1
|
Saud S, Wang D, Fahad S, Javed T, Jaremko M, Abdelsalam NR, Ghareeb RY. The impact of chromium ion stress on plant growth, developmental physiology, and molecular regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:994785. [PMID: 36388512 PMCID: PMC9651928 DOI: 10.3389/fpls.2022.994785] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 05/27/2023]
Abstract
In recent years, heavy metals-induced soil pollution has increased due to the widespread usage of chromium (Cr) in chemical industries. The release of Cr into the environment has reached its peak causing hazardous environmental pollution. Heavy metal-induced soil pollution is one of the most important abiotic stress affecting the dynamic stages of plant growth and development. In severe cases, it can kill the plants and their derivatives and thereby pose a potential threat to human food safety. The chromium ion effect on plants varies and depends upon its severity range. It mainly impacts the numerous regular activities of the plant's life cycle, by hindering the germination of plant seeds, inhibiting the growth of hypocotyl and epicotyl parts of the plants, as well as damaging the chloroplast cell structures. In this review article, we tried to summarize the possible effects of chromium-induced stress on plant growth, developmental physiology, biochemistry, and molecular regulation and provided the important theoretical basis for selecting remedial plants in chromium-induced contaminated soils, breeding of low toxicity tolerant varieties, and analyzing the mechanism of plant resistance mechanisms in response to heavy metal stress.
Collapse
Affiliation(s)
- Shah Saud
- College of Life Sciences, Linyi University, Linyi, China
| | - Depeng Wang
- College of Life Sciences, Linyi University, Linyi, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering, Smart-Health Initiative and Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Rehab Y. Ghareeb
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, New Borg El Arab, Egypt
| |
Collapse
|
2
|
Mei L, Zhu Y, Liu H, Hui Y, Xiang J, Daud MK, Jiang S, Zhu S. Genome-wide characterization on MT family and their expression in response to environmental cues in upland cotton (Gossypium hirsutum L.). Int J Biol Macromol 2022; 198:54-67. [PMID: 34968536 DOI: 10.1016/j.ijbiomac.2021.12.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/27/2022]
Abstract
Metallothioneins (MTs) are believed as key metal chelators and scavengers of reactive oxygen species (ROS), which are involved in tolerance and de-toxicity to multiple environmental stresses in plants. The MT gene family was characterized from upland cotton (Gossypium hirsutum L.), compared with its putative genome donors G. arboretum and raimondii. Subsequently, gene functions were predicted by promoter analysis. Moreover, gene expressions subjecting to exogenous stimuli, as well as in terms of developments, were studied. The main findings were shown as follows: 1) 19 GhMTs were identified from G. hirsutum, and the family completely included all four sub-types, namely p1, p2, p3, and pec. Sub-type p2 GhMTs were most conservative in protein motif compositions, gene structures, phylogenic relationships, and group numbers, while p3 GhMTs demonstrated much more diversiform and distant genetic relationships. 2) The GhMT family experienced apparent gene expansion, and the members from the D sub-genome were subjected to stronger environmental selection. 3) GhMTs played differential and overlapped roles in response to environmental cues. 4) GhMT6, GhMT8, and GhMT14 were involved in both vegetative and reproductive developments. These findings must provide valuable insights into understanding the plant MT gene family and novel gene resources for cotton breeding for environmental stresses, phytoremediation, and beyond.
Collapse
Affiliation(s)
- Lei Mei
- Institution of Crop Science, Zhejiang University, Hangzhou 310058, China; Hubei Selenium Industrial Technology Research Institute, Enshi 445000, China; Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom.
| | - Yueyi Zhu
- Institution of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Haiying Liu
- School of Agriculture, Yunnan University, Kunming 650091, China
| | - Yixuan Hui
- Institution of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Jiqian Xiang
- Hubei Selenium Industrial Technology Research Institute, Enshi 445000, China; Enshi Tujia & Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China
| | - Mohammed Khan Daud
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Sanjie Jiang
- St Edmund's College, University of Cambridge, Cambridge CB3 0BN, United Kingdom; Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom.
| | - Shuijin Zhu
- Institution of Crop Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Nie G, Liao Z, Zhong M, Zhou J, Cai J, Liu A, Wang X, Zhang X. MicroRNA-Mediated Responses to Chromium Stress Provide Insight Into Tolerance Characteristics of Miscanthus sinensis. FRONTIERS IN PLANT SCIENCE 2021; 12:666117. [PMID: 34249038 PMCID: PMC8261058 DOI: 10.3389/fpls.2021.666117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/06/2021] [Indexed: 05/21/2023]
Abstract
Chromium (Cr) is a heavy metal in nature, which poses a potential risk to toxicity to both animals and plants when releasing into the environment. However, the regulation of microRNA (miRNA)-mediated response to heavy metal Cr has not been studied in Miscanthus sinensis. In this study, based on high-throughput miRNA sequencing, a total of 104 conserved miRNAs and 158 nonconserved miRNAs were identified. Among them, there were 45 differentially expressed miRNAs in roots and 13 differentially expressed miRNAs in leaves. The hierarchical clustering analysis showed that these miRNAs were preferentially expressed in a certain tissue. There were 833 differentially expressed target genes of 45 miRNAs in roots and 280 differentially expressed target genes of 13 miRNA in leaves. After expression trend analysis, five significantly enriched modules were obtained in roots, and three significantly enriched trend blocks in leaves. Based on the candidate gene annotation and gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) function analysis, miR167a, novel_miR15, and novel_miR22 and their targets were potentially involved in Cr transportation and chelation. Besides, miR156a, miR164, miR396d, and novel_miR155 were identified as participating in the physiological and biochemical metabolisms and the detoxification of Cr of plants. The results demonstrated the critical role of miRNA-mediated responses to Cr treatment in M. sinensis, which involves ion uptake, transport, accumulation, and tolerance characteristics.
Collapse
|
4
|
Probing the binding effects of zinc and cadmium with garlic phytocystatin: Implication of the abiotic stress on garlic phytocystatin. Int J Biol Macromol 2019; 133:945-956. [DOI: 10.1016/j.ijbiomac.2019.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/10/2019] [Accepted: 04/05/2019] [Indexed: 11/24/2022]
|
5
|
Yu XZ, Lin YJ, Zhang Q. Metallothioneins enhance chromium detoxification through scavenging ROS and stimulating metal chelation in Oryza sativa. CHEMOSPHERE 2019; 220:300-313. [PMID: 30590296 DOI: 10.1016/j.chemosphere.2018.12.119] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 05/03/2023]
Abstract
Metallothioneins (MTs) is a metal ion binding protein to detoxify heavy metal stress in plant cells. This study examines involvement of MTs in metal chelation and ROS scavenging in rice seedling under Cr induction either Cr(VI) or Cr(III) at three different effective concentrations using Agilent 44K rice microarray and real-time PCR technology. Results showed that the concentration of Cr was higher in roots than in shoots in both Cr treatments. Accumulation of both H2O2 and O2- in rice tissues was evident, but the fluctuation of H2O2 was more remarkable than O2-. Both Cr exposures resulted in enhancement of MTs in plant tissues. Results from PCR analysis confirmed that ten specific OsMT genes responsible for regulating ROS removal were expressed differentially in plant tissues as well as in Cr variants, suggesting that their different regulation and responsiveness strategies. Expression patterns of metal chelation-related OsMT genes, after Cr exposure were also inconsistent in rice tissues. Longer exposure periods caused more transcriptional changes in both Cr treatments. We also noticed that OsMT1b might carry more weight during Cr chelation in roots rather than in shoots, while OsMT2c had more important role in eliminating H2O2 accumulation in shoots than roots. These results suggest that different speciation of Cr in rice tissues resulted in inconsistent transcriptional changes of OsMT genes, which functioned in different regulation and responsiveness pathways responsible for metal ions chelating and ROS scavenging during Cr detoxification.
Collapse
Affiliation(s)
- Xiao-Zhang Yu
- The Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China.
| | - Yu-Juan Lin
- The Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Qing Zhang
- The Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| |
Collapse
|
6
|
Chen Y, Zhi J, Li X, Zhang H, Liu H, Xu J. Diversity in cadmium accumulation and resistance associated with various metallothionein genes (type III) in Phytolacca americana L. Int J Biol Macromol 2017; 108:704-709. [PMID: 29197572 DOI: 10.1016/j.ijbiomac.2017.11.152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 11/19/2022]
Abstract
Metallothioneins (MTs) are known for their heavy metal deoxidation during phytoremediation. To estimate their roles in the cadmium (Cd) hyperaccumulator Phytolacca americana L., three MT genes, PaMT3-1, PaMT3-2 and PaMT3-3, belonging to the MT3 subfamily were cloned. They separately encoded 63, 65 and 65 amino acids, containing12, 10 and 11 cysteines (Cys), respectively. Each gene was individually transformed and expressed in Escherichia coli cells. A Cd-resistance assay showed that the recombinant strains had enhanced survival rates, especially those containing PaMT3-1 and PaMT3-3. Additionally, the recombinant strains were high Cd accumulators, with the recombinant PaMT3-1's maximum accumulation being 2.16 times that of the empty vector strains. The numbers of cysteines and the structures of MT proteins were associated with the Cd enrichment and resistance capabilities. PaMT3-1 could be an effective gene resource in future plant Cd remediation-related breeding programs.
Collapse
Affiliation(s)
- Yongkun Chen
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China
| | - Junkai Zhi
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China
| | - Xiaoyu Li
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China
| | - Hao Zhang
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China
| | - Huabo Liu
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China
| | - Jichen Xu
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China.
| |
Collapse
|
7
|
Ansarypour Z, Shahpiri A. Heterologous expression of a rice metallothionein isoform (OsMTI-1b) in Saccharomyces cerevisiae enhances cadmium, hydrogen peroxide and ethanol tolerance. Braz J Microbiol 2017; 48:537-543. [PMID: 28223030 PMCID: PMC5498412 DOI: 10.1016/j.bjm.2016.10.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 10/12/2016] [Accepted: 10/25/2016] [Indexed: 11/02/2022] Open
Abstract
Metallothioneins are a superfamily of low-molecular-weight, cysteine (Cys)-rich proteins that are believed to play important roles in protection against metal toxicity and oxidative stress. The main purpose of this study was to investigate the effect of heterologous expression of a rice metallothionein isoform (OsMTI-1b) on the tolerance of Saccharomyces cerevisiae to Cd2+, H2O2 and ethanol stress. The gene encoding OsMTI-1b was cloned into p426GPD as a yeast expression vector. The new construct was transformed to competent cells of S. cerevisiae. After verification of heterologous expression of OsMTI-1b, the new strain and control were grown under stress conditions. In comparison to control strain, the transformed S. cerevisiae cells expressing OsMTI-1b showed more tolerance to Cd2+ and accumulated more Cd2+ ions when they were grown in the medium containing CdCl2. In addition, the heterologous expression of GST-OsMTI-1b conferred H2O2 and ethanol tolerance to S. cerevisiae cells. The results indicate that heterologous expression of plant MT isoforms can enhance the tolerance of S. cerevisiae to multiple stresses.
Collapse
Affiliation(s)
- Zahra Ansarypour
- Isfahan University of Technology, College of Agriculture, Department of Biotechnology, Isfahan, Iran
| | - Azar Shahpiri
- Isfahan University of Technology, College of Agriculture, Department of Biotechnology, Isfahan, Iran.
| |
Collapse
|
8
|
Phenotypic and biochemical alterations in relation to MT2 gene expression in Plantago ovata Forsk under zinc stress. Biometals 2017; 30:171-184. [DOI: 10.1007/s10534-017-9990-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/08/2017] [Indexed: 10/20/2022]
|
9
|
Liu H, Sun M, Du D, Pan H, Cheng T, Wang J, Zhang Q, Gao Y. Whole-transcriptome analysis of differentially expressed genes in the ray florets and disc florets of Chrysanthemum morifolium. BMC Genomics 2016; 17:398. [PMID: 27225275 PMCID: PMC4881213 DOI: 10.1186/s12864-016-2733-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 05/12/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chrysanthemum morifolium is one of the most important global cut flower and pot plants, and has been cultivated worldwide. However, limited genomic resources are available and the molecular mechanisms involved in the two morphologically distinct floret developmental cycles in chrysanthemum remain unclear. RESULTS The transcriptomes of chrysanthemum ray florets, disc florets and leaves were sequenced using Illumina paired-end sequencing technology. In total, 16.9 G reads were assembled into 93,138 unigenes with an average length of 738 bp, of which 44,364 unigenes showed similarity to known proteins in the Swissprot or NCBI non-redundant protein databases. Additionally, 26,320, 22,304 and 13,949 unigenes were assigned to 54 gene ontology (GO) categories, 25 EuKaryotic Orthologous Groups (KOG) categories, and 280 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. A total of 1863 differentially expressed genes (DEGs) (1210 up-regulated and 653 down-regulated) were identified between ray florets and disc florets, including genes encoding transcription factors and protein kinases. GO and KEGG pathway enrichment analyses were performed on the DEGs to identify differences in the biological processes and pathways between ray florets and disc florets. The important regulatory genes controlling flower development and flower organ determination, as well as important functional genes in the anthocyanin biosynthetic pathway, were identified, of which two leucoanthocyanidin dioxygenase-encoding genes showed specific expression in ray florets. Lastly, reverse transcription quantitative PCR was conducted to validate the DEGs identified in our study. CONCLUSIONS Comparative transcriptome analysis revealed significant differences in patterns of gene expression and signaling pathways between ray florets and disc florets in Chrysanthemum morifolium. This study provided the first step to understanding the molecular mechanism of the differential development of ray florets and disc florets in chrysanthemum, and also provided valuable genomic resources for candidate genes applicable for the breeding of novel varieties in chrysanthemum.
Collapse
Affiliation(s)
- Hua Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Ming Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Dongliang Du
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| | - Yike Gao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
10
|
Yi J, Moon S, Lee YS, Zhu L, Liang W, Zhang D, Jung KH, An G. Defective Tapetum Cell Death 1 (DTC1) Regulates ROS Levels by Binding to Metallothionein during Tapetum Degeneration. PLANT PHYSIOLOGY 2016; 170:1611-23. [PMID: 26697896 PMCID: PMC4775127 DOI: 10.1104/pp.15.01561] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/18/2015] [Indexed: 05/18/2023]
Abstract
After meiosis, tapetal cells in the innermost anther wall layer undergo program cell death (PCD)-triggered degradation. This step is essential for microspore development and pollen wall maturation. We identified a key gene, Defective Tapetum Cell Death 1 (DTC1), that controls this degeneration by modulating the dynamics of reactive oxygen species (ROS) during rice male reproduction. Mutants defective in DTC1 exhibit phenotypes of an enlarged tapetum and middle layer with delayed degeneration, causing male sterility. The gene is preferentially expressed in the tapetal cells during early anther development. In dtc1 anthers, expression of genes encoding secretory proteases or lipid transporters is significantly reduced, while transcripts of PCD regulatory genes, e.g. UDT1, TDR1, and EAT1/DTD, are not altered. Moreover, levels of DTC1 transcripts are diminished in udt1, tdr, and eat1 anthers. These results suggest that DTC1 functions downstream of those transcription factor genes and upstream of the genes encoding secretory proteins. DTC1 protein interacts with OsMT2b, a ROS scavenger. Whereas wild-type plants accumulate large amounts of ROS in their anthers at Stage 9 of development, those levels remain low during all stages of development in dtc1 anthers. These findings indicate that DTC1 is a key regulator for tapetum PCD by inhibiting ROS-scavenging activity.
Collapse
Affiliation(s)
- Jakyung Yi
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (J.Y., S.M., Y.-S.L., K.-H.J., G.A.); andState Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Z, W.L., D.Z.)
| | - Sunok Moon
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (J.Y., S.M., Y.-S.L., K.-H.J., G.A.); andState Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Z, W.L., D.Z.)
| | - Yang-Seok Lee
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (J.Y., S.M., Y.-S.L., K.-H.J., G.A.); andState Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Z, W.L., D.Z.)
| | - Lu Zhu
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (J.Y., S.M., Y.-S.L., K.-H.J., G.A.); andState Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Z, W.L., D.Z.)
| | - Wanqi Liang
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (J.Y., S.M., Y.-S.L., K.-H.J., G.A.); andState Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Z, W.L., D.Z.)
| | - Dabing Zhang
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (J.Y., S.M., Y.-S.L., K.-H.J., G.A.); andState Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Z, W.L., D.Z.)
| | - Ki-Hong Jung
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (J.Y., S.M., Y.-S.L., K.-H.J., G.A.); andState Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Z, W.L., D.Z.)
| | - Gynheung An
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (J.Y., S.M., Y.-S.L., K.-H.J., G.A.); andState Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Z, W.L., D.Z.)
| |
Collapse
|
11
|
Chen J, Mao L, Lu W, Ying T, Luo Z. Transcriptome profiling of postharvest strawberry fruit in response to exogenous auxin and abscisic acid. PLANTA 2016; 243:183-97. [PMID: 26373937 DOI: 10.1007/s00425-015-2402-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 09/01/2015] [Indexed: 05/09/2023]
Abstract
Auxin and abscisic acid regulate strawberry fruit ripening and senescence through cross-talk of their signal transduction pathways that further modulate the structural genes related to physico-chemical properties of fruit. The physiological and transcriptomic changes in harvested strawberry fruits in responses to IAA, ABA and their combination were analyzed. Exogenous IAA delayed the ripening process of strawberries after harvest while ABA promoted the postharvest ripening. However, treatment with a combination of IAA and ABA did not slow down nor accelerate the postharvest ripening in the strawberry fruits. At the molecular level, exogenous IAA up regulated the expressions of genes related to IAA signaling, including AUX/IAA, ARF, TOPLESS and genes encoding E3 ubiquitin protein ligase and annexin, and down regulated genes related to pectin depolymerization, cell wall degradation, sucrose and anthocyanin biosyntheses. In contrast, exogenous ABA induced genes related to fruit softening, and genes involved in signaling pathways including SKP1, HSPs, CK2, and SRG1. Comparison of transcriptomes in responses to individual treatments with IAA or ABA or the combination revealed that there were cooperative and antagonistic actions between IAA and ABA in fruit. However, 17% of the differentially expressed unigenes in response to the combination of IAA and ABA were unique and were not found in those unigenes responding to either IAA or ABA alone. The analyses also found that receptor-like kinases and ubiquitin ligases responded to both IAA and ABA, which seemed to play a pivotal role in both hormones' signaling pathways and thus might be the cross-talk points of both hormones.
Collapse
Affiliation(s)
- Jingxin Chen
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Wenjing Lu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Tiejin Ying
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
12
|
Emamverdian A, Ding Y, Mokhberdoran F, Xie Y. Heavy metal stress and some mechanisms of plant defense response. ScientificWorldJournal 2015; 2015:756120. [PMID: 25688377 PMCID: PMC4321847 DOI: 10.1155/2015/756120] [Citation(s) in RCA: 363] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/02/2015] [Accepted: 01/05/2015] [Indexed: 11/18/2022] Open
Abstract
Unprecedented bioaccumulation and biomagnification of heavy metals (HMs) in the environment have become a dilemma for all living organisms including plants. HMs at toxic levels have the capability to interact with several vital cellular biomolecules such as nuclear proteins and DNA, leading to excessive augmentation of reactive oxygen species (ROS). This would inflict serious morphological, metabolic, and physiological anomalies in plants ranging from chlorosis of shoot to lipid peroxidation and protein degradation. In response, plants are equipped with a repertoire of mechanisms to counteract heavy metal (HM) toxicity. The key elements of these are chelating metals by forming phytochelatins (PCs) or metallothioneins (MTs) metal complex at the intra- and intercellular level, which is followed by the removal of HM ions from sensitive sites or vacuolar sequestration of ligand-metal complex. Nonenzymatically synthesized compounds such as proline (Pro) are able to strengthen metal-detoxification capacity of intracellular antioxidant enzymes. Another important additive component of plant defense system is symbiotic association with arbuscular mycorrhizal (AM) fungi. AM can effectively immobilize HMs and reduce their uptake by host plants via binding metal ions to hyphal cell wall and excreting several extracellular biomolecules. Additionally, AM fungi can enhance activities of antioxidant defense machinery of plants.
Collapse
Affiliation(s)
- Abolghassem Emamverdian
- Center of Modern Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yulong Ding
- Center of Modern Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Farzad Mokhberdoran
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Islamic Azad University, Mashhad Branch, Mashhad 9187147578, Iran
| | - Yinfeng Xie
- Center of Modern Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
13
|
Jozefczak M, Keunen E, Schat H, Bliek M, Hernández LE, Carleer R, Remans T, Bohler S, Vangronsveld J, Cuypers A. Differential response of Arabidopsis leaves and roots to cadmium: glutathione-related chelating capacity vs antioxidant capacity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 83:1-9. [PMID: 25049163 DOI: 10.1016/j.plaphy.2014.07.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/01/2014] [Indexed: 05/18/2023]
Abstract
This study aims to uncover the spatiotemporal involvement of glutathione (GSH) in two major mechanisms of cadmium (Cd)-induced detoxification (i.e. chelation and antioxidative defence). A kinetic study was conducted on hydroponically grown Arabidopsis thaliana (L. Heyhn) to gain insight into the early events after exposure to Cd. Cadmium detoxification was investigated at different levels, including gene transcripts, enzyme activities and metabolite content. Data indicate a time-dependent response both within roots and between plant organs. Early on in roots, GSH was preferentially allocated to phytochelatin (PC) synthesis destined for Cd chelation. This led to decreased GSH levels, without alternative pathways activated to complement GSH's antioxidative functions. After one day however, multiple antioxidative pathways increased including superoxide dismutase (SOD), ascorbate (AsA) and catalase (CAT) to ensure efficient neutralization of Cd-induced reactive oxygen species (ROS). As a consequence of Cd retention and detoxification in roots, a delayed response occurred in leaves. Together with high leaf thiol contents and possibly signalling responses from the roots, the leaves were protected, allowing them sufficient time to activate their defence mechanisms.
Collapse
Affiliation(s)
- Marijke Jozefczak
- Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, B-3590 Diepenbeek, Belgium.
| | - Els Keunen
- Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, B-3590 Diepenbeek, Belgium.
| | - Henk Schat
- Free University of Amsterdam, Institute of Molecular and Cellular Biology, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands.
| | - Mattijs Bliek
- Free University of Amsterdam, Institute of Molecular and Cellular Biology, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands.
| | - Luis E Hernández
- Universidad Autónoma de Madrid, Laboratorio de Fisiología Vegetal, Departamento de Biología, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Robert Carleer
- Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, B-3590 Diepenbeek, Belgium.
| | - Tony Remans
- Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, B-3590 Diepenbeek, Belgium.
| | - Sacha Bohler
- Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, B-3590 Diepenbeek, Belgium.
| | - Jaco Vangronsveld
- Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, B-3590 Diepenbeek, Belgium.
| | - Ann Cuypers
- Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, B-3590 Diepenbeek, Belgium.
| |
Collapse
|
14
|
Zhang M, Takano T, Liu S, Zhang X. Abiotic stress response in yeast and metal-binding ability of a type 2 metallothionein-like protein (PutMT2) from Puccinellia tenuiflora. Mol Biol Rep 2014; 41:5839-49. [PMID: 24973879 DOI: 10.1007/s11033-014-3458-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
Abstract
Metallothioneins are low-molecular weight and cysteine-rich metal-binding proteins that play predominant cellular roles in the scavenging of reactive oxygen species and in mediating metal metabolism. To evaluate the role of a type-2 metallothionein-like gene from Puccinellia tenuiflora (PutMT2), the gene was over-expressed in yeast, and growth was assessed under a variety of abiotic stress conditions including peroxide (H2O2), salinity (NaCl and NaHCO3), and metal stress. PutMT2 overexpression in yeast improved the tolerance of cells to H2O2, NaCl, NaHCO3, Zn(2+), Fe(2+), Fe(3+), Cd(2+), Cr(6+), and Ag(+), but increased the sensitivity of cells to Mn(2+), Co(2+), Cu(2+), and Ni(2+) compared with control cells. PutMT2 was then expressed in Escherichia coli BL21as a glutathione S-transferase (GST) fusion protein (GST-PutMT2), and the metal-binding ability of GST-PutMT2 was analyzed and compared with GST alone using inductively coupled plasma atomic emission spectroscopy. Results showed that PutMT2 could bind to Cr, Cd, Co, Ag, Ba, Pb, Mn, Zn, Fe, Cu, P, Al, and Mg, but not Ni and As. There was no evidence to suggest that PutMT2 exhibited a specific or selective binding tendency to any individual metal ion. PutMT2 protein bound to Zn, Na, and Cu in vivo, perhaps with the highest affinity for Cu. Taken together, our results suggest that PutMT2 protein could play an important role in improving metal tolerance by metal binding in yeast. However, additional studies are required to confirm these results and to clarify the function of PutMT2 in transgenic plants.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Centre (ASNESC), Northeast Forestry University, Harbin, 150040, China
| | | | | | | |
Collapse
|
15
|
R Benatti M, Yookongkaew N, Meetam M, Guo WJ, Punyasuk N, AbuQamar S, Goldsbrough P. Metallothionein deficiency impacts copper accumulation and redistribution in leaves and seeds of Arabidopsis. THE NEW PHYTOLOGIST 2014; 202:940-951. [PMID: 24635746 DOI: 10.1111/nph.12718] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/22/2013] [Indexed: 05/29/2023]
Abstract
Most angiosperm genomes contain several genes encoding metallothionein (MT) proteins that can bind metals including copper (Cu) and zinc (Zn). Metallothionein genes are highly expressed under various conditions but there is limited information about their function. We have studied Arabidopsis mutants that are deficient in multiple MTs to learn about the functions of MTs in plants. T-DNA insertions were identified in four of the five Arabidopsis MT genes expressed in vegetative tissues. These were crossed to produce plants deficient in four MTs (mt1a/mt2a/mt2b/mt3). The concentration of Cu was lower in seeds but higher in old leaves of the quad-MT mutant compared to wild-type plants. Experiments with stable isotopes showed that Cu in seeds came from two sources: directly from roots and via remobilization from other organs. Mobilization of Cu out of senescing leaves was disrupted in MT-deficient plants. Tolerance to Cu, Zn and paraquat was unaffected by MT deficiency but these plants were slightly more sensitive to cadmium (Cd). The quad-MT mutant showed no change in resistance to a number of microbial pathogens, or in the progression of leaf senescence. Although these MTs are not required to complete the plant's life cycle, MTs are important for Cu homeostasis and distribution in Arabidopsis.
Collapse
Affiliation(s)
- Matheus R Benatti
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Nimnara Yookongkaew
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Metha Meetam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Woei-Jiun Guo
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Napassorn Punyasuk
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Synan AbuQamar
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Peter Goldsbrough
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
16
|
Álvarez-Fernández A, Díaz-Benito P, Abadía A, López-Millán AF, Abadía J. Metal species involved in long distance metal transport in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:105. [PMID: 24723928 PMCID: PMC3971170 DOI: 10.3389/fpls.2014.00105] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/04/2014] [Indexed: 05/19/2023]
Abstract
The mechanisms plants use to transport metals from roots to shoots are not completely understood. It has long been proposed that organic molecules participate in metal translocation within the plant. However, until recently the identity of the complexes involved in the long-distance transport of metals could only be inferred by using indirect methods, such as analyzing separately the concentrations of metals and putative ligands and then using in silico chemical speciation software to predict metal species. Molecular biology approaches also have provided a breadth of information about putative metal ligands and metal complexes occurring in plant fluids. The new advances in analytical techniques based on mass spectrometry and the increased use of synchrotron X-ray spectroscopy have allowed for the identification of some metal-ligand species in plant fluids such as the xylem and phloem saps. Also, some proteins present in plant fluids can bind metals and a few studies have explored this possibility. This study reviews the analytical challenges researchers have to face to understand long-distance metal transport in plants as well as the recent advances in the identification of the ligand and metal-ligand complexes in plant fluids.
Collapse
Affiliation(s)
| | | | | | | | - Javier Abadía
- Plant Nutrition Department, Aula Dei Experimental Station (CSIC)Zaragoza, Spain
| |
Collapse
|
17
|
Schiller M, Hegelund JN, Pedas P, Kichey T, Laursen KH, Husted S, Schjoerring JK. Barley metallothioneins differ in ontogenetic pattern and response to metals. PLANT, CELL & ENVIRONMENT 2014; 37:353-367. [PMID: 23808399 DOI: 10.1111/pce.12158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 06/12/2013] [Accepted: 06/20/2013] [Indexed: 06/02/2023]
Abstract
The barley genome encodes a family of 10 metallothioneins (MTs) that have not previously been subject to extensive gene expression profiling. We show here that expression of MT1a, MT2b1, MT2b2 and MT3 in barley leaves increased more than 50-fold during the first 10 d after germination. Concurrently, the root-specific gene MT1b1 was 1000-fold up-regulated. Immunolocalizations provided the first evidence for accumulation of MT1a and MT2a proteins in planta, with correlation to transcript levels. In developing grains, MT2a and MT4 expression increased 4- and 300-fold over a 28-day-period after pollination. However, among the MT grain transcripts MT2c was the most abundant, whereas MT4 was the least abundant. Excess Cu up-regulated three out of the six MTs expressed in leaves of young barley plants. In contrast, most MTs were down-regulated by excess Zn or Cd. Zn starvation led to up-regulation of MT1a, whereas Cu starvation up-regulated MT2a, which has two copper-responsive elements in the promoter. Arabidopsis lines constitutively overexpressing barley MT2a showed increased sensitivity to excess Cd and Zn but no Cu-induced response. We suggest that barley MTs are differentially involved in intracellular homeostasis of essential metal ions and that a subset of barley MTs is specifically involved in Cu detoxification.
Collapse
Affiliation(s)
- Michaela Schiller
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 40 Thorvaldsensvej, DK-1871, Frederiksberg C, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
18
|
Leitenmaier B, Küpper H. Compartmentation and complexation of metals in hyperaccumulator plants. FRONTIERS IN PLANT SCIENCE 2013; 4:374. [PMID: 24065978 PMCID: PMC3778397 DOI: 10.3389/fpls.2013.00374] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/03/2013] [Indexed: 05/18/2023]
Abstract
Hyperaccumulators are being intensely investigated. They are not only interesting in scientific context due to their "strange" behavior in terms of dealing with high concentrations of metals, but also because of their use in phytoremediation and phytomining, for which understanding the mechanisms of hyperaccumulation is crucial. Hyperaccumulators naturally use metal accumulation as a defense against herbivores and pathogens, and therefore deal with accumulated metals in very specific ways of complexation and compartmentation, different from non-hyperaccumulator plants and also non-hyperaccumulated metals. For example, in contrast to non-hyperaccumulators, in hyperaccumulators even the classical phytochelatin-inducing metal, cadmium, is predominantly not bound by such sulfur ligands, but only by weak oxygen ligands. This applies to all hyperaccumulated metals investigated so far, as well as hyperaccumulation of the metalloid arsenic. Stronger ligands, as they have been shown to complex metals in non-hyperaccumulators, are in hyperaccumulators used for transient binding during transport to the storage sites (e.g., nicotianamine) and possibly for export of Cu in Cd/Zn hyperaccumulators [metallothioneins (MTs)]. This confirmed that enhanced active metal transport, and not metal complexation, is the key mechanism of hyperaccumulation. Hyperaccumulators tolerate the high amount of accumulated heavy metals by sequestering them into vacuoles, usually in large storage cells of the epidermis. This is mediated by strongly elevated expression of specific transport proteins in various tissues from metal uptake in the shoots up to the storage sites in the leaf epidermis. However, this mechanism seems to be very metal specific. Non-hyperaccumulated metals in hyperaccumulators seem to be dealt with like in non-hyperaccumulator plants, i.e., detoxified by binding to strong ligands such as MTs.
Collapse
Affiliation(s)
| | - Hendrik Küpper
- Fachbereich Biologie, Universität KonstanzKonstanz, Germany
| |
Collapse
|
19
|
Guo J, Xu L, Su Y, Wang H, Gao S, Xu J, Que Y. ScMT2-1-3, a metallothionein gene of sugarcane, plays an important role in the regulation of heavy metal tolerance/accumulation. BIOMED RESEARCH INTERNATIONAL 2013; 2013:904769. [PMID: 23781509 PMCID: PMC3677015 DOI: 10.1155/2013/904769] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 05/03/2013] [Accepted: 05/08/2013] [Indexed: 11/29/2022]
Abstract
Plant metallothioneins (MTs), which are cysteine-rich, low-molecular-weight, and metal-binding proteins, play important roles in detoxification, metal ion homeostasis, and metal transport adjustment. In this study, a novel metallothionein gene, designated as ScMT2-1-3 (GenBank Accession number JQ627644), was identified from sugarcane. ScMT2-1-3 was 700 bp long, including a 240 bp open reading frame (ORF) encoding 79 amino acid residues. A His-tagged ScMT2-1-3 protein was successfully expressed in Escherichia coli system which had increased the host cell's tolerance to Cd(2+), Cu(2+), PEG, and NaCl. The expression of ScMT2-1-3 was upregulated under Cu(2+) stress but downregulated under Cd(2+) stress. Real-time qPCR demonstrated that the expression levels of ScMT2-1-3 in bud and root were over 14 times higher than those in stem and leaf, respectively. Thus, both the E. coli assay and sugarcane plantlets assay suggested that ScMT2-1-3 is significantly involved in the copper detoxification and storage in the cell, but its functional mechanism in cadmium detoxification and storage in sugarcane cells needs more testification though its expressed protein could obviously increase the host E. coli cell's tolerance to Cd(2+). ScMT2-1-3 constitutes thus a new interesting candidate for elucidating the molecular mechanisms of MTs-implied plant heavy metal tolerance/accumulation and for developing sugarcane phytoremediator varieties.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Amino Acid Sequence
- Base Sequence
- Cloning, Molecular
- Escherichia coli/growth & development
- Escherichia coli/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant/genetics
- Metallothionein/genetics
- Metals, Heavy/toxicity
- Molecular Sequence Data
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Recombinant Proteins/isolation & purification
- Saccharum/drug effects
- Saccharum/genetics
- Saccharum/physiology
- Sequence Alignment
- Sequence Analysis, DNA
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
Collapse
Affiliation(s)
- Jinlong Guo
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Liping Xu
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yachun Su
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hengbo Wang
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shiwu Gao
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jingsheng Xu
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Youxiong Que
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
20
|
Cozza R, Bruno L, Bitonti MB. Expression pattern of a type-2 metallothionein gene in a wild population of the psammophyte Silene nicaeensis. PROTOPLASMA 2013; 250:381-389. [PMID: 22688806 DOI: 10.1007/s00709-012-0425-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/25/2012] [Indexed: 06/01/2023]
Abstract
Silene nicaeensis is a wild Mediterranean grass often restricted to sandy sea shore and exhibiting an excellent tolerance to drought and salinity. Within Silene genus, several heavy metal-tolerant ecotypes have been identified, but information on molecular basis of such metal tolerance is still limited. Conceivably, salt-tolerant plants may represent a powerful tool for the remediation of heavy metal contaminated sites in saline environment. Here, a gene encoding a metallothionein protein was isolated from S. nicaeensis. Sequence analysis identified the motifs characteristic of type II metallothionein and designated as SnMT2. SnMT2 expression was investigated in plants collected from two sites differing in Metal Pollution Index (MPI). SnMT2 expression by polymerase chain reaction-based semi-quantitative transcript analysis showed a high accumulation in the leaves; in situ hybridization showed a steady localization of SnMT2 mRNA in the vascular bundle and in proliferating tissues. Moreover, an increase of SnMT2 was observed in the root of plants collected from area with higher MPI. The putative role of SnMT2 in metal tolerance is discussed.
Collapse
Affiliation(s)
- Radiana Cozza
- Department of Ecology, University of Calabria, 87030 Arcavacata di Rende (CS), Italy.
| | | | | |
Collapse
|
21
|
Transcriptome Analysis of Age-Related Gain of Callus-Forming Capacity in Arabidopsis Hypocotyls. ACTA ACUST UNITED AC 2012; 53:1457-69. [DOI: 10.1093/pcp/pcs090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
|
23
|
Wang X, Song Y, Ma Y, Zhuo R, Jin L. Screening of Cd tolerant genotypes and isolation of metallothionein genes in alfalfa (Medicago sativa L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:3627-3633. [PMID: 21868142 DOI: 10.1016/j.envpol.2011.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/10/2011] [Accepted: 08/01/2011] [Indexed: 05/27/2023]
Abstract
In order to evaluate Cd tolerance in wide-ranging sources of alfalfa (Medicago sativa) and to identify Cd tolerant genotypes which may potentially be useful for restoring Cd-contaminated environments, thirty-six accessions of alfalfa were screened under hydroponic culture. Our results showed that the relative root growth rate varied from 0.48 to 1.0, which indicated that different alfalfa accessions had various responses to Cd stress. The candidate fragments derived from differentially expressed metallothionein (MT) genes were cloned from leaves of two Cd tolerant genotypes, YE and LZ. DNA sequence and the deduced protein sequence showed that MsMT2a and MsMT2b had high similarity to those in leguminous plants. DDRT-PCR analysis showed that MsMT2a expressed in both YE and LZ plants under control and Cd stress treatment, but MsMT2b only expressed under Cd stress treatment. This suggested that MsMT2a was universally expressed in leaves of alfalfa but expression of MsMT2b was Cadmium (Cd) inducible.
Collapse
Affiliation(s)
- Xiaojuan Wang
- School of Pastoral Agriculture Science and Technology, Lanzhou University, PO Box 61, Lanzhou 730020, China.
| | | | | | | | | |
Collapse
|
24
|
Kryvych S, Kleessen S, Ebert B, Kersten B, Fisahn J. Proteomics - The key to understanding systems biology of Arabidopsis trichomes. PHYTOCHEMISTRY 2011; 72:1061-1070. [PMID: 20952039 DOI: 10.1016/j.phytochem.2010.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 09/09/2010] [Accepted: 09/17/2010] [Indexed: 05/30/2023]
Abstract
Every multicellular organism consists of numerous organs, tissues and specific cell types. To gain detailed knowledge about the morphogenesis of these complex structures, it is inevitable to advance biochemical analyses to ultimate spatial and temporal resolution since individual cell types contribute differently to the overall performance of living objects. Single cell sampling combined with systems biological approaches was recently applied to investigations of Arabidopsis thaliana trichomes (leaf hairs). These are single celled structures that provide ideal model systems to address various aspects of plant cell development and differentiation at the level of individual cells. A previously suggested function of trichomes in plant stress responses could thus be confirmed. Furthermore, trichome-specific "omics" data collected in several laboratories are mutually conclusive which demonstrates the applicability of systems biological approaches at the single cell level.
Collapse
Affiliation(s)
- Sergiy Kryvych
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | | | | | | | | |
Collapse
|
25
|
|
26
|
Samardzić JT, Nikolić DB, Timotijević GS, Jovanović ZS, Milisavljević MĐ, Maksimović VR. Tissue expression analysis of FeMT3, a drought and oxidative stress related metallothionein gene from buckwheat (Fagopyrum esculentum). JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1407-1411. [PMID: 20637525 DOI: 10.1016/j.jplph.2010.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/14/2010] [Accepted: 05/17/2010] [Indexed: 05/28/2023]
Abstract
Metallothionein type 3 (MT3) expression has previously been detected in leaves, fruits, and developing somatic embryos in different plant species. However, specific tissular and cellular localization of MT3 transcripts have remained unidentified. In this study, in situ RNA-RNA analysis revealed buckwheat metallothionein type 3 (FeMT3) transcript localization in vascular elements, mesophyll and guard cells of leaves, vascular tissue of roots and throughout the whole embryo. Changes in FeMT3 mRNA levels in response to drought and oxidative stress, as well as ROS scavenging abilities of the FeMT3 protein in yeast were also detected, indicating possible involvement of FeMT3 in stress defense and ROS related cellular processes.
Collapse
Affiliation(s)
- Jelena T Samardzić
- Department of Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
27
|
Dong CJ, Wang Y, Yu SS, Liu JY. Characterization of a novel rice metallothionein gene promoter: its tissue specificity and heavy metal responsiveness. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:914-924. [PMID: 20883443 DOI: 10.1111/j.1744-7909.2010.00966.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The rice (Oryza sativa L.) metallothionein gene OsMT-I-4b has previously been identified as a type I MT gene. To elucidate the regulatory mechanism involved in its tissue specificity and abiotic induction, we isolated a 1 730 bp fragment of the OsMT-I-4b promoter region. Histochemical β-glucuronidase (GUS) staining indicated a precise spacial and temporal expression pattern in transgenic Arabidopsis. Higher GUS activity was detected in the roots and the buds of flower stigmas, and relatively lower GUS staining in the shoots was restricted to the trichomes and hydathodes of leaves. No activity was observed in the stems and seeds. Additionally, in the root of transgenic plants, the promoter activity was highly upregulated by various environmental signals, such as abscisic acid, drought, dark, and heavy metals including Cu²(+) , Zn²(+) , Pb²(+) and Al³(+) . Slight induction was observed in transgenic seedlings under salinity stress, or when treated with Co²(+) and Cd²(+) . Promoter analysis of 5'-deletions revealed that the region -583/-1 was sufficient to drive strong GUS expression in the roots but not in the shoots. Furthermore, deletion analysis indicated important promoter regions containing different metal-responsive cis-elements that were responsible for responding to different heavy metals. Collectively, these findings provided important insight into the transcriptional regulation mechanisms of the OsMT-I-4b promoter, and the results also gave us some implications for the potential application of this promoter in plant genetic engineering.
Collapse
|
28
|
Nikolić DB, Samardzić JT, Bratić AM, Radin IP, Gavrilović SP, Rausch T, Maksimović VR. Buckwheat (Fagopyrum esculentum Moench) FeMT3 gene in heavy metal stress: protective role of the protein and inducibility of the promoter region under Cu(2+) and Cd(2+) treatments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:3488-94. [PMID: 20187605 DOI: 10.1021/jf904483a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The protective role in vivo of buckwheat metallothionein type 3 (FeMT3) during metal stress and the responsiveness of its promoter to metal ions were examined. Increased tolerance to heavy metals of FeMT3 producing Escherichia coli and cup1(Delta) yeast cells was detected. The defensive ability of buckwheat MT3 during Cd and Cu stresses was also demonstrated in Nicotiana debneyii leaves transiently expressing FeMT3. In contrast to phytochelatins, the cytoplasmatic localization of FeMT3 was not altered under heavy metal stress. Functional analysis of the corresponding promoter region revealed extremely high inducibility upon Cu(2+) and Cd(2+) treatments. The confirmed defense ability of FeMT3 protein in vivo and the great responsiveness of its promoter during heavy metal exposure make this gene a suitable candidate for biotechnological applications.
Collapse
Affiliation(s)
- Dragana B Nikolić
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, Belgrade, Serbia.
| | | | | | | | | | | | | |
Collapse
|
29
|
Whittle CA, Malik MR, Li R, Krochko JE. Comparative transcript analyses of the ovule, microspore, and mature pollen in Brassica napus. PLANT MOLECULAR BIOLOGY 2010; 72:279-99. [PMID: 19949835 DOI: 10.1007/s11103-009-9567-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Accepted: 10/26/2009] [Indexed: 05/20/2023]
Abstract
Transcriptome data for plant reproductive organs/cells currently is very limited as compared to sporophytic tissues. Here, we constructed cDNA libraries and obtained ESTs for Brassica napus pollen (4,864 ESTs), microspores (i.e., early stage pollen development; 6,539 ESTs) and ovules (10,468 ESTs). Clustering and assembly of the 21,871 ESTs yielded a total of 10,782 unigenes, with 3,362 contigs and 7,420 singletons. The pollen transcriptome contained high levels of polygalacturonases and pectinesterases, which are involved in cell wall synthesis and expansion, and very few transcription factors or transcripts related to protein synthesis. The set of genes expressed in mature pollen showed little overlap with genes expressed in ovules or in microspores, suggesting in the latter case that a marked differentiation had occurred from the early microspore stages through to pollen development. Remarkably, the microspores and ovules exhibited a high number of co-expressed genes (N = 1,283) and very similar EST functional profiles, including high transcript numbers for transcriptional and translational processing genes, protein modification genes and unannotated genes. In addition, examination of expression values for genes co-expressed among microspores and ovules revealed a highly statistically significant correlation among these two tissues (R = 0.360, P = 1.2 x 10(-40)) as well as a lack of differentially expressed genes. Overall, the results provide new insights into the transcriptional profile of rarely studied ovules, the transcript changes during pollen development, transcriptional regulation of pollen tube growth and germination, and describe the parallels in the transcript populations of microspore and ovules which could have implications for understanding the molecular foundation of microspore totipotency in B. napus.
Collapse
Affiliation(s)
- Carrie A Whittle
- Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | | | | | | |
Collapse
|
30
|
Luo Y, Lv GL, Wu WT, Chen SN, Cheng ZQ. Analysis of genome expression in the response of Oryza granulata to Xanthomonas oryzae pv oryzae. Mol Biol Rep 2009; 37:875-92. [PMID: 19672692 DOI: 10.1007/s11033-009-9694-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 07/28/2009] [Indexed: 11/25/2022]
Abstract
In order to understand the mechanism of the strong resistance of Oryza granulata to Xanthomonas oryzae pv oryzae (Xoo), cDNA microarrays containing 2,436 cDNA clones of Oryza granulata derived from Suppression subtractive library and cDNA library were constructed and genome expression patterns after inoculating Xoo were investigated. Three hundred and 83 clones were up-regulated, 836 clones were down-regulated after pathogen infection. Approximately 800 clones were sequenced and BLAST search were carried out. There are no homologous sequences for 35 clones of them. The functions of the homologous sequences for most clones are unknown. The known functions of the homologous sequences involved in photosynthesis, respiration, material transport, signal transduction, pathogenesis-related proteins, transcription factors, the active oxygen scavenging system and so on. The putative functions of them in responding to Xoo were discussed.
Collapse
Affiliation(s)
- Yu Luo
- College of Life Science, Yunnan University, 650091, Kunming, China.
| | | | | | | | | |
Collapse
|
31
|
Clement M, Lambert A, Herouart D, Boncompagni E. Identification of new up-regulated genes under drought stress in soybean nodules. Gene 2008; 426:15-22. [PMID: 18817859 DOI: 10.1016/j.gene.2008.08.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 07/28/2008] [Accepted: 08/13/2008] [Indexed: 10/21/2022]
Abstract
Legumes/rhizobium biological N(2) fixation (BNF) is dramatically affected under abiotic stress such as drought, salt, cold and heavy metal stresses. Nodule response to drought stress at the molecular level was analysed using soybean (Glycine max) and Bradyrhizobium japonicum as a model, since this symbiotic partnership is extremely sensitive to this stress. To gain insight into molecular mechanisms involved in drought-induced BNF inhibition, we have constructed a SSH (Suppression Subtractive Hybridisation) cDNA library from nodular tissue of plants irrigated at field capacity or plants water deprived for 5 days. Sequence analysis of the first set of 128 non redundant ESTs using protein databases and the Blastx program indicated that 70% of ESTs could be classified into putative known functions. Using reverse northern hybridization, 56 ESTs were validated as up-regulated genes in response to drought. Interestingly, only a few of them had been previously described as involved in plant response to drought, therefore most of the ESTs could be considered as new markers of drought stress. Here we discuss the potential role of some of these up-regulated genes in response to drought. Our analysis focused on two genes, encoding respectively a ferritin and a metallothionein, which are known to be involved in homeostasis and detoxification of metals and in response to oxidative stress. Their spatiotemporal expression patterns showed a high accumulation of transcripts restricted to infected cells of nodules in response to drought.
Collapse
Affiliation(s)
- Mathilde Clement
- UMR "UMR Interactions Biotiques et Santé Végétale" INRA 1301-CNRS 6243-Université de Nice-Sophia Antipolis 400, routes des Chappes F-06903 SOPHIA-ANTIPOLIS cedex, France
| | | | | | | |
Collapse
|
32
|
Falara V, Fotopoulos V, Margaritis T, Anastasaki T, Pateraki I, Bosabalidis AM, Kafetzopoulos D, Demetzos C, Pichersky E, Kanellis AK. Transcriptome analysis approaches for the isolation of trichome-specific genes from the medicinal plant Cistus creticus subsp. creticus. PLANT MOLECULAR BIOLOGY 2008; 68:633-51. [PMID: 18819010 DOI: 10.1007/s11103-008-9399-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 08/31/2008] [Indexed: 05/12/2023]
Abstract
Cistus creticus subsp. creticus is a plant of intrinsic scientific interest due to the distinctive pharmaceutical properties of its resin. Labdane-type diterpenes, the main constituents of the resin, exhibit considerable antibacterial and cytotoxic activities. In this study chemical analysis of isolated trichomes from different developmental stages revealed that young leaves of 1-2 cm length displayed the highest content of labdane-type diterpenes (80 mg/g fresh weight) whereas trichomes from older leaves (2-3 or 3-4 cm) exhibited gradual decreased concentrations. A cDNA library was constructed enriched in transcripts from trichomes isolated from young leaves, which are characterized by high levels of labdane-type diterpenes. Functional annotation of 2,022 expressed sequence tags (ESTs) from the trichome cDNA library based on homology to A. thaliana genes suggested that 8% of the putative identified sequences were secondary metabolism-related and involved primarily in flavonoid and terpenoid biosynthesis. A significant proportion of the ESTs (38%) displayed no significant similarity to any other DNA deposited in databases, indicating a yet unknown function. Custom DNA microarrays constructed with 1,248 individual clones from the cDNA library facilitated transcriptome comparisons between trichomes and trichome-free tissues. In addition, gene expression studies in various Cistus tissues and organs for one of the genes highlighted as the most differentially expressed by the microarray experiments revealed a putative sesquiterpene synthase with a trichome-specific expression pattern. Full length cDNA isolation and heterologous expression in E. coli followed by biochemical analysis, led to the characterization of the produced protein as germacrene B synthase.
Collapse
Affiliation(s)
- Vasiliki Falara
- Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Xue T, Li X, Zhu W, Wu C, Yang G, Zheng C. Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast. JOURNAL OF EXPERIMENTAL BOTANY 2008; 60:339-49. [PMID: 19033550 PMCID: PMC3071772 DOI: 10.1093/jxb/ern291] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/27/2008] [Accepted: 10/28/2008] [Indexed: 05/19/2023]
Abstract
A cDNA clone encoding a 64-amino acid type 3 metallothionein protein, designated GhMT3a, was isolated from cotton (Gossypium hirsutum) by cDNA library screening. Northern blot analysis indicated that mRNA accumulation of GhMT3a was up-regulated not only by high salinity, drought, and low temperature stresses, but also by heavy metal ions, abscisic acid (ABA), ethylene, and reactive oxygen species (ROS) in cotton seedlings. Transgenic tobacco (Nicotiana tabacum) plants overexpressing GhMT3a showed increased tolerance against abiotic stresses compared with wild-type plants. Interestingly, the induced expression of GhMT3a by salt, drought, and low-temperature stresses could be inhibited in the presence of antioxidants. H(2)O(2) levels in transgenic tobacco plants were only half of that in wild-type (WT) plants under such stress conditions. According to in vitro assay, recombinant GhMT3a protein showed an ability to bind metal ions and scavenge ROS. Transgenic yeast overexpressing GhMT3a also showed higher tolerance against ROS stresses. Taken together, these results indicated that GhMT3a could function as an effective ROS scavenger and its expression could be regulated by abiotic stresses through ROS signalling.
Collapse
Affiliation(s)
| | | | | | | | | | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| |
Collapse
|
34
|
DalCorso G, Farinati S, Maistri S, Furini A. How plants cope with cadmium: staking all on metabolism and gene expression. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:1268-80. [PMID: 19017114 DOI: 10.1111/j.1744-7909.2008.00737.x] [Citation(s) in RCA: 259] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Environmental pollution is one of the major problems for human health. Toxic heavy metals are normally present as soil constituents or can also be spread out in the environment by human activity and agricultural techniques. Soil contamination by heavy metals as cadmium, highlights two main aspects: on one side they interfere with the life cycle of plants and therefore reduce crop yields, and on the other hand, once adsorbed and accumulated into the plant tissues, they enter the food chain poisoning animals and humans. Considering this point of view, understanding the mechanism by which plants handle heavy metal exposure, in particular cadmium stress, is a primary goal of plant-biotechnology research or plant breeders whose aim is to create plants that are able to recover high amounts of heavy metals, which can be used for phytoremediation, or identify crop varieties that do not accumulate toxic metal in grains or fruits. In this review we focus on the main symptoms of cadmium toxicity both on root apparatus and shoots. We elucidate the mechanisms that plants activate to prevent absorption or to detoxify toxic metal ions, such as synthesis of phytochelatins, metallothioneins and enzymes involved in stress response. Finally we consider new plant-biotechnology applications that can be applied for phytoremediation.
Collapse
Affiliation(s)
- Giovanni DalCorso
- Dipartimento Scientifico e Tecnologico, Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | | | | | | |
Collapse
|
35
|
Saha P, Mishra D, Chakraborty A, Sudarshan M, Raychaudhuri SS. In vitro radiation induced alterations in heavy metals and metallothionein content in Plantago ovata Forsk. Biol Trace Elem Res 2008; 124:251-61. [PMID: 18493724 DOI: 10.1007/s12011-008-8141-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 04/11/2008] [Indexed: 10/22/2022]
Abstract
Proton Induced X-ray emission (PIXE) and fluorescence-activated cell sorting (FACS) have been used to study the effects of gamma irradiation on heavy metal accumulation in callus tissue of Plantago ovata-an important cash crop of India. PIXE analysis revealed radiation-induced alteration in trace element profile during developmental stages of the callus of P. ovata. Subsequent experiments showed antagonism between Fe and Cu and also Cu and Zn and synergistic effect between Fe and Zn. FACS analysis showed significant induction of the metallothionein (MT) protein following gamma-irradiation, and maximum induction was noted at the 50-Gy absorbed dose. This indicated a progressive increment of MTs as a measure for protection against gamma-rays, to combat alteration in the homeostasis of heavy metals like Fe, Cu, Zn, and Mn.
Collapse
Affiliation(s)
- Priyanka Saha
- Department of Biophysics, Molecular Biology and Genetics, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | | | | | | | | |
Collapse
|
36
|
Ebert B, Melle C, Lieckfeldt E, Zöller D, von Eggeling F, Fisahn J. Protein profiling of single epidermal cell types from Arabidopsis thaliana using surface-enhanced laser desorption and ionization technology. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:1227-37. [PMID: 18423788 DOI: 10.1016/j.jplph.2008.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 01/22/2008] [Accepted: 01/25/2008] [Indexed: 05/24/2023]
Abstract
Here, we describe a novel approach for investigating differential protein expression within three epidermal cell types. In particular, 3000 single pavement, basal, and trichome cells from leaves of Arabidopsis thaliana were harvested by glass micro-capillaries. Subsequently, these single cell samples were joined to form pools of 100 individual cells and analyzed using the ProteinChip technology; SELDI: surface-enhanced laser desorption and ionization. As a result, numerous protein signals that were differentially expressed in the three epidermal cell types could be detected. One of these proteins was characterized by tryptical digestion and subsequent identification via tandem quadrupole-time of flight (Q-TOF) mass spectrometry. Down regulation of this sequenced small subunit precursor of ribulose-1,5 bisphosphate carboxylase(C) oxygenase(O) (RuBisCo) in trichome and basal cells indicates the sink status of these cell types that are located on the surface of A. thaliana source leaves. Based on the obtained protein profiles, we suggest a close functional relationship between basal and trichome cells at the protein level.
Collapse
Affiliation(s)
- Berit Ebert
- Max-Planck-Institute of Molecular Plant Physiology, 14776 Potsdam OT Golm, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Kumoro A, Ngoh G, Hasan M, Ong C, Teoh E. Conversion of Fibrous Sago (Metroxylon sagu) Waste into Fermentable
Sugar via Acid and Enzymatic Hydrolysis. ACTA ACUST UNITED AC 2008. [DOI: 10.3923/ajsr.2008.412.420] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
38
|
Yamasaki H, Pilon M, Shikanai T. How do plants respond to copper deficiency? PLANT SIGNALING & BEHAVIOR 2008; 3:231-2. [PMID: 19704637 PMCID: PMC2634185 DOI: 10.4161/psb.3.4.5094] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 09/27/2007] [Indexed: 05/21/2023]
Abstract
The transition metal copper is essential for all organisms yet excess copper is toxic because of production of free radicals via its free form. Therefore, the levels of copper are precisely regulated in a cell. Under copper depleted conditions, the expression of Cu/Zn superoxide dismutase (SOD) is downregulated and its function is compensated by Fe SOD in chloroplasts of higher plants. We presented evidence that a microRNA, miR398, is involved in this downregulation of Cu/Zn SOD genes in Arabidopsis thaliana when grown at low copper levels, corresponding to less than 1 microM Cu in tissue culture media. However, a green alga, Chlamydomonas reinhardtii, adjusts to copper depletion by modifying the photosynthetic apparatus from copper containing plastocyanin to iron containing cytochrome c(6). During evolution plants modified one of the main strategies to respond to copper deficiency probably to adapt to different metal environments.
Collapse
Affiliation(s)
- Hiroaki Yamasaki
- Graduate School of Agriculture; Kyushu University; Fukuoka, Japan
| | - Marinus Pilon
- Biology Department and Program in Molecular Plant Biology; Colorado State University; Fort Collins, Colorado USA
| | | |
Collapse
|
39
|
Alex SM, Dicto J, Purushothama M, Manjula S. Differential expression of metallothionein type-2 homologues in leaves and roots of Black pepper (Piper nigrum L). Genet Mol Biol 2008. [DOI: 10.1590/s1415-47572008000300024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - Jose Dicto
- Rajiv Gandhi Centre for Biotechnology, India
| | | | - S. Manjula
- Rajiv Gandhi Centre for Biotechnology, India
| |
Collapse
|
40
|
Ernst WHO, Krauss GJ, Verkleij JAC, Wesenberg D. Interaction of heavy metals with the sulphur metabolism in angiosperms from an ecological point of view. PLANT, CELL & ENVIRONMENT 2008; 31:123-143. [PMID: 17999660 DOI: 10.1111/j.1365-3040.2007.01746.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The metabolism of sulphur in angiosperms is reviewed under the aspect of exposure to ecologically relevant concentrations of sulphur, heavy metals and metalloids. Because of the inconsistent use of the term 'metal tolerance', in this review the degree of tolerance to arsenic and heavy metals is divided into three categories: hypotolerance, basal tolerance and hypertolerance. The composition of nutrient solutions applied to physiological experiments let see that the well-known interactions of calcium, sulphate and zinc supply with uptake of heavy metals, especially cadmium are insufficiently considered. Expression of genes involved in reductive sulphate assimilation pathway and enzyme activities are stimulated by cadmium and partially by copper, but nearly not by other heavy metals. The synthesis of the sulphur-rich compounds glucosinolates, metallothioneins and phytochelatins is affected in a metal-specific way. Phytochelatin levels are low in all metal(loid)-hypertolerant plant species growing in the natural environment on metal(loid)-enriched soils. If laboratory experiments mimic the natural environments, especially high Zn/Cd ratios and good sulphur supply, and chemical analyses are extended to more mineral elements than the single metal(loid) under investigation, a better understanding of the impact of metal(loid)s on the sulphur metabolism can be achieved.
Collapse
Affiliation(s)
- Wilfried H O Ernst
- Institute of Ecological Science, Vrije Universiteit Amsterdam, De Boelelaan (10851081) HV Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
41
|
Sereno ML, Almeida RS, Nishimura DS, Figueira A. Response of sugarcane to increasing concentrations of copper and cadmium and expression of metallothionein genes. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:1499-515. [PMID: 17175063 DOI: 10.1016/j.jplph.2006.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 09/18/2006] [Indexed: 05/13/2023]
Abstract
Sugarcane (Saccharum spp.) offers the potential to be a phytoremediator species due to its outstanding biomass production, but its prospective metal accumulation and tolerance have not been fully characterized. Sugarcane plantlets were able to tolerate up to 100microM of copper in nutrient solution for 33 days, with no significant reduction in fresh weight, while accumulating 45mgCukg(-1) shoot dry weight. Higher levels of copper in solution (250 and 500microM) were lethal. Sugarcane displayed tolerance to 500microM Cd without symptoms of toxicity, accumulating 451mgCdkg(-1) shoot dry weight after 33 days, indicating its potential as Cd phytoremediator. DNA gel blot analyses detected 8 fragments using a metallothionein (MT) Type I probe, while 10 were revealed for the MT Type II and 8 for MT Type III. The number of genes for each type of MT in sugarcane might be similar to the ones identified in rice considering the interspecific origin of sugarcane cultivars. MT Type I gene appeared to present the highest level of constitutive expression, mainly in roots, followed by MT Type II, corroborating the expression pattern described based on large-scale expressed sequence tags sequencing. MT Type II and III genes were more expressed in shoots, where MT I was also importantly expressed. Increasing Cu concentration had little or no effect in modulating MT genes expression, while an apparent minor modulation of some of the MT genes could be detected in Cd treatments. However, the level of response was too small to explain the tolerance and/or accumulation of Cd in sugarcane tissues. Thus, cadmium tolerance and accumulation in sugarcane might derive from other mechanisms, although MT may be involved in oxidative responses to high levels of Cd. Sugarcane can be considered a potential candidate to be tested in Cd phytoremediation.
Collapse
Affiliation(s)
- Maria Lorena Sereno
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11 CP 83, Piracicaba, SP 13400-970, Brazil
| | | | | | | |
Collapse
|
42
|
Pajuelo E, Carrasco JA, Romero LC, Chamber MA, Gotor C. Evaluation of the metal phytoextraction potential of crop legumes. Regulation of the expression of O-acetylserine (thiol)lyase under metal stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2007; 9:672-81. [PMID: 17853367 DOI: 10.1055/s-2007-965439] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The metal phytoextraction potential of three legumes belonging to different genera has been studied under greenhouse conditions. Legumes accumulate As and metals mainly in roots, although translocation to shoot is observed. Alfalfa did accumulate the highest concentrations of As and metals in shoots and aerial biomass was less affected by the toxic elements, indicating its good behaviour in phytoextraction. Clover accumulated less metal, but showed larger biomass. EDTA addition enhanced Pb phytoextraction up to levels similar to those described for plants proposed in phytoremediation. The regulation of O-acetylserine (thiol)lyase from legumes under metal stress has been analysed to test the possibility of establishing a possible correlation between the expression of OASTL in the presence of the metals and the metal accumulation in legume plant tissues. Cd and Pb(EDTA) produce the strongest increases of OASTL activity, with the higher enhancement seen in roots, in parallel with the higher metal accumulation. Arsenic produced an increase of root enzyme activity, whereas Cu produced a decrease, mainly in shoots. Western blots using antibodies against an A. THALIANA cytosolic OAS-TL recognised up to five protein bands in crude extracts from LOTUS and clover. A low molecular weight isoform of 32 kDa was induced in the presence of Cd and Pb. A partial RT-PCR sequence from clover has been obtained, showing 86 - 97 % identity with other described OASTLs. The PCR fragment has been used to analyse OASTL mRNA levels of legumes under metal stress. OASTL transcripts were increased by As, Cd, and Pb, especially in roots, where metal accumulation was maximal, while Cu produced a decrease in the transcript levels.
Collapse
Affiliation(s)
- E Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González, 2, 41012 Sevilla, Spain
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Liu JX, Zu YG, Shi XG, Ai YZ, Du YJ, Fu YJ, An ZG. BjMT2, a metallothionein type-2 from Brassica juncea, may effectively remove excess lead from erythrocytes and kidneys of rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2007; 23:168-173. [PMID: 21783754 DOI: 10.1016/j.etap.2006.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 08/11/2006] [Accepted: 08/14/2006] [Indexed: 05/31/2023]
Abstract
The remedial effects of a plant metallothionein type-2 were observed from lead (Pb) injured rats. BjMT2 from Brassica juncea was expressed in Escherichia coli and purified by affinity chromatography, a purified BjMT2 protein was obtained which strongly reacted with the thiol reagent MBB (monobromobimane). The profiles of erythrocytes, renal tubules and glomerulus of kidney of rats suffered pathological changes from excess Pb were evidently improved by supplying the BjMT2. Quantitative analysis showed that the content of Pb and the amount of leukocytes in blood were significantly declined after supplying BjMT2 to rats. The results indicated that the BjMT2 may have the potential function to decrease Pb toxicification in rate organs and tissues.
Collapse
Affiliation(s)
- Jun-Xing Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Basic Medicine, Jiamusi University, Jiamusi 154007, PR China
| | | | | | | | | | | | | |
Collapse
|
45
|
Lü S, Gu H, Yuan X, Wang X, Wu AM, Qu L, Liu JY. The GUS reporter-aided analysis of the promoter activities of a rice metallothionein gene reveals different regulatory regions responsible for tissue-specific and inducible expression in transgenic Arabidopsis. Transgenic Res 2006; 16:177-91. [PMID: 17146614 DOI: 10.1007/s11248-006-9035-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 08/21/2006] [Indexed: 10/23/2022]
Abstract
To gain a better understanding of the regulatory mechanism of plant metallothionein (MT) genes, a chimeric expression unit consisting of the beta-glucuronidase (gusA) reporter gene under the control of a 1,324 bp fragment of the rice MT (ricMT) promoter was introduced into Arabidopsis via Agrobacterium tumefaciens. The strongest histochemical staining for GUS activity was observed in the cotyledons and hypocotyls of the transgenic seedlings and in the stigma, filaments and anthers of young and mature flowers, and especially in the wounded tissues of transgenic plants. In contrast, a relatively low level of reporter gene expression was seen in the young roots of transgenic seedlings and no GUS activity was detected in the stems, seeds and leaves, but GUS activity was observed in cotyledons and the first two true leaves. Promoter analysis of 5' deletions further identified several important regions responsible for organ-specific expression including roots, flowers and wound induction, light and ABA, Cu and Zn responses. These findings demonstrate that a 1,324 bp fragment of the rice MT promoter performs a complicated transcriptional regulation with clearly functional regions in a model plant, and provide an important insight into the transcriptional regulation mechanisms that operate the temporal- and spatial-specific expression and stress responses of the rice MT gene. These results suggest that the ricMT promoter and its functional regions are potentially useful in genetic engineering of plants to express the desired genes whose products are preferentially needed in roots, flowers and wound induction.
Collapse
Affiliation(s)
- Shiyou Lü
- Laboratory of Molecular Biology and Protein Science Laboratory of the Ministry of Education, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, 100084, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Zhou G, Xu Y, Li J, Yang L, Liu JY. Molecular analyses of the metallothionein gene family in rice (Oryza sativa L.). BMB Rep 2006; 39:595-606. [PMID: 17002881 DOI: 10.5483/bmbrep.2006.39.5.595] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metallothioneins are a group of low molecular mass and cysteine-rich metal-binding proteins, ubiquitously found in most living organisms. They play an important role in maintaining intracellular metal homeostasis, eliminating metal toxification and protecting against intracellular oxidative damages. Analysis of complete rice genome sequences revealed eleven genes encoding putative metallothionein (OsMT), indicating that OsMTs constitute a small gene family in rice. Expression profiling revealed that each member of the OsMT gene family differs not only in sequence but also in their tissue expression patterns, suggesting that these isoforms may have different functions they perform in specific tissues. On the basis of OsMT structural and phylogenetic analysis, the OsMT family was classified as two classes and class I was subdivided into four types. Additionally, in this paper we also present a complete overview of this family, describing the gene structure, genome localization, upstream regulatory element, and exon/intron organization of each member in order to provide valuable insight into this OsMT gene family.
Collapse
Affiliation(s)
- Gongke Zhou
- Laboratory of Molecular Biology and Protein Science Laboratory of the Ministry of Education, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
47
|
Chiang HC, Lo JC, Yeh KC. Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006; 40:6792-8. [PMID: 17144312 DOI: 10.1021/es061432y] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
To survive in variable soil conditions, plants possess homeostatic mechanisms to maintain a suitable concentration of essential heavy metal ions. Certain plants, inhabiting heavy metal-enriched or -contaminated soil, thus are named hyperaccumulators. Studying hyperaccumulators has great potential to provide information for phytoremediation. To better understand the hyperaccumulating mechanism, we used an Arabidopsis cDNA microarray to compare the gene expression of the Zn/Cd hyperaccumulator Arabidopsis halleri and a nonhyperaccumulator, Arabidopsis thaliana. By analyzing the expression of metal-chelators, antioxidation-related genes, and transporters, we revealed a few novel molecular features. We found that metallothionein 2b and 3, APX and MDAR4 in the ascorbate-glutathione pathway, and certain metal transporters in P(1B)-type ATPase, ZIP, Nramp, and CDF families, are expressed at higher levels in A. halleri than in A. thaliana. We further validated that the enzymatic activity of ascorbate peroxidase and class III peroxidases are highly elevated in A. halleri. This observation positively correlates with the higher ability of A. halleri to detoxify H2O2 produced by cadmium and paraquat treatments. We thus suggest that higher peroxidase activities contribute to the heavy metal tolerance in A. halleri by alleviating the ROS damage. We have revealed genes that could be candidates for the future engineering of plants with large biomass for use in phytoremediation.
Collapse
Affiliation(s)
- Huai-Chih Chiang
- Agriculture Biotechnology Research Center, Academia Sinica, 128 Academia Road Section 2, Taipei, Taiwan 11529, ROC
| | | | | |
Collapse
|
48
|
White J, Pacey-Miller T, Crawford A, Cordeiro G, Barbary D, Bundock P, Henry R. Abundant transcripts of malting barley identified by serial analysis of gene expression (SAGE). PLANT BIOTECHNOLOGY JOURNAL 2006; 4:289-301. [PMID: 17147635 DOI: 10.1111/j.1467-7652.2006.00181.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Serial analysis of gene expression (SAGE) was applied to the major cereal crop barley (Hordeum vulgare) to characterize the transcriptional profile of grain during the malting process. Seven SAGE libraries were generated from seed at different time points during malting, in addition to one library from dry mature seed. A total of 155,206 LongSAGE tags, representing 41,909 unique sequences, was generated. This study reports an in-depth analysis of the most abundant transcripts from each of eight specific time points in a malting barley time course. The 100 most abundant tags from each library were analysed to identify the putative functional role of highly abundant transcripts. The largest functional groups included transcripts coding for stress response and cell defence, ribosomal proteins and storage proteins. The most abundant tag represented B22EL8, a barley metallothionein, which showed significant up-regulation across the malting time course. Considerable changes in the abundance profiles of some of the highly abundant tags occurred at 24 h post-steeping, indicating that it may be an important time point for gene expression changes associated with barley seed germination.
Collapse
Affiliation(s)
- Jessica White
- Grain Foods CRC, Centre for Plant Conservation Genetics, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia
| | | | | | | | | | | | | |
Collapse
|
49
|
Labra M, Gianazza E, Waitt R, Eberini I, Sozzi A, Regondi S, Grassi F, Agradi E. Zea mays L. protein changes in response to potassium dichromate treatments. CHEMOSPHERE 2006; 62:1234-44. [PMID: 16313944 DOI: 10.1016/j.chemosphere.2005.06.062] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 06/13/2005] [Accepted: 06/28/2005] [Indexed: 05/05/2023]
Abstract
The plant metabolic response to heavy metal stress is largely unknown. The present investigation was undertaken to examine the influence of different concentrations of potassium dichromate on the Zea mays L. plantlets. A clear effect of chromium on maize plantlets growth and seed germination was observed strating from 100-300 ppm up to 1500 ppm. In this concentration range, chromium uptake was dependent on the concentration in the medium. Metallothioneins, involved in heavy metal binding, were measured by capillary electrophoresis (CE), and showed a dose-response induction. Protein profile analyzed by two-dimensional gel electrophoresis showed differential expression of several proteins. Identification of spots of upregulated proteins was performed by MALDI mass spectrometry. Results showed that proteins induced by heavy metal exposure are principally involved in oxidative stress tolerance or in other stress pathways. Induction of proteins implicated in sugar metabolism was also observed. Identification of factors involved in plant response may lead to a better understanding of the mechanisms involved in cell protection and tolerance. This information could be used to improve agricultural production and environmental quality.
Collapse
Affiliation(s)
- M Labra
- DISAT, Università di Milano-Bicocca, P.zza della Scienza 1, 20126 Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhang H, Xu W, Dai W, He Z, Ma M. Functional characterization of cadmium-responsive garlic gene AsMT2b: A new member of metallothionein family. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/s11434-006-0409-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|