santucci C, Tenori L, Luchinat C. NMR fingerprinting as a tool to evaluate post-harvest time-related changes of peaches, tomatoes and plums. Food Res Int 2015; 75:106-114. [PMID: 28454935 DOI: 10.1016/j.foodres.2015.05.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/21/2015] [Accepted: 05/27/2015] [Indexed: 01/09/2023]
Abstract
The time-related changes of three agricultural products, coming from two distribution routes, have been followed using NMR fingerprinting to monitor metabolic variations occurring during several days of cold storage. An NMR profiling approach was employed to evaluate the variations in metabolic profile and metabolite content in three different agricultural products highly consumed in Italy (peaches, tomatoes and plums) coming from Tuscanian farms and how they change with time after collection. For each product, we followed the time-related changes during cold storage along three different collection periods. We monitored the variations in metabolic fingerprint and the trend of a set of metabolites, focusing our attention on nutritive and health-promoting metabolites (mainly, essential amino acids and antioxidants) as well as metabolites that contribute to the taste. Concurrently, for comparison, the time-dependent changes of the same kind of products coming from large-scale distribution have been also analyzed under the same conditions. In this second category, only slight variations in the metabolic fingerprint and metabolite levels were seen during cold storage. Unsupervised and supervised multivariate statistics was also employed to enlighten the differences between the three collections. In particular it seems that the metabolic fingerprint of large-scale distribution products is quite similar in the early, middle and late collection, while peaches and plums locally collected are markedly different among the three periods. The metabolic profiles of the agricultural products belonging to these two different distribution routes are intrinsically different, and they show different changes during the time of cold storage.
Collapse
Affiliation(s)
- Claudio Santucci
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi, 6, 50019 Sesto Fiorentino, Italy.
| | - Leonardo Tenori
- FiorGen Foundation, Via Luigi Sacconi, 6, 50019 Sesto Fiorentino, Italy.
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi, 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
39
|
Freilich S, Lev S, Gonda I, Reuveni E, Portnoy V, Oren E, Lohse M, Galpaz N, Bar E, Tzuri G, Wissotsky G, Meir A, Burger J, Tadmor Y, Schaffer A, Fei Z, Giovannoni J, Lewinsohn E, Katzir N. Systems approach for exploring the intricate associations between sweetness, color and aroma in melon fruits. BMC PLANT BIOLOGY 2015; 15:71. [PMID: 25887588 PMCID: PMC4448286 DOI: 10.1186/s12870-015-0449-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/04/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND Melon (Cucumis melo) fruits exhibit phenotypic diversity in several key quality determinants such as taste, color and aroma. Sucrose, carotenoids and volatiles are recognized as the key compounds shaping the above corresponding traits yet the full network of biochemical events underlying their synthesis have not been comprehensively described. To delineate the cellular processes shaping fruit quality phenotypes, a population of recombinant inbred lines (RIL) was used as a source of phenotypic and genotypic variations. In parallel, ripe fruits were analyzed for both the quantified level of 77 metabolic traits directly associated with fruit quality and for RNA-seq based expression profiles generated for 27,000 unigenes. First, we explored inter-metabolite association patterns; then, we described metabolites versus gene association patterns; finally, we used the correlation-based associations for predicting uncharacterized synthesis pathways. RESULTS Based on metabolite versus metabolite and metabolite versus gene association patterns, we divided metabolites into two key groups: a group including ethylene and aroma determining volatiles whose accumulation patterns are correlated with the expression of genes involved in the glycolysis and TCA cycle pathways; and a group including sucrose and color determining carotenoids whose accumulation levels are correlated with the expression of genes associated with plastid formation. CONCLUSIONS The study integrates multiple processes into a genome scale perspective of cellular activity. This lays a foundation for deciphering the role of gene markers associated with the determination of fruit quality traits.
Collapse
Affiliation(s)
- Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Shery Lev
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Itay Gonda
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Eli Reuveni
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Vitaly Portnoy
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Elad Oren
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | | | - Navot Galpaz
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
- Migal Research Institute, Kiryat Shmona, 11016, Israel.
| | - Einat Bar
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Galil Tzuri
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Guy Wissotsky
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Ayala Meir
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Joseph Burger
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Yaakov Tadmor
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Arthur Schaffer
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Zhangjun Fei
- USDA-ARS and Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA.
| | - James Giovannoni
- USDA-ARS and Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA.
| | - Efraim Lewinsohn
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Nurit Katzir
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| |
Collapse
|
40
|
Wang Z, Jones AD. Profiling of Stable Isotope Enrichment in Specialized Metabolites Using Liquid Chromatography and Multiplexed Nonselective Collision-Induced Dissociation. Anal Chem 2014; 86:10600-7. [DOI: 10.1021/ac502205y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Zhenzhen Wang
- Department
of Biochemistry, Michigan State University, 603 Wilson Road, Biochemistry Room
212, East Lansing, Michigan 48824, United States
| | - A. Daniel Jones
- Department
of Biochemistry, Michigan State University, 603 Wilson Road, Biochemistry Room
212, East Lansing, Michigan 48824, United States
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
41
|
Beisken S, Earll M, Baxter C, Portwood D, Ament Z, Kende A, Hodgman C, Seymour G, Smith R, Fraser P, Seymour M, Salek RM, Steinbeck C. Metabolic differences in ripening of Solanum lycopersicum 'Ailsa Craig' and three monogenic mutants. Sci Data 2014; 1:140029. [PMID: 25977786 PMCID: PMC4322568 DOI: 10.1038/sdata.2014.29] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/06/2014] [Indexed: 12/02/2022] Open
Abstract
Application of mass spectrometry enables the detection of metabolic differences between groups of related organisms. Differences in the metabolic fingerprints of wild-type Solanum lycopersicum and three monogenic mutants, ripening inhibitor (rin), non-ripening (nor) and Colourless non-ripening (Cnr), of tomato are captured with regard to ripening behaviour. A high-resolution tandem mass spectrometry system coupled to liquid chromatography produced a time series of the ripening behaviour at discrete intervals with a focus on changes post-anthesis. Internal standards and quality controls were used to ensure system stability. The raw data of the samples and reference compounds including study protocols have been deposited in the open metabolomics database MetaboLights via the metadata annotation tool Isatab to enable efficient re-use of the datasets, such as in metabolomics cross-study comparisons or data fusion exercises.
Collapse
Affiliation(s)
- Stephan Beisken
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus , Hinxton, Cambridge CB10 2HA, UK
| | - Mark Earll
- Syngenta Jealott's Hill International Research Centre , Bracknell, Berkshire RG42 6EY, UK
| | - Charles Baxter
- Syngenta Jealott's Hill International Research Centre , Bracknell, Berkshire RG42 6EY, UK
| | - David Portwood
- Syngenta Jealott's Hill International Research Centre , Bracknell, Berkshire RG42 6EY, UK
| | - Zsuzsanna Ament
- Syngenta Jealott's Hill International Research Centre , Bracknell, Berkshire RG42 6EY, UK
| | - Aniko Kende
- Syngenta Jealott's Hill International Research Centre , Bracknell, Berkshire RG42 6EY, UK
| | - Charlie Hodgman
- Centre for Plant Integrative Biology, University of Nottingham , Loughborough, Leicestershire LE12 5RD, UK
| | - Graham Seymour
- Centre for Plant Integrative Biology, University of Nottingham , Loughborough, Leicestershire LE12 5RD, UK
| | - Rebecca Smith
- Centre for Plant Integrative Biology, University of Nottingham , Loughborough, Leicestershire LE12 5RD, UK
| | - Paul Fraser
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill , Egham, Surrey TW20 0EX, UK
| | - Mark Seymour
- Syngenta Jealott's Hill International Research Centre , Bracknell, Berkshire RG42 6EY, UK
| | - Reza M Salek
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus , Hinxton, Cambridge CB10 2HA, UK
| | - Christoph Steinbeck
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus , Hinxton, Cambridge CB10 2HA, UK
| |
Collapse
|
42
|
Sobolev AP, Neelam A, Fatima T, Shukla V, Handa AK, Mattoo AK. Genetic introgression of ethylene-suppressed transgenic tomatoes with higher-polyamines trait overcomes many unintended effects due to reduced ethylene on the primary metabolome. FRONTIERS IN PLANT SCIENCE 2014; 5:632. [PMID: 25538712 PMCID: PMC4257014 DOI: 10.3389/fpls.2014.00632] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/24/2014] [Indexed: 05/22/2023]
Abstract
Ethylene regulates a myriad physiological and biochemical processes in ripening fruits and is accepted as the ripening hormone for the climacteric fruits. However, its effects on metabolome and resulting fruit quality are not yet fully understood, particularly when some of the ripening-associated biochemical changes are independent of ethylene action. We have generated a homozygous transgenic tomato genotype (2AS-AS) that exhibits reduced ethylene production as a result of impaired expression of 1-aminocyclopropane-1-carboxylate synthase 2 gene by its antisense RNA and had a longer shelf life. Double transgenic hybrid (2AS-AS × 579HO) developed through a genetic cross between 2AS-AS and 579HO (Mehta et al., 2002) lines resulted in significantly higher ethylene production than either the WT or 2AS-AS fruit. To determine the effects of reduced ethylene and introgression of higher polyamines' trait, the metabolic profiles of ripening fruits from WT (556AZ), 2AS-AS, and 2AS-AS × 579HO lines were determined using (1)H-NMR spectroscopy. The levels of Glu, Asp, AMP, Adenosine, Nucl1, and Nucl2 increased during ripening of the WT fruit. The increases in Glu, Asp, and AMP levels were attenuated in 2AS-AS fruit but recovered in the double hybrid with higher ethylene and polyamine levels. The ripening-associated decreases in Ala, Tyr, Val, Ile, Phe, malate, and myo-inositol levels in the 2AS-AS line were not reversed in the double hybrid line suggesting a developmental/ripening regulated accumulation of these metabolites independent of ethylene. Significant increases in the levels of fumarate, formate, choline, Nucl1, and Nucl2 at most stages of ripening fruit were found in the double transgenic line due to introgression with higher-polyamines trait. Taken together these results show that the ripening-associated metabolic changes are both ethylene dependent and independent, and that the fruit metabolome is under the control of multiple regulators, including ethylene and polyamines.
Collapse
Affiliation(s)
- Anatoly P. Sobolev
- Laboratory of Magnetic Resonance “Annalaura Segre”, Institute of Chemical Methodologies, National Research CouncilRome, Italy
| | - Anil Neelam
- Sustainable Agricultural Systems Laboratory, The Henry A. Wallace Agricultural Research Center, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
| | - Tahira Fatima
- Sustainable Agricultural Systems Laboratory, The Henry A. Wallace Agricultural Research Center, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
| | - Vijaya Shukla
- Sustainable Agricultural Systems Laboratory, The Henry A. Wallace Agricultural Research Center, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
| | - Avtar K. Handa
- Department of Horticulture, Purdue University, West LafayetteIN, USA
| | - Autar K. Mattoo
- Sustainable Agricultural Systems Laboratory, The Henry A. Wallace Agricultural Research Center, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
- *Correspondence: Autar K. Mattoo, Sustainable Agricultural Systems Laboratory, The Henry A. Wallace Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA e-mail:
| |
Collapse
|
43
|
Gapper NE, Giovannoni JJ, Watkins CB. Understanding development and ripening of fruit crops in an 'omics' era. HORTICULTURE RESEARCH 2014; 1:14034. [PMID: 26504543 PMCID: PMC4596339 DOI: 10.1038/hortres.2014.34] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 05/21/2014] [Accepted: 05/28/2014] [Indexed: 05/17/2023]
Abstract
Next generation sequencing has revolutionized plant biology. Not only has our understanding of plant metabolism advanced using model systems and modern chromatography, but application of 'omics'-based technology has been widely extended to non-model systems as costs have plummeted and efficiency increased. As a result, important fundamental questions relating to important horticultural crops are being answered, and novel approaches with application to industry are in progress. Here we review recent research advances on development and ripening of fruit crops, how next generation sequencing approaches are driving this advance and the emerging future landscape.
Collapse
Affiliation(s)
- Nigel E Gapper
- Department of Horticulture, Cornell University, Ithaca, NY 14853, USA
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
- mailto:
| | - James J Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
- Plant, Soil, and Nutrition Laboratory, US Department of Agriculture/Agriculture Research Service, Ithaca, NY 14853, USA
| | | |
Collapse
|