1
|
Cheng H, Kong W, Tang T, Ren K, Zhang K, Wei H, Lin T. Identification of Key Gene Networks Controlling Soluble Sugar and Organic Acid Metabolism During Oriental Melon Fruit Development by Integrated Analysis of Metabolic and Transcriptomic Analyses. FRONTIERS IN PLANT SCIENCE 2022; 13:830517. [PMID: 35646021 PMCID: PMC9135470 DOI: 10.3389/fpls.2022.830517] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Oriental melon (Cucumis melo var. acidulus) is one of the most economically important fruit crops worldwide. To elucidate the molecular basis related to soluble sugar and organic acid metabolism in the fruits of two oriental melon cultivars with different sweetness, we performed integrated metabolomic and transcriptomic analyses of the fruits of 'Tianbao' (A) with high sweetness and 'Xiaocuigua' (B) with low sweetness at different ripening stages. The high accumulation of sucrose, D-glucose, D-(+)-raffinose, and the relatively lower citric acid and malic acid might contribute to the sweet taste of A. By screening the differentially expressed genes (DEGs) and correlation analysis of the DEGs and differentially accumulated metabolites, we deduced that the B cultivar might promote the conversion of glucose and fructose into intermediate compounds for downstream processes such as glycolysis. The tricarboxylic acid (TCA) cycle might also be enhanced compared to A, thus resulting in the differential accumulation of soluble sugars and organic acids, ultimately causing the taste difference between the two oriental melon cultivars. Our finding provides important information for further exploring the metabolic mechanisms of soluble sugars and organic acids in oriental melon.
Collapse
Affiliation(s)
- Hong Cheng
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Weiping Kong
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Taoxia Tang
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Kaili Ren
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Kaili Zhang
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Huxia Wei
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Tao Lin
- College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Oren E, Tzuri G, Dafna A, Rees ER, Song B, Freilich S, Elkind Y, Isaacson T, Schaffer AA, Tadmor Y, Burger J, Buckler ES, Gur A. QTL mapping and genomic analyses of earliness and fruit ripening traits in a melon Recombinant Inbred Lines population supported by de novo assembly of their parental genomes. HORTICULTURE RESEARCH 2022; 9:uhab081. [PMID: 35043206 PMCID: PMC8968493 DOI: 10.1093/hr/uhab081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 05/27/2023]
Abstract
Earliness and ripening behavior are important attributes of fruits on and off the vine, and affect quality and preference of both growers and consumers. Fruit ripening is a complex physiological process that involves metabolic shifts affecting fruit color, firmness, and aroma production. Melon is a promising model crop for the study of fruit ripening, as the full spectrum of climacteric behavior is represented across the natural variation. Using Recombinant Inbred Lines (RILs) population derived from the parental lines "Dulce" (reticulatus, climacteric) and "Tam Dew" (inodorus, non-climacteric) that vary in earliness and ripening traits, we mapped QTLs for ethylene emission, fruit firmness and days to flowering and maturity. To further annotate the main QTL intervals and identify candidate genes, we used Oxford Nanopore long-read sequencing in combination with Illumina short-read resequencing, to assemble the parental genomes de-novo. In addition to 2.5 million genome-wide SNPs and short InDels detected between the parents, we also highlight here the structural variation between these lines and the reference melon genome. Through systematic multi-layered prioritization process, we identified 18 potential polymorphisms in candidate genes within multi-trait QTLs. The associations of selected SNPs with earliness and ripening traits were further validated across a panel of 177 diverse melon accessions and across a diallel population of 190 F1 hybrids derived from a core subset of 20 diverse parents. The combination of advanced genomic tools with diverse germplasm and targeted mapping populations is demonstrated as a way to leverage forward genetics strategies to dissect complex horticulturally important traits.
Collapse
Affiliation(s)
- Elad Oren
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Galil Tzuri
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Asaf Dafna
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Evan R Rees
- Plant Breeding and Genetics Section, Cornell University, Ithaca, NY 14853, USA
| | - Baoxing Song
- Plant Breeding and Genetics Section, Cornell University, Ithaca, NY 14853, USA
| | - Shiri Freilich
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Yonatan Elkind
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tal Isaacson
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Arthur A Schaffer
- Plant Science Institute, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, Rishon LeZiyyon 7507101, Israel
| | - Yaakov Tadmor
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Joseph Burger
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Edward S Buckler
- Plant Breeding and Genetics Section, Cornell University, Ithaca, NY 14853, USA
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Amit Gur
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| |
Collapse
|
3
|
Sriskantharajah K, El Kayal W, Torkamaneh D, Ayyanath MM, Saxena PK, Sullivan AJ, Paliyath G, Subramanian J. Transcriptomics of Improved Fruit Retention by Hexanal in 'Honeycrisp' Reveals Hormonal Crosstalk and Reduced Cell Wall Degradation in the Fruit Abscission Zone. Int J Mol Sci 2021; 22:ijms22168830. [PMID: 34445535 PMCID: PMC8396267 DOI: 10.3390/ijms22168830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
Apples (Malus domestica Borkh) are prone to preharvest fruit drop, which is more pronounced in 'Honeycrisp'. Hexanal is known to improve fruit retention in several economically important crops. The effects of hexanal on the fruit retention of 'Honeycrisp' apples were assessed using physiological, biochemical, and transcriptomic approaches. Fruit retention and fruit firmness were significantly improved by hexanal, while sugars and fresh weight did not show a significant change in response to hexanal treatment. At commercial maturity, abscisic acid and melatonin levels were significantly lower in the treated fruit abscission zone (FAZ) compared to control. At this stage, a total of 726 differentially expressed genes (DEGs) were identified between treated and control FAZ. Functional classification of the DEGs showed that hexanal downregulated ethylene biosynthesis genes, such as S-adenosylmethionine synthase (SAM2) and 1-aminocyclopropane-1-carboxylic acid oxidases (ACO3, ACO4, and ACO4-like), while it upregulated the receptor genes ETR2 and ERS1. Genes related to ABA biosynthesis (FDPS and CLE25) were also downregulated. On the contrary, key genes involved in gibberellic acid biosynthesis (GA20OX-like and KO) were upregulated. Further, hexanal downregulated the expression of genes related to cell wall degrading enzymes, such as polygalacturonase (PG1), glucanases (endo-β-1,4-glucanase), and expansins (EXPA1-like, EXPA6, EXPA8, EXPA10-like, EXPA16-like). Our findings reveal that hexanal reduced the sensitivity of FAZ cells to ethylene and ABA. Simultaneously, hexanal maintained the cell wall integrity of FAZ cells by regulating genes involved in cell wall modifications. Thus, delayed fruit abscission by hexanal is most likely achieved by minimizing ABA through an ethylene-dependent mechanism.
Collapse
Affiliation(s)
- Karthika Sriskantharajah
- Department of Plant Agriculture, University of Guelph, 50 Stone Road E, Guelph, ON N1G2W1, Canada; (K.S.); (D.T.); (M.M.A.); (P.K.S.); (A.J.S.); (G.P.)
| | - Walid El Kayal
- Department of Plant Agriculture, University of Guelph-Vineland Station, 4890 Victoria Ave N, Vineland, ON L0R2E0, Canada;
- Faculty of Agricultural and Food Science, American University of Beirut, Riad El Solh, P.O. Box 11-0236, Beirut 1107 2020, Lebanon
| | - Davoud Torkamaneh
- Department of Plant Agriculture, University of Guelph, 50 Stone Road E, Guelph, ON N1G2W1, Canada; (K.S.); (D.T.); (M.M.A.); (P.K.S.); (A.J.S.); (G.P.)
- Faculté des Sciences de l’Agriculture et de l’alimentation, Universite Laval, Pavillon Paul-Comtois, 2425, rue de l’Agriculture, Local 1122, Québec City, QC G1V 0A6, Canada
| | - Murali M. Ayyanath
- Department of Plant Agriculture, University of Guelph, 50 Stone Road E, Guelph, ON N1G2W1, Canada; (K.S.); (D.T.); (M.M.A.); (P.K.S.); (A.J.S.); (G.P.)
| | - Praveen K. Saxena
- Department of Plant Agriculture, University of Guelph, 50 Stone Road E, Guelph, ON N1G2W1, Canada; (K.S.); (D.T.); (M.M.A.); (P.K.S.); (A.J.S.); (G.P.)
| | - Alan J. Sullivan
- Department of Plant Agriculture, University of Guelph, 50 Stone Road E, Guelph, ON N1G2W1, Canada; (K.S.); (D.T.); (M.M.A.); (P.K.S.); (A.J.S.); (G.P.)
| | - Gopinadhan Paliyath
- Department of Plant Agriculture, University of Guelph, 50 Stone Road E, Guelph, ON N1G2W1, Canada; (K.S.); (D.T.); (M.M.A.); (P.K.S.); (A.J.S.); (G.P.)
| | - Jayasankar Subramanian
- Department of Plant Agriculture, University of Guelph-Vineland Station, 4890 Victoria Ave N, Vineland, ON L0R2E0, Canada;
- Correspondence: ; Tel.: +1-905-562-4141 (ext. 134)
| |
Collapse
|
4
|
Ma J, Wang L, Cao Y, Wang H, Li H. Association Mapping and Transcriptome Analysis Reveal the Genetic Architecture of Maize Kernel Size. FRONTIERS IN PLANT SCIENCE 2021; 12:632788. [PMID: 33815440 PMCID: PMC8013726 DOI: 10.3389/fpls.2021.632788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/04/2021] [Indexed: 05/05/2023]
Abstract
Kernel length, kernel width, and kernel thickness are important traits affecting grain yield and product quality. Here, the genetic architecture of the three kernel size traits was dissected in an association panel of 309 maize inbred lines using four statistical methods. Forty-two significant single nucleotide polymorphisms (SNPs; p < 1.72E-05) and 70 genes for the three traits were identified under five environments. One and eight SNPs were co-detected in two environments and by at least two methods, respectively, and they explained 5.87-9.59% of the phenotypic variation. Comparing the transcriptomes of two inbred lines with contrasting seed size, three and eight genes identified in the association panel showed significantly differential expression between the two genotypes at 15 and 39 days after pollination, respectively. Ten and 17 genes identified by a genome-wide association study were significantly differentially expressed between the two development stages in the two genotypes. Combining environment-/method-stable SNPs and differential expression analysis, ribosomal protein L7, jasmonate-regulated gene 21, serine/threonine-protein kinase RUNKEL, AP2-EREBP-transcription factor 16, and Zm00001d035222 (cell wall protein IFF6-like) were important candidate genes for maize kernel size and development.
Collapse
|
5
|
Comparative genomics of muskmelon reveals a potential role for retrotransposons in the modification of gene expression. Commun Biol 2020; 3:432. [PMID: 32792560 PMCID: PMC7426833 DOI: 10.1038/s42003-020-01172-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/24/2020] [Indexed: 11/08/2022] Open
Abstract
Melon exhibits substantial natural variation especially in fruit ripening physiology, including both climacteric (ethylene-producing) and non-climacteric types. However, genomic mechanisms underlying such variation are not yet fully understood. Here, we report an Oxford Nanopore-based high-grade genome reference in the semi-climacteric cultivar Harukei-3 (378 Mb + 33,829 protein-coding genes), with an update of tissue-wide RNA-seq atlas in the Melonet-DB database. Comparison between Harukei-3 and DHL92, the first published melon genome, enabled identification of 24,758 one-to-one orthologue gene pairs, whereas others were candidates of copy number variation or presence/absence polymorphisms (PAPs). Further comparison based on 10 melon genome assemblies identified genome-wide PAPs of 415 retrotransposon Gag-like sequences. Of these, 160 showed fruit ripening-inducible expression, with 59.4% of the neighboring genes showing similar expression patterns (r > 0.8). Our results suggest that retrotransposons contributed to the modification of gene expression during diversification of melon genomes, and may affect fruit ripening-inducible gene expression.
Collapse
|
6
|
Li L, Shuai L, Sun J, Li C, Yi P, Zhou Z, He X, Ling D, Sheng J, Kong K, Zheng F, Li J, Liu G, Xin M, Li Z, Tang Y. The Role of 1-Methylcyclopropene in the regulation of ethylene biosynthesis and ethylene receptor gene expression in Mangifera indica L. (Mango Fruit). Food Sci Nutr 2020; 8:1284-1294. [PMID: 32148834 PMCID: PMC7020288 DOI: 10.1002/fsn3.1417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 11/29/2022] Open
Abstract
Mango (Mangifera indica L.) is respiratory climacteric fruit that ripens and decomposes quickly following their harvest. 1-methylcyclopropene (1-MCP) is known to affect the ripening of fruit, delaying the decay of mango stored under ambient conditions. The objective of this study was to clarify the role of 1-MCP in the regulation of ethylene biosynthesis and ethylene receptor gene expression in mango. 1-MCP significantly inhibited the 1-aminocyclopropane-1-carboxylic acid (ACC) content. The activity of ACC oxidase (ACO) increased on days 6, 8, and 10 of storage, whereas delayed ACC synthase (ACS) activity increased after day 4. The two homologous ethylene receptor genes, ETR1 and ERS1 (i.e., MiETR1 and MiERS1), were obtained and deposited in GenBank® (National Center for Biotechnology Information-National Institutes of Health [NCBI-NIH]) (KY002681 and KY002682). The MiETR1 coding sequence was 2,220 bp and encoded 739 amino acids (aa). The MiERS1 coding sequence was 1,890 bp and encoded 629 aa, similar to ERS1 in other fruit. The tertiary structures of MiETR1 and MiERS1 were also predicted. MiERS1 lacks a receiver domain and shares a low homology with MiETR1 (44%). The expression of MiETR1 and MiERS1 mRNA was upregulated as the storage duration extended and reached the peak expression on day 6. Treatment with 1-MCP significantly reduced the expression of MiETR1 on days 4, 6, and 10 and inhibited the expression of MiETR1 on days 2, 4, 6, and 10. These results indicated that MiETR1 and MiERS1 had important functions in ethylene signal transduction. Treatment with 1-MCP might effectively prevent the biosynthesis of ethylene, as well as ethylene-induced ripening and senescence. This study presents an innovative method for prolonging the storage life of mango after their harvest through the regulation of MiETR1 and MiERS1 expression.
Collapse
Affiliation(s)
- Li Li
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyNanningChina
| | - Liang Shuai
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyNanningChina
| | - Jian Sun
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyNanningChina
| | - Changbao Li
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyNanningChina
| | - Ping Yi
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Zhugui Zhou
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Xuemei He
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Dongning Ling
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Jinfeng Sheng
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyNanningChina
| | - Kin‐Weng Kong
- Department of Molecular MedicineFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Fengjin Zheng
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Jiemin Li
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyNanningChina
| | - Guoming Liu
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Ming Xin
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Zhichun Li
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Yayuan Tang
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| |
Collapse
|
7
|
The RamA regulon: complex regulatory interactions in relation to central metabolism in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2018; 102:5901-5910. [DOI: 10.1007/s00253-018-9085-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022]
|
8
|
Expression patterns of members of the ethylene signaling-related gene families in response to dehydration stresses in cassava. PLoS One 2017; 12:e0177621. [PMID: 28542282 PMCID: PMC5441607 DOI: 10.1371/journal.pone.0177621] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 05/01/2017] [Indexed: 12/23/2022] Open
Abstract
Drought is the one of the most important environment stresses that restricts crop yield worldwide. Cassava (Manihot esculenta Crantz) is an important food and energy crop that has many desirable traits such as drought, heat and low nutrients tolerance. However, the mechanisms underlying drought tolerance in cassava are unclear. Ethylene signaling pathway, from the upstream receptors to the downstream transcription factors, plays important roles in environmental stress responses during plant growth and development. In this study, we used bioinformatics approaches to identify and characterize candidate Manihot esculenta ethylene receptor genes and transcription factor genes. Using computational methods, we localized these genes on cassava chromosomes, constructed phylogenetic trees and identified stress-responsive cis-elements within their 5’ upstream regions. Additionally, we measured the trehalose and proline contents in cassava fresh leaves after drought, osmotic, and salt stress treatments, and then it was found that the regulation patterns of contents of proline and trehalose in response to various dehydration stresses were differential, or even the opposite, which shows that plant may take different coping strategies to deal with different stresses, when stresses come. Furthermore, expression profiles of these genes in different organs and tissues under non-stress and abiotic stress were investigated through quantitative real-time PCR (qRT-PCR) analyses in cassava. Expression profiles exhibited clear differences among different tissues under non-stress and various dehydration stress conditions. We found that the leaf and tuberous root tissues had the greatest and least responses, respectively, to drought stress through the ethylene signaling pathway in cassava. Moreover, tuber and root tissues had the greatest and least reponses to osmotic and salt stresses through ethylene signaling in cassava, respectively. These results show that these plant tissues had differential expression levels of genes involved in ethylene signaling in response to the stresses tested. Moreover, after several gene duplication events, the spatiotemporally differential expression pattern of homologous genes in response to abiotic and biotic stresses may imply their functional diversity as a mechanism for adapting to the environment. Our data provide a framework for further research on the molecular mechanisms of cassava resistance to drought stress and provide a foundation for breeding drought-resistant new cultivars.
Collapse
|
9
|
Winterhagen P, Hagemann MH, Wünsche JN. Expression and interaction of the mango ethylene receptor MiETR1 and different receptor versions of MiERS1. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 246:26-36. [PMID: 26993233 DOI: 10.1016/j.plantsci.2016.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/19/2016] [Accepted: 02/10/2016] [Indexed: 06/05/2023]
Abstract
Different versions of the mango ethylene receptor MiERS1 were identified and the analysis indicates that, in addition to MiERS1, two short versions of this receptor (MiERS1m, MiERS1s), representing truncated proteins with central deletions of functional domains, are present in mango. The short receptor versions reveal a different expression pattern compared to MiERS1, and they are highly variably transcribed. With transient expression assays using fluorescent fusion proteins, the localisation and the interaction of the receptors were determined in leaf cells of the tobacco model. MiERS1, MiETR1, and the short MiERS1 receptor versions are anchored in the endoplasmic reticulum (ER) membrane and co-localise with each other and with an ER-marker. Furthermore, ectopic expression of the mango receptors appears to induce a re-organisation of the ER resulting in accumulation of ER bodies. Interaction assays suggest that both short MiERS1 receptor versions can bind to proteins located in the ER. Bi-molecular fluorescence complementation (BiFC) assays indicate, that MiERS1m may dimerise with itself and can also interact with MiERS1, but not with MiETR1. Further, it as found that MiETR1 can interact with MiERS1. Interaction of MiERS1s with the other ethylene receptors could not be detected, although it was located in the ER membrane system.
Collapse
Affiliation(s)
- Patrick Winterhagen
- University of Hohenheim, Institute of Crop Science, Crop Physiology of Specialty Crops, Stuttgart, Germany.
| | - Michael H Hagemann
- University of Hohenheim, Institute of Crop Science, Crop Physiology of Specialty Crops, Stuttgart, Germany
| | - Jens N Wünsche
- University of Hohenheim, Institute of Crop Science, Crop Physiology of Specialty Crops, Stuttgart, Germany
| |
Collapse
|
10
|
Shahri W, Tahir I. Flower senescence: some molecular aspects. PLANTA 2014; 239:277-97. [PMID: 24178586 DOI: 10.1007/s00425-013-1984-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 10/14/2013] [Indexed: 05/08/2023]
|
11
|
Contreras-Vergara CA, Stephens-Camacho NA, Yepiz-Plascencia G, González-Aguilar GA, Arvizu-Flores AA, Sanchez-Sanchez E, Islas-Osuna MA. Cloning and expression of ethylene receptor ERS1 at various developmental and ripening stages of mango fruit. GENETICS AND MOLECULAR RESEARCH 2012; 11:4081-92. [PMID: 23079970 DOI: 10.4238/2012.september.10.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ethylene induces characteristic ripening reactions in climacteric fruits through its binding to histidine-kinase (HK) receptors, activating the expression of ripening genes. Ethylene receptors have been found in Arabidopsis thaliana (Brassicaceae) and some fruits; number and expression patterns differ among species. In mango, only ethylene receptor ETR1 was known. We cloned ERS1 cDNA from mango, and evaluated the expression of Mi-ERS1 and Mi-ETR1 by qPCR in developmental and ripening stages of this fruit. The Mi-ERS1 coding sequence is 1890 bp long and encodes 629 amino acids, similar to ERS1 from other fruits. Also, the amino acid sequence of ERS1 C-terminal HK domain shows the cognate fold after molecular modeling. Mi-ERS1 expression levels increased as mangoes ripened, showing the highest levels at the climacteric stage, while Mi-ETR1 levels did not change during development and ripening. We conclude that the patterns of expression of Mi-ERS1 and Mi-ETR1 differ in mango fruit.
Collapse
|
12
|
Agarwal G, Choudhary D, Singh VP, Arora A. Role of ethylene receptors during senescence and ripening in horticultural crops. PLANT SIGNALING & BEHAVIOR 2012; 7:827-46. [PMID: 22751331 PMCID: PMC3583974 DOI: 10.4161/psb.20321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The past two decades have been rewarding in terms of deciphering the ethylene signal transduction and functional validation of the ethylene receptor and downstream genes involved in the cascade. Our knowledge of ethylene receptors and its signal transduction pathway provides us a robust platform where we can think of manipulating and regulating ethylene sensitivity by the use of genetic engineering and making transgenic. This review focuses on ethylene perception, receptor mediated regulation of ethylene biosynthesis, role of ethylene receptors in flower senescence, fruit ripening and other effects induced by ethylene. The expression behavior of the receptor and downstream molecules in climacteric and non climacteric crops is also elaborated upon. Possible strategies and recent advances in altering the ethylene sensitivity of plants using ethylene receptor genes in an attempt to modulate the regulation and sensitivity to ethylene have also been discussed. Not only will these transgenic plants be a boon to post-harvest physiology and crop improvement but, it will also help us in discovering the mechanism of regulation of ethylene sensitivity.
Collapse
Affiliation(s)
| | | | - Virendra P. Singh
- Division of Plant Physiology; Indian Agricultural Research Institute; PUSA Campus; New Delhi, India
| | - Ajay Arora
- Division of Plant Physiology; Indian Agricultural Research Institute; PUSA Campus; New Delhi, India
| |
Collapse
|
13
|
Yin XR, Shi YN, Min T, Luo ZR, Yao YC, Xu Q, Ferguson I, Chen KS. Expression of ethylene response genes during persimmon fruit astringency removal. PLANTA 2012; 235:895-906. [PMID: 22101946 DOI: 10.1007/s00425-011-1553-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 10/19/2011] [Indexed: 05/27/2023]
Abstract
Thirteen ethylene signaling related genes were isolated and studied during ripening of non-astringent 'Yangfeng' and astringent 'Mopan' persimmon fruit. Some of these genes were characterized as ethylene responsive. Treatments, including ethylene and CO(2), had different effects on persimmon ripening, but overlapping roles in astringency removal, such as increasing the reduction in levels of soluble tannins. DkERS1, DkETR2, and DkERF8, may participate in persimmon fruit ripening and softening. The expression patterns of DkETR2, DkERF4, and DkERF5 had significant correlations with decreases in soluble tannins in 'Mopan' persimmon fruit, suggesting that these genes might be key components in persimmon fruit astringency removal and be the linkage between different treatments, while DkERF1 and DkERF6 may be specifically involved in CO(2) induced astringency removal. The possible roles of ethylene signaling genes in persimmon fruit astringency removal are discussed.
Collapse
Affiliation(s)
- Xue-ren Yin
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ish-Shalom M, Dahan Y, Maayan I, Irihimovitch V. Cloning and molecular characterization of an ethylene receptor gene, MiERS1, expressed during mango fruitlet abscission and fruit ripening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:931-6. [PMID: 21676621 DOI: 10.1016/j.plaphy.2011.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/23/2011] [Indexed: 05/08/2023]
Abstract
We isolated and characterized a mango (Mangifera indica L.) cDNA homolog of the ethylene receptor gene ERS1, designated MiERS1. Genomic Southern blot analysis suggested the existence of a second gene with homology to MiERS1. Spatial and temporal expression patterns of MiERS1 were first studied during fruitlet drop and compared with those of a previously identified MiETR1 gene that encodes an ETR1-type ethylene receptor. Experiments were conducted on developing fruitlet explants in which fruitlet abscission was induced by ethephon treatment. Northern analysis revealed a notable increase in MiERS1 mRNA levels in the fruitlet's activated abscission zone within 24 h of ethephon application, followed by a decreasing pattern 48 h post-treatment. A transient, albeit lesser, increase in MiERS1 mRNA levels was also observed in treated fruitlet seed and mesocarp tissues. In contrast, in the abscission zone, accumulation of MiETR1 transcript remained unchanged; a temporal increase in MiETR1 transcript level was observed in the fruitlet mesocarp, whereas in the seed, MiETR1 expression had already dropped by 24 h. Expression profiles of MiERS1 and MiETR1 were then studied during fruit ripening. In agreement with a previous study and coinciding with the climacteric rise in ethylene production, RNA blot analysis revealed that during fruit ripening, MiETR1 mRNA level increases in both mesocarp and seed tissues. Unexpectedly, however, in those same tissues, MiERS1 transcript accumulation was barely detected. Collectively, our data highlight MiERS1's possible specific function in regulating fruitlet abscission rather than fruit ripening.
Collapse
Affiliation(s)
- Mazal Ish-Shalom
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, Bet-Dagan 50250, Israel
| | | | | | | |
Collapse
|
15
|
Yan SC, Chen JY, Yu WM, Kuang JF, Chen WX, Li XP, Lu WJ. Expression of genes associated with ethylene-signalling pathway in harvested banana fruit in response to temperature and 1-MCP treatment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2011; 91:650-7. [PMID: 21302318 DOI: 10.1002/jsfa.4226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/09/2010] [Accepted: 10/12/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND Little attention has been paid to characterising the ethylene-signalling pathway genes in relation to abnormal ripening of harvested banana fruit during storage at high temperature. The aim of the present study was to investigate banana fruit abnormal ripening and the expression of ten genes associated with the ethylene-signalling pathway, namely MaACS1, MaACO1, MaERS1-4 and MaEIL1-4, at high temperature. Changes in these parameters of banana fruit at high temperature in response to 1-MCP pretreatment were also investigated. RESULTS High temperature accelerated the decline in fruit firmness, increased ethylene production and inhibited degreening in banana fruit, resulting in fruit abnormal ripening. In addition, the expression of MaACS1, MaACO1, MaERS2, MaERS3, MaERS4, MaEIL1, MaEIL3 and MaEIL4 was enhanced in banana fruit stored at high temperature. However, application of 1-MCP prior to high temperature storage delayed fruit abnormal ripening and simultaneously suppressed the expression of MaACS1, MaERS2, MaERS3, MaEIL1, MaEIL3 and MaEIL4. CONCLUSION The findings of this study suggested that the expression of genes associated with the ethylene-signalling pathway might be involved in banana fruit abnormal ripening at high temperature. Application of 1-MCP suppressed the expression of genes associated with the ethylene-signalling pathway, which may be attributed at least partially to 1-MCP delaying fruit abnormal ripening at high temperature.
Collapse
Affiliation(s)
- Su-Cheng Yan
- Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Wuriyanghan H, Zhang B, Cao WH, Ma B, Lei G, Liu YF, Wei W, Wu HJ, Chen LJ, Chen HW, Cao YR, He SJ, Zhang WK, Wang XJ, Chen SY, Zhang JS. The ethylene receptor ETR2 delays floral transition and affects starch accumulation in rice. THE PLANT CELL 2009; 21:1473-94. [PMID: 19417056 PMCID: PMC2700534 DOI: 10.1105/tpc.108.065391] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 04/09/2009] [Accepted: 04/21/2009] [Indexed: 05/18/2023]
Abstract
Ethylene regulates multiple aspects of plant growth and development in dicotyledonous plants; however, its roles in monocotyledonous plants are poorly known. Here, we characterized a subfamily II ethylene receptor, ETHYLENE RESPONSE2 (ETR2), in rice (Oryza sativa). The ETR2 receptor with a diverged His kinase domain is a Ser/Thr kinase, but not a His kinase, and can phosphorylate its receiver domain. Mutation of the N box of the kinase domain abolished the kinase activity of ETR2. Overexpression of ETR2 in transgenic rice plants reduced ethylene sensitivity and delayed floral transition. Conversely, RNA interference (RNAi) plants exhibited early flowering and the ETR2 T-DNA insertion mutant etr2 showed enhanced ethylene sensitivity and early flowering. The effective panicles and seed-setting rate were reduced in the ETR2-overexpressing plants, while thousand-seed weight was substantially enhanced in both the ETR2-RNAi plants and the etr2 mutant compared with controls. Starch granules accumulated in the internodes of the ETR2-overexpressing plants, but not in the etr2 mutant. The GIGANTEA and TERMINAL FLOWER1/CENTRORADIALIS homolog (RCN1) that cause delayed flowering were upregulated in ETR2-overexpressing plants but downregulated in the etr2 mutant. Conversely, the alpha-amylase gene RAmy3D was suppressed in ETR2-overexpressing plants but enhanced in the etr2 mutant. Thus, ETR2 may delay flowering and cause starch accumulation in stems by regulating downstream genes.
Collapse
Affiliation(s)
- Hada Wuriyanghan
- Plant Gene Research Center, National Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nuñez-Palenius HG, Gomez-Lim M, Ochoa-Alejo N, Grumet R, Lester G, Cantliffe DJ. Melon fruits: genetic diversity, physiology, and biotechnology features. Crit Rev Biotechnol 2008; 28:13-55. [PMID: 18322855 DOI: 10.1080/07388550801891111] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Among Cucurbitaceae, Cucumis melo is one of the most important cultivated cucurbits. They are grown primarily for their fruit, which generally have a sweet aromatic flavor, with great diversity and size (50 g to 15 kg), flesh color (orange, green, white, and pink), rind color (green, yellow, white, orange, red, and gray), form (round, flat, and elongated), and dimension (4 to 200 cm). C. melo can be broken down into seven distinct types based on the previously discussed variations in the species. The melon fruits can be either climacteric or nonclimacteric, and as such, fruit can adhere to the stem or have an abscission layer where they will fall from the plant naturally at maturity. Traditional plant breeding of melons has been done for 100 years wherein plants were primarily developed as open-pollinated cultivars. More recently, in the past 30 years, melon improvement has been done by more traditional hybridization techniques. An improvement in germplasm is relatively slow and is limited by a restricted gene pool. Strong sexual incompatibility at the interspecific and intergeneric levels has restricted rapid development of new cultivars with high levels of disease resistance, insect resistance, flavor, and sweetness. In order to increase the rate and diversity of new traits in melon it would be advantageous to introduce new genes needed to enhance both melon productivity and melon fruit quality. This requires plant tissue and plant transformation techniques to introduce new or foreign genes into C. melo germplasm. In order to achieve a successful commercial application from biotechnology, a competent plant regeneration system of in vitro cultures for melon is required. More than 40 in vitro melon regeneration programs have been reported; however, regeneration of the various melon types has been highly variable and in some cases impossible. The reasons for this are still unknown, but this plays a heavy negative role on trying to use plant transformation technology to improve melon germplasm. In vitro manipulation of melon is difficult; genotypic responses to the culture method (i.e., organogenesis, somatic embryogenesis, etc.) as well as conditions for environmental and hormonal requirements for plant growth and regeneration continue to be poorly understood for developing simple in vitro procedures to culture and transform all C. melo genotypes. In many cases, this has to be done on an individual line basis. The present paper describes the various research findings related to successful approaches to plant regeneration and transgenic transformation of C. melo. It also describes potential improvement of melon to improve fruit quality characteristics and postharvest handling. Despite more than 140 transgenic melon field trials in the United States in 1996, there are still no commercial transgenic melon cultivars on the market. This may be a combination of technical or performance factors, intellectual property rights concerns, and, most likely, a lack of public acceptance. Regardless, the future for improvement of melon germplasm is bright when considering the knowledge base for both techniques and gene pools potentially useable for melon improvement.
Collapse
Affiliation(s)
- Hector G Nuñez-Palenius
- Plant Genetic Engineering Department, Guanajuato Campus. Center of Research and Advanced Studies (Cinvestav-IPN), National Polytechnic Institute, Irapuato, Guanajuato, Mexico.
| | | | | | | | | | | |
Collapse
|
18
|
Flores F, Martínez-Madrid M, Romojaro F. Influence of Fruit Development Stage on the Physiological Response to Ethylene in Cantaloupe Charentais Melon. FOOD SCI TECHNOL INT 2008. [DOI: 10.1177/1082013208089646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An experiment has been designed and performed using Cantaloupe Charentais melon as climacteric fruit with the aim of finding out at which point of their development they are able to sense the plant hormone ethylene. Fruit were harvested at 20, 25, and 35 days after pollination (DAP), treated for 5 days at 20 °C with 5 ppm of ethylene, and stored for a further 10 days. Nontreated wild type fruit was used as control. Ethylene-treated genetically modified 1-aminocyclopropane-1-carboxylic acid oxidase antisense fruits with inhibited autocatalytic ethylene production were also used to avoid masking effects because of endogenous ethylene produced by control fruits. Ethylene-treated wild type fruits with 25 DAP were able to produce autocatalytic ethylene. A climacteric respiration increase was observed in treated wild type fruit with 25 and 35 DAP. The degreening of the rind was induced by ethylene in the youngest fruit, showing a total dependence on the hormone for its activation. Loss of pulp firmness induced by exogenous ethylene was found only in 20 DAP-fruit. The existence of ethylene-dependent and developmental factors in the regulation of this ripening process was observed.
Collapse
Affiliation(s)
- F.B. Flores
- CEBAS-CSIC, PO Box 164, 30100 Espinardo, Murcia, Spain,
| | - M.C. Martínez-Madrid
- Escuela Politécnica Superior, Universidad Miguel Hernández Ctra. Beniel km 3.2, 03312 Orihuela, Alicante, Spain
| | - F. Romojaro
- CEBAS-CSIC, PO Box 164, 30100 Espinardo, Murcia, Spain
| |
Collapse
|
19
|
Moreno E, Obando JM, Dos-Santos N, Fernández-Trujillo JP, Monforte AJ, Garcia-Mas J. Candidate genes and QTLs for fruit ripening and softening in melon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 116:589-602. [PMID: 18094954 DOI: 10.1007/s00122-007-0694-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 11/28/2007] [Indexed: 05/03/2023]
Abstract
Different factors affect the quality of melon fruit and among them long shelf life is critical from the consumer's point of view. In melon, cultivars showing both climacteric and non-climacteric ripening types are found. In this study we have investigated climacteric ripening and fruit softening using a collection of near-isogenic lines (NILs) derived from the non-climacteric melon parental lines PI 161375 (SC) and "Piel de Sapo" (PS). Surprisingly, we found that QTL eth3.5 in NIL SC3-5b induced a climacteric-ripening phenotype with increased respiration and ethylene levels. Data suggest that the non-climacteric phenotypes from PI 161375 and "Piel de Sapo" may be the result of mutations in different genes. Several QTLs for fruit flesh firmness were also detected. Candidate genes putatively involved in ethylene regulation, biosynthesis and perception and cell wall degradation were mapped and some colocations with QTLs were observed. These results may provide additional data towards understanding of non-climacteric ripening in melon.
Collapse
Affiliation(s)
- Eduard Moreno
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB, Carretera de Cabrils Km2, 08348, Cabrils, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Yin XR, Chen KS, Allan AC, Wu RM, Zhang B, Lallu N, Ferguson IB. Ethylene-induced modulation of genes associated with the ethylene signalling pathway in ripening kiwifruit. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2097-108. [PMID: 18535296 PMCID: PMC2413272 DOI: 10.1093/jxb/ern067] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 05/18/2023]
Abstract
Gene families associated with the ethylene signal transduction pathway in ripening kiwifruit (Actinidia deliciosa [A. Chev.] C.F. Liang et A.R. Ferguson var. deliciosa cv. Hayward) were isolated from a kiwifruit expressed sequence tag (EST) database, including five ethylene receptor genes, two CTR1-like genes, and an EIN3-like gene AdEIL1. All were differentially expressed among various kiwifruit vine tissues, and none was fruit specific. During fruit development, levels of transcripts of AdERS1a, AdETR3, and the two CTR1-like genes decreased, whereas those of AdERS1b and AdETR2 peaked at 97 d after full bloom. In ripening kiwifruit, there was a diverse response of the ethylene receptor family to internal and external ethylene. AdERS1a, AdETR2, and AdETR3 expression increased at the climacteric stage and transcripts were induced by external ethylene treatment, while AdERS1b showed no response to ethylene. AdETR1 was negatively regulated by internal and external ethylene in ripening fruit. The two CTR1-like genes also had different expression patterns, with AdCTR1 increasing at the climacteric stage and AdCTR2 undergoing little change. 1-Methylcyclopropene treatment prevented the ethylene response of all components, but transient down-regulation was only found with AdETR2 and AdCTR1. Similar gene and ethylene responses were found in both fruit flesh and core tissues. The ethylene-induced down-regulation of AdETR1 suggests that it may have a role in sensing ethylene and transmitting this response to other members of the receptor family, thus activating the signal transduction pathway.
Collapse
Affiliation(s)
- Xue-ren Yin
- Laboratory of Fruit Molecular Physiology and Biotechnology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Biotechnology, Zhejiang University, Huajiachi Campus, Hangzhou 310029, PR China
- The Horticulture and Food Research Institute of New Zealand, Private Bag 92169, Auckland, New Zealand
| | - Kun-song Chen
- Laboratory of Fruit Molecular Physiology and Biotechnology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Biotechnology, Zhejiang University, Huajiachi Campus, Hangzhou 310029, PR China
- To whom correspondence should be addressed. E-mail: or
| | - Andrew C. Allan
- The Horticulture and Food Research Institute of New Zealand, Private Bag 92169, Auckland, New Zealand
| | - Rong-mei Wu
- The Horticulture and Food Research Institute of New Zealand, Private Bag 92169, Auckland, New Zealand
| | - Bo Zhang
- Laboratory of Fruit Molecular Physiology and Biotechnology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Biotechnology, Zhejiang University, Huajiachi Campus, Hangzhou 310029, PR China
| | - Nagin Lallu
- The Horticulture and Food Research Institute of New Zealand, Private Bag 92169, Auckland, New Zealand
| | - Ian B. Ferguson
- The Horticulture and Food Research Institute of New Zealand, Private Bag 92169, Auckland, New Zealand
- To whom correspondence should be addressed. E-mail: or
| |
Collapse
|
21
|
The influence of ethylene perception on sex expression in melon (Cucumis melo L.) as assessed by expression of the mutant ethylene receptor, At-etr1-1, under the control of constitutive and floral targeted promoters. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s00497-007-0049-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Takada K, Watanabe S, Sano T, Ma B, Kamada H, Ezura H. Heterologous expression of the mutated melon ethylene receptor gene Cm-ERS1/H70A produces stable sterility in transgenic lettuce (Lactuca sativa). JOURNAL OF PLANT PHYSIOLOGY 2007; 164:514-20. [PMID: 17207555 DOI: 10.1016/j.jplph.2006.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 10/11/2006] [Accepted: 10/12/2006] [Indexed: 05/08/2023]
Abstract
The mutated melon ethylene receptor gene Cm-ERS1/H70A was introduced into tobacco and induced stable sterility in transgenic lines. This gene contains a missense mutation that converts the His(70) residue to Ala in the melon ethylene receptor gene Cm-ERS1. To test the applicability of this inducible sterility system to other plants, lettuce (Lactuca sativa) was transformed with the gene using Agrobacterium, and putative transformants containing Cm-ERS1/H70A were obtained. Thirteen randomly selected putative transformants were grown in a growth room under constant conditions, and seven of the lines showed sterility or significantly reduced fertility. DNA gel blot analysis confirmed the integration of the Cm-ERS1/H70A gene into the genomes of the putative transformants, and RT-PCR and protein gel blot analysis confirmed the expression of Cm-ERS1/H70A mRNA and protein in all of the transformants. Five transformants showing sterility or reduced fertility when grown in a growth room under constant conditions were randomly selected to be grown in an open-air greenhouse under various environmental conditions. All five showed stable sterility under the various conditions. These results suggest that Cm-ERS1/H70A can induce sterility in heterologous transgenic plants.
Collapse
Affiliation(s)
- Keita Takada
- Gene Research Center, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Fernández-Otero CI, de la Torre F, Iglesias R, Rodríguez-Gacio MC, Matilla AJ. Stage- and tissue-expression of genes involved in the biosynthesis and signalling of ethylene in reproductive organs of damson plum (Prunus domestica L. subsp. insititia). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:199-208. [PMID: 17416534 DOI: 10.1016/j.plaphy.2007.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 02/20/2007] [Indexed: 05/14/2023]
Abstract
In this work, four cDNA clones (Pd-ACS1,AJ890088; Pd-ETR1 and Pd-ERS1, AJ890092, AJ890091; and Pd-CTR1, AJ890089) encoding an ACC-synthase, two putative ethylene (ET) receptors, and a putative MAPKKK, respectively, were isolated and phylogenetically characterized in Prunus domestica L. subsp. insititia. Their expression was studied by real-time PCR during flower (closed, open and senescent) and fruit (early green, late green, maturation and ripening) development of damson plum, which is climateric. While two peaks of ET production were quantified at early green and ripening stages in whole fruits, the seed was not able to produce it during maturation and ripening stages. All studied genes were differentially expressed during flower and fruit development. In general, the level of transcripts of Pd-ACS1 was higher in fruits than in flowers. However, it was noteworthy that: (1) Pd-ACS1 expression was hardly detected in closed flowers and at low levels during early green stage; and fruit development provoked a notable differential expression in seeds, and pericarp; (2) the results of Pd-ACS1 expression during fruit development suggest a preponderant role of this gene from late green stage onward. The stamen was the only floral organ in which expression of both Pd-ETR1 and Pd-ERS1 receptor genes was not significantly altered during development; however, their expression decreased concomitantly with development of pistil (only floral organ to register a net ET production when fertilized) and during first days of ovary development (the highest ET production during all fruit development). Contrary to Pd-ERS1, the level of Pd-ETR1 mRNA was temporally quite similar in the seed. With regard Pd-ETR1, even its expression was very scarce during maturation of mesocarp, was stimulated during ripening. In the epicarp, Pd-ERS1 and Pd-ETR1 were low expressed during pit hardening increasing onward and decreasing during ripening. Pd-CTR1 expression was in the seed>mesocarp>>epicarp. Spatial and temporal levels of Pd-ACS1, Pd-ETR1, Pd-ERS1 and Pd-CTR1 mRNAs described in this work demonstrate that the expression of these genes is not always constitutive and that control of its transcription may play an important role in regulating the development of reproductive organs of damson plum.
Collapse
Affiliation(s)
- C I Fernández-Otero
- Department of Plant Physiology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, A Coruña, Spain
| | | | | | | | | |
Collapse
|
24
|
Bustamante-Porras J, Campa C, Poncet V, Noirot M, Leroy T, Hamon S, de Kochko A. Molecular characterization of an ethylene receptor gene (CcETR1) in coffee trees, its relationship with fruit development and caffeine content. Mol Genet Genomics 2007; 277:701-12. [PMID: 17318584 DOI: 10.1007/s00438-007-0219-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 02/01/2007] [Indexed: 11/30/2022]
Abstract
To understand the importance of ethylene receptor genes in the quality of coffee berries three full-length cDNAs corresponding to a putative ethylene receptor gene (ETR1) were isolated from Coffea canephora cDNA libraries. They differed by their 3'UTR and contained a main ORF and a 5'UTR short ORF putatively encoding a small polypeptide. The CcETR1 gene, present as a single copy in the C. canephora genome, contained five introns in the coding region and one in its 5'UTR. Alternative splicing can occur in C. canephora and C. pseudozanguebariae, leading to a truncated polypeptide. C. pseudozanguebariae ETR1 transcripts showed various forms of splicing alterations. This gene was equally expressed at all stages of fruit development. A segregation study on an inter-specific progeny showed that ETR1 is related to the fructification time, the caffeine content of the green beans, and seed weight. Arabidopsis transformed etiolated seedlings, which over-expressed CcETR1, displayed highly reduced gravitropism, but the triple response was observed in an ethylene enriched environment. These plants behaved like a low-concentration ethylene-insensitive mutant thus confirming the receptor function of the encoded protein. This gene showed no induction during the climacteric crisis but some linkage with traits related to quality.
Collapse
|
25
|
HALL MA, MOSHKOV IE, NOVIKOVA GV, MUR LAJ, SMITH AR. Ethylene signal perception and transduction: multiple paradigms? Biol Rev Camb Philos Soc 2007. [DOI: 10.1111/j.1469-185x.2000.tb00060.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Tanase K, Ichimura K. Expression of ethylene receptors Dl-ERS1-3 and Dl-ERS2, and ethylene response during flower senescence in Delphinium. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:1159-66. [PMID: 16500725 DOI: 10.1016/j.jplph.2005.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 12/16/2005] [Indexed: 05/06/2023]
Abstract
To clarify the relationships of flower senescence, especially sepal abscission, and ethylene receptor gene expression in different flower parts, we isolated two cDNAs encoding ethylene receptors Dl-ERS1-3 and Dl-ERS2 from Delphinium flowers. Deduced polypeptides possessed no response regulator domain, indicating that they belong to a family of ethylene response sensor (ERS) ethylene receptors. Dl-ERS1-3 and Dl-ERS2 exhibited constitutive levels during flower senescence. Exogenous ethylene increased transcript levels in sepals, which are influenced by ethylene but not in gynoecia and receptacles, which produce ethylene. It was suggested that expression of ethylene receptor genes under ethylene exposure was differentially regulated in each organ of the flower.
Collapse
Affiliation(s)
- Koji Tanase
- National Institute of Floricultural Science, National Agriculture and Bio-oriented Research Organization, Fujimoto 2-1, Tsukuba 305-8519, Ibaraki, Japan.
| | | |
Collapse
|
27
|
Takada K, Ishimaru K, Kamada H, Ezura H. Anther-specific expression of mutated melon ethylene receptor gene Cm-ERS1/H70A affected tapetum degeneration and pollen grain production in transgenic tobacco plants. PLANT CELL REPORTS 2006; 25:936-41. [PMID: 16552596 DOI: 10.1007/s00299-006-0147-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 02/13/2006] [Accepted: 02/15/2006] [Indexed: 05/07/2023]
Abstract
To develop a new system for inducible male sterility without any modification of the floral architecture in tobacco plants, a mutated ethylene receptor gene Cm-ERS1/H70A was fused either to the tobacco Nin88 promoter known to function mainly in the tapetum and microspore or to the CaMV 35S promoter known to be a constitutive promoter. The fusion genes pNin88::Cm-ERS1/H70A and p35S::Cm-ERS1/H70A were introduced in tobacco plants, which generated two independent transformants. Transformants with 35S::Cm-ERS1/H70A produced less normal pollen and had modified floral architecture while those with Nin88::Cm-ERS1/H70A produced less normal pollen without modification of floral architecture. Histological observations of anthers at stage 2 showed that tapetum degeneration in NH70A #8 and H70A #2 transformants occurred later than in wild types, strongly indicating that the expression of the mutated gene was involved in this delay. These results suggest that the tapetum-specific expression of a mutated ethylene receptor gene is a potential strategy for inducing male sterility in transgenic plants.
Collapse
Affiliation(s)
- Keita Takada
- Gene Research Center, University of Tsukuba, Ten-nodai 1-1-1, Tsukuba 305-8572, Japan
| | | | | | | |
Collapse
|
28
|
De la Torre F, Del Carmen Rodríguez-Gacio M, Matilla AJ. How ethylene works in the reproductive organs of higher plants: a signaling update from the third millennium. PLANT SIGNALING & BEHAVIOR 2006; 1:231-42. [PMID: 19516984 PMCID: PMC2634124 DOI: 10.4161/psb.1.5.3389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 09/07/2006] [Indexed: 05/15/2023]
Abstract
Ethylene (ET) is a notable signaling molecule in higher plants. In the year 1993 the ET receptor gene, ETR1, was identified; this ETR1 receptor protein being the first plant hormone receptor to be isolated. It is striking that there are six ET receptors in tomato instead of five in Arabidopsis, the two best-known signaling-model systems. Even though over the last few years great progress has been made in elucidating the genes and proteins involved in ET signaling, the complete pathway remains to be established. The present review examines the most representative successive advances that have taken place in this millennium in terms of the signaling pathway of ET, as well as the implications of the signaling in the reproductive organs of plants (i.e., flowers, fruits, seeds and pollen grains). A detailed comparative study is made on the advances in knowledge in the last decade, showing how the characterization of ET signaling provides clues for understanding how higher plants regulate their ET sensitivity. Also, it is indicated that ET signaling is at present sparking interest within phytohormonal molecular physiology and biology, and it is explained why several socio-economic aspects (flowering and fruit ripening) are undoubtedly involved in ET physiology.
Collapse
Affiliation(s)
- Francisco De la Torre
- Department of Plant Physiology; Faculty of Pharmacy; University of Santiago de Compostela; Santiago de Compostela, Galicia, Spain
| | | | | |
Collapse
|
29
|
Ishimaru K, Takada K, Watanabe S, Kamada H, Ezura H. Stable male sterility induced by the expression of mutated melon ethylene receptor genes in Nicotiana tabacum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2006; 171:355-9. [PMID: 22980204 DOI: 10.1016/j.plantsci.2006.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 04/08/2006] [Accepted: 04/13/2006] [Indexed: 05/08/2023]
Abstract
A major concern about genetically modified crops is transgene flow through pollen dispersal. We previously demonstrated that overexpression of the mutated melon ethylene receptor genes Cm-ETR1/H69A or Cm-ERS1/H70A induces pollen abortion and altered flower architecture, resulting in sterility or reduced fertility in transgenic tobacco plants. To investigate the stability of these traits, three transgenic tobacco lines in which Cm-ETR1/H69A or Cm-ERS1/H70A confer sterility or reduced fertility were grown in a greenhouse with environmental conditions that changed, depending on the outside conditions. During the growth of the plants, the temperature ranged from 31°C at the beginning of September to 17°C at the beginning of November. The light provided was natural sunlight. The first group of plants flowered in late September, and the second group flowered in late October. The wild-type plants showed the homostyly type of floral architecture, whereas, three transgenic lines showed the heterostyly type. The floral architecture was stable during the different flowering periods. Pollen production was significantly reduced in two transgenic lines and completely aborted in one transgenic line, and these traits were also stable during the different flowering periods. These results suggest that the sterility or reduced fertility induced by the expression of mutated melon ethylene receptor genes in transgenic tobacco plants is stable under varying environmental conditions.
Collapse
Affiliation(s)
- Kentaro Ishimaru
- Gene Research Center, University of Tsukuba, Ten-nodai, Tsukuba 305-8572, Japan
| | | | | | | | | |
Collapse
|
30
|
Ma B, Cui ML, Sun HJ, Takada K, Mori H, Kamada H, Ezura H. Subcellular localization and membrane topology of the melon ethylene receptor CmERS1. PLANT PHYSIOLOGY 2006; 141:587-97. [PMID: 16617090 PMCID: PMC1475473 DOI: 10.1104/pp.106.080523] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 04/09/2006] [Accepted: 04/09/2006] [Indexed: 05/08/2023]
Abstract
Ethylene receptors are multispanning membrane proteins that negatively regulate ethylene responses via the formation of a signaling complex with downstream elements. To better understand their biochemical functions, we investigated the membrane topology and subcellular localization of CmERS1, a melon (Cucumis melo) ethylene receptor that has three putative transmembrane domains at the N terminus. Analyses using membrane fractionation and green fluorescent protein imaging approaches indicate that CmERS1 is predominantly associated with the endoplasmic reticulum (ER) membrane. Detergent treatments of melon microsomes showed that the receptor protein is integrally bound to the ER membrane. A protease protection assay and N-glycosylation analysis were used to determine membrane topology. The results indicate that CmERS1 spans the membrane three times, with its N terminus facing the luminal space and the large C-terminal portion lying on the cytosolic side of the ER membrane. This orientation provides a platform for interaction with the cytosolic signaling elements. The three N-terminal transmembrane segments were found to function as topogenic sequences to determine the final topology. High conservation of these topogenic sequences in all ethylene receptor homologs identified thus far suggests that these proteins may share the same membrane topology.
Collapse
Affiliation(s)
- Biao Ma
- Gene Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Sugawara M, Okazaki S, Nukui N, Ezura H, Mitsui H, Minamisawa K. Rhizobitoxine modulates plant-microbe interactions by ethylene inhibition. Biotechnol Adv 2006; 24:382-8. [PMID: 16516430 DOI: 10.1016/j.biotechadv.2006.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bradyrhizobium elkanii produces rhizobitoxine, an enol-ether amino acid, which has been regarded as a phytotoxin because it causes chlorosis in soybeans. However, recent studies have revealed that rhizobitoxine plays a positive role in establishing symbiosis between B. elkanii and host legumes: rhizobitoxine enhances the nodulation process by inhibiting ACC (1-aminocyclopropane-1-carboxylate) synthase in the ethylene biosynthesis of host roots. B. elkanii rtxA and rtxC genes are required for rhizobitoxine production. In particular, rtxC gene is involved in the desaturation of dihydrorhizobitoxine into rhizobitoxine. A legume with a mutated ethylene receptor gene produced markedly higher numbers of rhizobial infection threads and nodule primordia. Thus, endogenous ethylene in legume roots negatively regulates the formation of nodule primordia, which is overcome by rhiozbitoxine. Although a plant pathogen Burkholderia andropogonis has been known to produce rhizobitoxine, the genome sequence of Xanthomonas oryzae showed the existence of a putative rhizobitoxine transposon in the genome. The cumulative evidence suggests that rhizobitoxine-producing bacteria modulate plant-microbe interactions via ethylene in the rhizosphere and phyllosphere environments. In addition, rhizobitoxine-producing capability might be utilized as tools in agriculture and biotechnology.
Collapse
Affiliation(s)
- Masayuki Sugawara
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Zhou HL, Cao WH, Cao YR, Liu J, Hao YJ, Zhang JS, Chen SY. Roles of ethylene receptor NTHK1 domains in plant growth, stress response and protein phosphorylation. FEBS Lett 2006; 580:1239-50. [PMID: 16442528 DOI: 10.1016/j.febslet.2006.01.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 01/09/2006] [Accepted: 01/12/2006] [Indexed: 10/25/2022]
Abstract
Ethylene receptors sense ethylene and regulate downstream signaling events. Tobacco ethylene receptor NTHK1, possessing Ser/Thr kinase activity, has been found to function in plant growth and salt-stress responses. NTHK1 contains transmembrane domains, a GAF domain, a kinase domain and a receiver domain. We examined roles of these domains in regulation of plant leaf growth, salt-stress responses and salt-responsive gene expressions using an overexpression approach. We found that the transgenic Arabidopsis plants harboring the transmembrane domain plus kinase domain exhibited large rosettes, had reduction in ethylene sensitivity, and showed enhanced salt sensitivity. The transgenic plants harboring the transmembrane domain plus GAF domain also showed larger rosettes. Truncations of NTHK1 affected salt-induced gene expressions. Transmembrane domain plus kinase domain promoted RD21A and VSP2 expression but decreased salt-induction of AtNAC2. The kinase domain itself promoted AtERF4 gene expression. The GAF domain itself enhanced Cor6.6 induction. Moreover, the NTHK1 functional kinase domain phosphorylated the HIS and ATP subdomains, and five putative phosphorylation sites were identified in these two subdomains. In addition, the salt-responsive element of the NTHK1 gene was in the transmembrane-coding region but not in the promoter region. These results indicate that NTHK1 domains or combination of them have specific functions in plant leaf growth, salt-stress response, gene expression and protein phosphorylation.
Collapse
Affiliation(s)
- Hua-Lin Zhou
- National Key Lab of Plant Genomic, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Ziosi V, Bregoli AM, Bonghi C, Fossati T, Biondi S, Costa G, Torrigiani P. Transcription of ethylene perception and biosynthesis genes is altered by putrescine, spermidine and aminoethoxyvinylglycine (AVG) during ripening in peach fruit (Prunus persica). THE NEW PHYTOLOGIST 2006; 172:229-38. [PMID: 16995911 DOI: 10.1111/j.1469-8137.2006.01828.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The time course of ethylene biosynthesis and perception was investigated in ripening peach fruit (Prunus persica) following treatments with the polyamines putrescine (Pu) and spermidine (Sd), and with aminoethoxyvinylglycine (AVG). Fruit treatments were performed in planta. Ethylene production was measured by gas chromatography, and polyamine content by high-performance liquid chromatography; expression analyses were performed by Northern blot or real-time polymerase chain reaction. Differential increases in the endogenous polyamine pool in the epicarp and mesocarp were induced by treatments; in both cases, ethylene production, fruit softening and abscission were greatly inhibited. The rise in 1-aminocyclopropane-1-carboxylate oxidase (PpACO1) mRNA was counteracted and delayed in polyamine-treated fruit, whereas transcript abundance of ethylene receptors PpETR1 (ethylene receptor 1) and PpERS1 (ethylene sensor 1) was enhanced at harvest. Transcript abundance of arginine decarboxylase (ADC) and S-adenosylmethionine decarboxylase (SAMDC) was transiently reduced in both the epicarp and mesocarp. AVG, here taken as a positive control, exerted highly comparable effects to those of Pu and Sd. Thus, in peach fruit, increasing the endogenous polyamine pool in the epicarp or in the mesocarp strongly interfered, both at a biochemical and at a biomolecular level, with the temporal evolution of the ripening syndrome.
Collapse
Affiliation(s)
- Vanina Ziosi
- Dip. di Biologia e.s., Università di Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Tatsuki M, Endo A. Analyses of Expression Patterns of Ethylene Receptor Genes in Apple (Malus domestica Borkh.) Fruits Treated with or without 1-Methylcyclopropene (1-MCP). ACTA ACUST UNITED AC 2006. [DOI: 10.2503/jjshs.75.481] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Trainotti L, Pavanello A, Casadoro G. Different ethylene receptors show an increased expression during the ripening of strawberries: does such an increment imply a role for ethylene in the ripening of these non-climacteric fruits? JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:2037-46. [PMID: 15955790 DOI: 10.1093/jxb/eri202] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Notwithstanding the economic importance of non-climacteric fruits like grape and strawberry, little is known about the mechanisms that regulate their ripening. Up to now no growth regulator has emerged with a primary role similar to that played by ethylene in the ripening of the climacteric fruits. Strawberries can produce ethylene, although in limited amounts. Two cDNAs coding for enzymes of the ethylene biosynthetic pathway (i.e. FaACO1 and FaACO2), and three cDNAs encoding different ethylene receptors have been isolated. Two receptors (i.e. FaEtr1 and FaErs1) belong to the type-I while the third (i.e. FaEtr2) belongs to the type-II group. The expression of both the ACO and the receptor-encoding genes has been studied in fruits at different stages of development and in fruits treated with hormones (i.e. ethylene and the auxin analogue NAA). All the data thus obtained have been correlated to the known data about ethylene production by strawberry fruits. Interestingly, a good correlation has resulted between the expression of the genes described in this work and the data of ethylene production. In particular, similarly to what occurs during climacteric fruit ripening, there is an increased synthesis of receptors concomitant with the increased synthesis of ethylene in strawberries as well. Moreover, the receptors mostly expressed in ripening strawberries are the type-II ones, that is those with a degenerate histidine-kinase domain. Since the latter domain is thought to establish a weaker link to the CTR1 proteins, even the little ethylene produced by ripening strawberries might be sufficient to trigger ripening-related physiological responses.
Collapse
Affiliation(s)
- Livio Trainotti
- Dipartimento di Biologia, Università di Padova, Via G. Colombo 3, I-35121 Padova, Italy
| | | | | |
Collapse
|
36
|
CHEN YIFENG, ETHERIDGE NAOMI, SCHALLER GERIC. Ethylene signal transduction. ANNALS OF BOTANY 2005; 95:901-15. [PMID: 15753119 PMCID: PMC4246747 DOI: 10.1093/aob/mci100] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 12/11/2004] [Accepted: 12/17/2004] [Indexed: 05/18/2023]
Abstract
BACKGROUND The phytohormone ethylene is a key regulator of plant growth and development. Components of the pathway for ethylene signal transduction were identified by genetic approaches in Arabidopsis and have now been shown to function in agronomically important plants as well. SCOPE This review focuses on recent advances in our knowledge on ethylene signal transduction, in particular on recently proposed components of the pathway, on the interaction between the pathway components and on the roles of transcriptional and post-transcriptional regulation in ethylene signalling. CONCLUSIONS Data indicate that the site of ethylene perception is at the endoplasmic reticulum and point to the importance of protein complexes in mediating the initial steps in ethylene signal transduction. The expression level of pathway components is regulated by both transcriptional and post-transcriptional mechanisms, degradation of the transcription factor EIN3 being a primary means by which the sensitivity of plants to ethylene is regulated. EIN3 also represents a control point for cross-talk with other signalling pathways, as exemplified by the effects of glucose upon its expression level. Amplification of the initial ethylene signal is likely to play a significant role in signal transduction and several mechanisms exist by which this may occur based on properties of known pathway components. Signal output from the pathway is mediated in part by carefully orchestrated changes in gene expression, the breadth of these changes now becoming clear through expression analysis using microarrays.
Collapse
Affiliation(s)
- YI-FENG CHEN
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - NAOMI ETHERIDGE
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - G. ERIC SCHALLER
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
37
|
Kuroda S, Hirose Y, Shiraishi M, Davies E, Abe S. Co-expression of an ethylene receptor gene, ERS1, and ethylene signaling regulator gene, CTR1, in Delphinium during abscission of florets. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004. [PMID: 15474381 DOI: 10.1016/s0981-9428(03)00115-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We are trying to determine the mechanisms responsible for ethylene-induced floret abscission in cut flowers of Delphinium and recently identified an ethylene receptor gene, ERS1, and studied its response to ethylene treatment. In order to identify additional components of the ethylene response network in Delphinium, we performed 3' and 5' rapid amplification of cDNA ends (RACE) using the consensus sequence of the serine/threonine kinase domain of the ethylene signaling regulator gene (CTR1) involved in the constitutive triple response (CTR) to ethylene. The full-length cDNA (2754 nt) encoded a protein of 800 amino acids, which contained the expected serine/threonine kinase domain, the consensus ATP-binding site, and the serine/threonine kinase catalytic site. The protein had quite high (>50%) overall identity to CTR1 from Arabidopsis and tomato, and 70-75% identity in the catalytic site. The amount of mRNA encoding both CTR1 and ERS1 more than doubled within 6 h in cut florets incubated in the presence of exogenous ethylene. Similarly, the amount of ERS1 transcript doubled in florets within 6 d of harvesting, presumably in response to endogenous ethylene, while CTR1 mRNA increased to about 40% over the same period. However, in the presence of silver thiosulfate (STS), an ethylene inhibitor, the level of both transcripts remained essentially unchanged for the first 8 d before declining to very low levels. Florets on the control plants had almost completely abscised by 6 d, but the florets on STS-treated plants had not abscised by 20 d, by which time the flowers were almost dead. The data are consistent with the hypothesis that endogenous ethylene evokes the accumulation of both these transcripts (and their encoded proteins), thereby speeding up abscission and reducing the useful shelf life of the cut flowers.
Collapse
Affiliation(s)
- Satoshi Kuroda
- Laboratory of Molecular Cell Biology, Department of Biological Resources, Faculty of Agriculture, Ehime University, Matsuyama 7908566, Japan
| | | | | | | | | |
Collapse
|
38
|
Klee HJ. Ethylene signal transduction. Moving beyond Arabidopsis. PLANT PHYSIOLOGY 2004; 135:660-7. [PMID: 15208412 PMCID: PMC514102 DOI: 10.1104/pp.104.040998] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 04/12/2004] [Accepted: 04/12/2004] [Indexed: 05/18/2023]
Affiliation(s)
- Harry J Klee
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
39
|
Nukui N, Ezura H, Minamisawa K. Transgenic Lotus japonicus with an Ethylene Receptor Gene Cm-ERS1/H70A Enhances Formation of Infection Threads and Nodule Primordia. ACTA ACUST UNITED AC 2004; 45:427-35. [PMID: 15111717 DOI: 10.1093/pcp/pch046] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Ethylene inhibits the establishment of symbiosis between rhizobia and legumes. To examine how and when endogenous ethylene inhibits rhizobial infection and nodulation, we produced transgenic Lotus japonicus carrying the mutated melon ethylene receptor gene Cm-ERS1/H70A that confers ethylene insensitivity and fixes the transgene in the T(3) generation. The resultant transgenic plants showed reduced ethylene sensitivity because of 1-aminocyclopropane-1-carboxylate resistance and increased flowering duration, probably due to a dominant negative mechanism. When inoculated with Mesorhizobium loti, transgenic plants showed markedly higher numbers of infection threads and nodule primordia on their roots than did either wild-type or azygous plants during the early stage of cultivation period as well as during later stages, when the number of mature nodules had reached a steady state. In addition, transcripts of NIN, a gene governing infection thread formation, increased in the inoculated transgenic plants as compared with the wild-type plants. The infection responses of transgenic plants were similar to those of wild-type plants treated with ethylene inhibitors. These results imply that the endogenous ethylene in L. japonicus roots inhibits rhizobial infection at the primary nodulation, probably via NIN gene, and suggest that ethylene perception assists negative feedback regulation of secondary nodule initiation.
Collapse
Affiliation(s)
- Noriyuki Nukui
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai, 980-8577 Japan
| | | | | |
Collapse
|
40
|
Zoraghi R, Corbin JD, Francis SH. Properties and functions of GAF domains in cyclic nucleotide phosphodiesterases and other proteins. Mol Pharmacol 2004; 65:267-78. [PMID: 14742667 DOI: 10.1124/mol.65.2.267] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Roya Zoraghi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | |
Collapse
|
41
|
Okazaki S, Nukui N, Sugawara M, Minamisawa K. Rhizobial Strategies to Enhance Symbiotic Interactions: Rhizobitoxine and 1-Aminocyclopropane-1-Carboxylate Deaminase. Microbes Environ 2004. [DOI: 10.1264/jsme2.19.99] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Shin Okazaki
- Graduate School of Life Sciences, Tohoku University
| | | | | | | |
Collapse
|
42
|
Voet-van-Vormizeele J, Groth G. High-level expression of the Arabidopsis thaliana ethylene receptor protein ETR1 in Escherichia coli and purification of the recombinant protein. Protein Expr Purif 2003; 32:89-94. [PMID: 14680944 DOI: 10.1016/s1046-5928(03)00215-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2003] [Revised: 06/23/2003] [Indexed: 11/18/2022]
Abstract
Ethylene responses in plants are mediated by a small family of membrane integral receptors including the ETR1 gene product which are similar to the two-component bacterial histidine kinase regulators. Detailed biochemical and structural analysis of the ethylene-receptor family was hampered by the scarce amount of pure protein. Here, we report the construction, expression, and single-step purification of the ETR1 receptor protein from Arabidopsis thaliana in a bacterial expression system. The DNA fragment encoding the mature ETR1 receptor protein was subcloned into the pET15b expression vector and highly expressed in derivatives C41(DE3) and C43(DE3) of the Escherichia coli strain BL21(DE3). The recombinant protein was solubilised from the bacterial cells using mild non-denaturing detergents and purified to homogeneity by Ni-NTA affinity chromatography, yielding approximately 2-3 mg pure protein per litre of cells. The molecular mass of the purified protein was estimated to be 78 kDa by SDS-PAGE. The expression and purification of recombinant ETR1 reported here provide a basis for detailed functional and structural studies of the receptor protein, which might help to understand signal perception and signal transduction of the phytohormone ethylene on the molecular level.
Collapse
Affiliation(s)
- Jan Voet-van-Vormizeele
- Heinrich-Heine-Universität, Biochemie der Pflanzen, Universitätsstr. 1, Düsseldorf D-40225, Germany
| | | |
Collapse
|
43
|
Vriezen WH, Zhou Z, Van Der Straeten D. Regulation of submergence-induced enhanced shoot elongation in Oryza sativa L. ANNALS OF BOTANY 2003; 91 Spec No:263-70. [PMID: 12509346 PMCID: PMC4244991 DOI: 10.1093/aob/mcf121] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rice (Oryza sativa L.) is the only cereal that can be cultivated in the frequently flooded river deltas of South-East and South Asia. The survival strategies used by rice have been studied quite extensively and the role of several phytohormones in the elongation response has been established. Deep-water rice cultivars can diminish flooding stress by rapid elongation of their submerged tissues to keep up with the rising waters. Other rice cultivars may react by mechanisms of submergence tolerance. Aerenchyma and aerenchymatous adventitious roots are formed that facilitate oxygen diffusion to prevent anaerobic conditions in the submerged tissues. This paper discusses the molecular aspects of the mechanism that leads to shoot elongation (leaves of seedlings and internodes), the regulation of which involves metabolism of, and interactions between, ethylene, gibberellins and abscisic acid. Finally, the importance of new techniques in future research is assessed. Current molecular technology can reveal subtle differences in gene activity between tolerant and non-tolerant cultivars, and identify genes that are involved in the regulation of submergence avoidance and tolerance.
Collapse
Affiliation(s)
- Wim H Vriezen
- Department of Molecular Genetics, Ghent University (RUG-VIB), Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | | |
Collapse
|
44
|
Xie C, Zhang JS, Zhou HL, Li J, Zhang ZG, Wang DW, Chen SY. Serine/threonine kinase activity in the putative histidine kinase-like ethylene receptor NTHK1 from tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:385-93. [PMID: 12535351 DOI: 10.1046/j.1365-313x.2003.01631.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A histidine kinase-based signaling system has been proposed to function in ethylene signal transduction pathway of plants and one ethylene receptor has been found to possess His kinase activity. Here we demonstrate that a His kinase-like ethylene receptor homologue NTHK1 from tobacco has serine/threonine (Ser/Thr) kinase activity, but no His kinase activity. Evidence obtained by analyzing acid/base stability, phosphoamino acid and substrate specificity of the phosphorylated kinase domain, supports this conclusion. In addition, mutation of the presumptive phosphorylation site His (H378) to Gln did not affect the kinase activity whereas deletion of the ATP-binding domain eliminated it, indicating that the conserved His (H378) is not required for the kinase activity and this activity is intrinsic to the NTHK1-KD. Moreover, confocal analysis of NTHK1 expression in insect cells and plant cells suggested the plasma membrane localization of the NTHK1 protein. Thus, NTHK1 may represent a distinct Ser/Thr kinase-type ethylene receptor and function in an alternative mechanism for ethylene signal transduction.
Collapse
Affiliation(s)
- Can Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, Peoples Republic of China
| | | | | | | | | | | | | |
Collapse
|
45
|
Xie C, Zhang ZG, Zhang JS, He XJ, Cao WH, He SJ, Chen SY. Spatial expression and characterization of a putative ethylene receptor protein NTHK1 in tobacco. PLANT & CELL PHYSIOLOGY 2002; 43:810-5. [PMID: 12154144 DOI: 10.1093/pcp/pcf095] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A putative ethylene receptor gene NTHK1 encodes a protein with a putative signal peptide, three transmembrane segments, a putative histidine kinase domain and a putative receiver domain. The receiver domain was expressed in an Escherichia coli expression system, purified and used to generate polyclonal antibodies for immunohistochemistry analysis. The spatial expression of the NTHK1 protein was then investigated. We found that NTHK1 was abundant during flower and ovule development. It was also expressed in glandular hairs, stem, and in leaves that had been wounded. The NTHK1 gene was further introduced into the tobacco plant and we found that, in different transgenic lines, the NTHK1 gene was transcribed to various degrees. Upon ACC treatment, the etiolated transgenic seedlings showed reduced ethylene sensitivity when compared with the control, indicating that NTHK1 is a functional ethylene receptor in plants.
Collapse
Affiliation(s)
- Can Xie
- Plant Biotechnology Lab, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | | | | | | | | | |
Collapse
|
46
|
Périn C, Gomez-Jimenez M, Hagen L, Dogimont C, Pech JC, Latché A, Pitrat M, Lelièvre JM. Molecular and genetic characterization of a non-climacteric phenotype in melon reveals two loci conferring altered ethylene response in fruit. PLANT PHYSIOLOGY 2002; 129:300-9. [PMID: 12011360 PMCID: PMC155893 DOI: 10.1104/pp.010613] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2001] [Revised: 11/01/2001] [Accepted: 02/04/2002] [Indexed: 05/19/2023]
Abstract
Fruit ripening and abscission are associated with an ethylene burst in several melon (Cucumis melo) genotypes. In cantaloupe as in other climacteric fruit, exogenous ethylene can prematurely induce abscission, ethylene production, and ripening. Melon genotypes without fruit abscission or without ethylene burst also exist and are, therefore, non-climacteric. In the nonabscising melon fruit PI 161375, exogenous ethylene failed to stimulate abscission, loss of firmness, ethylene production, and expression of all target genes tested. However, the PI 161375 etiolated seedlings displayed the usual ethylene-induced triple response. Genetic analysis on a population of recombinant cantaloupe Charentais x PI 161375 inbred lines in segregation for fruit abscission and ethylene production indicated that both characters are controlled by two independent loci, abscission layer (Al)-3 and Al-4. The non-climacteric phenotype in fruit tissues is attributable to ethylene insensitivity conferred by the recessive allelic forms from PI 161375. Five candidate genes (two ACO, two ACS, and ERS) that were localized on the melon genetic map did not exhibit colocalization with Al-3 or Al-4.
Collapse
Affiliation(s)
- Christophe Périn
- Institut National de la Recherche Agronomique, Station de Génétique et d'Amélioration des Fruits et Légumes, Domaine St. Maurice, Boîte Postale 94, 84143 Montfavet cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Shibuya K, Nagata M, Tanikawa N, Yoshioka T, Hashiba T, Satoh S. Comparison of mRNA levels of three ethylene receptors in senescing flowers of carnation (Dianthus caryophyllus L.). JOURNAL OF EXPERIMENTAL BOTANY 2002; 53:399-406. [PMID: 11847237 DOI: 10.1093/jexbot/53.368.399] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Three ethylene receptor genes, DC-ERS1, DC-ERS2 and DC-ETR1, were previously identified in carnation (Dianthus caryophyllus L.). Here, the presence of mRNAs for respective genes in flower tissues and their changes during flower senescence are investigated by Northern blot analysis. DC-ERS2 and DC-ETR1 mRNAs were present in considerable amounts in petals, ovaries and styles of the flower at the full-opening stage. In the petals the level of DC-ERS2 mRNA showed a decreasing trend toward the late stage of flower senescence, whereas it increased slightly in ovaries and was unchanged in styles throughout the senescence period. However, DC-ETR1 mRNA showed no or little changes in any of the tissues during senescence. Exogenously applied ethylene did not affect the levels of DC-ERS2 and DC-ETR1 mRNAs in petals. Ethylene production in the flowers was blocked by treatment with 1,1-dimethyl-4-(phenylsulphonyl)semicarbazide (DPSS), but the mRNA levels for DC-ERS2 and DC-ETR1 decreased in the petals. DC-ERS1 mRNA was not detected in any cases. These results indicate that DC-ERS2 and DC-ETR1 are ethylene receptor genes responsible for ethylene perception and that their expression is regulated in a tissue-specific manner and independently of ethylene in carnation flowers during senescence.
Collapse
MESH Headings
- Apoptosis/physiology
- Blotting, Northern
- Blotting, Southern
- Cloning, Molecular
- Dianthus/genetics
- Dianthus/growth & development
- Dianthus/metabolism
- Ethylenes/antagonists & inhibitors
- Ethylenes/metabolism
- Ethylenes/pharmacology
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Plant/drug effects
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plant Structures/genetics
- Plant Structures/growth & development
- Plant Structures/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Semicarbazides/pharmacology
Collapse
Affiliation(s)
- Kenichi Shibuya
- Laboratory of Bio-adaptation, Graduate School of Agricultural Sciences, Tohoku University, Tsutsumidori-amamiyamachi 1-1, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Takahashi H, Kobayashi T, Sato-Nara K, Tomita KO, Ezura H. Detection of ethylene receptor protein Cm-ERS1 during fruit development in melon (Cucumis melo L.). JOURNAL OF EXPERIMENTAL BOTANY 2002; 53:415-422. [PMID: 11847239 DOI: 10.1093/jexbot/53.368.415] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Antibodies against melon ethylene receptor, Cm- ERS1 was prepared. Cm-ERS1 protein formed a disulphide-linked homodimer and it was present in microsomal membranes but not in soluble fractions. Cm-ERS1 protein was present at high levels in melon fruit during early developmental stages. This transition pattern was also observed in another melon cultivar.
Collapse
Affiliation(s)
- Hidenori Takahashi
- Plant Biotechnology Institute, Ibaraki Agricultural Centre, Ago 3165-1, Iwama, Nishi-ibaraki, Ibaraki, 319-0292 Japan
| | | | | | | | | |
Collapse
|
49
|
Mita S, Kawamura S, Asai T. Regulation of the expression of a putative ethylene receptor, PeERS2, during the development of passion fruit (Passiflora edulis). PHYSIOLOGIA PLANTARUM 2002; 114:271-280. [PMID: 11903974 DOI: 10.1034/j.1399-3054.2002.1140213.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We isolated a full-length cDNA (PeERS2) that encoded the homologue in passion fruit of ERS1 of Arabidopsis and examined its expression during development of passion fruit. PeERS2 was 2357 bp long and included a single open reading frame that encoded a putative protein of 634 amino acids with a calculated molecular mass of 70.8 kDa. Expression of PeERS2 mRNA in arils of passion fruit was enhanced during ripening and after treatment with ethylene, but its level remained very low in seeds over the course of ripening. Accumulation of PeERS2 mRNA in arils was markedly reduced in fruits treated with 2,5-norbornadiene (NBD), but simultaneous application of ethylene abolished the inhibitory effects of NBD, suggesting that the continuous action of ethylene might promote ripening, with a concomitant increase in the abundance of PeERS2 mRNA. Levels of transcripts of the PeERS1 and PeERS2, which encode similar but not identical receptors for ethylene, increased during senescence of flowers and expression of PeERS2 mRNA was also enhanced during formation of the separation layer. The levels of transcripts of PeETR1 (the gene for yet another ethylene receptor) and PeERS1 were, respectively, higher than those of PeERS2 in sepals and ovaries. The transcripts of all three genes for ethylene receptors were barely detectable in anthers. These results suggest that the expression of the three genes for ethylene receptors is differentially regulated and that expression of the gene for PeERS2 is regulated not only by ethylene itself but also by developmental factors. Expression of each of the three individual genes for ethylene receptors might be controlled by different molecular mechanisms in the various tissues.
Collapse
Affiliation(s)
- Satoru Mita
- Institute for Genetic Research and Biotechnology, Shizuoka University, Shizuoka 422-8529, Japan Department of Biological Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan Experimental Farm, Shizuoka University, Fujieda 426-0001, Japan
| | | | | |
Collapse
|
50
|
Urao T, Yamaguchi-Shinozaki K, Shinozaki K. Plant histidine kinases: an emerging picture of two-component signal transduction in hormone and environmental responses. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:re18. [PMID: 11717470 DOI: 10.1126/stke.2001.109.re18] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In the Arabidopsis thaliana genome, 11 genes encode bacterial-type two-component histidine kinases. Genetic and biochemical analyses indicate that five two-component histidine kinase-like proteins (ETR1, ETR2, EIN4, ERS1, and ERS2) function as ethylene receptors. A hybrid histidine kinase, CRE1 (also known as AHK4), acts as a cytokinin receptor, and a set of response regulators may be involved in cytokinin signal transduction. In addition to CRE1, histidine kinases CKI1 and CKI2 are likely to play important roles in cytokinin signaling. A database search of the entire Arabidopsis genome sequence has identified two additional homologs of CRE1. Arabidopsis seems to employ a hybrid histidine kinase, ATHK1, as an osmosensor. Plants widely use two-component systems in the detection of, and signal transduction by, the growth regulators ethylene and cytokinin, as well as in their responses to environmental stimuli.
Collapse
Affiliation(s)
- T Urao
- Biological Resources Division, Japan International Research Center for Agricultural Science (JIRCAS), Ministry of Agriculture, Forestry and Fisheries, 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | | | | |
Collapse
|