1
|
Ebert A, Alseekh S, D’Andrea L, Roessner U, Bock R, Kopka J. Detailed Profiling of 17-Hydroxygeranyllinalool Diterpene Glycosides from Nicotiana Species Reveals Complex Reaction Networks of Conjugation Isomers. Metabolites 2024; 14:562. [PMID: 39452943 PMCID: PMC11509208 DOI: 10.3390/metabo14100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Specialised anti-herbivory metabolites are abundant in the solanaceous genus Nicotiana. These metabolites include the large family of 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs). Many HGL-DTGs occur exclusively within the Nicotiana genus, but information from the molecular model species N. tabacum, N. benthamiana, and the tree tobacco N. glauca is limited. OBJECTIVES We studied HGL-DTG occurrence and complexity in these species with the aim of providing in-depth reference annotations and comprehensive HGL-DTG inventories. METHODS We analysed polar metabolite extracts in comparison to the previously investigated wild reference species N. attenuata using positive ESI(+) and negative ESI(-) mode electrospray ionisation LC-MS and MS/MS. RESULTS We provide annotations of 66 HGL-DTGs with in-source and MS/MS fragmentation spectra for selected HGL-DTGs with exemplary fragment interpretations of ESI(+) as well as less studied ESI(-) spectra. We assemble a potential biosynthesis pathway comparing the presence of HGL-DTGs in N. tabacum, N. glauca, and N. benthamiana to N. attenuata. Approximately one-third of HGL-DTGs are chromatographically resolved isomers of hexose, deoxyhexose, or malonate conjugates. The number of isomers is especially high for conjugates with low numbers of deoxyhexose moieties. CONCLUSIONS We extend the number of known HGL-DTGs with a focus on Nicotiana model species and demonstrate that the HGL-DTG family of N. tabacum plants can be surprisingly complex. Our study provides an improved basis with detailed references to previous studies of wild Nicotiana species and enables inference of HGL-DTG pathways with required enzymes for the biosynthesis of this important family of specialised defence metabolites.
Collapse
Affiliation(s)
- Alina Ebert
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
- Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Lucio D’Andrea
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
2
|
Zhao Y, Cui G, Wang J, Ma Y, Han Y, Su P, Guo J, Zhang J, Huang L. Functional Identification of the Terpene Synthase Family Involved in Biosynthesis in Paeonia lactiflora. Molecules 2024; 29:4662. [PMID: 39407591 PMCID: PMC11478036 DOI: 10.3390/molecules29194662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/14/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
The root of Paeonia lactiflora pall. is a significant component of traditional Chinese medicine, with terpenoids and their glycosides, such as paeoniflorins, serving as key active ingredients known for their anti-inflammatory, hepatoprotective, and analgesic properties. By generating a transcriptome and functionally characterizing 32 terpene synthases (TPSs) from P. lactiflora, we successfully constructed 24 pESC-Trp-PlTPS expression vectors. Through expression in Saccharomyces cerevisiae engineered strains, we identified four mono-TPSs and five sesqui-TPSs that produce 18 compounds, including eight monoterpenes and ten sesquiterpenes in vitro. This includes a bifunctional enzyme (PlTPS22). Additionally, PlTPS21 was characterized as a pinene synthase with α-pinene as its main product. The expression pattern of PlTPS21 aligns closely with the accumulation patterns of paeoniflorins and α-pinene in the plant, suggesting that PlTPS21 is a key enzyme in the biosynthesis of paeoniflorin.
Collapse
Affiliation(s)
- Yufeng Zhao
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
| | - Guanghong Cui
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimennei Nanxiao Street, Dongcheng District, Beijing 100700, China; (G.C.); (J.W.); (Y.M.); (Y.H.); (P.S.); (J.G.)
| | - Jian Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimennei Nanxiao Street, Dongcheng District, Beijing 100700, China; (G.C.); (J.W.); (Y.M.); (Y.H.); (P.S.); (J.G.)
| | - Ying Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimennei Nanxiao Street, Dongcheng District, Beijing 100700, China; (G.C.); (J.W.); (Y.M.); (Y.H.); (P.S.); (J.G.)
| | - Yang Han
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimennei Nanxiao Street, Dongcheng District, Beijing 100700, China; (G.C.); (J.W.); (Y.M.); (Y.H.); (P.S.); (J.G.)
| | - Ping Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimennei Nanxiao Street, Dongcheng District, Beijing 100700, China; (G.C.); (J.W.); (Y.M.); (Y.H.); (P.S.); (J.G.)
| | - Juan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimennei Nanxiao Street, Dongcheng District, Beijing 100700, China; (G.C.); (J.W.); (Y.M.); (Y.H.); (P.S.); (J.G.)
| | - Jiyu Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
| | - Luqi Huang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimennei Nanxiao Street, Dongcheng District, Beijing 100700, China; (G.C.); (J.W.); (Y.M.); (Y.H.); (P.S.); (J.G.)
| |
Collapse
|
3
|
Ivamoto-Suzuki ST, Celedón JM, Yuen MMS, Kitzberger CSG, Silva Domingues D, Bohlmann J, Protasio Pereira LF. Functional Characterization of ent-Copalyl Diphosphate Synthase and Kaurene Synthase Genes from Coffea arabica L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15863-15873. [PMID: 37816128 DOI: 10.1021/acs.jafc.2c09087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The biochemical profile of coffee beans translates directly into quality traits, nutraceutical and health promoting properties of the coffee beverage. Ent-kaurene is the ubiquitous precursor for gibberellin biosynthesis in plants, but it also serves as an intermediate in specialized (i.e., secondary) diterpenoid metabolism that leads to a diversity of more than 1,000 different metabolites. Nutraceutical effects on human health attributed to diterpenes include antioxidant, anticarcinogenic, and anti-inflammatory properties. Cafestol (CAF) and kahweol (KAH) are two diterpenes found exclusively in the Coffea genus. Our objective was to identify and functionally characterize genes involved in the central step of ent-kaurene production. We identified 17 putative terpene synthase genes in the transcriptome of Coffea arabica. Two ent-copalyl diphosphate synthase (CaCPS) and three kaurene synthase (CaKS) were selected and manually annotated. Transcript expression profiles of CaCPS1 and CaKS3 best matched the CAF and KAH metabolite profiles in different tissues. CaCPS1 and CaKS3 proteins were heterologously expressed and functionally characterized. CaCPS1 catalyzes the cyclization of geranylgeranyl diphosphate (GGPP) to ent-copalyl diphosphate (ent-CPP), which is converted to ent-kaurene by CaKS3. Knowledge about the central steps of diterpene formation in coffee provides a foundation for future characterization of the subsequent enzymes involved in CAF and KAH biosynthesis.
Collapse
Affiliation(s)
- Suzana Tiemi Ivamoto-Suzuki
- Grupo de Genômica e Transcriptômica em Plantas, Instituto de Biociências, Departamento de Biodiversidade, Universidade Estadual Paulista, CEP 13506-900 Rio Claro, Sao Paulo, Brazil
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver, BC, Canada
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Estadual de Londrina, 86057-970 Londrina, Brazil
| | - José Miguel Celedón
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver, BC, Canada
| | - Macaire M S Yuen
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver, BC, Canada
| | | | - Douglas Silva Domingues
- Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Genética, Universidade de São Paulo, 13418-900 Piracicaba, Brazil
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver, BC, Canada
| | - Luiz Filipe Protasio Pereira
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Café, 70770-901 Brasília, Brazil
- Laboratório de Biotecnologia Vegetal, Instituto de Desenvolvimento Rural do Paraná, 86047-902 Londrina, Brazil
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Estadual de Londrina, 86057-970 Londrina, Brazil
| |
Collapse
|
4
|
Ezquerro M, Li C, Pérez-Pérez J, Burbano-Erazo E, Barja MV, Wang Y, Dong L, Lisón P, López-Gresa MP, Bouwmeester HJ, Rodríguez-Concepción M. Tomato geranylgeranyl diphosphate synthase isoform 1 is involved in the stress-triggered production of diterpenes in leaves and strigolactones in roots. THE NEW PHYTOLOGIST 2023; 239:2292-2306. [PMID: 37381102 DOI: 10.1111/nph.19109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023]
Abstract
Carotenoids are photoprotectant pigments and precursors of hormones such as strigolactones (SL). Carotenoids are produced in plastids from geranylgeranyl diphosphate (GGPP), which is diverted to the carotenoid pathway by phytoene synthase (PSY). In tomato (Solanum lycopersicum), three genes encode plastid-targeted GGPP synthases (SlG1 to SlG3) and three genes encode PSY isoforms (PSY1 to PSY3). Here, we investigated the function of SlG1 by generating loss-of-function lines and combining their metabolic and physiological phenotyping with gene co-expression and co-immunoprecipitation analyses. Leaves and fruits of slg1 lines showed a wild-type phenotype in terms of carotenoid accumulation, photosynthesis, and development under normal growth conditions. In response to bacterial infection, however, slg1 leaves produced lower levels of defensive GGPP-derived diterpenoids. In roots, SlG1 was co-expressed with PSY3 and other genes involved in SL production, and slg1 lines grown under phosphate starvation exuded less SLs. However, slg1 plants did not display the branched shoot phenotype observed in other SL-defective mutants. At the protein level, SlG1 physically interacted with the root-specific PSY3 isoform but not with PSY1 and PSY2. Our results confirm specific roles for SlG1 in producing GGPP for defensive diterpenoids in leaves and carotenoid-derived SLs (in combination with PSY3) in roots.
Collapse
Affiliation(s)
- Miguel Ezquerro
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, 08193, Spain
| | - Changsheng Li
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Julia Pérez-Pérez
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Esteban Burbano-Erazo
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - M Victoria Barja
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, 08193, Spain
| | - Yanting Wang
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Lemeng Dong
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Purificación Lisón
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - M Pilar López-Gresa
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Harro J Bouwmeester
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Manuel Rodríguez-Concepción
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| |
Collapse
|
5
|
Kutty NN, Mishra M. Dynamic distress calls: volatile info chemicals induce and regulate defense responses during herbivory. FRONTIERS IN PLANT SCIENCE 2023; 14:1135000. [PMID: 37416879 PMCID: PMC10322200 DOI: 10.3389/fpls.2023.1135000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/10/2023] [Indexed: 07/08/2023]
Abstract
Plants are continuously threatened by a plethora of biotic stresses caused by microbes, pathogens, and pests, which often act as the major constraint in crop productivity. To overcome such attacks, plants have evolved with an array of constitutive and induced defense mechanisms- morphological, biochemical, and molecular. Volatile organic compounds (VOCs) are a class of specialized metabolites that are naturally emitted by plants and play an important role in plant communication and signaling. During herbivory and mechanical damage, plants also emit an exclusive blend of volatiles often referred to as herbivore-induced plant volatiles (HIPVs). The composition of this unique aroma bouquet is dependent upon the plant species, developmental stage, environment, and herbivore species. HIPVs emitted from infested and non-infested plant parts can prime plant defense responses by various mechanisms such as redox, systemic and jasmonate signaling, activation of mitogen-activated protein (MAP) kinases, and transcription factors; mediate histone modifications; and can also modulate the interactions with natural enemies via direct and indirect mechanisms. These specific volatile cues mediate allelopathic interactions leading to altered transcription of defense-related genes, viz., proteinase inhibitors, amylase inhibitors in neighboring plants, and enhanced levels of defense-related secondary metabolites like terpenoids and phenolic compounds. These factors act as deterrents to feeding insects, attract parasitoids, and provoke behavioral changes in plants and their neighboring species. This review presents an overview of the plasticity identified in HIPVs and their role as regulators of plant defense in Solanaceous plants. The selective emission of green leaf volatiles (GLVs) including hexanal and its derivatives, terpenes, methyl salicylate, and methyl jasmonate (MeJa) inducing direct and indirect defense responses during an attack from phloem-sucking and leaf-chewing pests is discussed. Furthermore, we also focus on the recent developments in the field of metabolic engineering focused on modulation of the volatile bouquet to improve plant defenses.
Collapse
|
6
|
Wang H, Zong C, Bai A, Yuan S, Li Y, Yu Z, Tian R, Liu T, Hou X, Li Y. Transcriptome sequencing and gas chromatography–mass spectrometry analyses provide insights into β-caryophyllene biosynthesis in Brassica campestris. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 5:100129. [PMID: 36060474 PMCID: PMC9428917 DOI: 10.1016/j.fochms.2022.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/28/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022]
Abstract
β-Caryophyllene (BCP) was detected in Brassica campestris. BCP content changed in cultivars during developmental stages and MeJA treatment. In the phylogenetic analysis, the TPSa gene subfamily was divided into four groups The potential regulatory and transporter network of BCP was constructed.
Sesquiterpenes are important defensive secondary metabolites and aroma components. However, limited information is available on the mechanism of sesquiterpene formation and composition in the non-heading Chinese cabbage (NHCC) leaf. Therefore, headspace solid-phase microextraction/gas chromatography–mass spectrometry (HS-SPME/GC–MS) combined with transcriptome analysis was used to study the mechanism of volatile organic compound formation. A total of 26 volatile organic compounds were identified in two NHCC cultivars ‘SZQ’ and ‘XQC’ and their F1 hybrids. Among these, sesquiterpene β-caryophyllene was identified only in ‘XQC’ and F1. Five genes encoding caryophyllene synthase were identified. The candidate β-caryophyllene synthase genes BcTPSa11 and BcTPSa21 had high expression levels only in ‘XQC’ and F1. In addition, several transcription factors of MYB-related, MYB, bHLH, and AP2/ERF families were identified by co-expression, suggesting that they regulate β-caryophyllene biosynthesis. Our results provide a molecular basis for sesquiterpene biosynthesis as well as insights into the regulatory network of β-caryophyllene in NHCC.
Collapse
|
7
|
Analysis of 17-Hydroxygeranyllinalool Diterpene Glycosides in Nicotiana tabacum by Using Heart-Cutting 2D-LC Coupled with Tandem MS Technique. Chromatographia 2022. [DOI: 10.1007/s10337-022-04188-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Wang J, Mao Y, Ma Y, Yang J, Jin B, Lin H, Tang J, Zeng W, Zhao Y, Gao W, Peters RJ, Guo J, Cui G, Huang L. Diterpene synthases from Leonurus japonicus elucidate epoxy-bridge formation of spiro-labdane diterpenoids. PLANT PHYSIOLOGY 2022; 189:99-111. [PMID: 35157086 PMCID: PMC9070827 DOI: 10.1093/plphys/kiac056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Spiro-9,13-epoxy-labdane diterpenoids are commonly found in Leonurus species, particularly in Leonurus japonicus Houtt., which is a medicinal herb of long-standing use in Asia and in which such spiro-heterocycles are present in at least 38 diterpenoids. Here, through generation of a transcriptome and functional characterization of six diterpene synthases (diTPSs) from L. japonicus, including three class II diTPSs (LjTPS1, LjTPS3, and LjTPS4) and three class I diTPSs (LjTPS5, LjTPS6, and LjTPS7), formation of the spiro-9,13-epoxy-labdane backbone was elucidated, along with identification of the relevant diTPSs for production of other labdane-related diterpenes. Similar to what has been found with diTPSs from other plant species, while LjTPS3 specifically produces the carbon-9 (C9) hydroxylated bicycle peregrinol diphosphate (PPP), the subsequently acting LjTPS6 yields a mixture of four products, largely labda-13(16),14-dien-9-ol, but with substantial amounts of viteagnusin D and the C13-S/R epimers of 9,13-epoxy-labda-14-ene. Notably, structure-function analysis identified a critical residue in LjTPS6 (I420) in which single site mutations enable specific production of the 13S epimer. Indeed, extensive mutagenesis demonstrated that LjTPS6:I420G reacts with PPP to both specifically and efficiently produce 9,13S-epoxy-labda-14-ene, providing a specialized synthase for further investigation of derived diterpenoid biosynthesis. The results reported here provide a strong foundation for future studies of the intriguing spiro-9,13-epoxy-labdane diterpenoid metabolism found in L. japonicus.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yaping Mao
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ying Ma
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jian Yang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Baolong Jin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huixin Lin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jinfu Tang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wen Zeng
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yujun Zhao
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Gao
- Beijing Shijitan Hospital, Capital Medical University, Beijing 10038, China
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guanghong Cui
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
9
|
Cao Y, Liu L, Ma K, Wang W, Lv H, Gao M, Wang X, Zhang X, Ren S, Zhang N, Guo YD. The jasmonate-induced bHLH gene SlJIG functions in terpene biosynthesis and resistance to insects and fungus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1102-1115. [PMID: 35293128 DOI: 10.1111/jipb.13248] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 05/27/2023]
Abstract
Jasmonic acid (JA) is a key regulator of plant defense responses. Although the transcription factor MYC2, the master regulator of the JA signaling pathway, orchestrates a hierarchical transcriptional cascade that regulates the JA responses, only a few transcriptional regulators involved in this cascade have been described. Here, we identified the basic helix-loop-helix (bHLH) transcription factor gene in tomato (Solanum lycopersicum), METHYL JASMONATE (MeJA)-INDUCED GENE (SlJIG), the expression of which was strongly induced by MeJA treatment. Genetic and molecular biology experiments revealed that SlJIG is a direct target of MYC2. SlJIG knockout plants generated by gene editing had lower terpene contents than the wild type from the lower expression of TERPENE SYNTHASE (TPS) genes, rendering them more appealing to cotton bollworm (Helicoverpa armigera). Moreover, SlJIG knockouts exhibited weaker JA-mediated induction of TPSs, suggesting that SlJIG may participate in JA-induced terpene biosynthesis. Knocking out SlJIG also resulted in attenuated expression of JA-responsive defense genes, which may contribute to the observed lower resistance to cotton bollworm and to the fungus Botrytis cinerea. We conclude that SlJIG is a direct target of MYC2, forms a MYC2-SlJIG module, and functions in terpene biosynthesis and resistance against cotton bollworm and B. cinerea.
Collapse
Affiliation(s)
- Yunyun Cao
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Lun Liu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Kangsheng Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjing Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hongmei Lv
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ming Gao
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xinman Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xichun Zhang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Shuxin Ren
- School of Agriculture, Virginia State University, Petersburg, 23806, VA, USA
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572000, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572000, China
| |
Collapse
|
10
|
Forestier ECF, Brown GD, Harvey D, Larson TR, Graham IA. Engineering Production of a Novel Diterpene Synthase Precursor in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2021; 12:757186. [PMID: 34745188 PMCID: PMC8564105 DOI: 10.3389/fpls.2021.757186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Diterpene biosynthesis commonly originates with the methylerythritol phosphate (MEP) pathway in chloroplasts, leading to the C20 substrate, geranylgeranyl pyrophosphate (GGPP). The previous work demonstrated that over-expression of genes responsible for the first and last steps in the MEP pathway in combination with GERANYLGERANYL PYROPHOSPHATE SYNTHASE (GGPPS) and CASBENE SYNTHASE (CAS) is optimal for increasing flux through to casbene in Nicotiana benthamiana. When the gene responsible for the last step in the MEP pathway, 4-HYDROXY-3-METHYLBUT-2-ENYL DIPHOSPHATE REDUCTASE (HDR), is removed from this combination, casbene is still produced but at lower amounts. Here, we report the unexpected finding that this reduced gene combination also results in the production of 16-hydroxy-casbene (16-OH-casbene), consistent with the presence of 16-hydroxy-geranylgeranyl phosphate (16-OH-GGPP) in the same material. Indirect evidence suggests the latter is formed as a result of elevated levels of 4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) caused by a bottleneck at the HDR step responsible for conversion of HMBPP to dimethylallyl pyrophosphate (DMAPP). Over-expression of a GERANYLLINALOOL SYNTHASE from Nicotiana attenuata (NaGLS) produces 16-hydroxy-geranyllinalool (16-OH-geranyllinalool) when transiently expressed with the same reduced combination of MEP pathway genes in N. benthamiana. This work highlights the importance of pathway flux control in metabolic pathway engineering and the possibility of increasing terpene diversity through synthetic biology.
Collapse
Affiliation(s)
- Edith C. F. Forestier
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, United Kingdom
| | - Geoffrey D. Brown
- Department of Chemistry, University of Reading, Reading, United Kingdom
| | - David Harvey
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, United Kingdom
| | - Tony R. Larson
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, United Kingdom
| | - Ian A. Graham
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, United Kingdom
| |
Collapse
|
11
|
D'Esposito D, Manzo D, Ricciardi A, Garonna AP, De Natale A, Frusciante L, Pennacchio F, Ercolano MR. Tomato transcriptomic response to Tuta absoluta infestation. BMC PLANT BIOLOGY 2021; 21:358. [PMID: 34348650 PMCID: PMC8336066 DOI: 10.1186/s12870-021-03129-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The South America pinworm, Tuta absoluta, is a destructive pest of tomato that causes important losses worldwide. Breeding of resistant/tolerant tomato cultivars could be an effective strategy for T. absoluta management but, despite the economic importance of tomato, very limited information is available about its response to this treat. To elucidate the defense mechanisms to herbivore feeding a comparative analysis was performed between a tolerant and susceptible cultivated tomato at both morphological and transcriptome level to highlight constitutive leaf barriers, molecular and biochemical mechanisms to counter the effect of T. absoluta attack. RESULTS The tolerant genotype showed an enhanced constitutive barrier possibly as result of the higher density of trichomes and increased inducible reactions upon mild infestation thanks to the activation/repression of key transcription factors regulating genes involved in cuticle formation and cell wall strength as well as of antinutritive enzymes, and genes involved in the production of chemical toxins and bioactive secondary metabolites. CONCLUSIONS Overall, our findings suggest that tomato resilience to the South America pinworm is achieved by a combined strategy between constitutive and induced defense system. A well-orchestrated modulation of plant transcription regulation could ensure a trade-off between defense needs and fitness costs. Our finding can be further exploited for developing T. absoluta tolerant cultivars, acting as important component of integrated pest management strategy for more sustainable production.
Collapse
Affiliation(s)
- Daniela D'Esposito
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy
| | - Daniele Manzo
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy
| | - Alessandro Ricciardi
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy
| | - Antonio Pietro Garonna
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy
| | - Antonino De Natale
- Department of Biology, University of Naples "Federico II", Monte Sant' Angelo, Via Cinthia 26, 80126, Naples, Italy
| | - Luigi Frusciante
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy
| | - Maria Raffaella Ercolano
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy.
| |
Collapse
|
12
|
Yang C, Marillonnet S, Tissier A. The scarecrow-like transcription factor SlSCL3 regulates volatile terpene biosynthesis and glandular trichome size in tomato (Solanum lycopersicum). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1102-1118. [PMID: 34143914 DOI: 10.1111/tpj.15371] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 05/20/2023]
Abstract
Tomato (Solanum lycopersicum L.) type VI glandular trichomes that occur on the surface of leaves, stems, young fruits and flowers produce and store a blend of volatile monoterpenes and sesquiterpenes. These compounds play important roles in the interaction with pathogens and herbivorous insects. Although the function of terpene synthases in the biosynthesis of volatile terpenes in tomato has been comprehensively investigated, the deciphering of their transcriptional regulation is only just emerging. We selected transcription factors that are over-expressed in trichomes based on existing transcriptome data and silenced them individually by virus-induced gene silencing. Of these, SlSCL3, a scarecrow-like (SCL) subfamily transcription factor, led to a significant decrease in volatile terpene content and expression of the corresponding terpene synthase genes when its transcription level was downregulated. Overexpression of SlSCL3 dramatically increased both the volatile terpene content and glandular trichome size, whereas its homozygous mutants showed reduced terpene biosynthesis. However, its heterozygous mutants also showed a significantly elevated volatile terpene content and enlarged glandular trichomes, similar to the overexpression plants. SlSCL3 modulates the expression of terpene biosynthetic pathway genes by transcriptional activation, but neither direct protein-DNA binding nor interaction with known regulators was observed. Moreover, transcript levels of the endogenous copy of SlSCL3 were decreased in the overexpression plants but increased in the heterozygous and homozygous mutants, suggesting feedback repression of its own promoter. Taken together, our results provide new insights into the role of SlSCL3 in the complex regulation of volatile terpene biosynthesis and glandular trichome development in tomato.
Collapse
Affiliation(s)
- Changqing Yang
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266100, China
| | - Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| |
Collapse
|
13
|
Systematic mining of fungal chimeric terpene synthases using an efficient precursor-providing yeast chassis. Proc Natl Acad Sci U S A 2021; 118:2023247118. [PMID: 34257153 PMCID: PMC8307374 DOI: 10.1073/pnas.2023247118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Chimeric terpene synthases, termed PTTSs, are a unique family of enzymes occurring only in fungi. Characterizing PTTSs is challenging due to the complex reactions they catalyze and the structural complexity of their products. Here, by devising an efficient precursor-providing yeast chassis and incorporating a high-throughput automated platform, we identified 34 active PTTSs, which was considerably more than the number of known functional PTTSs. This effective and rapid pipeline can be employed for the characterization of other PTTSs or related terpenoid biosynthetic enzymes. By systematically analyzing the presence/absence of PTTS genes together with phylogenetic analysis, the ancestral PTTS gene was inferred to have undergone duplication and functional divergence, which led to the development of two distinct cyclization mechanisms. Chimeric terpene synthases, which consist of C-terminal prenyltransferase (PT) and N-terminal class I terpene synthase (TS) domains (termed PTTSs here), is unique to fungi and produces structurally diverse di- and sesterterpenes. Prior to this study, 20 PTTSs had been functionally characterized. Our understanding of the origin and functional evolution of PTTS genes is limited. Our systematic search of sequenced fungal genomes among diverse taxa revealed that PTTS genes were restricted to Dikarya. Phylogenetic findings indicated different potential models of the origin and evolution of PTTS genes. One was that PTTS genes originated in the common Dikarya ancestor and then underwent frequent gene loss among various subsequent lineages. To understand their functional evolution, we selected 74 PTTS genes for biochemical characterization in an efficient precursor-providing yeast system employing chassis-based, robot-assisted, high-throughput automatic assembly. We found 34 PTTS genes that encoded active enzymes and collectively produced 24 di- and sesterterpenes. About half of these di- and sesterterpenes were also the products of the 20 known PTTSs, indicating functional conservation, whereas the PTTS products included the previously unknown sesterterpenes, sesterevisene (1), and sesterorbiculene (2), suggesting that a diversity of PTTS products awaits discovery. Separating functional PTTSs into two monophyletic groups implied that an early gene duplication event occurred during the evolution of the PTTS family followed by functional divergence with the characteristics of distinct cyclization mechanisms.
Collapse
|
14
|
Heiling S, Llorca LC, Li J, Gase K, Schmidt A, Schäfer M, Schneider B, Halitschke R, Gaquerel E, Baldwin IT. Specific decorations of 17-hydroxygeranyllinalool diterpene glycosides solve the autotoxicity problem of chemical defense in Nicotiana attenuata. THE PLANT CELL 2021; 33:1748-1770. [PMID: 33561278 PMCID: PMC8254506 DOI: 10.1093/plcell/koab048] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 02/03/2021] [Indexed: 05/30/2023]
Abstract
The native diploid tobacco Nicotiana attenuata produces abundant, potent anti-herbivore defense metabolites known as 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) whose glycosylation and malonylation biosynthetic steps are regulated by jasmonate signaling. To characterize the biosynthetic pathway of HGL-DTGs, we conducted a genome-wide analysis of uridine diphosphate glycosyltransferases (UGTs) and identified 107 family-1 UGT members. The transcript levels of three UGTs were highly correlated with the transcript levels two key HGL-DTG biosynthetic genes: geranylgeranyl diphosphate synthase (NaGGPPS) and geranyllinalool synthase (NaGLS). NaGLS's role in HGL-DTG biosynthesis was confirmed by virus-induced gene silencing. Silencing the Uridine diphosphate (UDP)-rhamnosyltransferase gene UGT91T1 demonstrated its role in the rhamnosylation of HGL-DTGs. In vitro enzyme assays revealed that UGT74P3 and UGT74P4 use UDP-glucose for the glucosylation of 17-hydroxygeranyllinalool (17-HGL) to lyciumoside I. Plants with stable silencing of UGT74P3 and UGT74P5 were severely developmentally deformed, pointing to a phytotoxic effect of the aglycone. The application of synthetic 17-HGL and silencing of the UGTs in HGL-DTG-free plants confirmed this phytotoxic effect. Feeding assays with tobacco hornworm (Manduca sexta) larvae revealed the defensive functions of the glucosylation and rhamnosylation steps in HGL-DTG biosynthesis. Glucosylation of 17-HGL is therefore a critical step that contributes to the resulting metabolites' defensive function and solves the autotoxicity problem of this potent chemical defense.
Collapse
Affiliation(s)
- Sven Heiling
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Lucas Cortes Llorca
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Jiancai Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Klaus Gase
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Martin Schäfer
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Bernd Schneider
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Emmanuel Gaquerel
- Centre for Organismal Studies Heidelberg, 69120 Heidelberg, Germany
- Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357 Université de Strasbourg, 67084 Strasbourg, France
| | - Ian Thomas Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
15
|
Gong Z, Luo Y, Zhang W, Jian W, Zhang L, Gao X, Hu X, Yuan Y, Wu M, Xu X, Zheng X, Wu G, Li Z, Li Z, Deng W. A SlMYB75-centred transcriptional cascade regulates trichome formation and sesquiterpene accumulation in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3806-3820. [PMID: 33619530 DOI: 10.1093/jxb/erab086] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Tomato trichomes act as a mechanical and chemical barrier against pests. An R2R3 MYB transcription factor gene, SlMYB75, is highly expressed in type II, V, and VI trichomes. SlMYB75 protein is located in the nucleus and possesses transcriptional activation activity. Down-regulation of SlMYB75 increased the formation of type II, V, and VI trichomes, accumulation of δ-elemene, β-caryophyllene, and α-humulene in glandular trichomes, and tolerance to spider mites in tomato. In contrast, overexpression of SlMYB75 inhibited trichome formation and sesquiterpene accumulation, and increased plant sensitivity to spider mites. RNA-Seq analyses of the SlMYB75 RNAi line indicated massive perturbation of the transcriptome, with a significant impact on several classes of transcription factors. Expression of the MYB genes SlMYB52 and SlTHM1 was strongly reduced in the RNAi line and increased in the SlMYB75-overexpressing line. SlMYB75 protein interacted with SlMYB52 and SlTHM1 and activated their expression. SlMYB75 directly targeted the promoter of the cyclin gene SlCycB2, increasing its activity. The auxin response factor SlARF4 directly targeted the promoter of SlMYB75 and inhibited its expression. SlMYB75 also bound to the promoters of the terpene synthase genes SlTPS12, SlTPS31, and SlTPS35, inhibiting their transcription. Our findings indicate that SlMYB75 perturbation affects several transcriptional circuits, resulting in altered trichome density and metabolic content.
Collapse
Affiliation(s)
- Zehao Gong
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Yingqing Luo
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Wenfa Zhang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Wei Jian
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Lu Zhang
- Department of Horticulture and Landscape Architecture, Oklahoma State University, Stillwater, OK, USA
| | - Xueli Gao
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Xiaowei Hu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Yujin Yuan
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Mengbo Wu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Xin Xu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Xianzhe Zheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Guanle Wu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Zhi Li
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
16
|
Li J, Halitschke R, Li D, Paetz C, Su H, Heiling S, Xu S, Baldwin IT. Controlled hydroxylations of diterpenoids allow for plant chemical defense without autotoxicity. Science 2021; 371:255-260. [PMID: 33446550 DOI: 10.1126/science.abe4713] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2023]
Abstract
Many plant specialized metabolites function in herbivore defense, and abrogating particular steps in their biosynthetic pathways frequently causes autotoxicity. However, the molecular mechanisms underlying their defense and autotoxicity remain unclear. Here, we show that silencing two cytochrome P450s involved in diterpene biosynthesis in the wild tobacco Nicotiana attenuata causes severe autotoxicity symptoms that result from the inhibition of sphingolipid biosynthesis by noncontrolled hydroxylated diterpene derivatives. Moreover, the diterpenes' defensive function is achieved by inhibiting herbivore sphingolipid biosynthesis through postingestive backbone hydroxylation products. Thus, by regulating metabolic modifications, tobacco plants avoid autotoxicity and gain herbivore defense. The postdigestive duet that occurs between plants and their insect herbivores can reflect the plant's solutions to the "toxic waste dump" problem of using potent chemical defenses.
Collapse
Affiliation(s)
- Jiancai Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Dapeng Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Christian Paetz
- Department of Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Haichao Su
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Sven Heiling
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Shuqing Xu
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, D-48161 Münster, Germany.
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany.
| |
Collapse
|
17
|
Zhou F, Pichersky E. More is better: the diversity of terpene metabolism in plants. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:1-10. [PMID: 32088555 DOI: 10.1016/j.pbi.2020.01.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 05/18/2023]
Abstract
All plants synthesize a diverse array of terpenoid metabolites. Some are common to all, but many are synthesized only in specific taxa and presumably evolved as adaptations to specific ecological conditions. While the basic terpenoid biosynthetic pathways are common in all plants, recent discoveries have revealed many variations in the way plants synthesized specific terpenes. A major theme is the much greater number of substrates that can be used by enzymes belonging to the terpene synthase (TPS) family. Other recent discoveries include non-TPS enzymes that catalyze the formation of terpenes, and novel transport mechanisms.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
18
|
Zhou F, Pichersky E. The complete functional characterisation of the terpene synthase family in tomato. THE NEW PHYTOLOGIST 2020; 226:1341-1360. [PMID: 31943222 PMCID: PMC7422722 DOI: 10.1111/nph.16431] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/05/2020] [Indexed: 05/14/2023]
Abstract
Analysis of the updated reference tomato genome found 34 full-length TPS genes and 18 TPS pseudogenes. Biochemical analysis has now identified the catalytic activities of all enzymes encoded by the 34 TPS genes: one isoprene synthase, 10 exclusively or predominantly monoterpene synthases, 17 sesquiterpene synthases and six diterpene synthases. Among the monoterpene and sesquiterpene and diterpene synthases, some use trans-prenyl diphosphates, some use cis-prenyl diphosphates and some use both. The isoprene synthase is cytosolic; six monoterpene synthases are plastidic, and four are cytosolic; the sesquiterpene synthases are almost all cytosolic, with the exception of one found in the mitochondria; and three diterpene synthases are found in the plastids, one in the cytosol and two in the mitochondria. New trans-prenyltransferases (TPTs) were characterised; together with previously characterised TPTs and cis-prenyltransferases (CPTs), tomato plants can make all cis and trans C10 , C15 and C20 prenyl diphosphates. Every type of plant tissue examined expresses some TPS genes and some TPTs and CPTs. Phylogenetic comparison of the TPS genes from tomato and Arabidopsis shows expansions in each clade of the TPS gene family in each lineage (and inferred losses), accompanied by changes in subcellular localisations and substrate specificities.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMI48109USA
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
19
|
Gericke O, Hansen NL, Pedersen GB, Kjaerulff L, Luo D, Staerk D, Møller BL, Pateraki I, Heskes AM. Nerylneryl diphosphate is the precursor of serrulatane, viscidane and cembrane-type diterpenoids in Eremophila species. BMC PLANT BIOLOGY 2020; 20:91. [PMID: 32111159 PMCID: PMC7049213 DOI: 10.1186/s12870-020-2293-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/17/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Eremophila R.Br. (Scrophulariaceae) is a diverse genus of plants with species distributed across semi-arid and arid Australia. It is an ecologically important genus that also holds cultural significance for many Indigenous Australians who traditionally use several species as sources of medicines. Structurally unusual diterpenoids, particularly serrulatane and viscidane-types, feature prominently in the chemical profile of many species and recent studies indicate that these compounds are responsible for much of the reported bioactivity. We have investigated the biosynthesis of diterpenoids in three species: Eremophila lucida, Eremophila drummondii and Eremophila denticulata subsp. trisulcata. RESULTS In all studied species diterpenoids were localised to the leaf surface and associated with the occurrence of glandular trichomes. Trichome-enriched transcriptome databases were generated and mined for candidate terpene synthases (TPS). Four TPSs with diterpene biosynthesis activity were identified: ElTPS31 and ElTPS3 from E. lucida were found to produce (3Z,7Z,11Z)-cembratrien-15-ol and 5-hydroxyviscidane, respectively, and EdTPS22 and EdtTPS4, from E. drummondii and E. denticulata subsp. trisulcata, respectively, were found to produce 8,9-dihydroserrulat-14-ene which readily aromatized to serrulat-14-ene. In all cases, the identified TPSs used the cisoid substrate, nerylneryl diphosphate (NNPP), to form the observed products. Subsequently, cis-prenyl transferases (CPTs) capable of making NNPP were identified in each species. CONCLUSIONS We have elucidated two biosynthetic steps towards three of the major diterpene backbones found in this genus. Serrulatane and viscidane-type diterpenoids are promising candidates for new drug leads. The identification of an enzymatic route to their synthesis opens up the possibility of biotechnological production, making accessible a ready source of scaffolds for further modification and bioactivity testing.
Collapse
Affiliation(s)
- Oliver Gericke
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Nikolaj Lervad Hansen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Gustav Blichfeldt Pedersen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Louise Kjaerulff
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Dan Luo
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Irini Pateraki
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Allison Maree Heskes
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark.
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark.
| |
Collapse
|
20
|
Characterization of Solanum melongena Thioesterases Related to Tomato Methylketone Synthase 2. Genes (Basel) 2019; 10:genes10070549. [PMID: 31323901 PMCID: PMC6678348 DOI: 10.3390/genes10070549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 11/16/2022] Open
Abstract
2-Methylketones are involved in plant defense and fragrance and have industrial applications as flavor additives and for biofuel production. We isolated three genes from the crop plant Solanum melongena (eggplant) and investigated these as candidates for methylketone production. The wild tomato methylketone synthase 2 (ShMKS2), which hydrolyzes β-ketoacyl-acyl carrier proteins (ACP) to release β-ketoacids in the penultimate step of methylketone synthesis, was used as a query to identify three homologs from S. melongena: SmMKS2-1, SmMKS2-2, and SmMKS2-3. Expression and functional characterization of SmMKS2s in E. coli showed that SmMKS2-1 and SmMKS2-2 exhibited the thioesterase activity against different β-ketoacyl-ACP substrates to generate the corresponding saturated and unsaturated β-ketoacids, which can undergo decarboxylation to form their respective 2-methylketone products, whereas SmMKS2-3 showed no activity. SmMKS2-1 was expressed at high level in leaves, stems, roots, flowers, and fruits, whereas expression of SmMKS2-2 and SmMKS2-3 was mainly in flowers and fruits, respectively. Expression of SmMKS2-1 was induced in leaves by mechanical wounding, and by methyl jasmonate or methyl salicylate, but SmMKS2-2 and SmMKS2-3 genes were not induced. SmMKS2-1 is a candidate for methylketone-based defense in eggplant, and both SmMKS2-1 and SmMKS2-2 are novel MKS2 enzymes for biosynthesis of methylketones as feedstocks to biofuel production.
Collapse
|
21
|
Tissue-Specific Transcriptome Analysis Reveals Candidate Genes for Terpenoid and Phenylpropanoid Metabolism in the Medicinal Plant Ferula assafoetida. G3-GENES GENOMES GENETICS 2019; 9:807-816. [PMID: 30679248 PMCID: PMC6404600 DOI: 10.1534/g3.118.200852] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ferula assafoetida is a medicinal plant of the Apiaceae family that has traditionally been used for its therapeutic value. Particularly, terpenoid and phenylpropanoid metabolites, major components of the root-derived oleo-gum-resin, exhibit anti-inflammatory and cytotoxic activities, thus offering a resource for potential therapeutic lead compounds. However, genes and enzymes for terpenoid and coumarin-type phenylpropanoid metabolism have thus far remained uncharacterized in F. assafoetida. Comparative de novo transcriptome analysis of roots, leaves, stems, and flowers was combined with computational annotation to identify candidate genes with probable roles in terpenoid and coumarin biosynthesis. Gene network analysis showed a high abundance of predicted terpenoid- and phenylpropanoid-metabolic pathway genes in flowers. These findings offer a deeper insight into natural product biosynthesis in F. assafoetida and provide genomic resources for exploiting the medicinal potential of this rare plant.
Collapse
|
22
|
Karunanithi PS, Zerbe P. Terpene Synthases as Metabolic Gatekeepers in the Evolution of Plant Terpenoid Chemical Diversity. FRONTIERS IN PLANT SCIENCE 2019; 10:1166. [PMID: 31632418 PMCID: PMC6779861 DOI: 10.3389/fpls.2019.01166] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/26/2019] [Indexed: 05/18/2023]
Abstract
Terpenoids comprise tens of thousands of small molecule natural products that are widely distributed across all domains of life. Plants produce by far the largest array of terpenoids with various roles in development and chemical ecology. Driven by selective pressure to adapt to their specific ecological niche, individual species form only a fraction of the myriad plant terpenoids, typically representing unique metabolite blends. Terpene synthase (TPS) enzymes are the gatekeepers in generating terpenoid diversity by catalyzing complex carbocation-driven cyclization, rearrangement, and elimination reactions that enable the transformation of a few acyclic prenyl diphosphate substrates into a vast chemical library of hydrocarbon and, for a few enzymes, oxygenated terpene scaffolds. The seven currently defined clades (a-h) forming the plant TPS family evolved from ancestral triterpene synthase- and prenyl transferase-type enzymes through repeated events of gene duplication and subsequent loss, gain, or fusion of protein domains and further functional diversification. Lineage-specific expansion of these TPS clades led to variable family sizes that may range from a single TPS gene to families of more than 100 members that may further function as part of modular metabolic networks to maximize the number of possible products. Accompanying gene family expansion, the TPS family shows a profound functional plasticity, where minor active site alterations can dramatically impact product outcome, thus enabling the emergence of new functions with minimal investment in evolving new enzymes. This article reviews current knowledge on the functional diversity and molecular evolution of the plant TPS family that underlies the chemical diversity of bioactive terpenoids across the plant kingdom.
Collapse
Affiliation(s)
- Prema S Karunanithi
- Department of Plant Biology, University of California Davis, Davis, CA, United States
| | - Philipp Zerbe
- Department of Plant Biology, University of California Davis, Davis, CA, United States
| |
Collapse
|
23
|
Xu J, van Herwijnen ZO, Dräger DB, Sui C, Haring MA, Schuurink RC. SlMYC1 Regulates Type VI Glandular Trichome Formation and Terpene Biosynthesis in Tomato Glandular Cells. THE PLANT CELL 2018; 30:2988-3005. [PMID: 30518626 PMCID: PMC6354261 DOI: 10.1105/tpc.18.00571] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/07/2018] [Accepted: 11/21/2018] [Indexed: 05/22/2023]
Abstract
Tomato (Solanum lycopersicum) glandular trichomes function as biochemical factories that synthesize a diverse array of specialized metabolites. Terpenoids are the most diverse class of plant specialized metabolites, with volatile mono- and sesquiterpenes playing important roles in plant defense. Although the biosynthetic pathways of volatile terpenes in tomato glandular trichomes have been well described, little is known about their regulation. Here, we demonstrate that SlMYC1, a basic helix-loop-helix transcription factor, differentially regulates mono- and sesquiterpene biosynthesis in the type VI glandular trichomes of tomato leaves and stems. SlMYC1 functions as a positive regulator of monoterpene biosynthesis in both leaf and stem trichomes but as a negative regulator of sesquiterpene biosynthesis in stem trichomes. SlMYC1 is also essential for type VI glandular trichome development, as knocking down SlMYC1 led to the production of smaller type VI glandular trichomes at lower densities, and knocking out this gene led to their absence. Our findings reveal a role for SlMYC1 not only in type VI glandular trichome development but also in the regulation of terpene biosynthesis in tomato.
Collapse
Affiliation(s)
- Jiesen Xu
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Zeger O van Herwijnen
- Rijk Zwaan Breeding B.V., Burgemeester Crezéelaan 40, 2678 ZG De Lier, The Netherlands
| | - Dörthe B Dräger
- Rijk Zwaan Breeding B.V., Burgemeester Crezéelaan 40, 2678 ZG De Lier, The Netherlands
| | - Chun Sui
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Michel A Haring
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| |
Collapse
|
24
|
Schimmel BCJ, Alba JM, Wybouw N, Glas JJ, Meijer TT, Schuurink RC, Kant MR. Distinct Signatures of Host Defense Suppression by Plant-Feeding Mites. Int J Mol Sci 2018; 19:E3265. [PMID: 30347842 PMCID: PMC6214137 DOI: 10.3390/ijms19103265] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 01/09/2023] Open
Abstract
Tomato plants are attacked by diverse herbivorous arthropods, including by cell-content-feeding mites, such as the extreme generalist Tetranychus urticae and specialists like Tetranychus evansi and Aculops lycopersici. Mite feeding induces plant defense responses that reduce mite performance. However, T. evansi and A. lycopersici suppress plant defenses via poorly understood mechanisms and, consequently, maintain a high performance on tomato. On a shared host, T. urticae can be facilitated by either of the specialist mites, likely due to the suppression of plant defenses. To better understand defense suppression and indirect plant-mediated interactions between herbivorous mites, we used gene-expression microarrays to analyze the transcriptomic changes in tomato after attack by either a single mite species (T. urticae, T. evansi, A. lycopersici) or two species simultaneously (T. urticae plus T. evansi or T. urticae plus A. lycopersici). Additionally, we assessed mite-induced changes in defense-associated phytohormones using LC-MS/MS. Compared to non-infested controls, jasmonates (JAs) and salicylate (SA) accumulated to higher amounts upon all mite-infestation treatments, but the response was attenuated after single infestations with defense-suppressors. Strikingly, whereas 8 to 10% of tomato genes were differentially expressed upon single infestations with T. urticae or A. lycopersici, respectively, only 0.1% was altered in T. evansi-infested plants. Transcriptome analysis of dual-infested leaves revealed that A. lycopersici primarily suppressed T. urticae-induced JA defenses, while T. evansi dampened T. urticae-triggered host responses on a transcriptome-wide scale. The latter suggests that T. evansi not solely down-regulates plant gene expression, but rather directs it back towards housekeeping levels. Our results provide valuable new insights into the mechanisms underlying host defense suppression and the plant-mediated facilitation of competing herbivores.
Collapse
Affiliation(s)
- Bernardus C J Schimmel
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| | - Juan M Alba
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| | - Nicky Wybouw
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium.
| | - Joris J Glas
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| | - Tomas T Meijer
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE Amsterdam, The Netherlands.
| | - Merijn R Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Li J, Schuman MC, Halitschke R, Li X, Guo H, Grabe V, Hammer A, Baldwin IT. The decoration of specialized metabolites influences stylar development. eLife 2018; 7:e38611. [PMID: 30289384 PMCID: PMC6192696 DOI: 10.7554/elife.38611] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/23/2018] [Indexed: 01/05/2023] Open
Abstract
Plants produce many different specialized (secondary) metabolites that function in solving ecological challenges; few are known to function in growth or other primary processes. 17-Hydroxygeranylinalool diterpene glycosides (DTGs) are abundant herbivory-induced, structurally diverse and commonly malonylated defense metabolites in Nicotiana attenuata plants. By identifying and silencing a malonyltransferase, NaMaT1, involved in DTG malonylation, we found that DTG malonylation percentages are normally remarkably uniform, but when disrupted, result in DTG-dependent reduced floral style lengths, which in turn result from reduced stylar cell sizes, IAA contents, and YUC activity; phenotypes that could be restored by IAA supplementation or by silencing the DTG pathway. Moreover, the Nicotiana genus-specific JA-deficient short-style phenotype also results from alterations in DTG malonylation patterns. Decorations of plant specialized metabolites can be tuned to remarkably uniform levels, and this regulation plays a central but poorly understood role in controlling the development of specific plant parts, such as floral styles.
Collapse
Affiliation(s)
- Jiancai Li
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Meredith C Schuman
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
- Department of GeographyUniversity of ZurichZurichSwitzerland
| | - Rayko Halitschke
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Xiang Li
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Han Guo
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Veit Grabe
- Department of Evolutionary NeuroethologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Austin Hammer
- Department of BiologyBrigham Young UniversityProvoUnited States
| | - Ian T Baldwin
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| |
Collapse
|
26
|
Huang XZ, Xiao YT, Köllner TG, Jing WX, Kou JF, Chen JY, Liu DF, Gu SH, Wu JX, Zhang YJ, Guo YY. The terpene synthase gene family in Gossypium hirsutum harbors a linalool synthase GhTPS12 implicated in direct defence responses against herbivores. PLANT, CELL & ENVIRONMENT 2018; 41:261-274. [PMID: 29044662 DOI: 10.1111/pce.13088] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/28/2017] [Accepted: 09/30/2017] [Indexed: 05/16/2023]
Abstract
Herbivore-induced terpenes have been reported to function as ecological signals in plant-insect interactions. Here, we showed that insect-induced cotton volatile blends contained 16 terpenoid compounds with a relatively high level of linalool. The high diversity of terpene production is derived from a large terpene synthase (TPS) gene family. The TPS gene family of Gossypium hirsutum and Gossypium raimondii consist of 46 and 41 members, respectively. Twelve TPS genes (GhTPS4-15) could be isolated, and protein expression in Escherichia coli revealed catalytic activity for eight GhTPS. The upregulation of the majority of these eight genes additionally supports the function of these genes in herbivore-induced volatile biosynthesis. Furthermore, transgenic Nicotiana tabacum plants overexpressing GhTPS12 were generated, which produced relatively large amounts of (3S)-linalool. In choice tests, female adults of Helicoverpa armigera laid fewer eggs on transgenic plants compared with non-transformed controls. Meanwhile, Myzus persicae preferred feeding on wild-type leaves over leaves of transgenic plants. Our findings demonstrate that transcript accumulation of multiple TPS genes is mainly responsible for the production and diversity of herbivore-induced volatile terpenes in cotton. Also, these genes might play roles in plant defence, in particular, direct defence responses against herbivores.
Collapse
Affiliation(s)
- Xin-Zheng Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yu-Tao Xiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | | | - Wei-Xia Jing
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jun-Feng Kou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie-Yin Chen
- Institute of Agro-food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing, 100193, China
| | - Dan-Feng Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shao-Hua Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jun-Xiang Wu
- College of Plant Protection, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yu-Yuan Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
27
|
Su P, Hu T, Liu Y, Tong Y, Guan H, Zhang Y, Zhou J, Huang L, Gao W. Functional characterization of NES and GES responsible for the biosynthesis of (E)-nerolidol and (E,E)-geranyllinalool in Tripterygium wilfordii. Sci Rep 2017; 7:40851. [PMID: 28128232 PMCID: PMC5269589 DOI: 10.1038/srep40851] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/09/2016] [Indexed: 12/14/2022] Open
Abstract
Triptolide and celastrol, two principal bioactive compounds in Tripterygium wilfordii, are produced from geranylgeranyl diphosphate (GGPP) and farnesyl diphosphate ((E,E)-FPP) through terpenoid biosynthesis pathway. However, little is known about T. wilfordii terpene synthases which could competitively utilize GGPP and (E,E)-FPP as substrates, producing C15 and C20 tertiary alcohols. Here we firstly cloned the genes encoding nerolidol synthase (NES) and geranyllinalool synthases (GES1, GES2), which are responsible for the biosynthesis of (E)-nerolidol and (E,E)-geranyllinalool. In vitro characterization of recombinant TwNES and TwGES1 revealed both were functional enzymes that could catalyze the conversion of (E,E)-FPP and GGPP to (E)-nerolidol and (E,E)-geranyllinalool, which were consistent with the results of yeast fermentation. Biochemical characterization revealed TwNES and TwGES1 had strong dependency for Mg2+, Km and Kcat/Km values of TwNES for (E,E)-FPP were 12.700 μM and 0.029 s−1/μM, and TwGES1 for GGPP were 2.039 μM and 0.019 s−1/μM. Real-time PCR analysis showed the expression levels of NES and GES1 increased by several fold in the suspension cells treated with alamethicin, indicating TwNES and TwGES1 are likely to utilize GGPP and (E,E)-FPP to generate tertiary alcohols as precursor of plant volatiles, which play important roles in the ecological interactions between T. wilfordii and other organisms.
Collapse
Affiliation(s)
- Ping Su
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianyuan Hu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yujia Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yuru Tong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongyu Guan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yifeng Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiawei Zhou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| |
Collapse
|
28
|
Heterologous synthesis of geranyllinalool, a diterpenol plant product, in the cyanobacterium Synechocystis. Appl Microbiol Biotechnol 2017; 101:2791-2800. [DOI: 10.1007/s00253-016-8081-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/22/2016] [Accepted: 12/18/2016] [Indexed: 02/04/2023]
|
29
|
Richter A, Schaff C, Zhang Z, Lipka AE, Tian F, Köllner TG, Schnee C, Preiß S, Irmisch S, Jander G, Boland W, Gershenzon J, Buckler ES, Degenhardt J. Characterization of Biosynthetic Pathways for the Production of the Volatile Homoterpenes DMNT and TMTT in Zea mays. THE PLANT CELL 2016; 28:2651-2665. [PMID: 27662898 PMCID: PMC5134970 DOI: 10.1105/tpc.15.00919] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 08/05/2016] [Accepted: 09/23/2016] [Indexed: 05/20/2023]
Abstract
Plant volatiles not only have multiple defense functions against herbivores, fungi, and bacteria, but also have been implicated in signaling within the plant and toward other organisms. Elucidating the function of individual plant volatiles will require more knowledge of their biosynthesis and regulation in response to external stimuli. By exploiting the variation of herbivore-induced volatiles among 26 maize (Zea mays) inbred lines, we conducted a nested association mapping and genome-wide association study (GWAS) to identify a set of quantitative trait loci (QTLs) for investigating the pathways of volatile terpene production. The most significant identified QTL affects the emission of (E)-nerolidol, linalool, and the two homoterpenes (E)-3,8-dimethyl-1,4,7-nonatriene (DMNT) and (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT). GWAS associated a single nucleotide polymorphism in the promoter of the gene encoding the terpene synthase TPS2 with this QTL Biochemical characterization of TPS2 verified that this plastid-localized enzyme forms linalool, (E)-nerolidol, and (E,E)-geranyllinalool. The subsequent conversion of (E)-nerolidol into DMNT maps to a P450 monooxygenase, CYP92C5, which is capable of converting nerolidol into DMNT by oxidative degradation. A QTL influencing TMTT accumulation corresponds to a similar monooxygenase, CYP92C6, which is specific for the conversion of (E,E)-geranyllinalool to TMTT The DMNT biosynthetic pathway and both monooxygenases are distinct from those previously characterized for DMNT and TMTT synthesis in Arabidopsis thaliana, suggesting independent evolution of these enzymatic activities.
Collapse
Affiliation(s)
- Annett Richter
- Institute for Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle, Germany
| | - Claudia Schaff
- Institute for Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle, Germany
| | - Zhiwu Zhang
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
| | - Alexander E Lipka
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
| | - Feng Tian
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
| | - Tobias G Köllner
- Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | | | - Susanne Preiß
- Institute for Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle, Germany
| | - Sandra Irmisch
- Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Georg Jander
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Willhelm Boland
- Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | | | - Edward S Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
- U.S. Department of Agriculture-Agricultural Research Service, Ithaca, New York 14853
| | - Jörg Degenhardt
- Institute for Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle, Germany
| |
Collapse
|
30
|
Yahyaa M, Matsuba Y, Brandt W, Doron-Faigenboim A, Bar E, McClain A, Davidovich-Rikanati R, Lewinsohn E, Pichersky E, Ibdah M. Identification, Functional Characterization, and Evolution of Terpene Synthases from a Basal Dicot. PLANT PHYSIOLOGY 2015; 169:1683-97. [PMID: 26157114 PMCID: PMC4634067 DOI: 10.1104/pp.15.00930] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 05/06/2023]
Abstract
Bay laurel (Laurus nobilis) is an agriculturally and economically important dioecious tree in the basal dicot family Lauraceae used in food and drugs and in the cosmetics industry. Bay leaves, with their abundant monoterpenes and sesquiterpenes, are used to impart flavor and aroma to food, and have also drawn attention in recent years because of their potential pharmaceutical applications. To identify terpene synthases (TPSs) involved in the production of these volatile terpenes, we performed RNA sequencing to profile the transcriptome of L. nobilis leaves. Bioinformatic analysis led to the identification of eight TPS complementary DNAs. We characterized the enzymes encoded by three of these complementary DNAs: a monoterpene synthase that belongs to the TPS-b clade catalyzes the formation of mostly 1,8-cineole; a sesquiterpene synthase belonging to the TPS-a clade catalyzes the formation of mainly cadinenes; and a diterpene synthase of the TPS-e/f clade catalyzes the formation of geranyllinalool. Comparison of the sequences of these three TPSs indicated that the TPS-a and TPS-b clades of the TPS gene family evolved early in the evolution of the angiosperm lineage, and that geranyllinalool synthase activity is the likely ancestral function in angiosperms of genes belonging to an ancient TPS-e/f subclade that diverged from the kaurene synthase gene lineages before the split of angiosperms and gymnosperms.
Collapse
Affiliation(s)
- Mosaab Yahyaa
- Newe Yaar Research Center, Agriculture Research Organization, Ramat Yishay 30095, Israel (M.Y., A.D.-F., E.B., R.D.-R., E.L., M.I.);Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (Y.M., A.M., E.P.); andDepartment of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (W.B.)
| | - Yuki Matsuba
- Newe Yaar Research Center, Agriculture Research Organization, Ramat Yishay 30095, Israel (M.Y., A.D.-F., E.B., R.D.-R., E.L., M.I.);Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (Y.M., A.M., E.P.); andDepartment of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (W.B.)
| | - Wolfgang Brandt
- Newe Yaar Research Center, Agriculture Research Organization, Ramat Yishay 30095, Israel (M.Y., A.D.-F., E.B., R.D.-R., E.L., M.I.);Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (Y.M., A.M., E.P.); andDepartment of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (W.B.)
| | - Adi Doron-Faigenboim
- Newe Yaar Research Center, Agriculture Research Organization, Ramat Yishay 30095, Israel (M.Y., A.D.-F., E.B., R.D.-R., E.L., M.I.);Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (Y.M., A.M., E.P.); andDepartment of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (W.B.)
| | - Einat Bar
- Newe Yaar Research Center, Agriculture Research Organization, Ramat Yishay 30095, Israel (M.Y., A.D.-F., E.B., R.D.-R., E.L., M.I.);Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (Y.M., A.M., E.P.); andDepartment of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (W.B.)
| | - Alan McClain
- Newe Yaar Research Center, Agriculture Research Organization, Ramat Yishay 30095, Israel (M.Y., A.D.-F., E.B., R.D.-R., E.L., M.I.);Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (Y.M., A.M., E.P.); andDepartment of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (W.B.)
| | - Rachel Davidovich-Rikanati
- Newe Yaar Research Center, Agriculture Research Organization, Ramat Yishay 30095, Israel (M.Y., A.D.-F., E.B., R.D.-R., E.L., M.I.);Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (Y.M., A.M., E.P.); andDepartment of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (W.B.)
| | - Efraim Lewinsohn
- Newe Yaar Research Center, Agriculture Research Organization, Ramat Yishay 30095, Israel (M.Y., A.D.-F., E.B., R.D.-R., E.L., M.I.);Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (Y.M., A.M., E.P.); andDepartment of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (W.B.)
| | - Eran Pichersky
- Newe Yaar Research Center, Agriculture Research Organization, Ramat Yishay 30095, Israel (M.Y., A.D.-F., E.B., R.D.-R., E.L., M.I.);Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (Y.M., A.M., E.P.); andDepartment of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (W.B.)
| | - Mwafaq Ibdah
- Newe Yaar Research Center, Agriculture Research Organization, Ramat Yishay 30095, Israel (M.Y., A.D.-F., E.B., R.D.-R., E.L., M.I.);Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (Y.M., A.M., E.P.); andDepartment of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (W.B.)
| |
Collapse
|
31
|
Mirabella R, Rauwerda H, Allmann S, Scala A, Spyropoulou EA, de Vries M, Boersma MR, Breit TM, Haring MA, Schuurink RC. WRKY40 and WRKY6 act downstream of the green leaf volatile E-2-hexenal in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:1082-96. [PMID: 26243404 DOI: 10.1111/tpj.12953] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/21/2015] [Indexed: 05/20/2023]
Abstract
Plants are known to be responsive to volatiles, but knowledge about the molecular players involved in transducing their perception remains scarce. We study the response of Arabidopsis thaliana to E-2-hexenal, one of the green leaf volatiles (GLV) that is produced upon wounding, herbivory or infection with pathogens. We have taken a transcriptomics approach to identify genes that are induced by E-2-hexenal, but not by defence hormones or other GLVs. Furthermore, by studying the promoters of early E-2-hexenal-induced genes we determined that the only statistically enriched cis-element was the W-box motif. Since members of the plant-specific family of WRKY transcription factors act in trans on this cis-element, we focused on WRKY6, 40 and 53 that were most strongly induced by E-2-hexenal. Root elongation of Arabidopsis seedlings of the wrky40 wrky6 double mutant was much less inhibited than in wt plants, similar to the E-2-hexenal-responsive mutant her1, which is perturbed in γ-amino butyric acid (GABA) metabolism. The induction of several of the E-2-hexenal-specific genes was much higher in the wrky40, wrky6 or wrky40 wrky6 mutants, including GAD4, a glutamate decarboxylase that catalyzes the formation of GABA from glutamate. In conclusion, WRKY6 and 40 seem to act as important players transducing E-2-hexenal perception.
Collapse
Affiliation(s)
- Rossana Mirabella
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Han Rauwerda
- MAD, Dutch Genomics Service & Support Provider, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Silke Allmann
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Alessandra Scala
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Eleni A Spyropoulou
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Michel de Vries
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Maaike R Boersma
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Timo M Breit
- MAD, Dutch Genomics Service & Support Provider, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Michel A Haring
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| |
Collapse
|
32
|
Plant diterpene synthases: exploring modularity and metabolic diversity for bioengineering. Trends Biotechnol 2015; 33:419-28. [DOI: 10.1016/j.tibtech.2015.04.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 11/22/2022]
|
33
|
Matsuba Y, Zi J, Jones AD, Peters RJ, Pichersky E. Biosynthesis of the diterpenoid lycosantalonol via nerylneryl diphosphate in Solanum lycopersicum. PLoS One 2015; 10:e0119302. [PMID: 25786135 PMCID: PMC4364678 DOI: 10.1371/journal.pone.0119302] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/29/2015] [Indexed: 12/17/2022] Open
Abstract
We recently reported that three genes involved in the biosynthesis of monoterpenes in trichomes, a cis-prenyltransferase named neryl diphosphate synthase 1 (NDPS1) and two terpene synthases (TPS19 and TPS20), are present in close proximity to each other at the tip of chromosome 8 in the genome of the cultivated tomato (Solanum lycopersicum). This terpene gene “cluster” also contains a second cis-prenyltransferase gene (CPT2), three other TPS genes, including TPS21, and the cytochrome P450-oxidoreductase gene CYP71BN1. CPT2 encodes a neryneryl diphosphate synthase. Co-expression in E. coli of CPT2 and TPS21 led to the formation of the diterpene lycosantalene, and co-expression in E. coli of CPT2, TPS21 and CYP71BN1 led to the formation of lycosantalonol, an oxidation product of lycosantalene. Here we show that maximal expression of all three genes occurs in the petiolule part of the leaf, but little expression of these genes occurs in the trichomes present on the petiolules. While lycosantalene or lycosantalonol cannot be detected in the petiolules of wild-type plants (or anywhere else in the plant), lycosantalene and lycosantalonol are detected in petiolules of transgenic tomato plants expressing CPT2 under the control of the 35S CaMV promoter. These results suggest that lycosantalene and lycosantalonol are produced in the petiolules and perhaps in other tissues of wild-type plants, but that low rate of synthesis, controlled by the rate-limiting enzyme CPT2, results in product levels that are too low for detection under our current methodology. It is also possible that these compounds are further modified in the plant. The involvement of CPT2, TPS21 and CYP71BN1 in a diterpenoid biosynthetic pathway outside the trichomes, together with the involvement of other genes in the cluster in the synthesis of monoterpenes in trichomes, indicates that this cluster is further evolving into “sub-clusters” with unique biochemical, and likely physiological, roles.
Collapse
Affiliation(s)
- Yuki Matsuba
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jiachen Zi
- Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - A. Daniel Jones
- Department of Biochemistry, Michigan State University, East Lansing, Michigan, United States of America
| | - Reuben J. Peters
- Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Eran Pichersky
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|