1
|
Silva LM, Pereira L, Kaack L, Guan X, Pfaff J, Trabi CL, Jansen S. The potential link between gas diffusion and embolism spread in angiosperm xylem: Evidence from flow-centrifuge experiments and modelling. PLANT, CELL & ENVIRONMENT 2024; 47:4977-4991. [PMID: 39119783 DOI: 10.1111/pce.15084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/19/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
Understanding xylem embolism formation is challenging due to dynamic changes and multiphase interactions in conduits. Here, we hypothesise that embolism spread involves gas diffusion in xylem, and is affected by time. We measured hydraulic conductivity (Kh) in flow-centrifuge experiments over 1 h at a given pressure and temperature for stem samples of three angiosperm species. Temporal changes in Kh at 5, 22, and 35°C, and at various pressures were compared to modelled gas concentration changes in a recently embolised vessel in the centre of a centrifuge sample. Temporal changes in Kh were logarithmic and species-specific. Maximum relative increases of Kh between 6% and 40% happened at 22°C for low centrifugal speed (<3250 RPM), while maximum decreases between 41% and 61% occurred at higher speeds. These reductions in Kh were experimentally shown to be associated with a temporal increase of embolism at the centre of centrifuge samples, which was likely associated with gas concentration increases in recently embolized vessels. Although embolism is mostly pressure-driven, our experimental and modelled data indicate that time, conduit characteristics, and temperature are involved due to their potential role in gas diffusion. Gas diffusion, however, does not seem to cover the entire process of embolism spread.
Collapse
Affiliation(s)
| | | | - Lucian Kaack
- Institute of Botany, Ulm University, Ulm, Germany
- Botanical Garden of Ulm University, Hans-Krebs-Weg, Ulm, Germany
| | - Xinyi Guan
- Institute of Botany, Ulm University, Ulm, Germany
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Jonas Pfaff
- Institute of Botany, Ulm University, Ulm, Germany
| | - Christophe L Trabi
- Institute of Botany, Ulm University, Ulm, Germany
- Core Facility Confocal and Multiphoton Microscopy, Ulm University, Ulm, Germany
| | | |
Collapse
|
2
|
Tang W, Liu X, Liang X, Liu H, Yu K, He P, McAdam S, Zhao H, Ye Q. Hydraulic vulnerability difference between branches and roots increases with environmental aridity. Oecologia 2024; 205:177-190. [PMID: 38772916 DOI: 10.1007/s00442-024-05562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/01/2024] [Indexed: 05/23/2024]
Abstract
The vulnerability of plant xylem to embolism can be described as the water potential at which xylem conductivity is lost by 50% (P50). According to the traditional hypothesis of hydraulic vulnerability segmentation, the difference in vulnerability to embolism between branches and roots is positive (P50 root-branch > 0). It is not clear whether this occurs broadly across species or how segmentation might vary across aridity gradients. We compiled hydraulic and anatomical datasets from branches and roots across 104 woody species (including new measurements from 10 species) in four biomes to investigate the relationships between P50 root-branch and environmental factors associated with aridity. We found a positive P50 root-branch relationship across species, and evidence that P50 root-branch increases with aridity. Branch xylem hydraulic conductivity transitioned from more efficient (e.g., wider conduit, higher hydraulic conductivity) to safer (e.g., narrower conduit, more negative P50) in response to the increase of aridity, while root xylem hydraulic conductivity remained unchanged across aridity gradients. Our results demonstrate that the hydraulic vulnerability difference between branches and roots is more positive in species from arid regions, largely driven by modifications to branch traits.
Collapse
Affiliation(s)
- Weize Tang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaorong Liu
- Sichuan University of Arts and Science, Tashi Road 519, Dazhou, 635000, China
| | - Xingyun Liang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Hui Liu
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Kailiang Yu
- High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA
| | - Pengcheng He
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Scott McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Han Zhao
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Qing Ye
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou, 510650, China.
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
3
|
Pereira L, Kaack L, Guan X, Silva LDM, Miranda MT, Pires GS, Ribeiro RV, Schenk HJ, Jansen S. Angiosperms follow a convex trade-off to optimize hydraulic safety and efficiency. THE NEW PHYTOLOGIST 2023; 240:1788-1801. [PMID: 37691289 DOI: 10.1111/nph.19253] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023]
Abstract
Intervessel pits are considered to function as valves that avoid embolism spreading and optimize efficient transport of xylem sap across neighbouring vessels. Hydraulic transport between vessels would therefore follow a safety-efficiency trade-off, which is directly related to the total intervessel pit area (Ap ), inversely related to the pit membrane thickness (TPM ) and driven by a pressure difference. To test this hypothesis, we modelled the relative transport rate of gas (ka ) and water (Q) at the intervessel pit level for 23 angiosperm species and correlated these parameters with the water potential at which 50% of embolism occurs (Ψ50 ). We also measured ka for 10 species using pneumatic measurements. The pressure difference across adjacent vessels and estimated values of ka and Q were related to Ψ50 , following a convex safety-efficiency trade-off based on modelled and experimental data. Minor changes in TPM and Ap exponentially affected the pressure difference and flow, respectively. Our results provide clear evidence that a xylem safety-efficiency trade-off is not linear, but convex due to flow across intervessel pit membranes, which represent mesoporous media within microporous conduits. Moreover, the convex nature of long-distance xylem transport may contribute to an adjustable fluid balance of plants, depending on environmental conditions.
Collapse
Affiliation(s)
- Luciano Pereira
- Institute of Botany, Ulm University, 89081, Ulm, Albert-Einstein-Allee 11, Germany
| | - Lucian Kaack
- Institute of Botany, Ulm University, 89081, Ulm, Albert-Einstein-Allee 11, Germany
- Botanical Garden of Ulm University, 89081, Ulm, Hans-Krebs-Weg, Germany
| | - Xinyi Guan
- Institute of Botany, Ulm University, 89081, Ulm, Albert-Einstein-Allee 11, Germany
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, 530004, Guangxi, Nanning, China
| | | | - Marcela T Miranda
- Laboratory of Plant Physiology 'Coaracy M. Franco', Center R&D in Ecophysiology and Biophysics, Agronomic Institute (IAC), PO Box 28, Campinas, 13012-970, SP, Brazil
| | - Gabriel S Pires
- Department of Plant Biology, Laboratory of Crop Physiology, Institute of Biology, University of Campinas (UNICAMP), 13083-970, SP, Campinas, PO Box 6109, Brazil
| | - Rafael V Ribeiro
- Department of Plant Biology, Laboratory of Crop Physiology, Institute of Biology, University of Campinas (UNICAMP), 13083-970, SP, Campinas, PO Box 6109, Brazil
| | - H Jochen Schenk
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd, Fullerton, 92831-3599, CA, USA
| | - Steven Jansen
- Institute of Botany, Ulm University, 89081, Ulm, Albert-Einstein-Allee 11, Germany
| |
Collapse
|
4
|
Lens F, Gleason SM, Bortolami G, Brodersen C, Delzon S, Jansen S. Functional xylem characteristics associated with drought-induced embolism in angiosperms. THE NEW PHYTOLOGIST 2022; 236:2019-2036. [PMID: 36039697 DOI: 10.1111/nph.18447] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Hydraulic failure resulting from drought-induced embolism in the xylem of plants is a key determinant of reduced productivity and mortality. Methods to assess this vulnerability are difficult to achieve at scale, leading to alternative metrics and correlations with more easily measured traits. These efforts have led to the longstanding and pervasive assumed mechanistic link between vessel diameter and vulnerability in angiosperms. However, there are at least two problems with this assumption that requires critical re-evaluation: (1) our current understanding of drought-induced embolism does not provide a mechanistic explanation why increased vessel width should lead to greater vulnerability, and (2) the most recent advancements in nanoscale embolism processes suggest that vessel diameter is not a direct driver. Here, we review data from physiological and comparative wood anatomy studies, highlighting the potential anatomical and physicochemical drivers of embolism formation and spread. We then put forward key knowledge gaps, emphasising what is known, unknown and speculation. A meaningful evaluation of the diameter-vulnerability link will require a better mechanistic understanding of the biophysical processes at the nanoscale level that determine embolism formation and spread, which will in turn lead to more accurate predictions of how water transport in plants is affected by drought.
Collapse
Affiliation(s)
- Frederic Lens
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, the Netherlands
- Leiden University, Institute of Biology Leiden, Plant Sciences, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Sean M Gleason
- Water Management and Systems Research Unit, United States Department of Agriculture, Agricultural Research Service, Fort Collins, CO, 80526, USA
| | - Giovanni Bortolami
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, the Netherlands
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Sylvain Delzon
- University of Bordeaux, INRAE, BIOGECO, 33615, Pessac, France
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| |
Collapse
|
5
|
Guan X, Pereira L, McAdam SAM, Cao KF, Jansen S. No gas source, no problem: Proximity to pre-existing embolism and segmentation affect embolism spreading in angiosperm xylem by gas diffusion. PLANT, CELL & ENVIRONMENT 2021; 44:1329-1345. [PMID: 33529382 DOI: 10.1111/pce.14016] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 05/12/2023]
Abstract
Embolism spreading in dehydrating angiosperm xylem is driven by gas movement between embolized and sap-filled conduits. Here we examine how the proximity to pre-existing embolism and hydraulic segmentation affect embolism propagation. Based on the optical method, we compare xylem embolism resistance between detached leaves and leaves attached to branches, and between intact leaves and leaves with cut minor veins, for six species. Embolism resistance of detached leaves was significantly lower than that of leaves attached to stems, except for two species, with all vessels ending in their petioles. Cutting of minor veins showed limited embolism spreading in minor veins near the cuts prior to major veins. Moreover, despite strong agreement in the overall embolism resistance of detached leaves between the optical and pneumatic method, minor differences were observed during early stages of embolism formation. We conclude that embolism resistance may represent a relative trait due to an open-xylem artefact, with embolism spreading possibly affected by the proximity and connectivity to pre-existing embolism as a gas source, while hydraulic segmentation prevents such artefact. Since embolism formation may not rely on a certain pressure difference threshold between functional and embolized conduits, we speculate that embolism is facilitated by pressure-driven gas diffusion across pit membranes.
Collapse
Affiliation(s)
- Xinyi Guan
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - Luciano Pereira
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
- Laboratory of Plant Physiology "Coaracy M. Franco", Center R&D in Ecophysiology and Biophysics, Agronomic Institute (IAC), Campinas, Brazil
- Laboratory of Crop Physiology, Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Scott A M McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Kun-Fang Cao
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| |
Collapse
|
6
|
Jansen S, Guan X, Kaack L, Trabi C, Miranda M, Ribeiro R, Pereira L. The Pneumatron estimates xylem embolism resistance in angiosperms based on gas diffusion kinetics: a mini-review. ACTA ACUST UNITED AC 2020. [DOI: 10.17660/actahortic.2020.1300.25] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Yin P, Meng F, Liu Q, An R, Cai J, Du G. A comparison of two centrifuge techniques for constructing vulnerability curves: insight into the 'open-vessel' artifact. PHYSIOLOGIA PLANTARUM 2019; 165:701-710. [PMID: 29602179 DOI: 10.1111/ppl.12738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/16/2018] [Accepted: 03/25/2018] [Indexed: 06/08/2023]
Abstract
A vulnerability curve (VC) describes the extent of xylem cavitation resistance. Centrifuges have been used to generate VCs for decades via static- and flow-centrifuge methods. Recently, the validity of the centrifuge techniques has been questioned. Researchers have hypothesized that the centrifuge techniques might yield unreliable VCs due to the open-vessel artifact. However, other researchers reject this hypothesis. The focus of the dispute is centered on whether exponential VCs are more reliable when the static-centrifuge method is used rather than the flow-centrifuge method. To further test the reliability of the centrifuge technique, two centrifuges were manufactured to simulate the static- and flow-centrifuge methods. VCs of three species with open vessels of known lengths were constructed using the two centrifuges. The results showed that both centrifuge techniques produced invalid VCs for Robinia because the water flow through stems under mild tension in centrifuges led to an increasing loss of water conductivity. In addition, the injection of water in the flow-centrifuge exacerbated the loss of water conductivity. However, both centrifuge techniques yielded reliable VCs for Prunus, regardless of the presence of open vessels in the tested samples. We conclude that centrifuge techniques can be used in species with open vessels only when the centrifuge produces a VC that matches the bench-dehydration VC.
Collapse
Affiliation(s)
- Pengxian Yin
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Feng Meng
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qing Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui An
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Cai
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guangyuan Du
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
8
|
Love DM, Sperry JS. In situ embolism induction reveals vessel refilling in a natural aspen stand. TREE PHYSIOLOGY 2018; 38:1006-1015. [PMID: 29509942 DOI: 10.1093/treephys/tpy007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
Little is known about the ability of trees to recover hydraulic conductance (k) within a growing season by regrowth or refilling of embolized conduits. Recovery of k lost to drought or other causes would prevent chronic reductions in gas exchange and productivity. To test recovery ability we conducted a 2-year experiment (2014-15) on a cohort of aspen ramets (Populus tremuloides, Michx.). Whole-tree k was measured from mid-June through September from sapflow (Q) and pre-dawn and mid-day xylem pressure. We induced embolism in the treatment group with high air pressure delivered by a split pressure chamber sealed around the main trunk. Successful treatments reduced k and Q by 50% or more without causing rapid desiccation. The majority of trees recovered following treatment, rising to control levels of k and Q between 12 and 17 days. Failure to recover was correlated with drier climate conditions. The growing-season recovery of k was attributed to refilling of embolized vessels, based on the absence of diameter growth. Pre-dawn xylem pressures during recovery were similar to the threshold needed to passively collapse emboli. Successful recovery during the 2-year study was consistent with no reduction in cumulative Q or canopy area in treatment vs controls. However, non-recovering trees in 2014 exhibited lower basal area growth at the start of the 2015 growing season, suggesting a linkage between recovery ability and productivity. This study provides evidence for the potential of trees to recover xylem function by refilling during the growing season.
Collapse
Affiliation(s)
- David M Love
- Department of Biology, University of Utah, 257 S 1400E, Salt Lake City, UT, USA
| | - John S Sperry
- Department of Biology, University of Utah, 257 S 1400E, Salt Lake City, UT, USA
| |
Collapse
|
9
|
Yin P, Cai J. New possible mechanisms of embolism formation when measuring vulnerability curves by air injection in a pressure sleeve. PLANT, CELL & ENVIRONMENT 2018; 41:1361-1368. [PMID: 29424925 DOI: 10.1111/pce.13163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 05/29/2023]
Abstract
Since 1988, researchers have exposed stems to positive pressures to displace water in vessels and measure the impact of applied pressure on hydraulic conductivity. The pressure-sleeve technique has been used in more than 60 publications to measure vulnerability curves (VCs), which are a measure of how water stress impacts the ability of plants to transport water because water stress induces embolism in vessels that blocks water flow. It is thought that the positive pressure in a sleeve required to induce 50% loss of conductivity (PLC), P50 , is the same magnitude as the tension that causes 50% PLC, T50 , where the tension can be induced by either bench-top dehydration or by a centrifuge technique. The unifying concept that P50 = T50 and that the entire VC is the same regardless of method is referred to as the air-seeding hypothesis. In the current study, we performed experiments to further test the air-seeding hypothesis in pressure sleeves and concluded that an "effervescence" mechanism caused embolism formation under positive pressure. This mechanism explains why VCs measured using positive pressure do not always match VCs obtained by other methods that induce water tension.
Collapse
Affiliation(s)
- Pengxian Yin
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jing Cai
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
10
|
Pivovaroff AL, Burlett R, Lavigne B, Cochard H, Santiago LS, Delzon S. Testing the 'microbubble effect' using the Cavitron technique to measure xylem water extraction curves. AOB PLANTS 2016; 8:plw011. [PMID: 26903487 PMCID: PMC4804203 DOI: 10.1093/aobpla/plw011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/05/2016] [Indexed: 05/20/2023]
Abstract
Plant resistance to xylem cavitation is a major drought adaptation trait and is essential to characterizing vulnerability to climate change. Cavitation resistance can be determined with vulnerability curves. In the past decade, new techniques have increased the ease and speed at which vulnerability curves are produced. However, these new techniques are also subject to new artefacts, especially as related to long-vesselled species. We tested the reliability of the 'flow rotor' centrifuge technique, the so-called Cavitron, and investigated one potential mechanism behind the open vessel artefact in centrifuge-based vulnerability curves: the microbubble effect. The microbubble effect hypothesizes that microbubbles introduced to open vessels, either through sample flushing or injection of solution, travel by buoyancy or mass flow towards the axis of rotation where they artefactually nucleate cavitation. To test the microbubble effect, we constructed vulnerability curves using three different rotor sizes for five species with varying maximum vessel length, as well as water extraction curves that are constructed without injection of solution into the rotor. We found that the Cavitron technique is robust to measure resistance to cavitation in tracheid-bearing and short-vesselled species, but not for long-vesselled ones. Moreover, our results support the microbubble effect hypothesis as the major cause for the open vessel artefact in long-vesselled species.
Collapse
Affiliation(s)
- Alexandria L Pivovaroff
- La Kretz Center for California Conservation Science, University of California Los Angeles, Los Angeles, CA 90095, USA Université de Bordeaux, UMR BIOGECO, 33405 Talence, France Department of Botany and Plant Sciences, University of California Riverside, 2150 Batchelor Hall, Riverside, CA 92521, USA
| | - Régis Burlett
- Université de Bordeaux, UMR BIOGECO, 33405 Talence, France
| | - Bruno Lavigne
- Université de Bordeaux, UMR BIOGECO, 33405 Talence, France
| | - Hervé Cochard
- INRA, UMR 547 PIAF, Université Clermont Auvergne, 63100 Clermont-Ferrand, France
| | - Louis S Santiago
- Department of Botany and Plant Sciences, University of California Riverside, 2150 Batchelor Hall, Riverside, CA 92521, USA
| | - Sylvain Delzon
- Université de Bordeaux, UMR BIOGECO, 33405 Talence, France INRA, UMR 1202 BIOGECO, 33612 Cestas, France
| |
Collapse
|
11
|
Wang Y, Liu J, Tyree MT. Stem Hydraulic Conductivity depends on the Pressure at Which It Is Measured and How This Dependence Can Be Used to Assess the Tempo of Bubble Pressurization in Recently Cavitated Vessels. PLANT PHYSIOLOGY 2015; 169:2597-607. [PMID: 26468516 PMCID: PMC4677890 DOI: 10.1104/pp.15.00875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/14/2015] [Indexed: 05/09/2023]
Abstract
Cavitation of water in xylem vessels followed by embolism formation has been authenticated for more than 40 years. Embolism formation involves the gradual buildup of bubble pressure (air) to atmospheric pressure as demanded by Henry's law of equilibrium between gaseous and liquid phases. However, the tempo of pressure increase has not been quantified. In this report, we show that the rate of pressurization of embolized vessels is controlled by both fast and slow kinetics, where both tempos are controlled by diffusion but over different spatial scales. The fast tempo involves a localized diffusion from endogenous sources: over a distance of about 0.05 mm from water-filled wood to the nearest embolized vessels; this process, in theory, should take <2 min. The slow tempo involves diffusion of air from exogenous sources (outside the stem). The latter diffusion process is slower because of the increased distance of diffusion of up to 4 mm. Radial diffusion models and experimental measurements both confirm that the average time constant is >17 h, with complete equilibrium requiring 1 to 2 d. The implications of these timescales for the standard methods of measuring percentage loss of hydraulic conductivity are discussed in theory and deserve more research in future.
Collapse
Affiliation(s)
- Yujie Wang
- College of Forestry, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jinyu Liu
- College of Forestry, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Melvin T Tyree
- College of Forestry, Northwest A & F University, Yangling, Shaanxi 712100, China
| |
Collapse
|