1
|
Liang Q, Feng X, Hu D, Jin Y, Wang X, Ma X, Liang R, Zhu QH, He S, Zhu H, Liu F, Zhang X, Sun J, Xue F. Genetic, metabolomic and transcriptomic analyses of the cotton yellow anther trait. Int J Biol Macromol 2025; 300:140193. [PMID: 39848383 DOI: 10.1016/j.ijbiomac.2025.140193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
In the fiber industry, cotton (Gossypium hirsutum L.) is an important crop. One of the most important morphology traits of plants is the color of the anthers, is closely related to pollen fertility and stress resistance. Upland cotton anthers appear white, while island cotton and many wild cotton species have yellow anthers. Carotenoids are natural pigments in plants which involved in many metabolic processes, including photosynthesis, photoprotection, photomorphogenesis, growth and development. Here, we characterized the yellow anther trait of G. hirsutum. Carotenoid and flavonoid profiles in the yellow anthers were greatly altered compared to that in the white anthers, indicating that both carotenoids and flavonoids contribute to the yellow anther phenotype. Map-based cloning identified GhYA (GH_A05G4013) encoding a phytoene synthase to be the candidate gene responsible for anther coloration. GhYA is predominantly expressed in anthers, with its expression level gradually decreasing with the development of anthers. Haplotype analysis revealed that white anthers are associated with two haplotypes, with X74 belonging to HAP1. Through evolutionary analysis, it was found that although there are many white anther Germplasm in upland cotton, the two types of white anther haplotypes were mutated from yellow anthers respectively. Comparative transcriptome analysis between the yellow anther and white anther accessions revealed differentially expressed genes related to both the carotenoid and flavonoid biosynthesis pathways, in line with the changed profiles of the two types of metabolites in yellow anthers; meanwhile, it also indicates potential cross-talk between the flavonoid and carotenoid pathways. According to the results, the PSY gene is critical for the regulation of carotenoids accumulation in cotton anthers.
Collapse
Affiliation(s)
- Qian Liang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - Xiaokang Feng
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - Daowu Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.
| | - YanLong Jin
- College of Life Sciences, Fudan University, Shanghai, China.
| | - Xuefeng Wang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - XiaoHu Ma
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - Rui Liang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra 2601, Australia.
| | - Shoupu He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.
| | - Huaguo Zhu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, Hubei, China.
| | - Feng Liu
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - Xinyu Zhang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - Jie Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - Fei Xue
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| |
Collapse
|
2
|
Xiong H, Wang J, Gao X, Dong G, Zeng W, Wang W, Sun MX. Transcriptome and Metabolome Analyses Reveal a Complex Stigma Microenvironment for Pollen Tube Growth in Tobacco. Int J Mol Sci 2024; 25:12255. [PMID: 39596319 PMCID: PMC11594504 DOI: 10.3390/ijms252212255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
In flowering plants, the success of fertilization depends on the rapid polar extension of a pollen tube, which delivers sperm cells to the female gametophyte for fertilization. Numerous studies have shown that the microenvironment in planta is more conducive to the growth and development of pollen tubes than that in vitro. However, how stigma factors coordinate to regulate pollen tube growth is still poorly understood. Here, we demonstrate that in tobacco, mature stigma extract, but not immature stigma extract, facilitates pollen tube growth. Comparative transcriptomic and qRT-PCR analyses showed that the differentially expressed genes during stigma maturation were mainly enriched in the metabolism pathway. Through metabolome analyses, about 500 metabolites were identified to be differently accumulated; the significantly increased metabolites in the mature stigmas mainly belonged to alkaloids, flavonoids, and terpenoids, while the downregulated differential metabolites were related to lipids, amino acids, and their derivatives. Among the different kinds of plant hormones, the cis-form contents of zeatin were significantly increased, and more importantly, cis-zeatin riboside promoted pollen tube growth in vitro. Thus, our results reveal an overall landscape of gene expression and a detailed nutritional microenvironment established for pollen tube growth during the process of stigma maturation, which provides valuable clues for optimizing in vitro pollen growth and investigating the pollen-stigma interaction.
Collapse
Affiliation(s)
- Hanxian Xiong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (H.X.); (J.W.); (X.G.); (G.D.); (W.Z.)
| | - Junjie Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (H.X.); (J.W.); (X.G.); (G.D.); (W.Z.)
| | - Xiaodi Gao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (H.X.); (J.W.); (X.G.); (G.D.); (W.Z.)
| | - Guoqing Dong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (H.X.); (J.W.); (X.G.); (G.D.); (W.Z.)
| | - Wanyong Zeng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (H.X.); (J.W.); (X.G.); (G.D.); (W.Z.)
| | - Wei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| |
Collapse
|
3
|
Deng F, Lu L, Li L, Yang J, Chen Y, Zeng H, Li Y, Qiao Z. Floral Developmental Morphology and Biochemical Characteristics of Male Sterile Mutants of Lagerstroemia indica. PLANTS (BASEL, SWITZERLAND) 2024; 13:3043. [PMID: 39519960 PMCID: PMC11548521 DOI: 10.3390/plants13213043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Male sterility is a common phenomenon in higher plants and often plays an important role in the selection of superior offspring. 'Xiang Yun' is a mutant of Lagerstroemia indica that does not bear fruit after flowering, and its flowering period is significantly longer than that of normal L. indica. To explore the timing and molecular mechanisms of sterility in 'Xiang Yun', this study determined the period of sterility through anatomical observation and compared the content of nutrients and the activity of antioxidative enzymes at different stages of flower development. Finally, sequence alignment and qPCR were used to analyze the differences in pollen development genes between 'Xiang Yun' and 'Hong Ye'. The results showed that the anthers of 'Xiang Yun' dispersed pollen normally, but the pollen grains could not germinate normally. Observations with scanning electron microscopy revealed that the pollen grains were uneven in size and shriveled in shape. Further observation of anther sections found that abnormal development of the microspores began at the S2 stage, with the callose wall between microspores of 'Xiang Yun' being thicker than that of 'Hong Ye'. In addition, during the flower development of 'Xiang Yun', the contents of soluble sugar, soluble protein, free proline, and triglycerides were deficient to varying degrees, and the activities of POD, SOD, and MDA were lower. Sequence alignment and qPCR showed that there were several mutations in EFD1, TPD1, and DEX1 of 'Xiang Yun' compared with 'Hong Ye', and the expression levels of these genes were abnormally elevated in the later stages of development. Our results clarified the timing and phenotype of male sterility in 'Xiang Yun'. This provides solid and valuable information for further research on the molecular mechanism of sterility in 'Xiang Yun' and the genetic breeding of crape myrtle.
Collapse
Affiliation(s)
- Fuyuan Deng
- Hunan Provincial Key Laboratory of Forest Clonal Breeding, Hunan Academy of Forestry, Changsha 410004, China
| | - Liushu Lu
- Hunan Provincial Key Laboratory of Forest Clonal Breeding, Hunan Academy of Forestry, Changsha 410004, China
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lu Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jing Yang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yi Chen
- Hunan Provincial Key Laboratory of Forest Clonal Breeding, Hunan Academy of Forestry, Changsha 410004, China
| | - Huijie Zeng
- Hunan Provincial Key Laboratory of Forest Clonal Breeding, Hunan Academy of Forestry, Changsha 410004, China
| | - Yongxin Li
- Hunan Provincial Key Laboratory of Forest Clonal Breeding, Hunan Academy of Forestry, Changsha 410004, China
| | - Zhongquan Qiao
- Hunan Provincial Key Laboratory of Forest Clonal Breeding, Hunan Academy of Forestry, Changsha 410004, China
| |
Collapse
|
4
|
Nguyen TH, Kim MJ, Kim J. The transcription factor LBD10 sustains pollen tube growth and integrity by modulating reactive oxygen species homeostasis via the regulation of flavonol biosynthesis in Arabidopsis. THE NEW PHYTOLOGIST 2024; 244:131-146. [PMID: 39113420 DOI: 10.1111/nph.20029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/11/2024] [Indexed: 09/17/2024]
Abstract
Reproduction in angiosperms relies on the precise growth of pollen tubes, facilitating the delivery of sperm cells to the ovule for double fertilization. LATERAL ORGAN BOUNDARIES DOMAIN10 (LBD10), a plant-specific transcription factor, plays a pivotal role in Arabidopsis pollen development. Here, we uncovered LBD10's function in sustaining pollen tube growth and integrity. The lbd10 mutant exhibited elevated levels of reactive oxygen species (ROS) and hydrogen peroxide (H2O2) in both pollen grains and tubes, leading to compromised pollen tube growth. The inhibition of ROS synthesis and scavenging of excess ROS with an antioxidant treatment each alleviated these defects in lbd10. The lbd10 mutant displayed reduced flavonol accumulation in both pollen grains and tubes. All the altered phenotypes of lbd10 were complemented by expressing LBD10 under its native promoter. Exogenous application of flavonoids recused the defects in pollen tube growth and integrity in lbd10, along with reducing the excess levels of ROS and H2O2. LBD10 directly binds the promoters of key flavonol biosynthesis genes in chromatin and promotes reporter gene expression in Arabidopsis mesophyll protoplasts. Our findings indicate that LBD10 modulates ROS homeostasis by transcriptionally activating genes crucial for flavonol biosynthesis, thereby maintaining pollen tube growth and integrity.
Collapse
Affiliation(s)
- Thu-Hien Nguyen
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Korea
| | - Min Jung Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Korea
| | - Jungmook Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186, Korea
| |
Collapse
|
5
|
Yang L, Zhang S, Chu D, Wang X. Exploring the evolution of CHS gene family in plants. Front Genet 2024; 15:1368358. [PMID: 38746055 PMCID: PMC11091334 DOI: 10.3389/fgene.2024.1368358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/04/2024] [Indexed: 05/16/2024] Open
Abstract
Chalcone synthase (CHS) is a key enzyme that catalyzes the first committed step of flavonoid biosynthetic pathway. It plays a vital role not only in maintaining plant growth and development, but also in regulating plant response to environmental hazards. However, the systematic phylogenomic analysis of CHS gene family in a wide range of plant species has not been reported yet. To fill this knowledge gap, a large-scale investigation of CHS genes was performed in 178 plant species covering green algae to dicotyledons. A total of 2,011 CHS and 293 CHS-like genes were identified and phylogenetically divided into four groups, respectively. Gene distribution patterns across the plant kingdom revealed the origin of CHS can be traced back to before the rise of algae. The gene length varied largely in different species, while the exon structure was relatively conserved. Selection pressure analysis also indicated the conserved features of CHS genes on evolutionary time scales. Moreover, our synteny analysis pinpointed that, besides genome-wide duplication and tandem duplication, lineage specific transposition events also occurred in the evolutionary trajectory of CHS gene family. This work provides novel insights into the evolution of CHS gene family and may facilitate further research to better understand the regulatory mechanism of traits relating to flavonoid biosynthesis in diverse plants.
Collapse
Affiliation(s)
- Li Yang
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | - Shuai Zhang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Dake Chu
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xumei Wang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
6
|
Gong J, Sun S, Zhu QH, Qin J, Yang Y, Zheng Z, Cheng S, Sun J. Gh4CL20/20A involved in flavonoid biosynthesis is essential for male fertility in cotton (Gossypium hirsutum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108484. [PMID: 38452452 DOI: 10.1016/j.plaphy.2024.108484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Flavonoids have been shown to play an essential role in plant growth and fertility. 4-Coumarate CoA ligase (4CL) is one of the indispensable enzymes involved in the biosynthesis of flavonoids. However, the role of 4CL and flavonoids in impact on cotton fertility is still unknown. In this study, on the basis of identification of an additional Gh4CL gene, Gh4CL20A, by using an updated G. hirsutum genome, we found that Gh4CL20A and its homologous Gh4CL20 were preferentially expressed in petals and stamens. The petals of the loss-of-function Gh4CL20/Gh4CL20A mutant generated by CRISPR/Cas9 gene editing remained white until wilting. Notably, the mutant showed indehiscent anthers, reduced number of pollen grains and pollen viability, leading to male sterility. Histological analysis revealed that abnormal degradation of anther tapetum at the tetrad stage and abnormal pollen grain development at the mature stage caused male sterility of the gene editing mutant. Analysis of the anther transcriptome identified a total of 10574 and 11962 genes up- and down-regulated in the mutant, respectively, compared to the wild-type. GO, KEGG, and WGCNA analyses linked the abnormality of the mutant anthers to the defective flavonoid biosynthetic pathway, leading to decreased activity of 4CL and chalcone isomerase (CHI) and reduced accumulation of flavonoids in the mutant. These results imply a role of Gh4CL20/Gh4CL20A in assuring proper development of cotton anthers by regulating flavonoid metabolism. This study elucidates a molecular mechanism underlying cotton anther development and provides candidate genes for creating cotton male sterile germplasm that has the potential to be used in production of hybrid seeds.
Collapse
Affiliation(s)
- Junming Gong
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China.
| | - Shichao Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China.
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, 2601, Australia.
| | - Jianghong Qin
- Cotton Research Institute, Shihezi Academy of Agricultural Sciences, Shihezi, China.
| | - Yonglin Yang
- Cotton Research Institute, Shihezi Academy of Agricultural Sciences, Shihezi, China.
| | - Zhihong Zheng
- Cotton Research Institute, Shihezi Academy of Agricultural Sciences, Shihezi, China.
| | - Shuaishuai Cheng
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China.
| | - Jie Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China.
| |
Collapse
|
7
|
Wu R, Qian C, Yang Y, Liu Y, Xu L, Zhang W, Ou J. Integrative transcriptomic and metabolomic analyses reveal the phenylpropanoid and flavonoid biosynthesis of Prunus mume. JOURNAL OF PLANT RESEARCH 2024; 137:95-109. [PMID: 37938365 DOI: 10.1007/s10265-023-01500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/28/2023] [Indexed: 11/09/2023]
Abstract
Prunus mume is an important medicinal plant with ornamental and edible value. Its flowers contain phenylpropanoids, flavonoids and other active components, that have important medicinal and edible value, yet their molecular regulatory mechanisms in P. mume remain unclear. In this study, the content of total flavonoid and total phenylpropanoid of P. mume at different developmental periods was measured first, and the results showed that the content of total flavonoid and total phenylpropanoid gradually decreased in three developmental periods. Then, an integrated analysis of transcriptome and metabolome was conducted on three developmental periods of P. mume to investigate the law of synthetic accumulation for P. mume metabolites, and the key enzyme genes for the biosynthesis of phenylpropanoids and flavonoids were screened out according to the differentially expressed genes (DEGs). A total of 14,332 DEGs and 38 differentially accumulate metabolites (DAMs) were obtained by transcriptomics and metabolomics analysis. The key enzyme genes and metabolites in the bud (HL) were significantly different from those in the half-opening (BK) and full-opening (QK) periods. In the phenylpropanoid and flavonoid biosynthesis pathway, the ion abundance of chlorogenic acid, naringenin, kaempferol, isoquercitrin, rutin and other metabolites decreased with the development of flowers, while the ion abundance of cinnamic acid increased. Key enzyme genes such as HCT, CCR, COMT, CHS, F3H, and FLS positively regulate the downstream metabolites, while PAL, C4H, and 4CL negatively regulate the downstream metabolites. Moreover, the key genes FLS (CL4312-2, CL4312-3, CL4312-4, CL4312-5, CL4312-6) regulating the synthesis of flavonols are highly expressed in bud samples. The dynamic changes of these metabolites were validated by determining the content of 14 phenylpropanoids and flavonoids in P. mume at different developmental periods, and the transcription expression levels of these genes were validated by real-time PCR. Our study provides new insights into the molecular mechanism of phenylpropanoid and flavonoid accumulation in P. mume.
Collapse
Affiliation(s)
- Rui Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Chengcheng Qian
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yatian Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yi Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Liang Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wei Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Anhui Key Laboratory of New Manufacturing Technology of Chinese Medicine Pieces, Hefei, 230012, China.
| | - Jinmei Ou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Anhui Key Laboratory of New Manufacturing Technology of Chinese Medicine Pieces, Hefei, 230012, China.
- State Key Laboratory of Dao-di Herbs, Beijing, 100700, China.
| |
Collapse
|
8
|
Liu Y, Bai J, Yuan S, Gao S, Liu Z, Li Y, Zhang F, Zhao C, Zhang L. Characterization and expression analysis of chalcone synthase gene family members suggested their roles in the male sterility of a wheat temperature-sensitive genic male sterile (TGMS) line. Gene 2023; 888:147740. [PMID: 37661030 DOI: 10.1016/j.gene.2023.147740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
Chalcone synthase (CHS), also known as the plants-specific type III polyketide synthases (PKSs), catalyzes the first key step in the biosynthesis of plant flavonoids. Flavonoids are one of the most important secondary metabolites which participate in flower pigmentation and pollen fertility. Recent reports have demonstrated the role of the CHS family in plant pollen exine formation. This study focused on the potential roles of CHS in the pollen exine formation of wheat. In the present study, a genome-wide investigation of the CHS family was carried out, and 87 CHS genes were identified in wheat. TaCHS3, TaCHS10, and TaCHS13 are wheat orthologs of Arabidopsis LESS ADHESIVE POLLEN (LAP5); TaCHS58, TaCHS64, and TaCHS67 are wheat orthologs of AtLAP6. TaCHS3, TaCHS10, and TaCHS67 showed anther-specific patterns. The expression of TaCHS3, TaCHS10, and TaCHS67 was positively co-expressed with sporopollenin biosynthetic genes, including TaCYP703A2, TaCYP704B1, TaDRL1, TaTKPR2, and TaMS2. Coincidently, the expression of TaCHS3, TaCHS10, and TaCHS67, together with those sporopollenin biosynthetic genes, were repressed at the tetrads and uninucleate stages in the temperature-sensitive genic male-sterile (TGMS) line BS366 under sterile conditions. Wheat anther-specific CHS genes might participate in the exine formation of BS366 through co-expressing with sporopollenin biosynthetic genes, which will undoubtedly provide knowledge of the roles of CHS in wheat pollen development.
Collapse
Affiliation(s)
- Yongjie Liu
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China
| | - Jianfang Bai
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China
| | - Shaohua Yuan
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China
| | - Shiqing Gao
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China
| | - Zihan Liu
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China
| | - Yanmei Li
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China
| | - Fengting Zhang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China
| | - Changping Zhao
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China.
| | - Liping Zhang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China.
| |
Collapse
|
9
|
Wu H, Xie D, Jia P, Tang Z, Shi D, Shui G, Wang G, Yang W. Homeostasis of flavonoids and triterpenoids most likely modulates starch metabolism for pollen tube penetration in rice. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1757-1772. [PMID: 37221659 PMCID: PMC10440988 DOI: 10.1111/pbi.14073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/24/2023] [Indexed: 05/25/2023]
Abstract
In angiosperms, the timely delivery of sperm cell nuclei by pollen tube (PT) to the ovule is vital for double fertilization. Penetration of PT into maternal stigma tissue is a critical step for sperm cell nuclei delivery, yet little is known about the process. Here, a male-specific and sporophytic mutant xt6, where PTs are able to germinate but unable to penetrate the stigma tissue, is reported in Oryza sativa. Through genetic study, the causative gene was identified as Chalcone synthase (OsCHS1), encoding the first enzyme in flavonoid biosynthesis. Indeed, flavonols were undetected in mutant pollen grains and PTs, indicating that the mutation abolished flavonoid biosynthesis. Nevertheless, the phenotype cannot be rescued by exogenous application of quercetin and kaempferol as reported in maize and petunia, suggesting a different mechanism exists in rice. Further analysis showed that loss of OsCHS1 function disrupted the homeostasis of flavonoid and triterpenoid metabolism and led to the accumulation of triterpenoid, which inhibits significantly α-amylase activity, amyloplast hydrolysis and monosaccharide content in xt6, these ultimately impaired tricarboxylic acid (TCA) cycle, reduced ATP content and lowered the turgor pressure as well. Our findings reveal a new mechanism that OsCHS1 modulates starch hydrolysis and glycometabolism through modulating the metabolic homeostasis of flavonoids and triterpenoids which affects α-amylase activity to maintain PT penetration in rice, which contributes to a better understanding of the function of CHS1 in crop fertility and breeding.
Collapse
Affiliation(s)
- Hua‐Mao Wu
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Dong‐Jiang Xie
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Peng‐Fei Jia
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Zuo‐Shun Tang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Dong‐Qiao Shi
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Guang‐Hou Shui
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Guo‐Dong Wang
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Wei‐Cai Yang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
10
|
Daryanavard H, Postiglione AE, Mühlemann JK, Muday GK. Flavonols modulate plant development, signaling, and stress responses. CURRENT OPINION IN PLANT BIOLOGY 2023; 72:102350. [PMID: 36870100 PMCID: PMC10372886 DOI: 10.1016/j.pbi.2023.102350] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 06/11/2023]
Abstract
Flavonols are plant-specialized metabolites with important functions in plant growth and development. Isolation and characterization of mutants with reduced flavonol levels, especially the transparent testa mutants in Arabidopsis thaliana, have contributed to our understanding of the flavonol biosynthetic pathway. These mutants have also uncovered the roles of flavonols in controlling development in above- and below-ground tissues, notably in the regulation of root architecture, guard cell signaling, and pollen development. In this review, we present recent progress made towards a mechanistic understanding of flavonol function in plant growth and development. Specifically, we highlight findings that flavonols act as reactive oxygen species (ROS) scavengers and inhibitors of auxin transport in diverse tissues and cell types to modulate plant growth and development and responses to abiotic stresses.
Collapse
Affiliation(s)
- Hana Daryanavard
- Climate Resilient Crop Production Laboratory, Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Anthony E Postiglione
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, USA
| | - Joëlle K Mühlemann
- Climate Resilient Crop Production Laboratory, Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit (KU) Leuven, Leuven, Belgium; Leuven Plant Institute, KU Leuven, Leuven, Belgium
| | - Gloria K Muday
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, USA.
| |
Collapse
|
11
|
Indelicato S, Houmanat K, Bongiorno D, Ejjilani A, Hssaini L, Razouk R, Charafi J, Ennahli S, Hanine H. Freeze dried pomegranate juices of Moroccan fruits: main representative phenolic compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1355-1365. [PMID: 36131535 DOI: 10.1002/jsfa.12229] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The pomegranate (Punica granatum) is an ancient perennial plant species of the Punicaceae family. Its seeds are consumed as food or as juice. Previous studies have noted that pomegranate juice encompasses many active compounds with beneficial effects. The main goals of this work were to study the phenolic components of freeze-dried and reconstituted pomegranate juices obtained from 13 pomegranate genotypes growing in Morocco. RESULTS We analyzed several pomegranate juices using high-performance liquid chromatography and high-resolution mass spectrometry to determine phenolic compounds. Twenty-seven bio-phenols, belonging to four different classes (phenolic acids, hydrolyzable tannins, anthocyanins, and flavonoids), were identified based on their accurate mass measurements, and quantified. Some encouraging results were obtained. Even though the freeze-drying process introduced a marked degradation of bio-phenols, substantially lowering their levels in the reconstituted fruit juices, these fruit juices were still rich enough in bio-phenols to compete with some fresh fruit juices. The reconstituted juices obtained by rehydration of the lyophilized material still differed enough to enable a statistical classification based on their polyphenol content. A correlation analysis was applied to the polyphenol data to explore correlations and similarities between genotypes. CONCLUSIONS The results showed that freeze-drying and reconstitution of juices introduced some degradation of the polyphenol content. The overall polyphenolic pattern within the same cultivar, in two different harvesting years, was maintained, however, suggesting the composition stability of the freeze-dried juices produced in this time span. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Serena Indelicato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Karim Houmanat
- National Institute of Agricultural Research (INRA), Rabat, Morocco
| | - David Bongiorno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Assia Ejjilani
- National Institute of Agricultural Research (INRA), Rabat, Morocco
- Faculty of Science and Technics, Laboratory of Bioprocess and Bio-Interfaces, Université Sultan Moulay Slimane, Beni-Mellal, Morocco
| | - Lahcen Hssaini
- National Institute of Agricultural Research (INRA), Rabat, Morocco
| | - Rachid Razouk
- National Institute of Agricultural Research (INRA), Rabat, Morocco
| | - Jamal Charafi
- National Institute of Agricultural Research (INRA), Rabat, Morocco
| | - Said Ennahli
- National Institute of Agricultural Research (INRA), Rabat, Morocco
| | - Hafida Hanine
- Faculty of Science and Technics, Laboratory of Bioprocess and Bio-Interfaces, Université Sultan Moulay Slimane, Beni-Mellal, Morocco
| |
Collapse
|
12
|
Yuan Y, Zuo J, Zhang H, Zu M, Yu M, Liu S. Transcriptome and metabolome profiling unveil the accumulation of flavonoids in Dendrobium officinale. Genomics 2022; 114:110324. [PMID: 35247586 DOI: 10.1016/j.ygeno.2022.110324] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 01/14/2023]
Abstract
Dendrobium officinale is a Chinese herbal medicine with a long history of use in China. Flavonoids are known to be an important secondary metabolite in Dendrobium officinale, but very little is known about their molecular regulation mechanism in D. officinale. In this study, we collected one to four years old D. officinale stems for the purpose of RNA-sequencing and mass spectrometry data collection. The results showed that metabolome analysis detected 124 different flavonoid metabolites of which flavonol metabolites were significantly increased in biennial samples. In the transcriptome analysis, 30 different genes involved in the synthesis of flavonoid were identified. The key genes FLS (LOC110101392, LOC110107557, LOC110114894) that regulate the synthesis of flavonols are highly expressed in biennial samples. The present study contributes a new insight into the molecular mechanism of flavonoid accumulation in D. officinale.
Collapse
Affiliation(s)
- Yingdan Yuan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Jiajia Zuo
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Hanyue Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Mengting Zu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Maoyun Yu
- Anhui Tongjisheng Biotechnology Co., Ltd, Lu'an 237000, China.
| | - Sian Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
13
|
Shi Y, Jiang X, Chen L, Li WW, Lai S, Fu Z, Liu Y, Qian Y, Gao L, Xia T. Functional Analyses of Flavonol Synthase Genes From Camellia sinensis Reveal Their Roles in Anther Development. FRONTIERS IN PLANT SCIENCE 2021; 12:753131. [PMID: 34659321 PMCID: PMC8517536 DOI: 10.3389/fpls.2021.753131] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/13/2021] [Indexed: 05/26/2023]
Abstract
Flavonoids, including flavonol derivatives, are the main astringent compounds of tea and are beneficial to human health. Many researches have been conducted to comprehensively identify and characterize the phenolic compounds in the tea plant. However, the biological function of tea flavonoids is not yet understood, especially those accumulated in floral organs. In this study, the metabolic characteristics of phenolic compounds in different developmental stages of flower buds and various parts of the tea flower were investigated by using metabolomic and transcriptomic analyses. Targeted metabolomic analysis revealed varying accumulation patterns of different phenolic polyphenol compounds during flowering; moreover, the content of flavonol compounds gradually increased as the flowers opened. Petals and stamens were the main sites of flavone and flavonol accumulation. Compared with those of fertile flowers, the content of certain flavonols, such as kaempferol derivatives, in anthers of hybrid sterile flowers was significantly low. Transcriptomic analysis revealed different expression patterns of genes in the same gene family in tea flowers. The CsFLSb gene was significantly increased during flowering and was highly expressed in anthers. Compared with fertile flowers, CsFLSb was significantly downregulated in sterile flowers. Further functional verification of the three CsFLS genes indicated that CsFLSb caused an increase in flavonol content in transgenic tobacco flowers and that CsFLSa acted in leaves. Taken together, this study highlighted the metabolic properties of phenolic compounds in tea flowers and determined how the three CsFLS genes have different functions in the vegetative and reproductive organs of tea plants. Furthermore, CsFLSb could regulated flavonol biosynthesis in tea flowers, thus influencing fertility. This research is of great significance for balancing the reproductive growth and vegetative growth of tea plants.
Collapse
Affiliation(s)
- Yufeng Shi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Linbo Chen
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Engineering Research Center of Tea Germplasm Innovation and Matching Cultivation, Menghai, China
| | - Wei-Wei Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Sanyan Lai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Zhouping Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Yajun Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yumei Qian
- School of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Liping Gao
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
14
|
Frazee LJ, Rifkin J, Maheepala DC, Grant AG, Wright S, Kalisz S, Litt A, Spigler R. New genomic resources and comparative analyses reveal differences in floral gene expression in selfing and outcrossing Collinsia sister species. G3 (BETHESDA, MD.) 2021; 11:jkab177. [PMID: 34014319 PMCID: PMC8496223 DOI: 10.1093/g3journal/jkab177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/11/2021] [Indexed: 11/14/2022]
Abstract
The evolutionary transition from outcross- to self-fertilization is one of the most common in angiosperms and is often associated with a parallel shift in floral morphological and developmental traits, such as reduced flower size and pollen to ovule ratios, known as the "selfing syndrome." How these convergent phenotypes arise, the extent to which they are shaped by selection, and the nature of their underlying genetic basis are unsettled questions in evolutionary biology. The genus Collinsia (Plantaginaceae) includes seven independent transitions from outcrossing or mixed mating to high selfing rates accompanied by selfing syndrome traits. Accordingly, Collinsia represents an ideal system for investigating this parallelism, but requires genomic resource development. We present a high quality de novo genome assembly for the highly selfing species Collinsia rattanii. To begin addressing the basis of selfing syndrome developmental shifts, we evaluate and contrast patterns of gene expression from floral transcriptomes across three stages of bud development for C. rattanii and its outcrossing sister species Collinsia linearis. Relative to C. linearis, total gene expression is less variable among individuals and bud stages in C. rattanii. In addition, there is a common pattern among differentially expressed genes: lower expression levels that are more constant across bud development in C. rattanii relative to C. linearis. Transcriptional regulation of enzymes involved in pollen formation specifically in early bud development may influence floral traits that distinguish selfing and outcrossing Collinsia species through pleiotropic functions. Future work will include additional Collinsia outcrossing-selfing species pairs to identify genomic signatures of parallel evolution.
Collapse
Affiliation(s)
- Lauren J Frazee
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Joanna Rifkin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S, Canada
| | - Dinusha C Maheepala
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Alannie-Grace Grant
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Stephen Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S, Canada
| | - Susan Kalisz
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Amy Litt
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Rachel Spigler
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
15
|
Sohn SI, Pandian S, Oh YJ, Kang HJ, Cho WS, Cho YS. Metabolic Engineering of Isoflavones: An Updated Overview. FRONTIERS IN PLANT SCIENCE 2021; 12:670103. [PMID: 34163508 PMCID: PMC8216759 DOI: 10.3389/fpls.2021.670103] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/21/2021] [Indexed: 05/04/2023]
Abstract
Isoflavones are ecophysiologically active secondary metabolites derived from the phenylpropanoid pathway. They were mostly found in leguminous plants, especially in the pea family. Isoflavones play a key role in plant-environment interactions and act as phytoalexins also having an array of health benefits to the humans. According to epidemiological studies, a high intake of isoflavones-rich diets linked to a lower risk of hormone-related cancers, osteoporosis, menopausal symptoms, and cardiovascular diseases. These characteristics lead to the significant advancement in the studies on genetic and metabolic engineering of isoflavones in plants. As a result, a number of structural and regulatory genes involved in isoflavone biosynthesis in plants have been identified and characterized. Subsequently, they were engineered in various crop plants for the increased production of isoflavones. Furthermore, with the advent of high-throughput technologies, the regulation of isoflavone biosynthesis gains attention to increase or decrease the level of isoflavones in the crop plants. In the review, we begin with the role of isoflavones in plants, environment, and its benefits in human health. Besides, the main theme is to discuss the updated research progress in metabolic engineering of isoflavones in other plants species and regulation of production of isoflavones in soybeans.
Collapse
Affiliation(s)
- Soo In Sohn
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, South Korea
- *Correspondence: Soo-In Sohn,
| | - Subramani Pandian
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, South Korea
| | - Young Ju Oh
- Institute for Future Environmental Ecology Co., Ltd., Jeonju, South Korea
| | - Hyeon Jung Kang
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, South Korea
| | - Woo Suk Cho
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, South Korea
| | - Youn Sung Cho
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, South Korea
| |
Collapse
|
16
|
Ye LX, Gan ZM, Wang WF, Ai XY, Xie ZZ, Hu CG, Zhang JZ. Comparative analysis of the transcriptome, methylome, and metabolome during pollen abortion of a seedless citrus mutant. PLANT MOLECULAR BIOLOGY 2020; 104:151-171. [PMID: 32656674 DOI: 10.1007/s11103-020-01034-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Pollen abortion could be mainly attributed to abnormal meiosis in the mutant. Multiomics analysis uncovered significant epigenetic variations between the mutant and its wild type during the pollen abortion process. Male sterility caused by aborted pollen can result in seedless fruit. A seedless Ponkan mandarin mutant (bud sport) was used to compare the transcriptome, methylome, and metabolome with its progenitor to understand the mechanism of citrus pollen abortion. Cytological observations showed that the anther of the mutant could form microspore mother cells, although the microspores failed to develop fertile pollen at the anther dehiscence stage. Based on pollen phenotypic analysis, pollen abortion could be mainly attributed to abnormal meiosis in the mutant. A transcriptome analysis uncovered the molecular mechanisms underlying pollen abortion between the mutant and its wild type. A total of 5421 differentially expressed genes were identified, and some of these genes were involved in the meiosis, hormone biosynthesis and signaling, carbohydrate, and flavonoid pathways. A total of 50,845 differentially methylated regions corresponding to 15,426 differentially methylated genes in the genic region were found between the mutant and its wild type by the methylome analysis. The expression level of these genes was negatively correlated with their methylation level, especially in the promoter regions. In addition, 197 differential metabolites were identified between the mutant and its wild type based on the metabolome analysis. The transcription and metabolome analysis further indicated that the expression of genes in the flavonoid, carbohydrate, and hormone metabolic pathways was significantly modulated in the pollen of the mutant. These results indicated that demethylation may alleviate the silencing of carbohydrate genes in the mutant, resulting in excessive starch and sugar hydrolysis and thereby causing pollen abortion in the mutant.
Collapse
Affiliation(s)
- Li-Xia Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi-Meng Gan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen-Feng Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Yan Ai
- Institute of Pomology and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
| | - Zong-Zhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
17
|
Identification of chalcone synthase genes and their expression patterns reveal pollen abortion in cotton. Saudi J Biol Sci 2020; 27:3691-3699. [PMID: 33304181 PMCID: PMC7714974 DOI: 10.1016/j.sjbs.2020.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 11/20/2022] Open
Abstract
Chalcone synthase (CHS) is a key enzyme and producing flavonoid derivatives as well play a vital roles in sustaining plant growth and development. However, the systematic and comprehensive analysis of CHS genes in island cotton (G. barbadense) has not been reported yet especially response to cytoplasmic male sterility (CMS). To fill this knowledge gap, a genome-wide investigation of CHS genes were studied in island cotton. A total of 20 GbCHS genes were identified and grouped into five GbCHSs. The gene structure analysis revealed that most of GbCHS genes consisted of two exons and one intron, and 20 motifs were identified. Twenty five pairs duplicated events (12 GbCHS genes) were identified including 23 segmental duplication pairs and two tandem duplication events, representing that GbCHS gene family amplification mainly owned to segmental duplication events and evolving slowly. Gene expression analysis exhibited that the GbCHS family genes presented a diversity expression patterns in various organs of cotton. Coupled with functional predictions and gene expression, the abnormal expression of GbCHS06, 10, 16 and 19 might be associated with pollen abortion of CMS line in island cotton. Conclusively, GbCHS genes exhibited diversity and conservation in many aspects, which will help to better understand functional studies and a reference for CHS research in island cotton and other plants.
Collapse
|
18
|
Lim GH, Kim SW, Ryu J, Kang SY, Kim JB, Kim SH. Upregulation of the MYB2 Transcription Factor Is Associated with Increased Accumulation of Anthocyanin in the Leaves of Dendrobium bigibbum. Int J Mol Sci 2020; 21:ijms21165653. [PMID: 32781758 PMCID: PMC7460623 DOI: 10.3390/ijms21165653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022] Open
Abstract
Orchids with colorful leaves and flowers have significant ornamental value. Here, we used γ-irradiation-based mutagenesis to produce a Dendrobium bigibbum mutant that developed purple instead of the normal green leaves. RNA sequencing of the mutant plant identified 2513 differentially expressed genes, including 1870 up- and 706 downregulated genes. The purple leaf color of mutant leaves was associated with increased expression of genes that encoded key biosynthetic enzymes in the anthocyanin biosynthetic pathway. In addition, the mutant leaves also showed increased expression of several families of transcription factors including the MYB2 gene. Transient overexpression of D. biggibumMYB2 in Nicotiana benthamiana was associated with increased expression of endogenous anthocyanin biosynthesis genes. Interestingly, transient overexpression of orthologous MYB2 genes from other orchids did not upregulate expression of endogenous anthocyanin biosynthesis genes. Together, these results suggest that the purple coloration of D. biggibum leaves is at least associated with increased expression of the MYB2 gene, and the MYB2 orthologs from orchids likely function differently, regardless of their high level of similarity.
Collapse
Affiliation(s)
- Gah-Hyun Lim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Korea; (G.-H.L.); (S.W.K.); (J.R.); (S.-Y.K.); (J.-B.K.)
| | - Se Won Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Korea; (G.-H.L.); (S.W.K.); (J.R.); (S.-Y.K.); (J.-B.K.)
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Jaihyunk Ryu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Korea; (G.-H.L.); (S.W.K.); (J.R.); (S.-Y.K.); (J.-B.K.)
| | - Si-Yong Kang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Korea; (G.-H.L.); (S.W.K.); (J.R.); (S.-Y.K.); (J.-B.K.)
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Korea; (G.-H.L.); (S.W.K.); (J.R.); (S.-Y.K.); (J.-B.K.)
| | - Sang Hoon Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Korea; (G.-H.L.); (S.W.K.); (J.R.); (S.-Y.K.); (J.-B.K.)
- Correspondence: ; Tel.: +82-63-570-3318; Fax: +82-63-570-3811
| |
Collapse
|
19
|
Davies KM, Jibran R, Zhou Y, Albert NW, Brummell DA, Jordan BR, Bowman JL, Schwinn KE. The Evolution of Flavonoid Biosynthesis: A Bryophyte Perspective. FRONTIERS IN PLANT SCIENCE 2020; 11:7. [PMID: 32117358 PMCID: PMC7010833 DOI: 10.3389/fpls.2020.00007] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/07/2020] [Indexed: 05/04/2023]
Abstract
The flavonoid pathway is one of the best characterized specialized metabolite pathways of plants. In angiosperms, the flavonoids have varied roles in assisting with tolerance to abiotic stress and are also key for signaling to pollinators and seed dispersal agents. The pathway is thought to be specific to land plants and to have arisen during the period of land colonization around 550-470 million years ago. In this review we consider current knowledge of the flavonoid pathway in the bryophytes, consisting of the liverworts, hornworts, and mosses. The pathway is less characterized for bryophytes than angiosperms, and the first genetic and molecular studies on bryophytes are finding both commonalities and significant differences in flavonoid biosynthesis and pathway regulation between angiosperms and bryophytes. This includes biosynthetic pathway branches specific to each plant group and the apparent complete absence of flavonoids from the hornworts.
Collapse
Affiliation(s)
- Kevin M. Davies
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Rubina Jibran
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Yanfei Zhou
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Nick W. Albert
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - David A. Brummell
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Brian R. Jordan
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - John L. Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Kathy E. Schwinn
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
20
|
RBOH-Dependent ROS Synthesis and ROS Scavenging by Plant Specialized Metabolites To Modulate Plant Development and Stress Responses. Chem Res Toxicol 2019; 32:370-396. [PMID: 30781949 DOI: 10.1021/acs.chemrestox.9b00028] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species (ROS) regulate plant growth and development. ROS are kept at low levels in cells to prevent oxidative damage, allowing them to be effective signaling molecules upon increased synthesis. In plants and animals, NADPH oxidase/respiratory burst oxidase homolog (RBOH) proteins provide localized ROS bursts to regulate growth, developmental processes, and stress responses. This review details ROS production via RBOH enzymes in the context of plant development and stress responses and defines the locations and tissues in which members of this family function in the model plant Arabidopsis thaliana. To ensure that these ROS signals do not reach damaging levels, plants use an array of antioxidant strategies. In addition to antioxidant machineries similar to those found in animals, plants also have a variety of specialized metabolites that scavenge ROS. These plant specialized metabolites exhibit immense structural diversity and have highly localized accumulation. This makes them important players in plant developmental processes and stress responses that use ROS-dependent signaling mechanisms. This review summarizes the unique properties of plant specialized metabolites, including carotenoids, ascorbate, tocochromanols (vitamin E), and flavonoids, in modulating ROS homeostasis. Flavonols, a subclass of flavonoids with potent antioxidant activity, are induced during stress and development, suggesting that they have a role in maintaining ROS homeostasis. Recent results using genetic approaches have shown how flavonols regulate development and stress responses through their action as antioxidants.
Collapse
|
21
|
Zhang C, Yu D, Ke F, Zhu M, Xu J, Zhang M. Seedless mutant 'Wuzi Ougan' (Citrus suavissima Hort. ex Tanaka 'seedless') and the wild type were compared by iTRAQ-based quantitative proteomics and integratedly analyzed with transcriptome to improve understanding of male sterility. BMC Genet 2018; 19:106. [PMID: 30458706 PMCID: PMC6245639 DOI: 10.1186/s12863-018-0693-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
Background Bud mutation is a vital method of citrus. ‘Wuzi Ougan’ (mutant type, MT) as a bud variant of ‘Ougan’ (wild type, WT) was first found in 1996 and has become popular because of its male sterility and seedless character. Previous analysis of its cytological sections and transcriptome revealed that the abnormal microsporogenesis that occurs before the tetrad stage of anther development might be the result of down-regulated oxidation-reduction biological processes in MT. To reveal the mechanism behind the male sterility in MT at the post-transcriptional stage, proteome profiling and integrative analysis on previously obtained transcriptome and proteome data were performed in two strains. Results The proteome profiling was performed by iTRAQ (isobaric Tags for relative and absolute quantitation) analysis and 6201 high-confidence proteins were identified, among which there were 487 differentially expressed proteins (DEPs) in one or more developmental stages of anthers between MT and WT. The main functional subcategories associated with the main category biological process into which the DEPs were classified were sporopollenin biosynthesis process and pollen exine formation. The enriched pathways were phenylpropanoid biosynthesis, flavonoid biosynthesis, and phenylalanine metabolism. Moreover, there were eight pathways linked in terms of being related to phenylpropanoid metabolism. Eighteen important genes related to phenylpropanoid metabolism were also analysized by qRT-PCR (quantitative real time PCR). An integrative analysis of the fold change at the transcript (log2 FPKM ratios) and protein (log1.2 iTRAQ ratios) levels was performed to reveal the consistency of gene expression at transcriptional and proteomic level. In general, the expression of genes and proteins tended to be positively correlated, in which the correlation coefficients were 0.3414 (all genes and all proteins) and 0.5686 (DEPs and according genes). Conclusion This study is the first to offer a comprehensive understanding of the gene regulation in ‘Wuzi Ougan’ and its wild type, especially during the microsporocyte to meiosis stage. Specifically, the involved genes include those in phenylpropanoid biosynthesis, flavonoid biosynthesis, and phenylalanine metabolism, as determined by integrative transcriptome and proteome analysis. Electronic supplementary material The online version of this article (10.1186/s12863-018-0693-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, No.666, WuSu Street, Hangzhou, Zhejiang province, People's Republic of China, 311300.,The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, China
| | - Dihu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, No.666, WuSu Street, Hangzhou, Zhejiang province, People's Republic of China, 311300
| | - Fuzhi Ke
- Zhejiang Citrus Research Institute, Huangyan, 318020, China
| | - Mimi Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, No.666, WuSu Street, Hangzhou, Zhejiang province, People's Republic of China, 311300
| | - Jianguo Xu
- Zhejiang Citrus Research Institute, Huangyan, 318020, China
| | - Min Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, No.666, WuSu Street, Hangzhou, Zhejiang province, People's Republic of China, 311300. .,The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, China.
| |
Collapse
|
22
|
Koski MH, Galloway LF. Geographic variation in pollen color is associated with temperature stress. THE NEW PHYTOLOGIST 2018; 218:370-379. [PMID: 29297201 DOI: 10.1111/nph.14961] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/19/2017] [Indexed: 05/21/2023]
Abstract
The evolution of flower color, especially petal pigmentation, has received substantial attention. Less understood is the evolutionary ecology of pollen pigmentation, though it varies among and within species and its biochemical properties affect pollen viability. We characterize the distribution of pollen color across 24 populations of the North American herb Campanula americana, and assess the degree to which this variation is genetically based. We identify abiotic factors that covary with pollen color and test whether germination of light and dark pollen is differentially affected by variable temperature and UV. Pollen color varies from white to deep purple in C. americana and is genetically determined. There was a longitudinal cline whereby pollen was darkest in western populations. Accounting for latitudinal variation, western populations experience elevated temperature and UV irradiance. Germination of light-colored pollen was reduced by 60% under high temperature, but dark pollen was unaffected. Exposure to UV reduced germination of light and dark pollen similarly. The cline in pollen color across the range may reflect adaptation to heat stress. This study supports thermal tolerance as a novel function of pollen pigmentation and contributes to growing evidence that abiotic factors can drive floral diversity.
Collapse
Affiliation(s)
- Matthew H Koski
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Laura F Galloway
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
23
|
Knoch E, Sugawara S, Mori T, Nakabayashi R, Saito K, Yonekura-Sakakibara K. UGT79B31 is responsible for the final modification step of pollen-specific flavonoid biosynthesis in Petunia hybrida. PLANTA 2018; 247:779-790. [PMID: 29214446 PMCID: PMC5856881 DOI: 10.1007/s00425-017-2822-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/27/2017] [Indexed: 05/17/2023]
Abstract
UGT79B31 encodes flavonol 3- O -glycoside: 2″- O -glucosyltransferase, an enzyme responsible for the terminal modification of pollen-specific flavonols in Petunia hybrida. Flavonoids are known to be involved in pollen fertility in petunia (P. hybrida) and maize (Zea mays). As a first step toward elucidating the role of flavonoids in pollen, we have identified a glycosyltransferase that is responsible for the terminal modification of petunia pollen-specific flavonoids. An in silico search of the petunia transcriptome database revealed four candidate UDP-glycosyltransferase (UGT) genes. UGT79B31 was selected for further analyses based on a correlation between the accumulation pattern of flavonol glycosides in various tissues and organs and the expression profiles of the candidate genes. Arabidopsis ugt79b6 mutants that lacked kaempferol/quercetin 3-O-glucosyl(1 → 2)glucosides, were complemented by transformation with UGT79B31 cDNA under the control of Arabidopsis UGT79B6 promoter, showing that UGT79B31 functions as a flavonol 3-O-glucoside: 2″-O-glucosyltransferase in planta. Recombinant UGT79B31 protein can convert kaempferol 3-O-galactoside/glucoside to kaempferol 3-O-glucosyl(1 → 2)galactoside/glucoside. UGT79B31 prefers flavonol 3-O-galactosides to the 3-O-glucosides and rarely accepted the 3-O-diglycosides as sugar acceptors. UDP-glucose was the preferred sugar donor for UGT79B31. These results indicated that UGT79B31 encodes a flavonoid 3-O-glycoside: 2″-O-glucosyltransferase. Transient expression of UGT79B31 fused to green fluorescent protein (GFP) in Nicotiana benthamiana showed that UGT79B31 protein was localized in the cytosol.
Collapse
Affiliation(s)
- Eva Knoch
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Satoko Sugawara
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Keiko Yonekura-Sakakibara
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
| |
Collapse
|
24
|
Tian Y, Xiao S, Liu J, Somaratne Y, Zhang H, Wang M, Zhang H, Zhao L, Chen H. MALE STERILE6021 (MS6021) is required for the development of anther cuticle and pollen exine in maize. Sci Rep 2017; 7:16736. [PMID: 29196635 PMCID: PMC5711870 DOI: 10.1038/s41598-017-16930-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/21/2017] [Indexed: 11/23/2022] Open
Abstract
The anther cuticle and pollen wall function as physical barriers that protect genetic material from various environmental stresses. The anther cuticle is composed of wax and cutin, the pollen wall includes exine and intine, and the components of the outer exine are collectively called sporopollenin. Other than cuticle wax, cutin and sporopollenin are biopolymers compounds. The precise constituents and developmental mechanism of these biopolymeric are poorly understood. Here, we reported a complete male sterile mutant, male sterile6021, in maize. The mutant displayed a smooth anther surface and irregular pollen wall formation before anthesis, and its tapetum was degraded immaturely. Gas chromatography-mass spectrometry analysis revealed a severe reduction of lipid derivatives in the mutant anther. We cloned the gene by map based cloning. It encoded a fatty acyl carrier protein reductase that was localized in plastids. Expression analysis indicated that MS6021 was mainly expressed in the tapetum and microspore after the microspore was released from the tetrad. Functional complementation of the orthologous Arabidopsis mutant demonstrated that MS6021 is conserved between monocots and dicots and potentially even in flowering plants. MS6021 plays a conserved, essential role in the successful development of anther cuticle and pollen exine in maize.
Collapse
Affiliation(s)
- Youhui Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Senlin Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Juan Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yamuna Somaratne
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hua Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mingming Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huairen Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
25
|
Wani TA, Pandith SA, Gupta AP, Chandra S, Sharma N, Lattoo SK. Molecular and functional characterization of two isoforms of chalcone synthase and their expression analysis in relation to flavonoid constituents in Grewia asiatica L. PLoS One 2017; 12:e0179155. [PMID: 28662128 PMCID: PMC5491003 DOI: 10.1371/journal.pone.0179155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/24/2017] [Indexed: 01/09/2023] Open
Abstract
Chalcone synthase constitutes a functionally diverse gene family producing wide range of flavonoids by catalyzing the initial step of the phenylpropanoid pathway. There is a pivotal role of flavonoids in pollen function as they are imperative for pollen maturation and pollen tube growth during sexual reproduction in flowering plants. Here we focused on medicinally important fruit-bearing shrub Grewia asiatica. It is a rich repository of flavonoids. The fruits are highly acclaimed for various putative health benefits. Despite its importance, full commercial exploitation is hampered due to two drawbacks which include short shelf life of its fruits and larger seed volume. To circumvent these constraints, seed abortion is one of the viable options. Molecular interventions tested in a number of economic crops have been to impair male reproductive function by disrupting the chalcone synthase (CHS) gene activity. Against this backdrop the aim of the present study included cloning and characterization of two full-length cDNA clones of GaCHS isoforms from the CHS multigene family. These included GaCHS1 (NCBI acc. KX129910) and GaCHS2 (NCBI acc. KX129911) with an ORF of 1176 and 1170 bp, respectively. GaCHSs were heterologously expressed and purified in E. coli to validate their functionality. Functionality of CHS isoforms was also characterized via enzyme kinetic studies using five different substrates. We observed differential substrate specificities in terms of their Km and Vmax values. Accumulation of flavonoid constituents naringenin and quercetin were also quantified and their relative concentrations corroborated well with the expression levels of GaCHSs. Further, our results demonstrate that GaCHS isoforms show differential expression patterns at different reproductive phenological stages. Transcript levels of GaCHS2 were more than its isoform GaCHS1 at the anthesis stage of flower development pointing towards its probable role in male reproductive maturity.
Collapse
Affiliation(s)
- Tareq A Wani
- Genetic Resources and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Shahzad A Pandith
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Ajai P Gupta
- Quality Control and Quality Assurance Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Suresh Chandra
- Genetic Resources and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Namrata Sharma
- Department of Botany, University of Jammu, Jammu Tawi, India
| | - Surrinder K Lattoo
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, India
| |
Collapse
|
26
|
Hermann K, Klahre U, Venail J, Brandenburg A, Kuhlemeier C. The genetics of reproductive organ morphology in two Petunia species with contrasting pollination syndromes. PLANTA 2015; 241:1241-1254. [PMID: 25656052 DOI: 10.1007/s00425-015-2251-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/19/2015] [Indexed: 05/29/2023]
Abstract
Switches between pollination syndromes have happened frequently during angiosperm evolution. Using QTL mapping and reciprocal introgressions, we show that changes in reproductive organ morphology have a simple genetic basis. In animal-pollinated plants, flowers have evolved to optimize pollination efficiency by different pollinator guilds and hence reproductive success. The two Petunia species, P. axillaris and P. exserta, display pollination syndromes adapted to moth or hummingbird pollination. For the floral traits color and scent, genetic loci of large phenotypic effect have been well documented. However, such large-effect loci may be typical for shifts in simple biochemical traits, whereas the evolution of morphological traits may involve multiple mutations of small phenotypic effect. Here, we performed a quantitative trait locus (QTL) analysis of floral morphology, followed by an in-depth study of pistil and stamen morphology and the introgression of individual QTL into reciprocal parental backgrounds. Two QTLs, on chromosomes II and V, are sufficient to explain the interspecific difference in pistil and stamen length. Since most of the difference in organ length is caused by differences in cell number, genes underlying these QTLs are likely to be involved in cell cycle regulation. Interestingly, conservation of the locus on chromosome II in a different P. axillaris subspecies suggests that the evolution of organ elongation was initiated on chromosome II in adaptation to different pollinators. We recently showed that QTLs for pistil and stamen length on chromosome II are tightly linked to QTLs for petal color and volatile emission. Linkage of multiple traits will enable major phenotypic change within a few generations in hybridizing populations. Thus, the genomic architecture of pollination syndromes in Petunia allows for rapid responses to changing pollinator availability.
Collapse
Affiliation(s)
- Katrin Hermann
- Institute of Plant Sciences, Altenbergrain 21, 3013, Bern, Switzerland
| | | | | | | | | |
Collapse
|
27
|
Sun W, Meng X, Liang L, Jiang W, Huang Y, He J, Hu H, Almqvist J, Gao X, Wang L. Molecular and Biochemical Analysis of Chalcone Synthase from Freesia hybrid in flavonoid biosynthetic pathway. PLoS One 2015; 10:e0119054. [PMID: 25742495 PMCID: PMC4351062 DOI: 10.1371/journal.pone.0119054] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/09/2015] [Indexed: 11/19/2022] Open
Abstract
Chalcone synthase (CHS) catalyzes the first committed step in the flavonoid biosynthetic pathway. In this study, the cDNA (FhCHS1) encoding CHS from Freesia hybrida was successfully isolated and analyzed. Multiple sequence alignments showed that both the conserved CHS active site residues and CHS signature sequence were found in the deduced amino acid sequence of FhCHS1. Meanwhile, crystallographic analysis revealed that protein structure of FhCHS1 is highly similar to that of alfalfa CHS2, and the biochemical analysis results indicated that it has an enzymatic role in naringenin biosynthesis. Moreover, quantitative real-time PCR was performed to detect the transcript levels of FhCHS1 in flowers and different tissues, and patterns of FhCHS1 expression in flowers showed significant correlation to the accumulation patterns of anthocyanin during flower development. To further characterize the functionality of FhCHS1, its ectopic expression in Arabidopsis thaliana tt4 mutants and Petunia hybrida was performed. The results showed that overexpression of FhCHS1 in tt4 mutants fully restored the pigmentation phenotype of the seed coats, cotyledons and hypocotyls, while transgenic petunia expressing FhCHS1 showed flower color alteration from white to pink. In summary, these results suggest that FhCHS1 plays an essential role in the biosynthesis of flavonoid in Freesia hybrida and may be used to modify the components of flavonoids in other plants.
Collapse
Affiliation(s)
- Wei Sun
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiangyu Meng
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Lingjie Liang
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Wangshu Jiang
- Department of Cell and Molecular Biology, Uppsala University, Uppsala Biomedical Center, Uppsala, 596, S-75124, Sweden
| | - Yafei Huang
- Department of Cell and Molecular Biology, Uppsala University, Uppsala Biomedical Center, Uppsala, 596, S-75124, Sweden
| | - Jing He
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Haiyan Hu
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Jonas Almqvist
- Department of Cell and Molecular Biology, Uppsala University, Uppsala Biomedical Center, Uppsala, 596, S-75124, Sweden
| | - Xiang Gao
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Li Wang
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| |
Collapse
|
28
|
Paupière MJ, van Heusden AW, Bovy AG. The metabolic basis of pollen thermo-tolerance: perspectives for breeding. Metabolites 2014; 4:889-920. [PMID: 25271355 PMCID: PMC4279151 DOI: 10.3390/metabo4040889] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/10/2014] [Accepted: 09/22/2014] [Indexed: 12/20/2022] Open
Abstract
Crop production is highly sensitive to elevated temperatures. A rise of a few degrees above the optimum growing temperature can lead to a dramatic yield loss. A predicted increase of 1-3 degrees in the twenty first century urges breeders to develop thermo-tolerant crops which are tolerant to high temperatures. Breeding for thermo-tolerance is a challenge due to the low heritability of this trait. A better understanding of heat stress tolerance and the development of reliable methods to phenotype thermo-tolerance are key factors for a successful breeding approach. Plant reproduction is the most temperature-sensitive process in the plant life cycle. More precisely, pollen quality is strongly affected by heat stress conditions. High temperature leads to a decrease of pollen viability which is directly correlated with a loss of fruit production. The reduction in pollen viability is associated with changes in the level and composition of several (groups of) metabolites, which play an important role in pollen development, for example by contributing to pollen nutrition or by providing protection to environmental stresses. This review aims to underline the importance of maintaining metabolite homeostasis during pollen development, in order to produce mature and fertile pollen under high temperature. The review will give an overview of the current state of the art on the role of various pollen metabolites in pollen homeostasis and thermo-tolerance. Their possible use as metabolic markers to assist breeding programs for plant thermo-tolerance will be discussed.
Collapse
Affiliation(s)
- Marine J Paupière
- Plant Breeding, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands.
| | - Adriaan W van Heusden
- Plant Research International, Wageningen University Plant Breeding, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands.
| | - Arnaud G Bovy
- Plant Research International, Wageningen University Plant Breeding, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands.
| |
Collapse
|
29
|
Proteome alterations of reverse photoperiod-sensitive genic male sterile rice (Oryza sativa L.) at fertility transformation stage. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0205-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
30
|
Dare AP, Tomes S, Jones M, McGhie TK, Stevenson DE, Johnson RA, Greenwood DR, Hellens RP. Phenotypic changes associated with RNA interference silencing of chalcone synthase in apple (Malus × domestica). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:398-410. [PMID: 23398045 DOI: 10.1111/tpj.12140] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 12/21/2012] [Accepted: 01/24/2013] [Indexed: 05/19/2023]
Abstract
We have identified in apple (Malus × domestica) three chalcone synthase (CHS) genes. In order to understand the functional redundancy of this gene family RNA interference knockout lines were generated where all three of these genes were down-regulated. These lines had no detectable anthocyanins and radically reduced concentrations of dihydrochalcones and flavonoids. Surprisingly, down-regulation of CHS also led to major changes in plant development, resulting in plants with shortened internode lengths, smaller leaves and a greatly reduced growth rate. Microscopic analysis revealed that these phenotypic changes extended down to the cellular level, with CHS-silenced lines showing aberrant cellular organisation in the leaves. Fruit collected from one CHS-silenced line was smaller than the 'Royal Gala' controls, lacked flavonoids in the skin and flesh and also had changes in cell morphology. Auxin transport experiments showed increased rates of auxin transport in a CHS-silenced line compared with the 'Royal Gala' control. As flavonoids are well known to be key modulators of auxin transport, we hypothesise that the removal of almost all flavonoids from the plant by CHS silencing creates a vastly altered environment for auxin transport to occur and results in the observed changes in growth and development.
Collapse
Affiliation(s)
- Andrew P Dare
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92169, Auckland 1141, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Sun H, Li Y, Feng S, Zou W, Guo K, Fan C, Si S, Peng L. Analysis of five rice 4-coumarate:coenzyme A ligase enzyme activity and stress response for potential roles in lignin and flavonoid biosynthesis in rice. Biochem Biophys Res Commun 2013; 430:1151-6. [DOI: 10.1016/j.bbrc.2012.12.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 12/05/2012] [Indexed: 11/25/2022]
|
32
|
Li Y, Zhang T, Shen ZW, Xu Y, Li JY. Overexpression of maize anthocyanin regulatory gene Lc affects rice fertility. Biotechnol Lett 2012; 35:115-9. [PMID: 22955680 DOI: 10.1007/s10529-012-1046-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 08/24/2012] [Indexed: 11/30/2022]
Abstract
Seventeen independent transgenic rice plants with the maize anthocyanin regulatory gene Lc under control of the CaMV 35S promoter were obtained and verified by molecular identification. Ten plants showed red spikelets during early development of florets, and the degenerate florets were still red after heading. Additionally, these plants exhibited intense pigmentation on the surface of the anther and the bottom of the ovary. They were unable to properly bloom and were completely sterile. Following pollination with normal pollen, these plants yielded red caryopses but did not mature normally. QRT-PCR analysis indicated that mRNA accumulation of the CHS-like gene encoding a chalcone synthase-related protein was increased significantly in the sterile plant. This is the first report to suggest that upregulation of the CHS gene expression may result in rice sterility and affect the normal development of rice seeds.
Collapse
Affiliation(s)
- Yuan Li
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, People's Republic of China.
| | | | | | | | | |
Collapse
|
33
|
Zheng R, Sijun Yue, Xu X, Liu J, Xu Q, Wang X, Han L, Yu D. Proteome analysis of the wild and YX-1 male sterile mutant anthers of wolfberry (Lycium barbarum L.). PLoS One 2012; 7:e41861. [PMID: 22860020 PMCID: PMC3408462 DOI: 10.1371/journal.pone.0041861] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/26/2012] [Indexed: 01/31/2023] Open
Abstract
Pollen development is disturbed in the early tetrad stage of the YX-1 male sterile mutant of wolfberry (Lycium barbarum L.). The present study aimed to identify differentially expressed anther proteins and to reveal their possible roles in pollen development and male sterility. To address this question, the proteomes of the wild-type (WT) and YX-1 mutant were compared. Approximately 1760 protein spots on two-dimensional differential gel electrophoresis (2D-DIGE) gels were detected. A number of proteins whose accumulation levels were altered in YX-1 compared with WT were identified by mass spectrometry and the NCBInr and Viridiplantae EST databases. Proteins down-regulated in YX-1 anthers include ascorbate peroxidase (APX), putative glutamine synthetase (GS), ATP synthase subunits, chalcone synthase (CHS), CHS-like, putative callose synthase catalytic subunit, cysteine protease, 5B protein, enoyl-ACP reductase, 14-3-3 protein and basic transcription factor 3 (BTF3). Meanwhile, activities of APX and GS, RNA expression levels of apx and atp synthase beta subunit were low in YX-1 anthers which correlated with the expression of male sterility. In addition, several carbohydrate metabolism-related and photosynthesis-related enzymes were also present at lower levels in the mutant anthers. In contrast, 26S proteasome regulatory subunits, cysteine protease inhibitor, putative S-phase Kinase association Protein 1(SKP1), and aspartic protease, were expressed at higher levels in YX-1 anthers relative to WT anthers. Regulation of wolfberry pollen development involves a complex network of differentially expressed genes. The present study lays the foundation for future investigations of gene function linked with wolfberry pollen development and male sterility.
Collapse
Affiliation(s)
- Rui Zheng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
- College of Life Science, Ningxia University, Yinchuan, China
| | - Sijun Yue
- College of Life Science, Ningxia University, Yinchuan, China
| | - Xiaoyan Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
- Jiangsu Polytechnic College of Agriculture and Forestry, Jurong, China
| | - Jianyu Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Qing Xu
- College of Life Science, Ningxia University, Yinchuan, China
| | - Xiaolin Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Lu Han
- College of Life Science, Ningxia University, Yinchuan, China
| | - Deyue Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
34
|
Mahajan M, Ahuja PS, Yadav SK. Post-transcriptional silencing of flavonol synthase mRNA in tobacco leads to fruits with arrested seed set. PLoS One 2011; 6:e28315. [PMID: 22145036 PMCID: PMC3228754 DOI: 10.1371/journal.pone.0028315] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 11/06/2011] [Indexed: 11/18/2022] Open
Abstract
Flavonoids are synthesized by phenylpropanoid pathway. They are known to participate in large number of physiological and biochemical processes in plants. Parthenocarpy and male sterility has earlier been reported by silencing chalcone synthase (CHS) encoding gene. Silencing of CHS has blocked the synthesis of most of useful flavonoids including flavan-3-ols and flavonols. Also, these studies could not identify whether parthenocarpy/male sterility were due to lack of flavan-3-ols or flavonols or both. Flavonol synthase (FLS) is an important enzyme of flavonoid pathway that catalyzes the formation of flavonols. In this article, we propose a novel strategy towards the generation of seedless or less-seeded fruits by downregulation of flavonol biosynthesis in tobacco (Nicotiana tabacum cv Xanthi) through post-transcriptional gene silencing (PTGS) of FLS encoding mRNA. The FLS silenced lines were observed for 20-80% reduction in FLS encoding gene expression and 25-93% reduction in flavonol (quercetin) content. Interestingly, these FLS silenced tobacco lines also showed reduction in their anthocyanidins content. While the content of flavan-3-ols (catechin, epi-catechin and epi-gallocatechin) was found to be increased in FLS silenced lines. The delayed flowering in FLS silenced lines could be due to decrease in level of indole acetic acid (IAA) at apical region of their shoots. Furthermore, the pollen germination was hampered and pollens were unable to produce functional pollen tube in FLS silenced tobacco lines. Pods of FLS silenced lines contained significantly less number of seeds. The in vitro and in vivo studies where 1 µM quercetin was supplied to germination media, documented the restoration of normal pollen germination and pollen tube growth. This finding identified the role of flavonols particularly quercetin in pollen germination as well as in the regulation of plant fertility. Results also suggest a novel approach towards generation of seedless/less-seeded fruits via PTGS of FLS encoding gene in plants.
Collapse
Affiliation(s)
- Monika Mahajan
- Plant Metabolic Engineering Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, India
| | - Paramvir Singh Ahuja
- Plant Metabolic Engineering Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, India
| | - Sudesh Kumar Yadav
- Plant Metabolic Engineering Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, India
| |
Collapse
|
35
|
Dobritsa AA, Geanconteri A, Shrestha J, Carlson A, Kooyers N, Coerper D, Urbanczyk-Wochniak E, Bench BJ, Sumner LW, Swanson R, Preuss D. A large-scale genetic screen in Arabidopsis to identify genes involved in pollen exine production. PLANT PHYSIOLOGY 2011; 157:947-70. [PMID: 21849515 PMCID: PMC3192556 DOI: 10.1104/pp.111.179523] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 08/15/2011] [Indexed: 05/17/2023]
Abstract
Exine, the outer plant pollen wall, has elaborate species-specific patterns, provides a protective barrier for male gametophytes, and serves as a mediator of strong and species-specific pollen-stigma adhesion. Exine is made of sporopollenin, a material remarkable for its strength, elasticity, and chemical durability. The chemical nature of sporopollenin, as well as the developmental mechanisms that govern its assembly into diverse patterns in different species, are poorly understood. Here, we describe a simple yet effective genetic screen in Arabidopsis (Arabidopsis thaliana) that was undertaken to advance our understanding of sporopollenin synthesis and exine assembly. This screen led to the recovery of mutants with a variety of defects in exine structure, including multiple mutants with novel phenotypes. Fifty-six mutants were selected for further characterization and are reported here. In 14 cases, we have mapped defects to specific genes, including four with previously demonstrated or suggested roles in exine development (MALE STERILITY2, CYP703A2, ANTHER-SPECIFIC PROTEIN6, TETRAKETIDE α-PYRONE REDUCTASE/DIHYDROFLAVONOL-4-REDUCTASE-LIKE1), and a number of genes that have not been implicated in exine production prior to this screen (among them, fatty acid ω-hydroxylase CYP704B1, putative glycosyl transferases At1g27600 and At1g33430, 4-coumarate-coenzyme A ligase 4CL3, polygalacturonase QUARTET3, novel gene At5g58100, and nucleotide-sugar transporter At5g65000). Our study illustrates that morphological screens of pollen can be extremely fruitful in identifying previously unknown exine genes and lays the foundation for biochemical, developmental, and evolutionary studies of exine production.
Collapse
Affiliation(s)
- Anna A Dobritsa
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cloning and Analysis of Two Promoters of Chalcone Synthase Gene A (<I>chsA</I>) in Petunia hybrida*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2010.00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Dobritsa AA, Lei Z, Nishikawa SI, Urbanczyk-Wochniak E, Huhman DV, Preuss D, Sumner LW. LAP5 and LAP6 encode anther-specific proteins with similarity to chalcone synthase essential for pollen exine development in Arabidopsis. PLANT PHYSIOLOGY 2010; 153:937-55. [PMID: 20442277 PMCID: PMC2899912 DOI: 10.1104/pp.110.157446] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 04/30/2010] [Indexed: 05/17/2023]
Abstract
Pollen grains of land plants have evolved remarkably strong outer walls referred to as exine that protect pollen and interact with female stigma cells. Exine is composed of sporopollenin, and while the composition and synthesis of this biopolymer are not well understood, both fatty acids and phenolics are likely components. Here, we describe mutations in the Arabidopsis (Arabidopsis thaliana) LESS ADHESIVE POLLEN (LAP5) and LAP6 that affect exine development. Mutation of either gene results in abnormal exine patterning, whereas pollen of double mutants lacked exine deposition and subsequently collapsed, causing male sterility. LAP5 and LAP6 encode anther-specific proteins with homology to chalcone synthase, a key flavonoid biosynthesis enzyme. lap5 and lap6 mutations reduced the accumulation of flavonoid precursors and flavonoids in developing anthers, suggesting a role in the synthesis of phenolic constituents of sporopollenin. Our in vitro functional analysis of LAP5 and LAP6 using 4-coumaroyl-coenzyme A yielded bis-noryangonin (a commonly reported derailment product of chalcone synthase), while similar in vitro analyses using fatty acyl-coenzyme A as the substrate yielded medium-chain alkyl pyrones. Thus, in vitro assays indicate that LAP5 and LAP6 are multifunctional enzymes and may play a role in both the synthesis of pollen fatty acids and phenolics found in exine. Finally, the genetic interaction between LAP5 and an anther gene involved in fatty acid hydroxylation (CYP703A2) demonstrated that they act synergistically in exine production.
Collapse
Affiliation(s)
- Anna A Dobritsa
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Yamagishi M, Shimoyamada Y, Nakatsuka T, Masuda K. Two R2R3-MYB genes, homologs of Petunia AN2, regulate anthocyanin biosyntheses in flower Tepals, tepal spots and leaves of asiatic hybrid lily. PLANT & CELL PHYSIOLOGY 2010; 51:463-74. [PMID: 20118109 DOI: 10.1093/pcp/pcq011] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Anthocyanins are secondary metabolites that contribute to colors of flowers, fruits and leaves. Asiatic hybrid lily (Lilium spp.) accumulates cyanidin anthocyanins in flower tepals, tepal spots and leaves of juvenile shoots. To clarify their mechanisms of regulation of anthocyanin pigmentation, two full-length cDNAs of R2R3-MYB (LhMYB6 and LhMYB12) were isolated from the anthocyanin-accumulating tepals of cultivar 'Montreux'. Analysis of the deduced amino acid sequences indicated they have homology with petunia AN2, homologous sequences of which had not been isolated in species of monocots. Yeast two-hybrid analysis showed that LhMYB6 and LhMYB12 interacted with the Lilium hybrid basic helix-loop-helix 2 (LhbHLH2) protein. Transient expression analysis indicated that co-expression of LhMYB6 and LhbHLH2 or LhMYB12 and LhbHLH2, introduced by a microprojectile, activated the transcription of anthocyanin biosynthesis genes in lily bulbscales. Spatial and temporal transcription of LhMYB6 and LhMYB12 was analyzed. The expression of LhMYB12 corresponded well with anthocyanin pigmentation in tepals, filaments and styles, and that of LhMYB6 correlated with anthocyanin spots in tepals and light-induced pigmentation in leaves. These results indicate that LhMYB6 and LhMYB12 positively regulate anthocyanin biosynthesis and determine organ- and tissue-specific accumulation of anthocyanin.
Collapse
Affiliation(s)
- Masumi Yamagishi
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, 060-8589 Japan.
| | | | | | | |
Collapse
|
39
|
Fambrini M, Michelotti V, Pugliesi C. Orange, yellow and white-cream: inheritance of carotenoid-based colour in sunflower pollen. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:197-205. [PMID: 20653902 DOI: 10.1111/j.1438-8677.2009.00205.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Inheritance of pollen colour was studied in sunflower (Helianthus annuus L.) using three distinct pollen colour morphs: orange, yellow and white-cream. Orange is the most common colour of sunflower pollen, while the yellow morph is less frequent. These two types were observed in the inbred lines F11 and EF2L, respectively. White-cream pollen is a rare phenotype in nature, and was identified in a mutant, named white-cream pollen, recovered in the R(2) generation of an in vitro regenerated plant. The F11 inbred line was used as starting material for in vitro regeneration. The carotenoid content of these three pollen morphs differed, and was extremely reduced in white-cream pollen. The phenotype of F(1) populations obtained by reciprocal crosses revealed that the orange trait was dominant over both white-cream and yellow. Segregation of F(2) populations of both crosses, orange x yellow and orange x white-cream, approached a 3:1 ratio, indicating the possibility of simple genetic control. By contrast, a complementation cross between the two lines with white-cream and yellow pollen produced F(1) plants with orange pollen. The F(2) populations of this cross-segregated as nine orange: four white-cream: four yellow. A model conforming to the involvement of two unlinked genes, here designated Y and O, can explain these results. Accessions with yellow pollen would have the genotype YYoo, the white-cream pollen mutant would have yyOO and the accession with orange pollen would have YYOO. Within F(2) populations of the cross white-cream x yellow a new genotype, yyoo, with white-cream pollen was scored. The results of the cross yyoo x YYoo produced only F(1) plants with yellow pollen, supporting a recessive epistatic model of inheritance between two loci. In this model, yy is epistatic on O and o. In F(2) populations, the distributions of phenotypic classes suggested that the genetic control of carotenoid content is governed by major genes, with large effects segregating in a background of polygenic variation. These three pollen morphs can provide insight into the sequence in which genes act, as well into the biochemical pathway controlling carotenoid biosynthesis in anthers and the transfer of these different pigments into pollenkitt.
Collapse
Affiliation(s)
- M Fambrini
- Dipartimento di Biologia delle Piante Agrarie Sezione di Genetica, Università di Pisa, Pisa, Italy
| | | | | |
Collapse
|
40
|
Thompson EP, Wilkins C, Demidchik V, Davies JM, Glover BJ. An Arabidopsis flavonoid transporter is required for anther dehiscence and pollen development. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:439-51. [PMID: 19995827 PMCID: PMC2803208 DOI: 10.1093/jxb/erp312] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 10/06/2009] [Accepted: 10/06/2009] [Indexed: 05/17/2023]
Abstract
FLOWER FLAVONOID TRANSPORTER (FFT) encodes a multidrug and toxin efflux family transporter in Arabidopsis thaliana. FFT (AtDTX35) is highly transcribed in floral tissues, the transcript being localized to epidermal guard cells, including those of the anthers, stigma, siliques and nectaries. Mutant analysis demonstrates that the absence of FFT transcript affects flavonoid levels in the plant and that the altered flavonoid metabolism has wide-ranging consequences. Root growth, seed development and germination, and pollen development, release and viability are all affected. Spectrometry of mutant versus wild-type flowers shows altered levels of a glycosylated flavonol whereas anthocyanin seems unlikely to be the substrate as previously speculated. Thus, as well as adding FFT to the incompletely described flavonoid transport network, it is found that correct reproductive development in Arabidopsis is perturbed when this particular transporter is missing.
Collapse
|
41
|
Dobritsa AA, Nishikawa SI, Preuss D, Urbanczyk-Wochniak E, Sumner LW, Hammond A, Carlson AL, Swanson RJ. LAP3, a novel plant protein required for pollen development, is essential for proper exine formation. ACTA ACUST UNITED AC 2009; 22:167-77. [PMID: 20033437 DOI: 10.1007/s00497-009-0101-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 05/25/2009] [Indexed: 11/25/2022]
Abstract
We isolated lap3-1 and lap3-2 mutants in a screen for pollen that displays abnormal stigma binding. Unlike wild-type pollen, lap3-1 and lap3-2 pollen exine is thinner, weaker, and is missing some connections between their roof-like tectum structures. We describe the mapping and identification of LAP3 as a novel gene that contains a repetitive motif found in beta-propeller enzymes. Insertion mutations in LAP3 lead to male sterility. To investigate possible roles for LAP3 in pollen development, we assayed the metabolite profile of anther tissues containing developing pollen grains and found that the lap3-2 defect leads to a broad range of metabolic changes. The largest changes were seen in levels of a straight-chain hydrocarbon nonacosane and in naringenin chalcone, an obligate compound in the flavonoid biosynthesis pathway.
Collapse
Affiliation(s)
- Anna A Dobritsa
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Wang D, Li C, Zhao Q, Zhao L, Wang M, Zhu D, Ao G, Yu J. Zm401p10, encoded by an anther-specific gene with short open reading frames, is essential for tapetum degeneration and anther development in maize. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:73-85. [PMID: 32688629 DOI: 10.1071/fp08154] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 10/05/2008] [Indexed: 06/11/2023]
Abstract
In flowering plants, the tapetum is proposed to play a vital role in the early stages of pollen development. Disruptions to tapetum development and degeneration typically result in male sterility. The present study characterised a maize (Zea mays L.) anther-specific gene, Zm401, which only contains short open reading frames (sORFs). The longest ORF of the Zm401 gene encodes a small protein designated Zm401p10 that accumulates in the nucleus. Overexpression of Zm401p10 in maize retarded tapetal degeneration and caused microspore abnormalities. A microarray analysis identified 278 downregulated and 150 upregulated genes in anthers overexpressing Zm401p10. These results indicate that the Zm401 gene is one of the major components of the molecular network regulating maize anther development and male fertility, and that Zm401p10 is expressed from the longest ORF of the gene.
Collapse
Affiliation(s)
- Dongxue Wang
- State Key Laboratory for Agro-biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100094, China
| | - Chengxia Li
- State Key Laboratory for Agro-biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100094, China
| | - Qian Zhao
- State Key Laboratory for Agro-biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100094, China
| | - Linna Zhao
- State Key Laboratory for Agro-biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100094, China
| | - Meizhen Wang
- State Key Laboratory for Agro-biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100094, China
| | - Dengyun Zhu
- State Key Laboratory for Agro-biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100094, China
| | - Guangming Ao
- State Key Laboratory for Agro-biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100094, China
| | - Jingjuan Yu
- State Key Laboratory for Agro-biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100094, China
| |
Collapse
|
43
|
Flores-Sanchez IJ, Verpoorte R. PKS activities and biosynthesis of cannabinoids and flavonoids in Cannabis sativa L. plants. PLANT & CELL PHYSIOLOGY 2008; 49:1767-82. [PMID: 18854334 DOI: 10.1093/pcp/pcn150] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Polyketide synthase (PKS) enzymatic activities were analyzed in crude protein extracts from cannabis plant tissues. Chalcone synthase (CHS, EC 2.3.1.74), stilbene synthase (STS, EC 2.3.1.95), phlorisovalerophenone synthase (VPS, EC 2.3.1.156), isobutyrophenone synthase (BUS) and olivetol synthase activities were detected during the development and growth of glandular trichomes on bracts. Cannabinoid biosynthesis and accumulation take place in these glandular trichomes. In the biosynthesis of the first precursor of cannabinoids, olivetolic acid, a PKS could be involved; however, no activity for an olivetolic acid-forming PKS was detected. Content analyses of cannabinoids and flavonoids, two secondary metabolites present in this plant, from plant tissues revealed differences in their distribution, suggesting a diverse regulatory control for these biosynthetic fluxes in the plant.
Collapse
Affiliation(s)
- Isvett Josefina Flores-Sanchez
- Pharmacognosy Department/Metabolomics, Institute of Biology, Gorlaeus Laboratories, PO Box 9502, 2300 RA Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
44
|
Ito T, Ng KH, Lim TS, Yu H, Meyerowitz EM. The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis. THE PLANT CELL 2007; 19:3516-29. [PMID: 17981996 PMCID: PMC2174883 DOI: 10.1105/tpc.107.055467] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Revised: 10/07/2007] [Accepted: 10/10/2007] [Indexed: 05/18/2023]
Abstract
The Arabidopsis thaliana floral homeotic gene AGAMOUS (AG) plays a central role in reproductive organ (stamen and carpel) development. AG RNA is expressed in the center of floral primordia from a time prior to the initiation of stamen and carpel primordia until late in flower development. While early AG expression acts in specification of stamens and carpels, the role, if any, of continued AG expression in later flower development is unknown. To examine the timing of AG action and its possible late-stage functions, we performed a series of time-course experiments using a transgenic line with inducible AG activity in an ag homozygous mutant background. We show that AG controls late-stage stamen development, including anther morphogenesis and dehiscence, as well as filament formation and elongation. We further show that AG coordinates late stamen maturation by controlling a biosynthetic gene of the lipid-derived phytohormone jasmonic acid (JA). Expression analysis and in vivo binding of AG indicate that AG directly regulates the transcription of a catalytic enzyme of JA, DEFECTIVE IN ANTHER DEHISCENCE1. Our results indicate that stamen identity and differentiation control by AG is achieved by the regulation of different transcriptional cascades in different floral stages, with organ specification induced early, followed by phytohormone biosynthesis to coordinate stamen maturation.
Collapse
Affiliation(s)
- Toshiro Ito
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore.
| | | | | | | | | |
Collapse
|
45
|
Schijlen EGWM, de Vos CHR, Martens S, Jonker HH, Rosin FM, Molthoff JW, Tikunov YM, Angenent GC, van Tunen AJ, Bovy AG. RNA interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits. PLANT PHYSIOLOGY 2007; 144:1520-30. [PMID: 17478633 PMCID: PMC1914118 DOI: 10.1104/pp.107.100305] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Parthenocarpy, the formation of seedless fruits in the absence of functional fertilization, is a desirable trait for several important crop plants, including tomato (Solanum lycopersicum). Seedless fruits can be of great value for consumers, the processing industry, and breeding companies. In this article, we propose a novel strategy to obtain parthenocarpic tomatoes by down-regulation of the flavonoid biosynthesis pathway using RNA interference (RNAi)-mediated suppression of chalcone synthase (CHS), the first gene in the flavonoid pathway. In CHS RNAi plants, total flavonoid levels, transcript levels of both Chs1 and Chs2, as well as CHS enzyme activity were reduced by up to a few percent of the corresponding wild-type values. Surprisingly, all strong Chs-silenced tomato lines developed parthenocarpic fruits. Although a relation between flavonoids and parthenocarpic fruit development has never been described, it is well known that flavonoids are essential for pollen development and pollen tube growth and, hence, play an essential role in plant reproduction. The observed parthenocarpic fruit development appeared to be pollination dependent, and Chs RNAi fruits displayed impaired pollen tube growth. Our results lead to novel insight in the mechanisms underlying parthenocarpic fruit development. The potential of this technology for applications in plant breeding and biotechnology will be discussed.
Collapse
Affiliation(s)
- Elio G W M Schijlen
- Plant Research International, Business Unit Bioscience, Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Li SF, Iacuone S, Parish RW. Suppression and restoration of male fertility using a transcription factor. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:297-312. [PMID: 17309685 DOI: 10.1111/j.1467-7652.2007.00242.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The Arabidopsis AtMYB103 gene codes for an R2R3 MYB domain protein whose expression is restricted to the tapetum of developing anthers and to trichomes. Down-regulation of expression using anti-sense leads to abnormal tapetum and pollen development, although seed setting still occurs (Higginson, T., Li, S.F. and Parish, R.W. (2003) AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. Plant J. 35, 177-192). In this study, we show that blocking the function of the AtMYB103 gene, employing either an insertion mutant or an AtMYB103EAR chimeric repressor construct under the control of the AtMYB103 promoter, results in complete male sterility and failure to set seed. These plants exhibit similar abnormalities in tapetum and pollen development, with the tapetum becoming highly vacuolated at early stages and degenerating prematurely. No exine is deposited on to the pollen wall. The degeneration of pollen grains commences prior to pollen mitosis, the pollen collapsing and largely lacking cytoplasmic content. A restorer containing the AtMYB103 gene under the control of a stronger anther-specific promoter was introduced into pollen donor plants and crossed into the male sterile plants transgenic for the repressor. The male fertility of F1 plants was restored. The chimeric repressor and the restorer constitute a reversible male sterility system which could be adapted for hybrid seed production. This is the first reversible male sterility system targeting a transcription factor essential for pollen development. Strategies for generating inducible male sterility and maintainable male sterility for the production of hybrid crops are discussed.
Collapse
Affiliation(s)
- Song Feng Li
- Botany Department, School of Life Sciences, La Trobe University, Bundoora Campus, Melbourne, Vic. 3086, Australia
| | | | | |
Collapse
|
47
|
Yang XY, Li JG, Pei M, Gu H, Chen ZL, Qu LJ. Over-expression of a flower-specific transcription factor gene AtMYB24 causes aberrant anther development. PLANT CELL REPORTS 2007; 26:219-28. [PMID: 16972096 DOI: 10.1007/s00299-006-0229-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2006] [Revised: 06/03/2006] [Accepted: 06/06/2006] [Indexed: 05/11/2023]
Abstract
In plants, MYB transcription factors play important roles in many developmental processes and various defense responses. AtMYB24, as a member of R2R3-MYB gene family in Arabidopsis, was found mainly expressed in flowers, especially in microspores and ovules using Northern blots and in situ hybridization. It was further found that the expression of AtMYB24 was tightly regulated during anther development. Over-expression of AtMYB24 in transgenic plants resulted in pleiotropic phenotypes, including dwarfism and flower development defects, in particular, producing abnormal pollen grains and non-dehiscence anthers. Further analysis showed that the anther development of the AtMYB24-ox lines was retarded starting from the anther developmental stages 10-11. At stages 12 and 13, the septum and stomium cells of anthers would not break, and fewer or no fibrous bands were found in the endothecium and connective cells in the AtMYB24-ox plants. Similar aberrant anther phenotype was also observed in the AtMYB24-GR-ox lines treated with dexamethasone (DEX). Quantitative real-time PCR showed expression of genes involved in phenylpropanoid biosynthetic pathway, such as CHS and DFR, and AtGTP2 were altered in AtMYB24-ox lines. These results suggest an important role of AtMYB24 in the normal development of anthers in Arabidopsis.
Collapse
Affiliation(s)
- X Y Yang
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, PR China
| | | | | | | | | | | |
Collapse
|
48
|
Hsieh K, Huang AHC. Tapetosomes in Brassica tapetum accumulate endoplasmic reticulum-derived flavonoids and alkanes for delivery to the pollen surface. THE PLANT CELL 2007; 19:582-96. [PMID: 17307923 PMCID: PMC1867322 DOI: 10.1105/tpc.106.049049] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 12/29/2006] [Accepted: 01/24/2007] [Indexed: 05/14/2023]
Abstract
Tapetosomes are abundant organelles in tapetum cells during the active stage of pollen maturation in Brassicaceae species. They possess endoplasmic reticulum (ER)-derived vesicles and oleosin-coated lipid droplets, but their overall composition and function have not been established. In situ localization analyses of developing Brassica napus anthers revealed flavonoids present exclusively in tapetum cells, first in an ER network along with flavonoid-3'-hydroxylase and then in ER-derived tapetosomes. Flavonoids were absent in the cytosol, elaioplasts, vacuoles, and nuclei. Subcellular fractionation of developing anthers localized both flavonoids and alkanes in tapetosomes. Subtapetosome fractionation localized flavonoids in ER-derived vesicles, and alkanes and oleosins in lipid droplets. After tapetum cell death, flavonoids, alkanes, and oleosins were located on mature pollen. In the Arabidopsis thaliana mutants tt12 and tt19 devoid of a flavonoid transporter, flavonoids were present in the cytosol in reduced amounts but absent in tapetosomes and were subsequently located on mature pollen. tt4, tt12, and tt19 pollen was more susceptible than wild-type pollen to UV-B irradiation on subsequent germination. Thus, tapetosomes accumulate ER-derived flavonoids, alkanes, and oleosins for discharge to the pollen surface upon cell death. This tapetosome-originated pollen coat protects the haploidic pollen from UV light damage and water loss and aids water uptake.
Collapse
Affiliation(s)
- Kai Hsieh
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
49
|
Gillman JD, Bentolila S, Hanson MR. The petunia restorer of fertility protein is part of a large mitochondrial complex that interacts with transcripts of the CMS-associated locus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:217-27. [PMID: 17156410 DOI: 10.1111/j.1365-313x.2006.02953.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A class of nuclear genes termed "restorers of fertility" (Rf) acts to suppress the expression of abnormal mitochondrial genes associated with cytoplasmic male sterility (CMS). In petunia, both the nuclear Rf gene and mitochondrial CMS-associated gene have previously been identified. The CMS-associated gene is an aberrant chimera in which portions of several mitochondrially encoded genes are fused to an unknown reading frame. The dominant Rf allele reduces the CMS-associated protein to nearly undetectable levels and alters the RNA population derived from the CMS locus, but its mechanism of action has not been determined. The petuniaRf gene is a member of the pentatricopeptide repeat gene family (PPR), an unusually large gene family in Arabidopsis (approximately 450 genes) compared with yeast (five genes) and mammalian genomes (six genes). The PPR gene family has been implicated in the control of organelle gene expression. To gain insight into the mode of action of PPR genes, we generated transgenic petunia plants expressing a functional tagged version of Rf. Analysis of the restorer protein revealed that it is part of a soluble mitochondrial inner-membrane-associated, RNase-sensitive high-molecular-weight protein complex. The complex is associated with mRNA derived from the CMS locus.
Collapse
Affiliation(s)
- Jason D Gillman
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
50
|
Kubo K, Takatsuji H. Transgene-dependent incompatibility induced by introduction of the SK2:ZPT2-10 chimeric gene in petunia. Transgenic Res 2006; 16:85-97. [PMID: 17103023 DOI: 10.1007/s11248-006-9034-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Accepted: 08/21/2006] [Indexed: 10/23/2022]
Abstract
In an attempt to functionally characterize a petunia zinc-finger gene ZPT2-10, which is specifically expressed in style transmitting tissue, we fused its cDNA downstream of the potato SK2 promoter (SK2:ZPT2-10) and then introduced it into Petunia hybrida. We found that some transformants had acquired altered traits in compatibility in mating; these were termed 'transgene-dependent incompatibility (TDI)'. These transgenic lines were fertile when self-pollinated or crossed with other TDI lines. In contrast, they failed to mate when crossed with untransformed wild-type petunia or non-TDI lines of SK2:ZPT2-10 transformants. The TDI phenomenon was observed irrespective of whether the TDI lines were used as the pollen or pistillar parent. The TDI phenotype cosegregated with the SK2:ZPT2-10 transgene in the T1 generation and loss of this transgene resulted in the recovery of normal fertility. In the case of infertile pollination with the TDI line as one parent, pollen tubes grew normally through pistillar tissues, where endogenous ZPT2-10 is expressed, and eventually reached the ovules. However, the resultant embryos were arrested at the globular-heart stage. We found no correlation between the occurrence of the TDI phenotype and the expression of ZPT2-10 transcripts. On the basis of these observations, we discuss the possible molecular mechanisms underlying this phenomena and its utility.
Collapse
Affiliation(s)
- Kenichi Kubo
- Division of Plant Sciences, Plant Disease Resistance Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | | |
Collapse
|