1
|
Lou T, Lv S, Wang J, Wang D, Lin K, Zhang X, Zhang B, Guo Z, Yi Z, Li Y. Cell size and xylem differentiation regulating genes from Salicornia europaea contribute to plant salt tolerance. PLANT, CELL & ENVIRONMENT 2024; 47:2640-2659. [PMID: 38558078 DOI: 10.1111/pce.14905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Cell wall is involved in plant growth and plays pivotal roles in plant adaptation to environmental stresses. Cell wall remodelling may be crucial to salt adaptation in the euhalophyte Salicornia europaea. However, the mechanism underlying this process is still unclear. Here, full-length transcriptome indicated cell wall-related genes were comprehensively regulated under salinity. The morphology and cell wall components in S. europaea shoot were largely modified under salinity. Through the weighted gene co-expression network analysis, SeXTH2 encoding xyloglucan endotransglucosylase/hydrolases, and two SeLACs encoding laccases were focused. Meanwhile, SeEXPB was focused according to expansin activity and the expression profiling. Function analysis in Arabidopsis validated the functions of these genes in enhancing salt tolerance. SeXTH2 and SeEXPB overexpression led to larger cells and leaves with hemicellulose and pectin content alteration. SeLAC1 and SeLAC2 overexpression led to more xylem vessels, increased secondary cell wall thickness and lignin content. Notably, SeXTH2 transgenic rice exhibited enhanced salt tolerance and higher grain yield. Altogether, these genes may function in the succulence and lignification process in S. europaea. This work throws light on the regulatory mechanism of cell wall remodelling in S. europaea under salinity and provides potential strategies for improving crop salt tolerance and yields.
Collapse
Affiliation(s)
- Tengxue Lou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control, Beijing, China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Jinhui Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Duoliya Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kangqi Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zijing Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ze Yi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| |
Collapse
|
2
|
Jiao J, Zheng H, Zhou X, Huang Y, Niu Q, Ke L, Tang S, Liu H, Sun Y. The functions of laccase gene GhLAC15 in fiber colouration and development in brown-colored cotton. PHYSIOLOGIA PLANTARUM 2024; 176:e14415. [PMID: 38962818 DOI: 10.1111/ppl.14415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
The monotonicity of color type in naturally colored cottons (NCCs) has become the main limiting factor to their widespread use, simultaneously coexisting with poor fiber quality. The synchronous improvement of fiber quality and color become more urgent and crucial as the demand for sustainable development increases. The homologous gene of wild cotton Gossypium stocksii LAC15 in G. hirsutum, GhLAC15, was also dominantly expressed in the developing fibers of brown cotton XC20 from 5 DPA (day post anthesis) to 25 DPA, especially at the secondary cell wall thickening stage (20 DPA and 25 DPA). In XC20 plants with downregulated GhLAC15 (GhLAC15i), a remarkable reduction in proanthocyanidins (PAs) and lignin contents was observed. Some of the key genes in the phenylpropane and flavonoid biosynthesis pathway were down-regulated in GhLAC15i plants. Notably, the fiber length of GhLAC15i plants showed an obvious increase and the fiber color was lightened. Moreover, we found that the thickness of cotton fiber cell wall was decreased in GhLAC15i plants and the fiber surface became smoother compared to that of WT. Taken together, this study revealed that GhLAC15 played an important role in PAs and lignin biosynthesis in naturally colored cotton fibers. It might mediate fiber color and fiber quality by catalyzing PAs oxidation and lignin polymerization, ultimately regulating fiber colouration and development.
Collapse
Affiliation(s)
- Junye Jiao
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Hongli Zheng
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Xinping Zhou
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Yinshuai Huang
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Qingqing Niu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Liping Ke
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Shouwu Tang
- China Colored-cotton (Group) Co., Ltd., China
| | - Haifeng Liu
- China Colored-cotton (Group) Co., Ltd., China
| | - Yuqiang Sun
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| |
Collapse
|
3
|
Wang T, Liu Y, Zou K, Guan M, Wu Y, Hu Y, Yu H, Du J, Wu D. The Analysis, Description, and Examination of the Maize LAC Gene Family's Reaction to Abiotic and Biotic Stress. Genes (Basel) 2024; 15:749. [PMID: 38927685 PMCID: PMC11202975 DOI: 10.3390/genes15060749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Laccase (LAC) is a diverse group of genes found throughout the plant genome essential for plant growth and the response to stress by converting monolignin into intricate lignin formations. However, a comprehensive investigation of maize laccase has not yet been documented. A bioinformatics approach was utilized in this research to conduct a thorough examination of maize (Zea mays L.), resulting in the identification and categorization of 22 laccase genes (ZmLAC) into six subfamilies. The gene structure and motifs of each subgroup were largely consistent. The distribution of the 22 LAC genes was uneven among the maize chromosomes, with the exception of chromosome 9. The differentiation of the genes was based on fragment replication, and the differentiation time was about 33.37 million years ago. ZmLAC proteins are primarily acidic proteins. There are 18 cis-acting elements in the promoter sequences of the maize LAC gene family associated with growth and development, stress, hormones, light response, and stress response. The analysis of tissue-specific expression revealed a high expression of the maize LAC gene family prior to the V9 stage, with minimal expression at post-V9. Upon reviewing the RNA-seq information from the publicly available transcriptome, it was discovered that ZmLAC5, ZmLAC10, and ZmLAC17 exhibited significant expression levels when exposed to various biotic and abiotic stress factors, suggesting their crucial involvement in stress responses and potential value for further research. This study offers an understanding of the functions of the LAC genes in maize's response to biotic and abiotic stress, along with a theoretical basis for comprehending the molecular processes at play.
Collapse
Affiliation(s)
- Tonghan Wang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (K.Z.); (Y.W.); (Y.H.); (H.Y.); (J.D.)
| | - Yang Liu
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China; (Y.L.); (M.G.)
| | - Kunliang Zou
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (K.Z.); (Y.W.); (Y.H.); (H.Y.); (J.D.)
| | - Minhui Guan
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China; (Y.L.); (M.G.)
| | - Yutong Wu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (K.Z.); (Y.W.); (Y.H.); (H.Y.); (J.D.)
| | - Ying Hu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (K.Z.); (Y.W.); (Y.H.); (H.Y.); (J.D.)
| | - Haibing Yu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (K.Z.); (Y.W.); (Y.H.); (H.Y.); (J.D.)
| | - Junli Du
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (K.Z.); (Y.W.); (Y.H.); (H.Y.); (J.D.)
| | - Degong Wu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (K.Z.); (Y.W.); (Y.H.); (H.Y.); (J.D.)
| |
Collapse
|
4
|
Li D, Zhang H, Zhou Q, Tao Y, Wang S, Wang P, Wang A, Wei C, Liu S. The Laccase Family Gene CsLAC37 Participates in Resistance to Colletotrichum gloeosporioides Infection in Tea Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:884. [PMID: 38592904 PMCID: PMC10975366 DOI: 10.3390/plants13060884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Fungal attacks have become a major obstacle in tea plantations. Colletotrichum gloeosporioides is one of the most devastating fungal pathogens in tea plantations that can severely affect tea yield and quality. However, the molecular mechanism of resistance genes involved in anthracnose is still largely unknown in tea plants. Here, we found that the laccase gene CsLAC37 was involved in the response to fungal infection based on a transcriptome analysis. The full-length CDS of CsLAC37 was cloned, and its protein sequence had the closest relationship with the Arabidopsis AtLAC15 protein compared to other AtLACs. Tissue-specific expression analysis showed that CsLAC37 had higher expression levels in mature leaves and stems than in the other tissues. Subcellular localization showed that the CsLAC37 protein was predominantly localized in the cell membrane. The expression levels of CsLAC37 were upregulated at different time points under cold, salt, SA, and ABA treatments. qRT-PCR confirmed that CsLAC37 responded to both Pestalotiopsis-like species and C. gloeosporioides infections. Functional validation showed that the hydrogen peroxide (H2O2) content increased significantly, and POD activity decreased in leaves after antisense oligonucleotide (AsODN) treatment compared to the controls. The results demonstrated that CsLAC37 may play an important role in resistance to anthracnose, and the findings provide a theoretical foundation for molecular breeding of tea varieties with resistance to fungal diseases.
Collapse
Affiliation(s)
- Dangqiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Hongxiu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Qianqian Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Yongning Tao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Shuangshuang Wang
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Pengke Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Aoni Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| |
Collapse
|
5
|
Ma QH. Lignin Biosynthesis and Its Diversified Roles in Disease Resistance. Genes (Basel) 2024; 15:295. [PMID: 38540353 PMCID: PMC10969841 DOI: 10.3390/genes15030295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 06/14/2024] Open
Abstract
Lignin is complex, three-dimensional biopolymer existing in plant cell wall. Lignin biosynthesis is increasingly highlighted because it is closely related to the wide applications in agriculture and industry productions, including in pulping process, forage digestibility, bio-fuel, and carbon sequestration. The functions of lignin in planta have also attracted more attentions recently, particularly in plant defense response against different pathogens. In this brief review, the progress in lignin biosynthesis is discussed, and the lignin's roles in disease resistance are thoroughly elucidated. This issue will help in developing broad-spectrum resistant crops in agriculture.
Collapse
Affiliation(s)
- Qing-Hu Ma
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
6
|
Peracchi LM, Panahabadi R, Barros-Rios J, Bartley LE, Sanguinet KA. Grass lignin: biosynthesis, biological roles, and industrial applications. FRONTIERS IN PLANT SCIENCE 2024; 15:1343097. [PMID: 38463570 PMCID: PMC10921064 DOI: 10.3389/fpls.2024.1343097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Lignin is a phenolic heteropolymer found in most terrestrial plants that contributes an essential role in plant growth, abiotic stress tolerance, and biotic stress resistance. Recent research in grass lignin biosynthesis has found differences compared to dicots such as Arabidopsis thaliana. For example, the prolific incorporation of hydroxycinnamic acids into grass secondary cell walls improve the structural integrity of vascular and structural elements via covalent crosslinking. Conversely, fundamental monolignol chemistry conserves the mechanisms of monolignol translocation and polymerization across the plant phylum. Emerging evidence suggests grass lignin compositions contribute to abiotic stress tolerance, and periods of biotic stress often alter cereal lignin compositions to hinder pathogenesis. This same recalcitrance also inhibits industrial valorization of plant biomass, making lignin alterations and reductions a prolific field of research. This review presents an update of grass lignin biosynthesis, translocation, and polymerization, highlights how lignified grass cell walls contribute to plant development and stress responses, and briefly addresses genetic engineering strategies that may benefit industrial applications.
Collapse
Affiliation(s)
- Luigi M. Peracchi
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Rahele Panahabadi
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Jaime Barros-Rios
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Laura E. Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Karen A. Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
7
|
Zhu J, Zhang H, Huang K, Guo R, Zhao J, Xie H, Zhu J, Gu H, Chen H, Li G, Wei C, Liu S. Comprehensive analysis of the laccase gene family in tea plant highlights its roles in development and stress responses. BMC PLANT BIOLOGY 2023; 23:129. [PMID: 36882726 PMCID: PMC9990228 DOI: 10.1186/s12870-023-04134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Laccase (LAC) is the pivotal enzyme responsible for the polymerization of monolignols and stress responses in plants. However, the roles of LAC genes in plant development and tolerance to diverse stresses are still largely unknown, especially in tea plant (Camellia sinensis), one of the most economically important crops worldwide. RESULTS In total, 51 CsLAC genes were identified, they were unevenly distributed on different chromosomes and classified into six groups based on phylogenetic analysis. The CsLAC gene family had diverse intron-exon patterns and a highly conserved motif distribution. Cis-acting elements in the promoter demonstrated that promoter regions of CsLACs encode various elements associated with light, phytohormones, development and stresses. Collinearity analysis identified some orthologous gene pairs in C. sinensis and many paralogous gene pairs among C. sinensis, Arabidopsis and Populus. Tissue-specific expression profiles revealed that the majority of CsLACs had high expression in roots and stems and some members had specific expression patterns in other tissues, and the expression patterns of six genes by qRT‒PCR were highly consistent with the transcriptome data. Most CsLACs showed significant variation in their expression level under abiotic (cold and drought) and biotic (insect and fungus) stresses via transcriptome data. Among them, CsLAC3 was localized in the plasma membrane and its expression level increased significantly at 13 d under gray blight treatment. We found that 12 CsLACs were predicted to be targets of cs-miR397a, and most CsLACs showed opposite expression patterns compared to cs-miR397a under gray blight infection. Additionally, 18 highly polymorphic SSR markers were developed, these markers can be widely used for diverse genetic studies of tea plants. CONCLUSIONS This study provides a comprehensive understanding of the classification, evolution, structure, tissue-specific profiles, and (a)biotic stress responses of CsLAC genes. It also provides valuable genetic resources for functional characterization towards enhancing tea plant tolerance to multiple (a)biotic stresses.
Collapse
Affiliation(s)
- Jiaxin Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Hongxiu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Kelin Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Rui Guo
- Lu'an Institute of Product Quality Supervision and Inspection, Lu'an City, China
| | - Jingjuan Zhao
- Lu'an Institute of Product Quality Supervision and Inspection, Lu'an City, China
| | - Hui Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Honglian Gu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Hongrong Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Guoqiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China.
| |
Collapse
|
8
|
Study on Characteristics and Lignification Mechanism of Postharvest Banana Fruit during Chilling Injury. Foods 2023; 12:foods12051097. [PMID: 36900614 PMCID: PMC10000439 DOI: 10.3390/foods12051097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
The banana is prone to chilling injury (CI) at low temperature and showing a series of chilling symptoms, such as peel browning, etc. Lignification is a response to abiotic stress and senescence, which is an important manifestation of fruits and vegetables during chilling exposure. However, little is known about the lignification of bananas during low-temperature storage. Our study explored the characteristics and lignification mechanism of banana fruits during low-temperature storage by analyzing the changes of chilling symptoms, oxidative stress, cell wall metabolism, microstructures, and gene expression related to lignification. The results showed that CI inhibited post-ripening by effecting the degradation of the cell wall and starch and accelerated senescence by increasing O2- and H2O2 content. For lignification, Phenylalanine ammonia-lyase (PAL) might start the phenylpropanoid pathway of lignin synthesis. Cinnamoyl-CoA reductase 4 (CCR4), cinnamyl alcohol dehydrogenase 2 (CAD2), and 4-coumarate--CoA ligase like 7 (4CL7) were up-regulated to promote the lignin monomer's synthesis. Peroxidase 1 (POD1) and Laccase 3 (LAC3) were up-regulated to promote the oxidative polymerization of lignin monomers. These results suggest that changes of the cell wall structure and cell wall metabolism, as well as lignification, are involved in the senescence and quality deterioration of the banana after chilling injury.
Collapse
|
9
|
Hashemipetroudi SH, Arab M, Heidari P, Kuhlmann M. Genome-wide analysis of the laccase (LAC) gene family in Aeluropus littoralis: A focus on identification, evolution and expression patterns in response to abiotic stresses and ABA treatment. FRONTIERS IN PLANT SCIENCE 2023; 14:1112354. [PMID: 36938021 PMCID: PMC10014554 DOI: 10.3389/fpls.2023.1112354] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/23/2023] [Indexed: 05/27/2023]
Abstract
Laccases are plant enzymes with essential functions during growth and development. These monophenoloxidases are involved in lignin polymerization, and their expression respond to environmental stress. However, studies of laccases in some plants and fungi have highlighted that many structural and functional aspects of these genes are still unknown. Here, the laccase gene family in Aeluropus littoralis (AlLAC) is described based on sequence structure and expression patterns under abiotic stresses and ABA treatment. Fifteen non-redundant AlLACs were identified from the A. littoralis genome, which showed differences in physicochemical characteristics and gene structure. Based on phylogenetic analysis, AlLACs and their orthologues were classified into five groups. A close evolutionary relationship was observed between LAC gene family members in rice and A. littoralis. According to the interaction network, AlLACs interact more with proteins involved in biological processes such as iron incorporation into the metallo-sulfur cluster, lignin catabolism, regulation of the symbiotic process and plant-type primary cell wall biogenesis. Gene expression analysis of selected AlLACs using real-time RT (reverse transcription)-PCR revealed that AlLACs are induced in response to abiotic stresses such as cold, salt, and osmotic stress, as well as ABA treatment. Moreover, AlLACs showed differential expression patterns in shoot and root tissues. Our findings indicate that AlLACs are preferentially involved in the late response of A. littoralis to abiotic stress.
Collapse
Affiliation(s)
- Seyyed Hamidreza Hashemipetroudi
- Department of Genetic Engineering and Biology, Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
- RG Heterosis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Mozhdeh Arab
- Department of Genetic Engineering and Biology, Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Parviz Heidari
- Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Markus Kuhlmann
- RG Heterosis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
10
|
Lima LGAD, Ferreira SS, Simões MS, Cunha LXD, Fernie AR, Cesarino I. Comprehensive expression analyses of the ABCG subfamily reveal SvABCG17 as a potential transporter of lignin monomers in the model C4 grass Setaria viridis. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153900. [PMID: 36525838 DOI: 10.1016/j.jplph.2022.153900] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Although several aspects of lignin metabolism have been extensively characterized, the mechanism(s) by which lignin monomers are transported across the plasma membrane remains largely unknown. Biochemical, proteomic, expression and co-expression analyses from several plant species support the involvement of active transporters, mainly those belonging to the ABC superfamily. Here, we report on the genome-wide characterization of the ABCG gene subfamily in the model C4 grass Setaria viridis and further identification of the members potentially involved in monolignol transport. A total of 48 genes encoding SvABCGs were found in the S. viridis genome, from which 21 SvABCGs were classified as full-size transporters and 27 as half-size transporters. Comprehensive analysis of the ABCG subfamily in S. viridis based on expression and co-expression analyses support a role for SvABCG17 in monolignol transport: (i) SvABCG17 is orthologous to AtABCG29, a monolignol transporter in Arabidopsis thaliana; (ii) SvABCG17 displays a similar expression profile to that of lignin biosynthetic genes in a set of different S. viridis tissues and along the elongating internode; (iii) SvABCG17 is highly co-expressed with lignin-related genes in a public transcriptomic database; (iv) SvABCG17displays particularly high expression in the top of the S. viridis elongating internode, a tissue undergoing active lignification; (v) SvABCG17 mRNA localization coincides with the histochemical pattern of lignin deposition; and (vi) the promoter of SvABCG17 is activated by secondary cell wall-associated transcription factors, especially by lignin-specific activators of the MYB family. Further studies might reveal further aspects of this potential monolignol transporter, including its real substrate specificity and whether it works redundantly with other ABC members during S. viridis lignification.
Collapse
Affiliation(s)
- Leydson Gabriel Alves de Lima
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-090, São Paulo, Brazil
| | - Sávio Siqueira Ferreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-090, São Paulo, Brazil
| | - Marcella Siqueira Simões
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-090, São Paulo, Brazil
| | - Lucas Xavier da Cunha
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-090, São Paulo, Brazil
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-090, São Paulo, Brazil; Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues, 370, 05508-020, São Paulo, Brazil.
| |
Collapse
|
11
|
Zhong X, Li M, Zhang M, Feng Y, Zhang H, Tian H. Genome-wide analysis of the laccase gene family in wheat and relationship with arbuscular mycorrhizal colonization. PLANTA 2022; 257:15. [PMID: 36528718 DOI: 10.1007/s00425-022-04048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
We identified 156 laccase genes belonging to 11 subfamilies in the wheat genome, and the natural variation of laccase genes significantly affected the development of wheat-arbuscular mycorrhizal symbiosis. Laccases (LACs) have a variety of functions in plant lignification, cell elongation and stress responses. This study aimed to reveal the phylogeny, chromosomal spatial distribution, coexpression and evolution of LAC genes in the wheat genome and to investigate the possible roles of LAC genes during arbuscular mycorrhizal (AM) symbiosis. The genomic characteristics of LAC genes were analyzed by using bioinformatics analysis methods, and the polymorphisms of LAC genes were analyzed by using a diverse wheat panel composed of 289 wheat cultivars. We identified 156 LAC genes belonging to 11 subfamilies in the wheat genome, and segmental duplication dominated the amplification of the LAC gene family in the wheat genome. LACs are dominantly located in the R2 region of wheat chromosomes. Some LACs are collinear with the characterized LACs in Arabidopsis thaliana or rice. A number of genes encoding transcription factors, kinases, and phosphatases were coexpressed with LAC genes in wheat. TaLACs may be potential targets for some miRNAs. Most TaLACs are mainly expressed in the roots and stems of plants. The expression of TaLACs could be regulated by the inoculation of Fusarium graminearum or AM fungi. The polymorphisms of TaLACs mainly accumulate by random drift instead of by selection. Through candidate gene association analysis, we found that the natural variations in TaLACs significantly affected root colonization by AM fungi. The present study provides useful information for further study of the biological functions of LAC genes in wheat, especially the roles of LAC genes during the development of AM symbiosis.
Collapse
Affiliation(s)
- Xiong Zhong
- Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mengjiao Li
- Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingming Zhang
- Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yang Feng
- Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hui Zhang
- Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hui Tian
- Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
12
|
The Citrus Laccase Gene CsLAC18 Contributes to Cold Tolerance. Int J Mol Sci 2022; 23:ijms232314509. [PMID: 36498836 PMCID: PMC9737282 DOI: 10.3390/ijms232314509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Plant laccases, as multicopper oxidases, play an important role in monolignol polymerization, and participate in the resistance response of plants to multiple biotic/abiotic stresses. However, little is currently known about the role of laccases in the cold stress response of plants. In this study, the laccase activity and lignin content of C. sinensis leaves increased after the low-temperature treatment, and cold treatment induced the differential regulation of 21 CsLACs, with 15 genes being upregulated and 6 genes being downregulated. Exceptionally, the relative expression level of CsLAC18 increased 130.17-fold after a 48-h treatment. The full-length coding sequence of CsLAC18 consists of 1743 nucleotides and encodes a protein of 580 amino acids, and is predominantly expressed in leaves and fruits. CsLAC18 was phylogenetically related to AtLAC17, and was localized in the cell membrane. Overexpression of CsLAC18 conferred enhanced cold tolerance on transgenic tobacco; however, virus-induced gene silencing (VIGS)-mediated suppression of CsLAC18 in Poncirus trifoliata significantly impaired resistance to cold stress. As a whole, our findings revealed that CsLAC18 positively regulates a plant's response to cold stress, providing a potential target for molecular breeding or gene editing.
Collapse
|
13
|
Ferreira SS, Goeminne G, Simões MS, Pina AVDA, Lima LGAD, Pezard J, Gutiérrez A, Rencoret J, Mortimer JC, Del Río JC, Boerjan W, Cesarino I. Transcriptional and metabolic changes associated with internode development and reduced cinnamyl alcohol dehydrogenase activity in sorghum. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6307-6333. [PMID: 35788296 DOI: 10.1093/jxb/erac300] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The molecular mechanisms associated with secondary cell wall (SCW) deposition in sorghum remain largely uncharacterized. Here, we employed untargeted metabolomics and large-scale transcriptomics to correlate changes in SCW deposition with variation in global gene expression profiles and metabolite abundance along an elongating internode of sorghum, with a major focus on lignin and phenolic metabolism. To gain deeper insight into the metabolic and transcriptional changes associated with pathway perturbations, a bmr6 mutant [with reduced cinnamyl alcohol dehydrogenase (CAD) activity] was analyzed. In the wild type, internode development was accompanied by an increase in the content of oligolignols, p-hydroxybenzaldehyde, hydroxycinnamate esters, and flavonoid glucosides, including tricin derivatives. We further identified modules of genes whose expression pattern correlated with SCW deposition and the accumulation of these target metabolites. Reduced CAD activity resulted in the accumulation of hexosylated forms of hydroxycinnamates (and their derivatives), hydroxycinnamaldehydes, and benzenoids. The expression of genes belonging to one specific module in our co-expression analysis correlated with the differential accumulation of these compounds and contributed to explaining this metabolic phenotype. Metabolomics and transcriptomics data further suggested that CAD perturbation activates distinct detoxification routes in sorghum internodes. Our systems biology approach provides a landscape of the metabolic and transcriptional changes associated with internode development and with reduced CAD activity in sorghum.
Collapse
Affiliation(s)
- Sávio Siqueira Ferreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, São Paulo, Brazil
| | - Geert Goeminne
- VIB Center for Plant Systems Biology, Ghent, Belgium
- VIB Metabolomics Core, Ghent, Belgium
| | - Marcella Siqueira Simões
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, São Paulo, Brazil
| | | | | | - Jade Pezard
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida de la Reina Mercedes, Seville, Spain
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida de la Reina Mercedes, Seville, Spain
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - José C Del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida de la Reina Mercedes, Seville, Spain
| | - Wout Boerjan
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, São Paulo, Brazil
- Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues, São Paulo, Brazil
| |
Collapse
|
14
|
Zhang Y, Shan X, Zhao Q, Shi F. The MicroRNA397a-LACCASE17 module regulates lignin biosynthesis in Medicago ruthenica (L.). FRONTIERS IN PLANT SCIENCE 2022; 13:978515. [PMID: 36061772 PMCID: PMC9434696 DOI: 10.3389/fpls.2022.978515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Mechanical strength is essential for the upright growth habit, which is one of the most important characteristics of terrestrial plants. Lignin, a phenylpropanoid-derived polymer mainly present in secondary cell walls plays critical role in providing mechanical support. Here, we report that the prostrate-stem cultivar of the legume forage Medicago ruthenica cultivar 'Mengnong No. 1' shows compromised mechanical strength compared with the erect-stem cultivar 'Zhilixing'. The erect-stem cultivar, 'Zhilixing' has significantly higher lignin content, leading to higher mechanical strength than the prostrate-stem cultivar. The low abundance of miRNA397a in the Zhiixing cultivar causes reduced cleavage of MrLAC17 transcript, which results in enhanced expression level of MrLAC17 compared to that in the prostrate-stem cultivar Mengnong No. 1. Complementation of the Arabidopsis lac4 lac17 double mutants with MrLAC17 restored the lignin content to wild-type levels, confirming that MrLAC17 perform an exchangeable role with Arabidopsis laccases. LAC17-mediated lignin polymerization is therefore increased in the 'Zhilixing', causing the erect stem phenotype. Our data reveal the importance of the miR397a in the lignin biosynthesis and suggest a strategy for molecular breeding targeting plant architecture in legume forage.
Collapse
Affiliation(s)
- Yutong Zhang
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaotong Shan
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qiao Zhao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fengling Shi
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
15
|
Liu Y, Cao D, Ma L, Jin X. Upregulation of protein N-glycosylation plays crucial roles in the response of Camellia sinensis leaves to fluoride. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 183:138-150. [PMID: 35597102 DOI: 10.1016/j.plaphy.2022.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The tea plant (Camellia sinensis) is one of the three major beverage crops in the world with its leaves consumption as tea. However, it can hyperaccumulate fluoride with about 98% fluoride deposition in the leaves. Our previously studies found that cell wall proteins (CWPs) might play a central role in fluoride accumulation/detoxification in C. sinensis. CWP is known to be glycosylated, however the response of CWP N-glycosylation to fluoride remains unknown in C. sinensis. In this study, a comparative N-glycoproteomic analysis was performed through HILIC enrichment coupled with UPLC-MS/MS based on TMT-labeling approach in C. sinensis leaves. Totally, 237 N-glycoproteins containing 326 unique N-glycosites were identified. 73.4%, 18.6%, 6.3% and 1.7% of these proteins possess 1, 2, 3, and ≥4 modification site, respectively. 93.2% of these proteins were predicted to be localized in the secretory pathway and 78.9% of them were targeted to the cell wall and the plasma membrane. 133 differentially accumulated N-glycosites (DNGSs) on 100 N-glycoproteins (DNGPs) were detected and 85.0% of them exhibited upregulated expression after fluoride treatment. 78.0% DNGPs were extracellular DNGPs, which belonged to CWPs, and 53.0% of them were grouped into protein acting on cell wall polysaccharides, proteases and oxido-reductases, whereas the majority of the remaining DNGPs were mainly related to N-glycoprotein biosynthesis, trafficking and quality control. Our study shed new light on the N-glycoproteome study, and revealed that increased N-glycosylation abundance of CWPs might contribute to fluoride accumulation/detoxification in C. sinensis leave.
Collapse
Affiliation(s)
- Yanli Liu
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| | - Dan Cao
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Linlong Ma
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Xiaofang Jin
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| |
Collapse
|
16
|
Wang Y, Gui C, Wu J, Gao X, Huang T, Cui F, Liu H, Sethupathy S. Spatio-Temporal Modification of Lignin Biosynthesis in Plants: A Promising Strategy for Lignocellulose Improvement and Lignin Valorization. Front Bioeng Biotechnol 2022; 10:917459. [PMID: 35845403 PMCID: PMC9283729 DOI: 10.3389/fbioe.2022.917459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Lignin is essential for plant growth, structural integrity, biotic/abiotic stress resistance, and water transport. Besides, lignin constitutes 10–30% of lignocellulosic biomass and is difficult to utilize for biofuel production. Over the past few decades, extensive research has uncovered numerous metabolic pathways and genes involved in lignin biosynthesis, several of which have been highlighted as the primary targets for genetic manipulation. However, direct manipulation of lignin biosynthesis is often associated with unexpected abnormalities in plant growth and development for unknown causes, thus limiting the usefulness of genetic engineering for biomass production and utilization. Recent advances in understanding the complex regulatory mechanisms of lignin biosynthesis have revealed new avenues for spatial and temporal modification of lignin in lignocellulosic plants that avoid growth abnormalities. This review explores recent work on utilizing specific transcriptional regulators to modify lignin biosynthesis at both tissue and cellular levels, focusing on using specific promoters paired with functional or regulatory genes to precisely control lignin synthesis and achieve biomass production with desired properties. Further advances in designing more appropriate promoters and other regulators will increase our capacity to modulate lignin content and structure in plants, thus setting the stage for high-value utilization of lignin in the future.
Collapse
Affiliation(s)
- Yongli Wang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- *Correspondence: Yongli Wang, ; Sivasamy Sethupathy,
| | - Cunjin Gui
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jiangyan Wu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Xing Gao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Ting Huang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Fengjie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Huan Liu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- *Correspondence: Yongli Wang, ; Sivasamy Sethupathy,
| |
Collapse
|
17
|
Qin MF, Li LT, Singh J, Sun MY, Bai B, Li SW, Ni JP, Zhang JY, Zhang X, Wei WL, Zhang MY, Li JM, Qi KJ, Zhang SL, Khan A, Wu J. Construction of a high-density bin-map and identification of fruit quality-related quantitative trait loci and functional genes in pear. HORTICULTURE RESEARCH 2022; 9:uhac141. [PMID: 36072841 PMCID: PMC9437719 DOI: 10.1093/hr/uhac141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 06/13/2022] [Indexed: 06/01/2023]
Abstract
Pear (Pyrus spp.) is one of the most common fruit crops grown in temperate regions worldwide. Genetic enhancement of fruit quality is a fundamental goal of pear breeding programs. The genetic control of pear fruit quality traits is highly quantitative, and development of high-density genetic maps can facilitate fine-mapping of quantitative trait loci (QTLs) and gene identification. Bin-mapping is a powerful method of constructing high-resolution genetic maps from large-scale genotyping datasets. We performed whole-genome sequencing of pear cultivars 'Niitaka' and 'Hongxiangsu' and their 176 F 1 progeny to identify genome-wide single-nucleotide polymorphism (SNP) markers for constructing a high-density bin-map of pear. This analysis yielded a total of 1.93 million SNPs and a genetic bin-map of 3190 markers spanning 1358.5 cM, with an average adjacent interval of 0.43 cM. This bin-map, along with other high-density genetic maps in pear, improved the reference genome assembly from 75.5 to 83.7% by re-anchoring the scaffolds. A quantitative genetic analysis identified 148 QTLs for 18 fruit-related traits; among them, QTLs for stone cell content, several key monosaccharides, and fruit pulp acids were identified for the first time in pear. A gene expression analysis of six pear cultivars identified 399 candidates in the identified QTL regions, which showed expression specific to fruit developmental stages in pear. Finally, we confirmed the function of PbrtMT1, a tonoplast monosaccharide transporter-related gene responsible for the enhancement of fructose accumulation in pear fruit on linkage group 16, in a transient transformation experiment. This study provides genomic and genetic resources as well as potential candidate genes for fruit quality improvement in pear.
Collapse
Affiliation(s)
| | | | - Jugpreet Singh
- Plant Pathology and Plant-Microbe Section, Cornell University, Geneva, NY 14456, USA
| | - Man-Yi Sun
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Bing Bai
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Si-Wei Li
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiang-Ping Ni
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia-Ying Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xun Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei-Lin Wei
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming-Yue Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia-Ming Li
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai-Jie Qi
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Ling Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Jun Wu
- Corresponding authors. E-mail: ,
| |
Collapse
|
18
|
San Clemente H, Kolkas H, Canut H, Jamet E. Plant Cell Wall Proteomes: The Core of Conserved Protein Families and the Case of Non-Canonical Proteins. Int J Mol Sci 2022; 23:4273. [PMID: 35457091 PMCID: PMC9029284 DOI: 10.3390/ijms23084273] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 12/25/2022] Open
Abstract
Plant cell wall proteins (CWPs) play critical roles during plant development and in response to stresses. Proteomics has revealed their great diversity. With nearly 1000 identified CWPs, the Arabidopsis thaliana cell wall proteome is the best described to date and it covers the main plant organs and cell suspension cultures. Other monocot and dicot plants have been studied as well as bryophytes, such as Physcomitrella patens and Marchantia polymorpha. Although these proteomes were obtained using various flowcharts, they can be searched for the presence of members of a given protein family. Thereby, a core cell wall proteome which does not pretend to be exhaustive, yet could be defined. It comprises: (i) glycoside hydrolases and pectin methyl esterases, (ii) class III peroxidases, (iii) Asp, Ser and Cys proteases, (iv) non-specific lipid transfer proteins, (v) fasciclin arabinogalactan proteins, (vi) purple acid phosphatases and (vii) thaumatins. All the conserved CWP families could represent a set of house-keeping CWPs critical for either the maintenance of the basic cell wall functions, allowing immediate response to environmental stresses or both. Besides, the presence of non-canonical proteins devoid of a predicted signal peptide in cell wall proteomes is discussed in relation to the possible existence of alternative secretion pathways.
Collapse
Affiliation(s)
| | | | | | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France; (H.S.C.); (H.K.); (H.C.)
| |
Collapse
|
19
|
Wan F, Zhang L, Tan M, Wang X, Wang GL, Qi M, Liu B, Gao J, Pan Y, Wang Y. Genome-wide identification and characterization of laccase family members in eggplant ( Solanum melongena L.). PeerJ 2022; 10:e12922. [PMID: 35223206 PMCID: PMC8868016 DOI: 10.7717/peerj.12922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 01/20/2022] [Indexed: 01/11/2023] Open
Abstract
Laccase, as a copper-containing polyphenol oxidase, primarily functions in the process of lignin, anthocyanin biosynthesis, and various abiotic/biotic stresses. In this study, forty-eight laccase members were identified in the eggplant genome. Only forty-two laccase genes from eggplant (SmLACs) were anchored unevenly in 12 chromosomes, the other six SmLACs were mapped on unanchored scaffolds. Phylogenetic analysis indicated that only twenty-five SmLACs were divided into six different groups on the basis of groups reported in Arabidopsis. Gene structure analysis revealed that the number of exons ranged from one to 13. Motif analysis revealed that SmLACs included six conserved motifs. In aspects of gene duplication analysis, twenty-one SmLACs were collinear with LAC genes from Arabidopsis, tomato or rice. Cis-regulatory elements analysis indicated many SmLACs may be involved in eggplant morphogenesis, flavonoid biosynthesis, diverse stresses and growth/development processes. Expression analysis further confirmed that a few SmLACs may function in vegetative and reproductive organs at different developmental stages and also in response to one or multiple stresses. This study would help to further understand and enrich the physiological function of the SmLAC gene family in eggplant, and may provide high-quality genetic resources for eggplant genetics and breeding.
Collapse
Affiliation(s)
- Faxiang Wan
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, The People’s Republic of China
| | - Linqing Zhang
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, The People’s Republic of China
| | - Mengying Tan
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, The People’s Republic of China
| | - Xiaohua Wang
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, The People’s Republic of China
| | - Guang-Long Wang
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, The People’s Republic of China
| | - Mengru Qi
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, The People’s Republic of China
| | - Bingxin Liu
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, The People’s Republic of China
| | - Jun Gao
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, The People’s Republic of China
| | - Yu Pan
- College of Horticulture and Landscape Architechture, Southwest University, Chongqing, The People’s Republic of China
| | - Yongqing Wang
- The Institute of Vegetable and Flower Research, Chongqing Academy of Agricultural Science, Chongqing, The People’s Republic of China
| |
Collapse
|
20
|
Genome-Wide Comprehensive Analysis of PtLACs: Prediction and Verification of the Functional Divergence of Tandem-Duplicated Genes. FORESTS 2022. [DOI: 10.3390/f13020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Laccases (EC 1.10.3.2) have been widely considered to participate in the metabolic processes of lignin synthesis, osmotic stress response, and flavonoid oxidation in higher plants. The research into Populus trichocarpa laccase focused on the synthesis of lignin in the past few years. In this study, for the first time, a comprehensive analysis of 53 laccase copies in the P. trichocarpa genome was conducted. Positive selection analysis using the branch-site model indicated that LAC genes in terrestrial plants have undergone selective pressure for adaptive evolution. On the basis of the phylogenetic relationship, we reconstructed the evolutionary process of terrestrial plant laccase and found that this gene family began to expand during the evolution of angiosperms. Tandem duplication is the main form of expansion of the PtLAC gene family. The analysis of the sequence characteristics, gene structure, expression pattern, and gene synonymous mutation rate of PtLACs provided a theoretical basis for the functional divergence of tandem duplicated genes. The synonymous mutation rate was used to quantify the divergence time of 11 tandem duplicated gene clusters. Cluster 2, with the earliest divergence time and lower share of sequence similarity, and cluster 5, with the latest divergence time and higher share of similarity, were selected in this study to explore the functional divergence of tandem-duplicated gene clusters. Tobacco subcellular localization and Arabidopsis transgenes verified the functional differentiation of PtLAC genes in cluster 2 and the functional non-differentiation of PtLAC genes in cluster 5. The results of this study provide a reference for the functional differentiation of tandem-duplicated PtLAC.
Collapse
|
21
|
Kolkas H, Balliau T, Chourré J, Zivy M, Canut H, Jamet E. The Cell Wall Proteome of Marchantia polymorpha Reveals Specificities Compared to Those of Flowering Plants. FRONTIERS IN PLANT SCIENCE 2022; 12:765846. [PMID: 35095945 PMCID: PMC8792609 DOI: 10.3389/fpls.2021.765846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/16/2021] [Indexed: 05/30/2023]
Abstract
Primary plant cell walls are composite extracellular structures composed of three major classes of polysaccharides (pectins, hemicelluloses, and cellulose) and of proteins. The cell wall proteins (CWPs) play multiple roles during plant development and in response to environmental stresses by remodeling the polysaccharide and protein networks and acting in signaling processes. To date, the cell wall proteome has been mostly described in flowering plants and has revealed the diversity of the CWP families. In this article, we describe the cell wall proteome of an early divergent plant, Marchantia polymorpha, a Bryophyte which belong to one of the first plant species colonizing lands. It has been possible to identify 410 different CWPs from three development stages of the haploid gametophyte and they could be classified in the same functional classes as the CWPs of flowering plants. This result underlied the ability of M. polymorpha to sustain cell wall dynamics. However, some specificities of the M. polymorpha cell wall proteome could be highlighted, in particular the importance of oxido-reductases such as class III peroxidases and polyphenol oxidases, D-mannose binding lectins, and dirigent-like proteins. These proteins families could be related to the presence of specific compounds in the M. polymorpha cell walls, like mannans or phenolics. This work paves the way for functional studies to unravel the role of CWPs during M. polymorpha development and in response to environmental cues.
Collapse
Affiliation(s)
- Hasan Kolkas
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Thierry Balliau
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, PAPPSO, Gif-sur-Yvette, France
| | - Josiane Chourré
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Michel Zivy
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, PAPPSO, Gif-sur-Yvette, France
| | - Hervé Canut
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| |
Collapse
|
22
|
Mydy LS, Chigumba DN, Kersten RD. Plant Copper Metalloenzymes As Prospects for New Metabolism Involving Aromatic Compounds. FRONTIERS IN PLANT SCIENCE 2021; 12:692108. [PMID: 34925392 PMCID: PMC8672867 DOI: 10.3389/fpls.2021.692108] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/11/2021] [Indexed: 06/14/2023]
Abstract
Copper is an important transition metal cofactor in plant metabolism, which enables diverse biocatalysis in aerobic environments. Multiple classes of plant metalloenzymes evolved and underwent genetic expansions during the evolution of terrestrial plants and, to date, several representatives of these copper enzyme classes have characterized mechanisms. In this review, we give an updated overview of chemistry, structure, mechanism, function and phylogenetic distribution of plant copper metalloenzymes with an emphasis on biosynthesis of aromatic compounds such as phenylpropanoids (lignin, lignan, flavonoids) and cyclic peptides with macrocyclizations via aromatic amino acids. We also review a recent addition to plant copper enzymology in a copper-dependent peptide cyclase called the BURP domain. Given growing plant genetic resources, a large pool of copper biocatalysts remains to be characterized from plants as plant genomes contain on average more than 70 copper enzyme genes. A major challenge in characterization of copper biocatalysts from plant genomes is the identification of endogenous substrates and catalyzed reactions. We highlight some recent and future trends in filling these knowledge gaps in plant metabolism and the potential for genomic discovery of copper-based enzymology from plants.
Collapse
Affiliation(s)
| | | | - Roland D. Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
23
|
Blaschek L, Pesquet E. Phenoloxidases in Plants-How Structural Diversity Enables Functional Specificity. FRONTIERS IN PLANT SCIENCE 2021; 12:754601. [PMID: 34659324 PMCID: PMC8517187 DOI: 10.3389/fpls.2021.754601] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/09/2021] [Indexed: 05/23/2023]
Abstract
The metabolism of polyphenolic polymers is essential to the development and response to environmental changes of organisms from all kingdoms of life, but shows particular diversity in plants. In contrast to other biopolymers, whose polymerisation is catalysed by homologous gene families, polyphenolic metabolism depends on phenoloxidases, a group of heterogeneous oxidases that share little beyond the eponymous common substrate. In this review, we provide an overview of the differences and similarities between phenoloxidases in their protein structure, reaction mechanism, substrate specificity, and functional roles. Using the example of laccases (LACs), we also performed a meta-analysis of enzyme kinetics, a comprehensive phylogenetic analysis and machine-learning based protein structure modelling to link functions, evolution, and structures in this group of phenoloxidases. With these approaches, we generated a framework to explain the reported functional differences between paralogs, while also hinting at the likely diversity of yet undescribed LAC functions. Altogether, this review provides a basis to better understand the functional overlaps and specificities between and within the three major families of phenoloxidases, their evolutionary trajectories, and their importance for plant primary and secondary metabolism.
Collapse
|
24
|
Liu Y, Ma L, Cao D, Gong Z, Fan J, Hu H, Jin X. Investigation of cell wall proteins of C. sinensis leaves by combining cell wall proteomics and N-glycoproteomics. BMC PLANT BIOLOGY 2021; 21:384. [PMID: 34416854 PMCID: PMC8377857 DOI: 10.1186/s12870-021-03166-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 08/10/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND C. sinensis is an important economic crop with fluoride over-accumulation in its leaves, which poses a serious threat to human health due to its leaf consumption as tea. Recently, our study has indicated that cell wall proteins (CWPs) probably play a vital role in fluoride accumulation/detoxification in C. sinensis. However, there has been a lack in CWP identification and characterization up to now. This study is aimed to characterize cell wall proteome of C. sinensis leaves and to develop more CWPs related to stress response. A strategy of combined cell wall proteomics and N-glycoproteomics was employed to investigate CWPs. CWPs were extracted by sequential salt buffers, while N-glycoproteins were enriched by hydrophilic interaction chromatography method using C. sinensis leaves as a material. Afterwards all the proteins were subjected to UPLC-MS/MS analysis. RESULTS A total of 501 CWPs and 195 CWPs were identified respectively by cell wall proteomics and N-glycoproteomics profiling with 118 CWPs in common. Notably, N-glycoproteomics is a feasible method for CWP identification, and it can enhance CWP coverage. Among identified CWPs, proteins acting on cell wall polysaccharides constitute the largest functional class, most of which might be involved in cell wall structure remodeling. The second largest functional class mainly encompass various proteases related to CWP turnover and maturation. Oxidoreductases represent the third largest functional class, most of which (especially Class III peroxidases) participate in defense response. As expected, identified CWPs are mainly related to plant cell wall formation and defense response. CONCLUSION This was the first large-scale investigation of CWPs in C. sinensis through cell wall proteomics and N-glycoproteomics. Our results not only provide a database for further research on CWPs, but also an insight into cell wall formation and defense response in C. sinensis.
Collapse
Affiliation(s)
- Yanli Liu
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, No. 10 Nanhu Road, Wuhan, 430064, Hubei, People's Republic of China
| | - Linlong Ma
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, No. 10 Nanhu Road, Wuhan, 430064, Hubei, People's Republic of China
| | - Dan Cao
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, No. 10 Nanhu Road, Wuhan, 430064, Hubei, People's Republic of China
| | - Ziming Gong
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, No. 10 Nanhu Road, Wuhan, 430064, Hubei, People's Republic of China
| | - Jing Fan
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, No. 10 Nanhu Road, Wuhan, 430064, Hubei, People's Republic of China
| | - Hongju Hu
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, No. 10 Nanhu Road, Wuhan, 430064, Hubei, People's Republic of China
| | - Xiaofang Jin
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, No. 10 Nanhu Road, Wuhan, 430064, Hubei, People's Republic of China.
| |
Collapse
|
25
|
Zheng X, Chen D, Chen B, Liang L, Huang Z, Fan W, Chen J, He W, Chen H, Huang L, Chen Y, Zhu J, Xue T. Insights into salvianolic acid B biosynthesis from chromosome-scale assembly of the Salvia bowleyana genome. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1309-1323. [PMID: 33634943 DOI: 10.1111/jipb.13085] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/26/2021] [Indexed: 05/21/2023]
Abstract
Salvia bowleyana is a traditional Chinese medicinal plant that is a source of nutritional supplements rich in salvianolic acid B and a potential experimental system for the exploration of salvianolic acid B biosynthesis in the Labiatae. Here, we report a high-quality chromosome-scale genome assembly of S. bowleyana covering 462.44 Mb, with a scaffold N50 value of 57.96 Mb and 44,044 annotated protein-coding genes. Evolutionary analysis revealed an estimated divergence time between S. bowleyana and its close relative S. miltiorrhiza of ~3.94 million years. We also observed evidence of a whole-genome duplication in the S. bowleyana genome. Transcriptome analysis showed that SbPAL1 (PHENYLALANINE AMMONIA-LYASE1) is highly expressed in roots relative to stem and leaves, paralleling the location of salvianolic acid B accumulation. The laccase gene family in S. bowleyana outnumbered their counterparts in both S. miltiorrhiza and Arabidopsis thaliana, suggesting that the gene family has undergone expansion in S. bowleyana. Several laccase genes were also highly expressed in roots, where their encoded proteins may catalyze the oxidative reaction from rosmarinic acid to salvianolic acid B. These findings provide an invaluable genomic resource for understanding salvianolic acid B biosynthesis and its regulation, and will be useful for exploring the evolution of the Labiatae.
Collapse
Affiliation(s)
- Xuehai Zheng
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Duo Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Binghua Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Limin Liang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Zhen Huang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Wenfang Fan
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Jiannan Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Wenjin He
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Huibin Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Luqiang Huang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Youqiang Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Jinmao Zhu
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Ting Xue
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| |
Collapse
|
26
|
Hiraide H, Tobimatsu Y, Yoshinaga A, Lam PY, Kobayashi M, Matsushita Y, Fukushima K, Takabe K. Localised laccase activity modulates distribution of lignin polymers in gymnosperm compression wood. THE NEW PHYTOLOGIST 2021; 230:2186-2199. [PMID: 33570753 PMCID: PMC8252379 DOI: 10.1111/nph.17264] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/03/2021] [Indexed: 05/26/2023]
Abstract
The woody stems of coniferous gymnosperms produce specialised compression wood to adjust the stem growth orientation in response to gravitropic stimulation. During this process, tracheids develop a compression-wood-specific S2 L cell wall layer with lignins highly enriched with p-hydroxyphenyl (H)-type units derived from H-type monolignol, whereas lignins produced in the cell walls of normal wood tracheids are exclusively composed of guaiacyl (G)-type units from G-type monolignol with a trace amount of H-type units. We show that laccases, a class of lignin polymerisation enzymes, play a crucial role in the spatially organised polymerisation of H-type and G-type monolignols during compression wood formation in Japanese cypress (Chamaecyparis obtusa). We performed a series of chemical-probe-aided imaging analysis on C. obtusa compression wood cell walls, together with gene expression, protein localisation and enzymatic assays of C. obtusa laccases. Our data indicated that CoLac1 and CoLac3 with differential oxidation activities towards H-type and G-type monolignols were precisely localised to distinct cell wall layers in which H-type and G-type lignin units were preferentially produced during the development of compression wood tracheids. We propose that, not only the spatial localisation of laccases, but also their biochemical characteristics dictate the spatial patterning of lignin polymerisation in gymnosperm compression wood.
Collapse
Affiliation(s)
- Hideto Hiraide
- Graduate School of AgricultureKyoto UniversityKitashirakawa‐oiwakechoKyoto606‐8502Japan
- Research Institute for Sustainable HumanosphereKyoto UniversityGokasho, Uji611‐0011Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable HumanosphereKyoto UniversityGokasho, Uji611‐0011Japan
| | - Arata Yoshinaga
- Graduate School of AgricultureKyoto UniversityKitashirakawa‐oiwakechoKyoto606‐8502Japan
| | - Pui Ying Lam
- Research Institute for Sustainable HumanosphereKyoto UniversityGokasho, Uji611‐0011Japan
| | - Masaru Kobayashi
- Graduate School of AgricultureKyoto UniversityKitashirakawa‐oiwakechoKyoto606‐8502Japan
| | - Yasuyuki Matsushita
- Graduate School of Bioagricultural SciencesNagoya UniversityFuro‐choNagoya464‐8601Japan
| | - Kazuhiko Fukushima
- Graduate School of Bioagricultural SciencesNagoya UniversityFuro‐choNagoya464‐8601Japan
| | - Keiji Takabe
- Graduate School of AgricultureKyoto UniversityKitashirakawa‐oiwakechoKyoto606‐8502Japan
| |
Collapse
|
27
|
Qin S, Fan C, Li X, Li Y, Hu J, Li C, Luo K. LACCASE14 is required for the deposition of guaiacyl lignin and affects cell wall digestibility in poplar. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:197. [PMID: 33292432 PMCID: PMC7713150 DOI: 10.1186/s13068-020-01843-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/25/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND The recalcitrance of lignocellulosic biomass provided technical and economic challenges in the current biomass conversion processes. Lignin is considered as a crucial recalcitrance component in biomass utilization. An in-depth understanding of lignin biosynthesis can provide clues to overcoming the recalcitrance. Laccases are believed to play a role in the oxidation of lignin monomers, leading to the formation of higher-order lignin. In plants, functions of only a few laccases have been evaluated, so little is known about the effect of laccases on cell wall structure and biomass saccharification. RESULTS In this study, we screened a gain-of-function mutant with a significant increase in lignin content from Arabidopsis mutant lines overexpressing a full-length poplar cDNA library. Further analysis confirmed that a Chinese white poplar (Populus tomentosa) laccase gene PtoLAC14 was inserted into the mutant, and PtoLAC14 could functionally complement the Arabidopsis lac4 mutant. Overexpression of PtoLAC14 promoted the lignification of poplar and reduced the proportion of syringyl/guaiacyl. In contrast, the CRISPR/Cas9-generated mutation of PtLAC14 results in increased the syringyl/guaiacyl ratios, which led to integrated enhancement on biomass enzymatic saccharification. Notably, the recombinant PtoLAC14 protein showed higher oxidized efficiency to coniferyl alcohol (precursor of guaiacyl unit) in vitro. CONCLUSIONS This study shows that PtoLAC14 plays an important role in the oxidation of guaiacyl deposition on cell wall. The reduced recalcitrance of the PtoLAC14-KO lines suggests that PtoLAC14 is an elite target for cell wall engineering, and genetic manipulation of this gene will facilitate the utilization of lignocellulose.
Collapse
Affiliation(s)
- Shifei Qin
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, 400716 Chongqing China
| | - Chunfen Fan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, 400716 Chongqing China
| | - Xiaohong Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, 400716 Chongqing China
| | - Yi Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, 400716 Chongqing China
| | - Jian Hu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, 400716 Chongqing China
| | - Chaofeng Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, 400716 Chongqing China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, 400716 Chongqing China
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715 China
| |
Collapse
|
28
|
Wang X, Zhuo C, Xiao X, Wang X, Docampo-Palacios M, Chen F, Dixon RA. Substrate Specificity of LACCASE8 Facilitates Polymerization of Caffeyl Alcohol for C-Lignin Biosynthesis in the Seed Coat of Cleome hassleriana. THE PLANT CELL 2020; 32:3825-3845. [PMID: 33037146 PMCID: PMC7721330 DOI: 10.1105/tpc.20.00598] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 05/02/2023]
Abstract
Catechyl lignin (C-lignin) is a linear homopolymer of caffeyl alcohol found in the seed coats of diverse plant species. Its properties make it a natural source of carbon fibers and high-value chemicals, but the mechanism of in planta polymerization of caffeyl alcohol remains unclear. In the ornamental plant Cleome hassleriana, lignin biosynthesis in the seed coat switches from guaiacyl lignin to C-lignin at ∼12 d after pollination. Here we found that the transcript profile of the laccase gene ChLAC8 parallels the accumulation of C-lignin during seed coat development. Recombinant ChLAC8 oxidizes caffeyl and sinapyl alcohols, generating their corresponding dimers or trimers in vitro, but cannot oxidize coniferyl alcohol. We propose a basis for this substrate preference based on molecular modeling/docking experiments. Suppression of ChLAC8 expression led to significantly reduced C-lignin content in the seed coats of transgenic Cleome plants. Feeding of 13C-caffeyl alcohol to the Arabidopsis (Arabidopsis thaliana) caffeic acid o-methyltransferase mutant resulted in no incorporation of 13C into C-lignin, but expressing ChLAC8 in this genetic background led to appearance of C-lignin with >40% label incorporation. These results indicate that ChLAC8 is required for C-lignin polymerization and determines lignin composition when caffeyl alcohol is available.
Collapse
Affiliation(s)
- Xin Wang
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Chunliu Zhuo
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Xirong Xiao
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Xiaoqiang Wang
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
| | - Maite Docampo-Palacios
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Fang Chen
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| |
Collapse
|
29
|
Summanwar A, Basu U, Kav NNV, Rahman H. Identification of lncRNAs in response to infection by Plasmodiophora brassicae in Brassica napus and development of lncRNA-based SSR markers. Genome 2020; 64:547-566. [PMID: 33170735 DOI: 10.1139/gen-2020-0062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clubroot resistance in spring canola has been introgressed from different Brassica sources; however, molecular mechanism underlying this resistance, especially the involvement of long non-coding RNAs (lncRNAs), is yet to be understood. We identified 464 differentially expressed (DE) lncRNAs from the roots of clubroot-resistant canola, carrying resistance on chromosome BnaA03, and susceptible canola lines challenged with Plasmodiophora brassicae pathotype 3. Pathway enrichment analysis showed that most of the target genes regulated by these DE lncRNAs belonged to plant-pathogen interaction and hormone signaling, as well as primary and secondary metabolic pathways. Comparative analysis of these lncRNAs with 530 previously reported DE lncRNAs, identified using resistance located on BnaA08, detected 12 lncRNAs that showed a similar trend of upregulation in both types of resistant lines; these lncRNAs probably play a fundamental role in clubroot resistance. We identified SSR markers within 196 DE lncRNAs. Genotyping of two DH populations carrying resistance on BnaA03 identified a marker capable of detecting the resistance in 98% of the DH lines. To our knowledge, this is the first report of the identification of SSRs within lncRNAs responsive to P. brassicae infection, demonstrating the potential use of lncRNAs in the breeding of Brassica crops.
Collapse
Affiliation(s)
- Aarohi Summanwar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Urmila Basu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Nat N V Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Habibur Rahman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| |
Collapse
|
30
|
Nguyen DQ, Brown CW, Pegler JL, Eamens AL, Grof CPL. Molecular Manipulation of MicroRNA397 Abundance Influences the Development and Salt Stress Response of Arabidopsis thaliana. Int J Mol Sci 2020; 21:E7879. [PMID: 33114207 PMCID: PMC7660671 DOI: 10.3390/ijms21217879] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022] Open
Abstract
Arabidopsis thaliana (Arabidopsis) has been used extensively as a heterologous system for molecular manipulation to genetically characterize both dicotyledonous and monocotyledonous plant species. Here, we report on Arabidopsis transformant lines molecularly manipulated to over-accumulate the small regulatory RNA microRNA397 (miR397) from the emerging C4 monocotyledonous grass model species Setaria viridis (S. viridis). The generated transformant lines, termed SvMIR397 plants, displayed a range of developmental phenotypes that ranged from a mild, wild-type-like phenotype, to a severe, full dwarfism phenotype. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR)-based profiling of the SvMIR397 transformant population revealed a strong correlation between the degree of miR397 over-accumulation, repressed LACCASE (LAC) target gene expression, reduced lignin content, and the severity of the developmental phenotype displayed by SvMIR397 transformants. Further, exposure of SvMIR397 transformants to a 7-day regime of salt stress revealed the SvMIR397 transformant lines to be more sensitive to the imposed stress than were wild-type Arabidopsis plants. Taken together, the findings reported here via the use of Arabidopsis as a heterologous system show that the S. viridis miR397 small regulatory RNA is able to repress the expression of three Arabidopsis LAC genes which led to reduced lignin content and increased salt stress sensitivity.
Collapse
Affiliation(s)
| | | | | | - Andrew L. Eamens
- Correspondence: (A.L.E.); (C.P.L.G.); Tel.: +61-249-217-784 (A.L.E.); +61-249-215-85 (C.P.L.G.)
| | - Christopher P. L. Grof
- Correspondence: (A.L.E.); (C.P.L.G.); Tel.: +61-249-217-784 (A.L.E.); +61-249-215-85 (C.P.L.G.)
| |
Collapse
|
31
|
Zenoni S, Amato A, D’Incà E, Guzzo F, Tornielli GB. Rapid dehydration of grape berries dampens the post-ripening transcriptomic program and the metabolite profile evolution. HORTICULTURE RESEARCH 2020; 7:141. [PMID: 32922813 PMCID: PMC7459318 DOI: 10.1038/s41438-020-00362-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/11/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
The postharvest dehydration of grape berries allows the concentration of sugars and other solutes and promotes the synthesis of metabolites and aroma compounds unique to high-quality raisin wines such as the passito wines made in Italy. These dynamic changes are dependent on environmental parameters such as temperature and relative humidity, as well as endogenous factors such as berry morphology and genotype, but the contribution of each variable is not well understood. Here, we compared berries subjected to natural or accelerated dehydration, the latter driven by forced air flow. We followed the evolution of transcript and metabolite profiles and found that accelerated dehydration clearly dampened the natural transcriptomic and metabolomic programs of postharvest berries. We found that slow dehydration over a prolonged duration is necessary to induce gene expression and metabolite accumulation associated with the final quality traits of dehydrated berries. The accumulation of key metabolites (particularly stilbenoids) during postharvest dehydration is inhibited by rapid dehydration conditions that shorten the berry life time.
Collapse
Affiliation(s)
- Sara Zenoni
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Alessandra Amato
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Erica D’Incà
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Flavia Guzzo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | | |
Collapse
|
32
|
Coomey JH, Sibout R, Hazen SP. Grass secondary cell walls, Brachypodium distachyon as a model for discovery. THE NEW PHYTOLOGIST 2020; 227:1649-1667. [PMID: 32285456 DOI: 10.1111/nph.16603] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/05/2020] [Indexed: 05/20/2023]
Abstract
A key aspect of plant growth is the synthesis and deposition of cell walls. In specific tissues and cell types including xylem and fibre, a thick secondary wall comprised of cellulose, hemicellulose and lignin is deposited. Secondary cell walls provide a physical barrier that protects plants from pathogens, promotes tolerance to abiotic stresses and fortifies cells to withstand the forces associated with water transport and the physical weight of plant structures. Grasses have numerous cell wall features that are distinct from eudicots and other plants. Study of the model species Brachypodium distachyon as well as other grasses has revealed numerous features of the grass cell wall. These include the characterisation of xylosyl and arabinosyltransferases, a mixed-linkage glucan synthase and hydroxycinnamate acyltransferases. Perhaps the most fertile area for discovery has been the formation of lignins, including the identification of novel substrates and enzyme activities towards the synthesis of monolignols. Other enzymes function as polymerising agents or transferases that modify lignins and facilitate interactions with polysaccharides. The regulatory aspects of cell wall biosynthesis are largely overlapping with those of eudicots, but salient differences among species have been resolved that begin to identify the determinants that define grass cell walls.
Collapse
Affiliation(s)
- Joshua H Coomey
- Biology Department, University of Massachusetts, Amherst, MA, 01003, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA
| | - Richard Sibout
- Biopolymères Interactions Assemblages, INRAE, UR BIA, F-44316, Nantes, France
| | - Samuel P Hazen
- Biology Department, University of Massachusetts, Amherst, MA, 01003, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
33
|
Wang XS, Fu HL, Gong FY, Zhang Y, He CT, Yang ZY. Lignin side chain region participates in Cd detoxification related to the cultivar-dependent Cd accumulation in Brassica chinensis L. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122264. [PMID: 32078971 DOI: 10.1016/j.jhazmat.2020.122264] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/26/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
To investigate the effect of lignin in the cultivar-dependent Cd detoxification of Brassica chinensis L., Cd and lignin contents, lignin composition and laccase genes expressions in low-Cd-accumulating (LAJK) and high-Cd-accumulating (HAJS) cultivars grown under control (CK) and 25 μM Cd-treatment were determined. The results showed that lignin combined about 14 % of total Cd in both LAJK and HAJS. LAC genes were more up-regulated in HAJS than in LAJK, indicating that the LAC genes were involved in the cultivar-dependent lignin functions. Higher β-aryl ether (A) proportion in the lignin side chain region in LAJK than in HAJS were observed, whereas resinol (B) and phenylcoumaran (C) constitute much higher proportions in HAJS than in LAJK. Chemical calculation to estimate Cd affinity associating with lignin side chain region displayed that i) β-aryl ether (A) exhibited major coupling with lignin aromatic region; ii) resinol (B) and phenylcoumaran (C) displayed major participation in complexation with Cd. We therefore conclude that Cd compartmentalization in the secondary cell wall (SCW) by coupling with lignin side chain region is responsible for Cd detoxification related to cultivar-dependent Cd accumulation of Brassica chinensis. This is the first study on lignin composition in relation to Cd retention mechanisms in SCW.
Collapse
Affiliation(s)
- Xue-Song Wang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Hui-Ling Fu
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Fei-Yue Gong
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Yan Zhang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Chun-Tao He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China.
| | - Zhong-Yi Yang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China.
| |
Collapse
|
34
|
Li L, Yang K, Wang S, Lou Y, Zhu C, Gao Z. Genome-wide analysis of laccase genes in moso bamboo highlights PeLAC10 involved in lignin biosynthesis and in response to abiotic stresses. PLANT CELL REPORTS 2020; 39:751-763. [PMID: 32152695 DOI: 10.1007/s00299-020-02528-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Twenty-three PeLACs have been identified in moso bamboo, overexpression of PeLAC10 increases the lignin content and confers drought and phenolic acid tolerance in transgenic Arabidopsis. Laccases (LACs) have multifunction involved in the processes of cell elongation, lignification and stress response in plants. However, the function of laccases in bamboo remain unclear. Here, a total of 23 laccase genes (PeLAC1-PeLAC23) were identified in moso bamboo (Phyllostachys edulis). The diverse gene structure and expression pattern of PeLACs suggested that their function should be spatiotemporal and complicated, which was supported by the expression profiles in different tissues of moso bamboo. Eighteen PeLACs were identified as the targets of ped-miR397. The putative ped-miR397-binding site in the coding region of PeLAC10 was further confirmed by RLM-5' RACE, indicating that PeLAC10 was regulated by ped-miR397 after transcription. With the increasing shoot height, the expression abundance of PeLAC10 was up-regulated and reached the maximum in 15 cm shoots, while that of ped-miR397 was relative lower and showed the minimum in 15 cm shoots. PeLAC10 was up-regulated obviously under both ABA (100 μmol L-1) and NaCl (400 mmol L-1) treatments, and it was down-regulated under the GA3 (100 μmol L-1) treatment. The transgenic Arabidopsis plants over-expressing PeLAC10 became slightly smaller and their petioles were shorter than those of Col-0. However, they had a stronger capacity in resistance to phenolic acids and drought besides higher lignin content in stems. These results indicated that overexpression of PeLAC10 was helpful to increase the content of lignin in transgenic Arabidopsis and improve the adaptability to phenolic acid and drought stresses.
Collapse
Affiliation(s)
- Lichao Li
- National Forestry and Grassland Administration, Beijing Key Open Laboratory On the Science and Technology of Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Kebin Yang
- National Forestry and Grassland Administration, Beijing Key Open Laboratory On the Science and Technology of Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Sining Wang
- National Forestry and Grassland Administration, Beijing Key Open Laboratory On the Science and Technology of Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Yongfeng Lou
- Jiangxi Academy of Forestry, Nanchang, 330013, China
| | - Chenglei Zhu
- National Forestry and Grassland Administration, Beijing Key Open Laboratory On the Science and Technology of Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Zhimin Gao
- National Forestry and Grassland Administration, Beijing Key Open Laboratory On the Science and Technology of Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China.
| |
Collapse
|
35
|
|
36
|
Mnich E, Bjarnholt N, Eudes A, Harholt J, Holland C, Jørgensen B, Larsen FH, Liu M, Manat R, Meyer AS, Mikkelsen JD, Motawia MS, Muschiol J, Møller BL, Møller SR, Perzon A, Petersen BL, Ravn JL, Ulvskov P. Phenolic cross-links: building and de-constructing the plant cell wall. Nat Prod Rep 2020; 37:919-961. [PMID: 31971193 DOI: 10.1039/c9np00028c] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Covering: Up to 2019Phenolic cross-links and phenolic inter-unit linkages result from the oxidative coupling of two hydroxycinnamates or two molecules of tyrosine. Free dimers of hydroxycinnamates, lignans, play important roles in plant defence. Cross-linking of bound phenolics in the plant cell wall affects cell expansion, wall strength, digestibility, degradability, and pathogen resistance. Cross-links mediated by phenolic substituents are particularly important as they confer strength to the wall via the formation of new covalent bonds, and by excluding water from it. Four biopolymer classes are known to be involved in the formation of phenolic cross-links: lignins, extensins, glucuronoarabinoxylans, and side-chains of rhamnogalacturonan-I. Lignins and extensins are ubiquitous in streptophytes whereas aromatic substituents on xylan and pectic side-chains are commonly assumed to be particular features of Poales sensu lato and core Caryophyllales, respectively. Cross-linking of phenolic moieties proceeds via radical formation, is catalyzed by peroxidases and laccases, and involves monolignols, tyrosine in extensins, and ferulate esters on xylan and pectin. Ferulate substituents, on xylan in particular, are thought to be nucleation points for lignin polymerization and are, therefore, of paramount importance to wall architecture in grasses and for the development of technology for wall disassembly, e.g. for the use of grass biomass for production of 2nd generation biofuels. This review summarizes current knowledge on the intra- and extracellular acylation of polysaccharides, and inter- and intra-molecular cross-linking of different constituents. Enzyme mediated lignan in vitro synthesis for pharmaceutical uses are covered as are industrial exploitation of mutant and transgenic approaches to control cell wall cross-linking.
Collapse
Affiliation(s)
- Ewelina Mnich
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Simões MS, Carvalho GG, Ferreira SS, Hernandes-Lopes J, de Setta N, Cesarino I. Genome-wide characterization of the laccase gene family in Setaria viridis reveals members potentially involved in lignification. PLANTA 2020; 251:46. [PMID: 31915928 DOI: 10.1007/s00425-020-03337-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/02/2020] [Indexed: 05/23/2023]
Abstract
Five laccase genes are potentially involved in developmental lignification in the model C4 grass Setaria viridis and their different tissue specificities suggest subfunctionalization events. Plant laccases are copper-containing glycoproteins involved in monolignol oxidation and, therefore, their activity is essential for lignin polymerization. Although these enzymes belong to large multigene families with highly redundant members, not all of them are thought to be involved in lignin metabolism. Here, we report on the genome-wide characterization of the laccase gene family in the model C4 grass Setaria viridis and further identification of the members potentially involved in monolignol oxidation. A total of 52 genes encoding laccases (SvLAC1 to SvLAC52) were found in the genome of S. viridis, and phylogenetic analyses showed that these genes were heterogeneously distributed among the characteristic six subclades of the family and are under relaxed selective constraints. The observed expansion in the total number of genes in this species was mainly caused by tandem duplications within subclade V, which accounts for 68% of the whole family. Comparative phylogenetic analyses showed that the expansion of subclade V is specifically observed for the Paniceae tribe within the Panicoideae subfamily in grasses. Five SvLAC genes (SvLAC9, SvLAC13, SvLAC15, SvLAC50, and SvLAC52) fulfilled the criteria established to identify lignin-related candidates: (1) phylogenetic proximity to previously characterized lignin-related laccases from other species, (2) similar expression pattern to that observed for lignin biosynthetic genes in the S. viridis elongating internode, and (3) high expression in S. viridis tissues undergoing active lignification. In addition, in situ hybridization experiments not only confirmed that these selected SvLAC genes were expressed in lignifying cells, but also that their expression showed different tissue specificities, suggesting subfunctionalization events within the family. These five laccase genes are strong candidates to be involved in lignin polymerization in S. viridis and might be good targets for lignin bioengineering strategies.
Collapse
Affiliation(s)
- Marcella Siqueira Simões
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua Do Matão, 277, São Paulo, 05508-090, Brazil
| | - Gabriel Garon Carvalho
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua Do Matão, 277, São Paulo, 05508-090, Brazil
| | - Sávio Siqueira Ferreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua Do Matão, 277, São Paulo, 05508-090, Brazil
| | - José Hernandes-Lopes
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua Do Matão, 277, São Paulo, 05508-090, Brazil
| | - Nathalia de Setta
- Centro de Ciências Naturais E Humanas, Universidade Federal Do ABC, São Bernardo do Campo, São Paulo, 09606-070, Brazil
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua Do Matão, 277, São Paulo, 05508-090, Brazil.
| |
Collapse
|
38
|
He F, Machemer-Noonan K, Golfier P, Unda F, Dechert J, Zhang W, Hoffmann N, Samuels L, Mansfield SD, Rausch T, Wolf S. The in vivo impact of MsLAC1, a Miscanthus laccase isoform, on lignification and lignin composition contrasts with its in vitro substrate preference. BMC PLANT BIOLOGY 2019; 19:552. [PMID: 31830911 PMCID: PMC6909574 DOI: 10.1186/s12870-019-2174-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/28/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Understanding lignin biosynthesis and composition is of central importance for sustainable bioenergy and biomaterials production. Species of the genus Miscanthus have emerged as promising bioenergy crop due to their rapid growth and modest nutrient requirements. However, lignin polymerization in Miscanthus is poorly understood. It was previously shown that plant laccases are phenol oxidases that have multiple functions in plant, one of which is the polymerization of monolignols. Herein, we link a newly discovered Miscanthus laccase, MsLAC1, to cell wall lignification. Characterization of recombinant MsLAC1 and Arabidopsis transgenic plants expressing MsLAC1 were carried out to understand the function of MsLAC1 both in vitro and in vivo. RESULTS Using a comprehensive suite of molecular, biochemical and histochemical analyses, we show that MsLAC1 localizes to cell walls and identify Miscanthus transcription factors capable of regulating MsLAC1 expression. In addition, MsLAC1 complements the Arabidopsis lac4-2 lac17 mutant and recombinant MsLAC1 is able to oxidize monolignol in vitro. Transgenic Arabidopsis plants over-expressing MsLAC1 show higher G-lignin content, although recombinant MsLAC1 seemed to prefer sinapyl alcohol as substrate. CONCLUSIONS In summary, our results suggest that MsLAC1 is regulated by secondary cell wall MYB transcription factors and is involved in lignification of xylem fibers. This report identifies MsLAC1 as a promising breeding target in Miscanthus for biofuel and biomaterial applications.
Collapse
Affiliation(s)
- Feng He
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Katja Machemer-Noonan
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Philippe Golfier
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Faride Unda
- Department of Wood Science, University of British Columbia, Vancouver, Canada
| | - Johanna Dechert
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Wan Zhang
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Natalie Hoffmann
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Lacey Samuels
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, Canada
| | - Thomas Rausch
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Sebastian Wolf
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
39
|
Wang Q, Li G, Zheng K, Zhu X, Ma J, Wang D, Tang K, Feng X, Leng J, Yu H, Yang S, Feng X. The Soybean Laccase Gene Family: Evolution and Possible Roles in Plant Defense and Stem Strength Selection. Genes (Basel) 2019; 10:E701. [PMID: 31514462 PMCID: PMC6770974 DOI: 10.3390/genes10090701] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/18/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
Laccase is a widely used industrial oxidase for food processing, dye synthesis, paper making, and pollution remediation. At present, laccases used by industries come mainly from fungi. Plants contain numerous genes encoding laccase enzymes that show properties which are distinct from that of the fungal laccases. These plant-specific laccases may have better potential for industrial purposes. The aim of this work was to conduct a genome-wide search for the soybean laccase genes and analyze their characteristics and specific functions. A total of 93 putative laccase genes (GmLac) were identified from the soybean genome. All 93 GmLac enzymes contain three typical Cu-oxidase domains, and they were classified into five groups based on phylogenetic analysis. Although adjacent members on the tree showed highly similar exon/intron organization and motif composition, there were differences among the members within a class for both conserved and differentiated functions. Based on the expression patterns, some members of laccase were expressed in specific tissues/organs, while some exhibited a constitutive expression pattern. Analysis of the transcriptome revealed that some laccase genes might be involved in providing resistance to oomycetes. Analysis of the selective pressures acting on the laccase gene family in the process of soybean domestication revealed that 10 genes could have been under artificial selection during the domestication process. Four of these genes may have contributed to the transition of the soft and thin stem of wild soybean species into strong, thick, and erect stems of the cultivated soybean species. Our study provides a foundation for future functional studies of the soybean laccase gene family.
Collapse
Affiliation(s)
- Quan Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
- School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guang Li
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
- School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kaijie Zheng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Xiaobin Zhu
- School of Life Science, Jilin Agricultural University, Changchun 130118, China.
| | - Jingjing Ma
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
- School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dongmei Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
- School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kuanqiang Tang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
- School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xingxing Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
- School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiantian Leng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Hui Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
40
|
Genome-Wide Identification of the LAC Gene Family and Its Expression Analysis Under Stress in Brassica napus. Molecules 2019; 24:molecules24101985. [PMID: 31126120 PMCID: PMC6571847 DOI: 10.3390/molecules24101985] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 12/22/2022] Open
Abstract
Lignin is an important biological polymer in plants that is necessary for plant secondary cell wall ontogenesis. The laccase (LAC) gene family catalyzes lignification and has been suggested to play a vital role in the plant kingdom. In this study, we identified 45 LAC genes from the Brassica napus genome (BnLACs), 25 LAC genes from the Brassica rapa genome (BrLACs) and 8 LAC genes from the Brassica oleracea genome (BoLACs). These LAC genes could be divided into five groups in a cladogram and members in same group had similar structures and conserved motifs. All BnLACs contained hormone- and stress- related elements determined by cis-element analysis. The expression of BnLACs was relatively higher in the root, seed coat and stem than in other tissues. Furthermore, BnLAC4 and its predicted downstream genes showed earlier expression in the silique pericarps of short silique lines than long silique lines. Three miRNAs (miR397a, miR397b and miR6034) target 11 BnLACs were also predicted. The expression changes of BnLACs under series of stresses were further investigated by RNA sequencing (RNA-seq) and quantitative real-time polymerase chain reaction (qRT-PCR). The study will give a deeper understanding of the LAC gene family evolution and functions in B. napus.
Collapse
|
41
|
Zhang Y, Wu L, Wang X, Chen B, Zhao J, Cui J, Li Z, Yang J, Wu L, Wu J, Zhang G, Ma Z. The cotton laccase gene GhLAC15 enhances Verticillium wilt resistance via an increase in defence-induced lignification and lignin components in the cell walls of plants. MOLECULAR PLANT PATHOLOGY 2019; 20:309-322. [PMID: 30267563 PMCID: PMC6637971 DOI: 10.1111/mpp.12755] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Verticillium dahliae is a phytopathogenic fungal pathogen that causes vascular wilt diseases responsible for considerable decreases in cotton yields. The lignification of cell wall appositions is a conserved basal defence mechanism in the plant innate immune response. However, the function of laccase in defence-induced lignification has not been described. Screening of an SSH library of a resistant cotton cultivar, Jimian20, inoculated with V. dahliae revealed a laccase gene that was strongly induced by the pathogen. This gene was phylogenetically related to AtLAC15 and contained domains conserved by laccases; therefore, we named it GhLAC15. Quantitative reverse transcription-polymerase chain reaction indicated that GhLAC15 maintained higher expression levels in tolerant than in susceptible cultivars. Overexpression of GhLAC15 enhanced cell wall lignification, resulting in increased total lignin, G monolignol and G/S ratio, which significantly improved the Verticillium wilt resistance of transgenic Arabidopsis. In addition, the levels of arabinose and xylose were higher in transgenic plants than in wild-type plants, which resulted in transgenic Arabidopsis plants being less easily hydrolysed. Furthermore, suppression of the transcriptional level of GhLAC15 resulted in an increase in susceptibility in cotton. The content of monolignol and the G/S ratio were lower in silenced cotton plants, which led to resistant cotton cv. Jimian20 becoming susceptible. These results demonstrate that GhLAC15 enhances Verticillium wilt resistance via an increase in defence-induced lignification and arabinose and xylose accumulation in the cell wall of Gossypium hirsutum. This study broadens our knowledge of defence-induced lignification and cell wall modifications as defence mechanisms against V. dahliae.
Collapse
Affiliation(s)
- Yan Zhang
- North China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Lizhu Wu
- North China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Xingfen Wang
- North China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Bin Chen
- North China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Jing Zhao
- North China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Jing Cui
- North China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Zhikun Li
- North China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Jun Yang
- North China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Liqiang Wu
- North China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Jinhua Wu
- North China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Guiyin Zhang
- North China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Zhiying Ma
- North China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| |
Collapse
|
42
|
Xu X, Zhou Y, Wang B, Ding L, Wang Y, Luo L, Zhang Y, Kong W. Genome-wide identification and characterization of laccase gene family in Citrus sinensis. Gene 2019; 689:114-123. [DOI: 10.1016/j.gene.2018.12.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/26/2018] [Accepted: 12/12/2018] [Indexed: 11/16/2022]
|
43
|
Cheng X, Li G, Ma C, Abdullah M, Zhang J, Zhao H, Jin Q, Cai Y, Lin Y. Comprehensive genome-wide analysis of the pear (Pyrus bretschneideri) laccase gene (PbLAC) family and functional identification of PbLAC1 involved in lignin biosynthesis. PLoS One 2019; 14:e0210892. [PMID: 30753186 PMCID: PMC6372139 DOI: 10.1371/journal.pone.0210892] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/03/2019] [Indexed: 11/19/2022] Open
Abstract
The content and size of stone cell clusters affects the quality of pear fruit, and monolignol polymerization and deposition in the cell walls constitute a required step for stone cell formation. Laccase (LAC) is the key enzyme responsible for the polymerization of monolignols. However, there are no reports on the LAC family in pear (Pyrus bretschneideri), and the identity of the members responsible for lignin synthesis has not been clarified. Here, 41 LACs were identified in the whole genome of pear. All Pyrus bretschneideri LACs (PbLACs) were distributed on 13 chromosomes and divided into four phylogenetic groups (I-IV). In addition, 16 segmental duplication events were found, implying that segmental duplication was a primary reason for the expansion of the PbLAC family. LACs from the genomes of three Rosaceae species (Prunus mummer, Prunus persica, and Fragaria vesca) were also identified, and an interspecies collinearity analysis was performed. The phylogenetic analysis, sequence alignments and spatiotemporal expression pattern analysis suggested that PbLAC1, 5, 6, 29, 36 and 38 were likely associated with lignin synthesis and stone cell formation in fruit. The two target genes of Pyr-miR1890 (a microRNA identified from pear fruit that is associated with lignin and stone cell accumulation), PbLAC1 and PbLAC14, were selected for genetic transformation. Interfamily transfer of PbLAC1 into Arabidopsis resulted in a significant increase (approximately 17%) in the lignin content and thicker cell walls in interfascicular fibre and xylem cells, which demonstrated that PbLAC1 is involved in lignin biosynthesis and cell wall development. However, the lignin content and cell wall thickness were not changed significantly in the PbLAC14-overexpressing transgenic Arabidopsis plants. This study revealed the function of PbLAC1 in lignin synthesis and provides important insights into the characteristics and evolution of the PbLAC family.
Collapse
Affiliation(s)
- Xi Cheng
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Guohui Li
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Chenhui Ma
- School of Life Science, Anhui Agricultural University, Hefei, China
| | | | - Jinyun Zhang
- School of Life Science, Anhui Agricultural University, Hefei, China
- Horticultural Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Hai Zhao
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Qing Jin
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Yongping Cai
- School of Life Science, Anhui Agricultural University, Hefei, China
- * E-mail: (YC); (YL)
| | - Yi Lin
- School of Life Science, Anhui Agricultural University, Hefei, China
- * E-mail: (YC); (YL)
| |
Collapse
|
44
|
Le Bris P, Wang Y, Barbereau C, Antelme S, Cézard L, Legée F, D’Orlando A, Dalmais M, Bendahmane A, Schuetz M, Samuels L, Lapierre C, Sibout R. Inactivation of LACCASE8 and LACCASE5 genes in Brachypodium distachyon leads to severe decrease in lignin content and high increase in saccharification yield without impacting plant integrity. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:181. [PMID: 31338123 PMCID: PMC6628504 DOI: 10.1186/s13068-019-1525-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/07/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Dedicated lignocellulosic feedstock from grass crops for biofuel production is extensively increasing. However, the access to fermentable cell wall sugars by carbohydrate degrading enzymes is impeded by lignins. These complex polymers are made from reactive oxidized monolignols in the cell wall. Little is known about the laccase-mediated oxidation of monolignols in grasses, and inactivation of the monolignol polymerization mechanism might be a strategy to increase the yield of fermentable sugars. RESULTS LACCASE5 and LACCASE8 are inactivated in a Brachypodium double mutant. Relative to the wild type, the lignin content of extract-free mature culms is decreased by 20-30% and the saccharification yield is increased by 140%. Release of ferulic acid by mild alkaline hydrolysis is also 2.5-fold higher. Interfascicular fibers are mainly affected while integrity of vascular bundles is not impaired. Interestingly, there is no drastic impact of the double mutation on plant growth. CONCLUSION This work shows that two Brachypodium laccases with clearly identified orthologs in crops are involved in lignification of this model plant. Lignification in interfascicular fibers and metaxylem cells is partly uncoupled in Brachypodium. Orthologs of these laccases are promising targets for improving grass feedstock for cellulosic biofuel production.
Collapse
Affiliation(s)
- Philippe Le Bris
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Yin Wang
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Clément Barbereau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Sébastien Antelme
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Laurent Cézard
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Frédéric Legée
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Angelina D’Orlando
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, 44300 Nantes, France
| | - Marion Dalmais
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Mathias Schuetz
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Lacey Samuels
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Catherine Lapierre
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Richard Sibout
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, 44300 Nantes, France
| |
Collapse
|
45
|
Ogita S, Nomura T, Kato Y, Uehara-Yamaguchi Y, Inoue K, Yoshida T, Sakurai T, Shinozaki K, Mochida K. Transcriptional alterations during proliferation and lignification in Phyllostachys nigra cells. Sci Rep 2018; 8:11347. [PMID: 30054534 PMCID: PMC6063902 DOI: 10.1038/s41598-018-29645-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/16/2018] [Indexed: 01/24/2023] Open
Abstract
Highly-lignified culms of bamboo show distinctive anatomical and mechanical properties compared with the culms of other grass species. A cell culture system for Phyllostachys nigra has enabled investigating the alterations in cellular states associated with secondary cell wall formation during its proliferation and lignification in woody bamboos. To reveal transcriptional changes related to lignification in bamboo, we analyzed transcriptome in P. nigra cells treated with the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) and the synthetic cytokinin benzylaminopurine (BA) by RNA-seq analysis. We found that some genes putatively involved in cell wall biogenesis and cell division were up-regulated in response to the 2,4-D treatment, and the induction of lignification by the BA treatment was correlated with up-regulation of genes involved in the shikimate pathway. We also found that genes encoding MYB transcription factors (TFs) show correlated expression patterns with those encoding cinnamyl alcohol dehydrogenase (CAD), suggesting that MYB TFs presumably regulate secondary cell wall formation in the bamboo cells. These findings suggest that cytokinin signaling may regulate lignification in P. nigra cells through coordinated transcriptional regulation and metabolic alterations. Our results have also produced a useful resource for better understanding of secondary cell wall formation in bamboo plants.
Collapse
Affiliation(s)
- Shinjiro Ogita
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatuka, Shobara, Hiroshima, 727-0023, Japan. .,Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| | - Taiji Nomura
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yasuo Kato
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yukiko Uehara-Yamaguchi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Komaki Inoue
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Takuhiro Yoshida
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Tetsuya Sakurai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.,Interdisciplinary Science Unit, Multidisciplinary Science Cluster, Research and Education Faculty, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Keiichi Mochida
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan. .,RIKEN, Baton Zone Program, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan. .,Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046, Japan.
| |
Collapse
|
46
|
Meents MJ, Watanabe Y, Samuels AL. The cell biology of secondary cell wall biosynthesis. ANNALS OF BOTANY 2018; 121:1107-1125. [PMID: 29415210 PMCID: PMC5946954 DOI: 10.1093/aob/mcy005] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/16/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Secondary cell walls (SCWs) form the architecture of terrestrial plant biomass. They reinforce tracheary elements and strengthen fibres to permit upright growth and the formation of forest canopies. The cells that synthesize a strong, thick SCW around their protoplast must undergo a dramatic commitment to cellulose, hemicellulose and lignin production. SCOPE This review puts SCW biosynthesis in a cellular context, with the aim of integrating molecular biology and biochemistry with plant cell biology. While SCWs are deposited in diverse tissue and cellular contexts including in sclerenchyma (fibres and sclereids), phloem (fibres) and xylem (tracheids, fibres and vessels), the focus of this review reflects the fact that protoxylem tracheary elements have proven to be the most amenable experimental system in which to study the cell biology of SCWs. CONCLUSIONS SCW biosynthesis requires the co-ordination of plasma membrane cellulose synthases, hemicellulose production in the Golgi and lignin polymer deposition in the apoplast. At the plasma membrane where the SCW is deposited under the guidance of cortical microtubules, there is a high density of SCW cellulose synthase complexes producing cellulose microfibrils consisting of 18-24 glucan chains. These microfibrils are extruded into a cell wall matrix rich in SCW-specific hemicelluloses, typically xylan and mannan. The biosynthesis of eudicot SCW glucuronoxylan is taken as an example to illustrate the emerging importance of protein-protein complexes in the Golgi. From the trans-Golgi, trafficking of vesicles carrying hemicelluloses, cellulose synthases and oxidative enzymes is crucial for exocytosis of SCW components at the microtubule-rich cell membrane domains, producing characteristic SCW patterns. The final step of SCW biosynthesis is lignification, with monolignols secreted by the lignifying cell and, in some cases, by neighbouring cells as well. Oxidative enzymes such as laccases and peroxidases, embedded in the polysaccharide cell wall matrix, determine where lignin is deposited.
Collapse
Affiliation(s)
- Miranda J Meents
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Yoichiro Watanabe
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
47
|
Liu Q, Luo L, Zheng L. Lignins: Biosynthesis and Biological Functions in Plants. Int J Mol Sci 2018; 19:ijms19020335. [PMID: 29364145 PMCID: PMC5855557 DOI: 10.3390/ijms19020335] [Citation(s) in RCA: 486] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 11/21/2022] Open
Abstract
Lignin is one of the main components of plant cell wall and it is a natural phenolic polymer with high molecular weight, complex composition and structure. Lignin biosynthesis extensively contributes to plant growth, tissue/organ development, lodging resistance and the responses to a variety of biotic and abiotic stresses. In the present review, we systematically introduce the biosynthesis of lignin and its regulation by genetic modification and summarize the main biological functions of lignin in plants and their applications. We hope this review will give an in-depth understanding of the important roles of lignin biosynthesis in various plants’ biological processes and provide a theoretical basis for the genetic improvement of lignin content and composition in energy plants and crops.
Collapse
Affiliation(s)
- Qingquan Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Le Luo
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
48
|
Kouzai Y, Kimura M, Watanabe M, Kusunoki K, Osaka D, Suzuki T, Matsui H, Yamamoto M, Ichinose Y, Toyoda K, Matsuura T, Mori IC, Hirayama T, Minami E, Nishizawa Y, Inoue K, Onda Y, Mochida K, Noutoshi Y. Salicylic acid-dependent immunity contributes to resistance against Rhizoctonia solani, a necrotrophic fungal agent of sheath blight, in rice and Brachypodium distachyon. THE NEW PHYTOLOGIST 2018; 217:771-783. [PMID: 29048113 PMCID: PMC5765516 DOI: 10.1111/nph.14849] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/13/2017] [Indexed: 05/20/2023]
Abstract
Rhizoctonia solani is a soil-borne fungus causing sheath blight. In consistent with its necrotrophic life style, no rice cultivars fully resistant to R. solani are known, and agrochemical plant defense activators used for rice blast, which upregulate a phytohormonal salicylic acid (SA)-dependent pathway, are ineffective towards this pathogen. As a result of the unavailability of genetics, the infection process of R. solani remains unclear. We used the model monocotyledonous plants Brachypodium distachyon and rice, and evaluated the effects of phytohormone-induced resistance to R. solani by pharmacological, genetic and microscopic approaches to understand fungal pathogenicity. Pretreatment with SA, but not with plant defense activators used in agriculture, can unexpectedly induce sheath blight resistance in plants. SA treatment inhibits the advancement of R. solani to the point in the infection process in which fungal biomass shows remarkable expansion and specific infection machinery is developed. The involvement of SA in R. solani resistance is demonstrated by SA-deficient NahG transgenic rice and the sheath blight-resistant B. distachyon accessions, Bd3-1 and Gaz-4, which activate SA-dependent signaling on inoculation. Our findings suggest a hemi-biotrophic nature of R. solani, which can be targeted by SA-dependent plant immunity. Furthermore, B. distachyon provides a genetic resource that can confer disease resistance against R. solani to plants.
Collapse
Affiliation(s)
- Yusuke Kouzai
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, 700-8530, Japan
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, 230-0045, Japan
| | - Mamiko Kimura
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, 700-8530, Japan
| | - Megumi Watanabe
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, 700-8530, Japan
| | - Kazuki Kusunoki
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, 700-8530, Japan
| | - Daiki Osaka
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, 700-8530, Japan
| | - Tomoko Suzuki
- Department of Science, Japan Women's University, Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Hidenori Matsui
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, 700-8530, Japan
| | - Mikihiro Yamamoto
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, 700-8530, Japan
| | - Yuki Ichinose
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, 700-8530, Japan
| | - Kazuhiro Toyoda
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, 700-8530, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, 710-0046, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, 710-0046, Japan
| | - Takashi Hirayama
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, 710-0046, Japan
| | - Eiichi Minami
- Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8602, Japan
| | - Yoko Nishizawa
- Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8602, Japan
| | - Komaki Inoue
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, 230-0045, Japan
| | - Yoshihiko Onda
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, 230-0045, Japan
| | - Keiichi Mochida
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, 230-0045, Japan
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, 710-0046, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, 244-0813, Japan
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, 700-8530, Japan
| |
Collapse
|
49
|
Sibout R, Proost S, Hansen BO, Vaid N, Giorgi FM, Ho-Yue-Kuang S, Legée F, Cézart L, Bouchabké-Coussa O, Soulhat C, Provart N, Pasha A, Le Bris P, Roujol D, Hofte H, Jamet E, Lapierre C, Persson S, Mutwil M. Expression atlas and comparative coexpression network analyses reveal important genes involved in the formation of lignified cell wall in Brachypodium distachyon. THE NEW PHYTOLOGIST 2017; 215:1009-1025. [PMID: 28617955 DOI: 10.1111/nph.14635] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/26/2017] [Indexed: 05/08/2023]
Abstract
While Brachypodium distachyon (Brachypodium) is an emerging model for grasses, no expression atlas or gene coexpression network is available. Such tools are of high importance to provide insights into the function of Brachypodium genes. We present a detailed Brachypodium expression atlas, capturing gene expression in its major organs at different developmental stages. The data were integrated into a large-scale coexpression database ( www.gene2function.de), enabling identification of duplicated pathways and conserved processes across 10 plant species, thus allowing genome-wide inference of gene function. We highlight the importance of the atlas and the platform through the identification of duplicated cell wall modules, and show that a lignin biosynthesis module is conserved across angiosperms. We identified and functionally characterised a putative ferulate 5-hydroxylase gene through overexpression of it in Brachypodium, which resulted in an increase in lignin syringyl units and reduced lignin content of mature stems, and led to improved saccharification of the stem biomass. Our Brachypodium expression atlas thus provides a powerful resource to reveal functionally related genes, which may advance our understanding of important biological processes in grasses.
Collapse
Affiliation(s)
- Richard Sibout
- Institut Jean-Pierre Bourgin, UMR 1318, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles Cedex, 78026, France
| | - Sebastian Proost
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam, 14476, Germany
| | - Bjoern Oest Hansen
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam, 14476, Germany
| | - Neha Vaid
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam, 14476, Germany
| | - Federico M Giorgi
- Cancer Research UK, Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Severine Ho-Yue-Kuang
- Institut Jean-Pierre Bourgin, UMR 1318, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles Cedex, 78026, France
| | - Frédéric Legée
- Institut Jean-Pierre Bourgin, UMR 1318, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles Cedex, 78026, France
| | - Laurent Cézart
- Institut Jean-Pierre Bourgin, UMR 1318, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles Cedex, 78026, France
| | - Oumaya Bouchabké-Coussa
- Institut Jean-Pierre Bourgin, UMR 1318, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles Cedex, 78026, France
| | - Camille Soulhat
- Institut Jean-Pierre Bourgin, UMR 1318, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles Cedex, 78026, France
| | - Nicholas Provart
- Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Asher Pasha
- Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Philippe Le Bris
- Institut Jean-Pierre Bourgin, UMR 1318, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles Cedex, 78026, France
| | - David Roujol
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Herman Hofte
- Institut Jean-Pierre Bourgin, UMR 1318, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles Cedex, 78026, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Catherine Lapierre
- Institut Jean-Pierre Bourgin, UMR 1318, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles Cedex, 78026, France
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, Vic., 3010, Australia
| | - Marek Mutwil
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam, 14476, Germany
| |
Collapse
|
50
|
Duruflé H, Clemente HS, Balliau T, Zivy M, Dunand C, Jamet E. Cell wall proteome analysis of Arabidopsis thaliana
mature stems. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600449] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/18/2017] [Accepted: 01/31/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Harold Duruflé
- Laboratoire de Recherche en Sciences Végétales; CNRS, UPS; Université de Toulouse; Auzeville, Castanet Tolosan France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales; CNRS, UPS; Université de Toulouse; Auzeville, Castanet Tolosan France
| | - Thierry Balliau
- PAPPSO; GQE - Le Moulon; INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay; Gif-sur-Yvette France
| | - Michel Zivy
- PAPPSO; GQE - Le Moulon; INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay; Gif-sur-Yvette France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales; CNRS, UPS; Université de Toulouse; Auzeville, Castanet Tolosan France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales; CNRS, UPS; Université de Toulouse; Auzeville, Castanet Tolosan France
| |
Collapse
|