1
|
Shabab Z, Ghoshe PW, Sarada DVL. Structural and functional characterization of cellulose synthase proteins (CesA) in rice and their regulation via brassinosteroid signaling under arsenate stress. PLANT CELL REPORTS 2024; 44:15. [PMID: 39729137 DOI: 10.1007/s00299-024-03406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
KEY MESSAGE CesA proteins response to arsenic stress in rice involves structural and regulatory mechanisms, highlighting the role of BES1/BZR1 transcript levels under arsenate exposure and significant downregulation of BZR1 protein expression. Plants interact with several hazardous metalloids during their life cycle through root and soil connection. One such metalloid, is arsenic and its perilous impact on rice cultivation is a well-known threat. Cellulose synthase and cellulose synthase-like (CesA/CSL) gene family build major constituent of cell wall polysaccharides, however, their interaction and responses to arsenic stress remains enigmatic. The current study describes the structural, functional, and regulatory behavior of CesA proteins using in silico tools with datasets of 367 sequences and an in vitro germination model. Interpro analysis revealed six types of domains, further classified into two major clades: cellulose synthase and glycosyl transferase family group 2 exhibiting polyphyletic grouping. The MEME suite analysis identified the frequent occurrence of "QXXRW" among 35 identified conserved motifs. Further observation of the regulatory mechanism of CesA identified 36 types of trans-regulatory elements involved in hormone signaling, developmental regulation, stress response, etc. Among these, hormone signaling comprises of 7 types of elements, with BES1 being less studied, sequences containing BES1 sites were selected. Additionally, 56 cis-regulatory elements were identified. Arsenate exposure increased transcript level of CesA and BES1/BZR1 compared to control. Western blot analysis revealed a significant downregulation of the BZR1 protein expression in arsenate stressed seedlings. This research shed light on the regulation of CesA mediated by (BES1/BZR1) and brassinosteroid signalling.
Collapse
Affiliation(s)
- Ziya Shabab
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Piyush Wamanrao Ghoshe
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Dronamraju V L Sarada
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India.
| |
Collapse
|
2
|
Gong H, Ma J, Dusengemungu L, Feng Z. Genome-wide identification and expression analysis of the cellulose synthase gene family in potato ( Solanum tuberosum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1457958. [PMID: 39722880 PMCID: PMC11668584 DOI: 10.3389/fpls.2024.1457958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024]
Abstract
Potato (Solanum tuberosum) is the fourth largest staple food crop globally. However, potato cultivation is frequently challenged by various diseases during planting, significantly impacting both crop quality and yield. Pathogenic microorganisms must first breach the plant's cell wall to successfully infect potato plants. Cellulose, a polysaccharide carbohydrate, constitutes a significant component of plant cell walls. Within these walls, cellulose synthase (CesA) plays a pivotal role in cellulose synthesis. Despite its importance, studies on StCesAs (the CesA genes in potato) have been limited. In this study, eight CesA genes were identified and designated as StCesA1-8, building upon the previous nomenclature (StCesA1-4). Based on their phylogenetic relationship with Arabidopsis thaliana, these genes were categorized into four clusters (CesA I to CesA IV). The genomic distribution of StCesAs spans seven chromosomes. Gene structure analysis revealed that StCesAs consist of 12 to 14 exons. Notably, the putative promoter regions harbor numerous biologically functional cis-acting regulatory elements, suggesting diverse roles for StCesAs in potato growth and development. RNA-seq data further demonstrated distinct expression patterns of StCesAs across different tissues. Additionally, quantitative real-time PCR (QRT-PCR) results indicated significant up-regulation of StCesA5 expression under biotic stresses, implicating its potential involvement in potato disease resistance.
Collapse
Affiliation(s)
- Huiling Gong
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Junxian Ma
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Leonce Dusengemungu
- College of Mathematics and Natural Science, The Copperbelt University, Kitwe, Zambia
| | - Zaiping Feng
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
3
|
Sipahi H, Haiden S, Berkowitz G. Genome-wide analysis of cellulose synthase (CesA) and cellulose synthase-like (Csl) proteins in Cannabis sativa L. PeerJ 2024; 12:e17821. [PMID: 39670088 PMCID: PMC11636989 DOI: 10.7717/peerj.17821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/06/2024] [Indexed: 12/14/2024] Open
Abstract
The cellulose and hemicellulose components of plant cell walls are synthesized by the cellulose synthase (CESA) and cellulose synthase-like (CSL) gene families and regulated in response to growth, development, and environmental stimuli. In this study, a total of 29 CESA/CSL family members were identified in Cannabis sativa and were grouped into seven subfamilies (CESA, CSLA, CSLB, CSLC, CSLD, CSLE and CSLG) according to phylogenetic relationships. The CESA/CESA proteins of C. sativa were closely related phylogenetically to the members of the subfamily of other species. The CESA/CSL subfamily members of C. sativa have unique gene structures. In addition, the expressions of four CESA and 10 CsCSL genes in flower, leaf, root, and stem organs of cannabis were detected using RT-qPCR. The results showed that CESA and CSL genes are expressed at varying levels in several organs. This detailed knowledge of the structural, evolutionary, and functional properties of cannabis CESA/CSL genes will provide a basis for designing advanced experiments for genetic manipulation of cell wall biogenesis to improve bast fibers and biofuel production.
Collapse
Affiliation(s)
- Hulya Sipahi
- Department of Agricultural Biotechnology, Faculty of Agriculture, University of Eskişehir Osmangazi, Eskişehir, Türkiye
| | - Samuel Haiden
- Agricultural Biotechnology Laboratory, Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, United States of America
| | - Gerald Berkowitz
- Agricultural Biotechnology Laboratory, Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, United States of America
| |
Collapse
|
4
|
Zhang J, Yue Y, Hu M, Yi F, Chen J, Lai J, Xin B. Dynamic transcriptome landscape of maize pericarp development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1574-1591. [PMID: 37970738 DOI: 10.1111/tpj.16548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/09/2023] [Accepted: 11/05/2023] [Indexed: 11/17/2023]
Abstract
As a maternal tissue, the pericarp supports and protects for other components of seed, such as embryo and endosperm. Despite the importance of maize pericarp in seed, the genome-wide transcriptome pattern throughout maize pericarp development has not been well characterized. Here, we developed RNA-seq transcriptome atlas of B73 maize pericarp development based on 21 samples from 5 days before fertilization (DBP5) to 32 days after fertilization (DAP32). A total of 25 346 genes were detected in programming pericarp development, including 1887 transcription factors (TFs). Together with pericarp morphological changes, the global clustering of gene expression revealed four developmental stages: undeveloped, thickening, expansion and strengthening. Coexpression analysis provided further insights on key regulators in functional transition of four developmental stages. Combined with non-seed, embryo, endosperm, and nucellus transcriptome data, we identified 598 pericarp-specific genes, including 75 TFs, which could elucidate key mechanisms and regulatory networks of pericarp development. Cell wall related genes were identified that reflected their crucial role in the maize pericarp structure building. In addition, key maternal proteases or TFs related with programmed cell death (PCD) were proposed, suggesting PCD in the maize pericarp was mediated by vacuolar processing enzymes (VPE), and jasmonic acid (JA) and ethylene-related pathways. The dynamic transcriptome atlas provides a valuable resource for unraveling the genetic control of maize pericarp development.
Collapse
Affiliation(s)
- Jihong Zhang
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Yang Yue
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Mingjian Hu
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Fei Yi
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, P. R. China
| | - Jian Chen
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Beibei Xin
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, P. R. China
| |
Collapse
|
5
|
Zhang S, Hu H, Cui S, Yan L, Wu B, Wei S. Genome-wide identification and functional analysis of the cellulose synthase-like gene superfamily in common oat (Avena sativa L.). PHYTOCHEMISTRY 2024; 218:113940. [PMID: 38056517 DOI: 10.1016/j.phytochem.2023.113940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Hemicelluloses constitute approximately one-third of the plant cell wall and can be used as a dietary fiber and food additive, and as raw materials for biofuels. Although genes involved in hemicelluloses synthesis have been investigated in some model plants, no comprehensive analysis has been conducted in common oat at present. In this study, we identified and systematically analyzed the cellulose synthase-like gene (Csl) family members in common oat and investigated them using various bioinformatics tools. The results showed that there are 76 members of the oat Csl gene family distributed on 17 chromosomes, and phylogenetic analysis indicated that the 76 Csl genes belong to the CslA, CslC, CslD, CslE, CslF, CslH, and CslJ subfamilies. A total of 14 classes of cis-acting elements were identified in the promoter regions, including hormone response, light response, cell development, and defense stress elements. The collinearity analysis identified 28 pairs of segmentally duplicated genes, most of which were found on chromosomes 2D and 6A. Expression pattern analysis showed that oat Csl genes display strong tissue-specific expression; of the 76 Csl genes, 33 were significantly up-regulated in stems and 30 were up-regulated in immature seeds. The expression of most members of the AsCsl gene family is repressed by abiotic stress, while the expression of some members is up-regulated by light. Immunoelectron microscopy shows that the product of AsCsl61, a member of CslF subfamily, mediates (1,3; 1,4)-β-D-glucan synthesis in transgenic Arabidopsis. These findings provide a fundamental understanding of the structural, functional, and evolutionary features of the oat Csl genes and may contribute to our general understanding of hemicellulose biosynthesis. Moreover, this information will be helpful in designing experiments for genetic manipulation of mixed-linkage glucan (MLG) synthesis with the goal of quality improvement in oat.
Collapse
Affiliation(s)
- Shanshan Zhang
- College of Life and Environmental Sciences, Minzu University of China, No. 27. Zhongguancun South Street, Beijing, 100081, China
| | - Haibin Hu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), No. 12. Zhongguancun South Street, Beijing, 100081, China; State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shumin Cui
- College of Life and Environmental Sciences, Minzu University of China, No. 27. Zhongguancun South Street, Beijing, 100081, China
| | - Lin Yan
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), No. 12. Zhongguancun South Street, Beijing, 100081, China; State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bing Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), No. 12. Zhongguancun South Street, Beijing, 100081, China; State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Shanjun Wei
- College of Life and Environmental Sciences, Minzu University of China, No. 27. Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
6
|
Yin Q, Qin W, Zhou Z, Wu A, Deng W, Li Z, Shan W, Chen J, Kuang J, Lu W. Banana MaNAC1 activates secondary cell wall cellulose biosynthesis to enhance chilling resistance in fruit. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:413-426. [PMID: 37816143 PMCID: PMC10826994 DOI: 10.1111/pbi.14195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/11/2023] [Accepted: 09/23/2023] [Indexed: 10/12/2023]
Abstract
Chilling injury has a negative impact on the quantity and quality of crops, especially subtropical and tropical plants. The plant cell wall is not only the main source of biomass production, but also the first barrier to various stresses. Therefore, improving the understanding of the alterations in cell wall architecture is of great significance for both biomass production and stress adaptation. Herein, we demonstrated that the cell wall principal component cellulose accumulated during chilling stress, which was caused by the activation of MaCESA proteins. The sequence-multiple comparisons show that a cold-inducible NAC transcriptional factor MaNAC1, a homologue of Secondary Wall NAC transcription factors, has high sequence similarity with Arabidopsis SND3. An increase in cell wall thickness and cellulosic glucan content was observed in MaNAC1-overexpressing Arabidopsis lines, indicating that MaNAC1 participates in cellulose biosynthesis. Over-expression of MaNAC1 in Arabidopsis mutant snd3 restored the defective secondary growth of thinner cell walls and increased cellulosic glucan content. Furthermore, the activation of MaCESA7 and MaCESA6B cellulose biosynthesis genes can be directly induced by MaNAC1 through binding to SNBE motifs within their promoters, leading to enhanced cellulose content during low-temperature stress. Ultimately, tomato fruit showed greater cold resistance in MaNAC1 overexpression lines with thickened cell walls and increased cellulosic glucan content. Our findings revealed that MaNAC1 performs a vital role as a positive modulator in modulating cell wall cellulose metabolism within banana fruit under chilling stress.
Collapse
Affiliation(s)
- Qi Yin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesSouth China Agricultural UniversityGuangzhouChina
| | - Wenqi Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesSouth China Agricultural UniversityGuangzhouChina
| | - Zibin Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesSouth China Agricultural UniversityGuangzhouChina
| | - Ai‐Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesSouth China Agricultural UniversityGuangzhouChina
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life SciencesChongqing UniversityChongqingChina
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life SciencesChongqing UniversityChongqingChina
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesSouth China Agricultural UniversityGuangzhouChina
| | - Jian‐ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesSouth China Agricultural UniversityGuangzhouChina
| | - Jian‐fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesSouth China Agricultural UniversityGuangzhouChina
| | - Wang‐jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
7
|
Xu W, Zhao Y, Liu Q, Diao Y, Wang Q, Yu J, Jiang E, Zhang Y, Liu B. Identification of ZmBK2 Gene Variation Involved in Regulating Maize Brittleness. Genes (Basel) 2023; 14:1126. [PMID: 37372306 DOI: 10.3390/genes14061126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Maize stalk strength is a crucial agronomic trait that affects lodging resistance. We used map-based cloning and allelic tests to identify a maize mutant associated with decreased stalk strength and confirmed that the mutated gene, ZmBK2, is a homolog of Arabidopsis AtCOBL4, which encodes a COBRA-like glycosylphosphatidylinositol (GPI)-anchored protein. The bk2 mutant exhibited lower cellulose content and whole-plant brittleness. Microscopic observations showed that sclerenchymatous cells were reduced in number and had thinner cell walls, suggesting that ZmBK2 affects the development of cell walls. Transcriptome sequencing of differentially expressed genes in the leaves and stalks revealed substantial changes in the genes associated with cell wall development. We constructed a cell wall regulatory network using these differentially expressed genes, which revealed that abnormal cellulose synthesis may be a reason for brittleness. These results reinforce our understanding of cell wall development and provide a foundation for studying the mechanisms underlying maize lodging resistance.
Collapse
Affiliation(s)
- Wei Xu
- Agronomy/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271000, China
| | - Yan Zhao
- Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Qingzhi Liu
- Agronomy/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271000, China
| | - Yuqiang Diao
- Agronomy/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271000, China
| | - Qingkang Wang
- Agronomy/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271000, China
| | - Jiamin Yu
- Agronomy/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271000, China
| | - Enjun Jiang
- Taian Denghai Wuyue Taishan Seed Industry Co., Ltd., Tai'an 271000, China
| | - Yongzhong Zhang
- Agronomy/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271000, China
| | - Baoshen Liu
- Agronomy/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271000, China
| |
Collapse
|
8
|
Olek AT, Rushton PS, Kihara D, Ciesielski P, Aryal UK, Zhang Z, Stauffacher CV, McCann MC, Carpita NC. Essential amino acids in the Plant-Conserved and Class-Specific Regions of cellulose synthases. PLANT PHYSIOLOGY 2023; 191:142-160. [PMID: 36250895 PMCID: PMC9806608 DOI: 10.1093/plphys/kiac479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/24/2022] [Indexed: 05/05/2023]
Abstract
The Plant-Conserved Region (P-CR) and the Class-Specific Region (CSR) are two plant-unique sequences in the catalytic core of cellulose synthases (CESAs) for which specific functions have not been established. Here, we used site-directed mutagenesis to replace amino acids and motifs within these sequences predicted to be essential for assembly and function of CESAs. We developed an in vivo method to determine the ability of mutated CesA1 transgenes to complement an Arabidopsis (Arabidopsis thaliana) temperature-sensitive root-swelling1 (rsw1) mutant. Replacement of a Cys residue in the CSR, which blocks dimerization in vitro, rendered the AtCesA1 transgene unable to complement the rsw1 mutation. Examination of the CSR sequences from 33 diverse angiosperm species showed domains of high-sequence conservation in a class-specific manner but with variation in the degrees of disorder, indicating a nonredundant role of the CSR structures in different CESA isoform classes. The Cys residue essential for dimerization was not always located in domains of intrinsic disorder. Expression of AtCesA1 transgene constructs, in which Pro417 and Arg453 were substituted for Ala or Lys in the coiled-coil of the P-CR, were also unable to complement the rsw1 mutation. Despite an expected role for Arg457 in trimerization of CESA proteins, AtCesA1 transgenes with Arg457Ala mutations were able to fully restore the wild-type phenotype in rsw1. Our data support that Cys662 within the CSR and Pro417 and Arg453 within the P-CR of Arabidopsis CESA1 are essential residues for functional synthase complex formation, but our data do not support a specific role for Arg457 in trimerization in native CESA complexes.
Collapse
Affiliation(s)
- Anna T Olek
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Phillip S Rushton
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Computer Science, Purdue University, West Lafayette, Indiana 47907, USA
| | - Peter Ciesielski
- Renewable Resources & Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Uma K Aryal
- Bindley Biosciences Center, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, USA
| | - Zicong Zhang
- Department of Computer Science, Purdue University, West Lafayette, Indiana 47907, USA
| | - Cynthia V Stauffacher
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Maureen C McCann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Nicholas C Carpita
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| |
Collapse
|
9
|
Song J, Wang X, Huang L, Li Z, Ren H, Wang J. Genetic dissection of the soybean dwarf mutant dm with integrated genomic, transcriptomic and methylomic analyses. FRONTIERS IN PLANT SCIENCE 2022; 13:1017672. [PMID: 36479521 PMCID: PMC9721362 DOI: 10.3389/fpls.2022.1017672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/07/2022] [Indexed: 06/17/2023]
Abstract
Plant height affects crop production and breeding practices, while genetic control of dwarfism draws a broad interest of researchers. Dwarfism in soybean (Glycine max) is mainly unexplored. Here, we characterized a dwarf mutant dm screened from ethyl methanesulfonate (EMS) mutated seeds of the soybean cultivar Zhongpin 661(ZP). Phenotypically, dm showed shorter and thinner stems, smaller leaves, and more nodes than ZP under greenhouse conditions. Genetically, whole-genome sequencing and comparison revealed that 210K variants of SNPs and InDel in ZP relative to the soybean reference genome Williams82, and EMS mutagenesis affected 636 genes with variants predicted to have a large impact on protein function in dm. Whole-genome methylation sequencing found 704 differentially methylated regions in dm. Further whole-genome RNA-Seq based transcriptomic comparison between ZP and dm leaves revealed 687 differentially expressed genes (DEGs), including 263 up-regulated and 424 down-regulated genes. Integrated omics analyses revealed 11 genes with both differential expressions and DNA variants, one gene with differential expression and differential methylation, and three genes with differential methylation and sequence variation, worthy of future investigation. Genes in cellulose, fatty acids, and energy-associated processes could be the key candidate genes for the dwarf phenotype. This study provides genetic clues for further understanding of the genetic control of dwarfism in soybean. The genetic resources could help to inbreed new cultivars with a desirable dwarf characteristic.
Collapse
Affiliation(s)
- Jian Song
- College of Life Science, Yangtze University, Jingzhou, China
- National Key Facility for Gene Resources and Genetic Improvement (NFCRI)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, AB, United States
| | - Lan Huang
- Department of Computer Science, Yangtze University, Jingzhou, China
| | - Zhongfeng Li
- National Key Facility for Gene Resources and Genetic Improvement (NFCRI)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Honglei Ren
- National Key Facility for Gene Resources and Genetic Improvement (NFCRI)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jun Wang
- College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
10
|
Guo S, Zhou G, Wang J, Lu X, Zhao H, Zhang M, Guo X, Zhang Y. High-Throughput Phenotyping Accelerates the Dissection of the Phenotypic Variation and Genetic Architecture of Shank Vascular Bundles in Maize (Zea mays L.). PLANTS 2022; 11:plants11101339. [PMID: 35631765 PMCID: PMC9145235 DOI: 10.3390/plants11101339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022]
Abstract
The vascular bundle of the shank is an important ‘flow’ organ for transforming maize biological yield to grain yield, and its microscopic phenotypic characteristics and genetic analysis are of great significance for promoting the breeding of new varieties with high yield and good quality. In this study, shank CT images were obtained using the standard process for stem micro-CT data acquisition at resolutions up to 13.5 μm. Moreover, five categories and 36 phenotypic traits of the shank including related to the cross-section, epidermis zone, periphery zone, inner zone and vascular bundle were analyzed through an automatic CT image process pipeline based on the functional zones. Next, we analyzed the phenotypic variations in vascular bundles at the base of the shank among a group of 202 inbred lines based on comprehensive phenotypic information for two environments. It was found that the number of vascular bundles in the inner zone (IZ_VB_N) and the area of the inner zone (IZ_A) varied the most among the different subgroups. Combined with genome-wide association studies (GWAS), 806 significant single nucleotide polymorphisms (SNPs) were identified, and 1245 unique candidate genes for 30 key traits were detected, including the total area of vascular bundles (VB_A), the total number of vascular bundles (VB_N), the density of the vascular bundles (VB_D), etc. These candidate genes encode proteins involved in lignin, cellulose synthesis, transcription factors, material transportation and plant development. The results presented here will improve the understanding of the phenotypic traits of maize shank and provide an important phenotypic basis for high-throughput identification of vascular bundle functional genes of maize shank and promoting the breeding of new varieties with high yield and good quality.
Collapse
Affiliation(s)
- Shangjing Guo
- College of Agronomy, Liaocheng University, Liaocheng 252059, China; (S.G.); (G.Z.)
| | - Guoliang Zhou
- College of Agronomy, Liaocheng University, Liaocheng 252059, China; (S.G.); (G.Z.)
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
| | - Jinglu Wang
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
| | - Xianju Lu
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
| | - Huan Zhao
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
| | - Minggang Zhang
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
| | - Xinyu Guo
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
- Correspondence: (X.G.); (Y.Z.)
| | - Ying Zhang
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
- Correspondence: (X.G.); (Y.Z.)
| |
Collapse
|
11
|
Kolahi M, Faghani E, Kazemian M, Goldson-Barnaby A, Dodangi S. Changes in secondary metabolites and fiber quality of cotton ( Gossypium hirsutum) seed under consecutive water stress and in silico analysis of cellulose synthase and xyloglucan endotransglucosylase. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1837-1857. [PMID: 34539119 PMCID: PMC8405814 DOI: 10.1007/s12298-021-01033-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/04/2021] [Accepted: 07/06/2021] [Indexed: 05/31/2023]
Abstract
Global warming has led to severe drought conditions. The selection of plant varieties that can withstand drought and produce increased yields are of utmost importance. In the current study, secondary metabolites, seed trait and fiber characteristic of cottonseeds (Gossypium hirsutum) exposed to double and third water stress exposure was investigated. Total phenol and tannin content in W1S33 increased significantly after third water stress exposure. Accumulation of wax was enhanced in seeds of W3S33 and W3S34 that were subjected to third water stress. Fiber quality parameters decreased when cottonseeds were rainfed. High irrigation resulted in fragile and delicate fiber. Seeds grown under 66% FC irrigation saved water and produced seeds that had the potential of producing high quality fibers. In silico analysis was performed on cellulose synthase A (CesA) and xyloglucan endotransglycosylase (XET) enzymes present in Gossypium hirsutum. The intracellular locations of the CesA and XET1 enzymes are the plasma membrane and cell wall, respectively. Proline is conserved in the C-terminal of the CesA enzyme and plays an important role in enzyme functionality. This study provides a better understanding as to the mechanisms by which the plant can tolerate and combat water stress conditions as well as reduce water consumption. In order to grow cotton seeds with desirable morphometric characteristics and optimal fibers under water stress exposure and in dry areas, it is better to use seeds that are irrigated under optimal irrigation conditions, ie 66% FC.
Collapse
Affiliation(s)
- Maryam Kolahi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, 61357-43169 Ahvaz, Iran
| | - Elham Faghani
- Agronomy Department, Agricultural Research, Education and Extension Organization (AREEO), Cotton Research Institute, Gorgan, Iran
| | - Mina Kazemian
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Sedighe Dodangi
- Expertise Lab, Agricultural Research, Education and Extension Organization (AREEO), Cotton Research Institute, Gorgan, Iran
| |
Collapse
|
12
|
Inhibition of cell expansion enhances cortical microtubule stability in the root apex of Arabidopsis thaliana. ACTA ACUST UNITED AC 2021; 28:13. [PMID: 34082808 PMCID: PMC8173746 DOI: 10.1186/s40709-021-00143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/18/2021] [Indexed: 12/04/2022]
Abstract
Background Cortical microtubules regulate cell expansion by determining cellulose microfibril orientation in the root apex of Arabidopsis thaliana. While the regulation of cell wall properties by cortical microtubules is well studied, the data on the influence of cell wall to cortical microtubule organization and stability remain scarce. Studies on cellulose biosynthesis mutants revealed that cortical microtubules depend on Cellulose Synthase A (CESA) function and/or cell expansion. Furthermore, it has been reported that cortical microtubules in cellulose-deficient mutants are hypersensitive to oryzalin. In this work, the persistence of cortical microtubules against anti-microtubule treatment was thoroughly studied in the roots of several cesa mutants, namely thanatos, mre1, any1, prc1-1 and rsw1, and the Cellulose Synthase Interacting 1 protein (csi1) mutant pom2-4. In addition, various treatments with drugs affecting cell expansion were performed on wild-type roots. Whole mount tubulin immunolabeling was applied in the above roots and observations were performed by confocal microscopy. Results Cortical microtubules in all mutants showed statistically significant increased persistence against anti-microtubule drugs, compared to those of the wild-type. Furthermore, to examine if the enhanced stability of cortical microtubules was due to reduced cellulose biosynthesis or to suppression of cell expansion, treatments of wild-type roots with 2,6-dichlorobenzonitrile (DCB) and Congo red were performed. After these treatments, cortical microtubules appeared more resistant to oryzalin, than in the control. Conclusions According to these findings, it may be concluded that inhibition of cell expansion, irrespective of the cause, results in increased microtubule stability in A. thaliana root. In addition, cell expansion does not only rely on cortical microtubule orientation but also plays a regulatory role in microtubule dynamics, as well. Various hypotheses may explain the increased cortical microtubule stability under decreased cell expansion such as the role of cell wall sensors and the presence of less dynamic cortical microtubules. Supplementary Information The online version contains supplementary material available at 10.1186/s40709-021-00143-8.
Collapse
|
13
|
Yuan W, Liu J, Takáč T, Chen H, Li X, Meng J, Tan Y, Ning T, He Z, Yi G, Xu C. Genome-Wide Identification of Banana Csl Gene Family and Their Different Responses to Low Temperature between Chilling-Sensitive and Tolerant Cultivars. PLANTS 2021; 10:plants10010122. [PMID: 33435621 PMCID: PMC7827608 DOI: 10.3390/plants10010122] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 01/04/2023]
Abstract
The cell wall plays an important role in responses to various stresses. The cellulose synthase-like gene (Csl) family has been reported to be involved in the biosynthesis of the hemicellulose backbone. However, little information is available on their involvement in plant tolerance to low-temperature (LT) stress. In this study, a total of 42 Csls were identified in Musa acuminata and clustered into six subfamilies (CslA, CslC, CslD, CslE, CslG, and CslH) according to phylogenetic relationships. The genomic features of MaCsl genes were characterized to identify gene structures, conserved motifs and the distribution among chromosomes. A phylogenetic tree was constructed to show the diversity in these genes. Different changes in hemicellulose content between chilling-tolerant and chilling-sensitive banana cultivars under LT were observed, suggesting that certain types of hemicellulose are involved in LT stress tolerance in banana. Thus, the expression patterns of MaCsl genes in both cultivars after LT treatment were investigated by RNA sequencing (RNA-Seq) technique followed by quantitative real-time PCR (qPCR) validation. The results indicated that MaCslA4/12, MaCslD4 and MaCslE2 are promising candidates determining the chilling tolerance of banana. Our results provide the first genome-wide characterization of the MaCsls in banana, and open the door for further functional studies.
Collapse
Affiliation(s)
- Weina Yuan
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
| | - Jing Liu
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
| | - Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 783 75 Olomouc, Czech Republic;
| | - Houbin Chen
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
| | - Xiaoquan Li
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Jian Meng
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
| | - Yehuan Tan
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
| | - Tong Ning
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
| | - Zhenting He
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
| | - Ganjun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (G.Y.); (C.X.)
| | - Chunxiang Xu
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
- Correspondence: (G.Y.); (C.X.)
| |
Collapse
|
14
|
Liu X, Hu X, Li K, Liu Z, Wu Y, Wang H, Huang C. Genetic mapping and genomic selection for maize stalk strength. BMC PLANT BIOLOGY 2020; 20:196. [PMID: 32380944 PMCID: PMC7204062 DOI: 10.1186/s12870-020-2270-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/29/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND Maize is one of the most important staple crops and is widely grown throughout the world. Stalk lodging can cause enormous yield losses in maize production. However, rind penetrometer resistance (RPR), which is recognized as a reliable measurement to evaluate stalk strength, has been shown to be efficient and useful for improving stalk lodging-resistance. Linkage mapping is an acknowledged approach for exploring the genetic architecture of target traits. In addition, genomic selection (GS) using whole genome markers enhances selection efficiency for genetically complex traits. In the present study, two recombinant inbred line (RIL) populations were utilized to dissect the genetic basis of RPR, which was evaluated in seven growth stages. RESULTS The optimal stages to measure stalk strength are the silking phase and stages after silking. A total of 66 and 45 quantitative trait loci (QTL) were identified in each RIL population. Several potential candidate genes were predicted according to the maize gene annotation database and were closely associated with the biosynthesis of cell wall components. Moreover, analysis of gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway further indicated that genes related to cell wall formation were involved in the determination of RPR. In addition, a multivariate model of genomic selection efficiently improved the prediction accuracy relative to a univariate model and a model considering RPR-relevant loci as fixed effects. CONCLUSIONS The genetic architecture of RPR is highly genetically complex. Multiple minor effect QTL are jointly involved in controlling phenotypic variation in RPR. Several pleiotropic QTL identified in multiple stages may contain reliable genes and can be used to develop functional markers for improving the selection efficiency of stalk strength. The application of genomic selection to RPR may be a promising approach to accelerate breeding process for improving stalk strength and enhancing lodging-resistance.
Collapse
Affiliation(s)
- Xiaogang Liu
- Institute of Crop Sciences, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaojiao Hu
- Institute of Crop Sciences, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kun Li
- Institute of Crop Sciences, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhifang Liu
- Institute of Crop Sciences, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yujin Wu
- Institute of Crop Sciences, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongwu Wang
- Institute of Crop Sciences, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Changling Huang
- Institute of Crop Sciences, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
15
|
Mata-Nicolás E, Montero-Pau J, Gimeno-Paez E, Garcia-Carpintero V, Ziarsolo P, Menda N, Mueller LA, Blanca J, Cañizares J, van der Knaap E, Díez MJ. Exploiting the diversity of tomato: the development of a phenotypically and genetically detailed germplasm collection. HORTICULTURE RESEARCH 2020; 7:66. [PMID: 32377357 PMCID: PMC7192925 DOI: 10.1038/s41438-020-0291-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 05/19/2023]
Abstract
A collection of 163 accessions, including Solanum pimpinellifolium, Solanum lycopersicum var. cerasiforme and Solanum lycopersicum var. lycopersicum, was selected to represent the genetic and morphological variability of tomato at its centers of origin and domestication: Andean regions of Peru and Ecuador and Mesoamerica. The collection is enriched with S. lycopersicum var. cerasiforme from the Amazonian region that has not been analyzed previously nor used extensively. The collection has been morphologically characterized showing diversity for fruit, flower and vegetative traits. Their genomes were sequenced in the Varitome project and are publicly available (solgenomics.net/projects/varitome). The identified SNPs have been annotated with respect to their impact and a total number of 37,974 out of 19,364,146 SNPs have been described as high impact by the SnpEeff analysis. GWAS has shown associations for different traits, demonstrating the potential of this collection for this kind of analysis. We have not only identified known QTLs and genes, but also new regions associated with traits such as fruit color, number of flowers per inflorescence or inflorescence architecture. To speed up and facilitate the use of this information, F2 populations were constructed by crossing the whole collection with three different parents. This F2 collection is useful for testing SNPs identified by GWAs, selection sweeps or any other candidate gene. All data is available on Solanaceae Genomics Network and the accession and F2 seeds are freely available at COMAV and at TGRC genebanks. All these resources together make this collection a good candidate for genetic studies.
Collapse
Affiliation(s)
- Estefanía Mata-Nicolás
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana. COMAV. Universitat Politècnica de València, Valencia, Spain
| | - Javier Montero-Pau
- Department of Biochemistry and Molecular Biology, Universitat de València, Valencia, Spain
| | - Esther Gimeno-Paez
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana. COMAV. Universitat Politècnica de València, Valencia, Spain
| | - Víctor Garcia-Carpintero
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana. COMAV. Universitat Politècnica de València, Valencia, Spain
| | - Peio Ziarsolo
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana. COMAV. Universitat Politècnica de València, Valencia, Spain
| | | | | | - José Blanca
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana. COMAV. Universitat Politècnica de València, Valencia, Spain
| | - Joaquín Cañizares
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana. COMAV. Universitat Politècnica de València, Valencia, Spain
| | - Esther van der Knaap
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Georgia, GA USA
- Department of Horticulture, University of Georgia, Georgia, GA USA
| | - María José Díez
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana. COMAV. Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
16
|
Integrated Analysis of mRNA and microRNA Elucidates the Regulation of Glycyrrhizic Acid Biosynthesis in Glycyrrhiza uralensis Fisch. Int J Mol Sci 2020; 21:ijms21093101. [PMID: 32353999 PMCID: PMC7247157 DOI: 10.3390/ijms21093101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 01/24/2023] Open
Abstract
Licorice (Glycyrrhiza) is a staple Chinese herbal medicine in which the primary bioactive compound is glycyrrhizic acid (GA), which has important pharmacological functions. To date, the structural genes involved in GA biosynthesis have been identified. However, the regulation of these genes in G. uralensis has not been elucidated. In this study, we performed a comprehensive analysis based on the transcriptome and small RNAome by high-throughput sequencing. In total, we identified 18 structural GA genes and 3924 transporter genes. We identified genes encoding 2374 transporters, 1040 transcription factors (TFs), 262 transcriptional regulators (TRs) and 689 protein kinases (PKs), which were coexpressed with at least one structural gene. We also identified 50,970 alternative splicing (AS) events, in which 17 structural genes exhibited AS. Finally, we also determined that miRNAs potentially targeted 4 structural genes, and 318, 8, and 218 miRNAs potentially regulated 150 TFs, 34 TRs, and 88 PKs, respectively, related to GA. Overall, the results of this study helped to elucidate the gene expression and regulation of GA biosynthesis in G. uralensis, provided a theoretical basis for the synthesis of GA via synthetic biology, and laid a foundation for the cultivation of new varieties of licorice with high GA content.
Collapse
|
17
|
Deng Q, Kong Z, Wu X, Ma S, Yuan Y, Jia H, Ma Z. Cloning of a COBL gene determining brittleness in diploid wheat using a MapRseq approach. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:141-150. [PMID: 31203879 DOI: 10.1016/j.plantsci.2019.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/06/2019] [Accepted: 05/12/2019] [Indexed: 05/24/2023]
Abstract
Plant tissue brittleness is related to cellular structure and lodging. MED0031 is a mutant identified previously from ethyl methane sulfonate treatment of diploid wheat accession TA2726, showing brittleness in both stem and leaf. In microscopic and histological observations, the mutant was found to have less large vascular bundles per unit area, a thinner sclerenchyma cell wall, and a broader parenchyma, compared with the wild type. The mutated gene, TmBr1, was mapped to a 0.056 cM interval on chromosome 5Am. This gene was cloned using a MapRseq approach that searched the candidate gene through combination of the prior target gene mapping information with SNP calling and discovery of differentially expressed genes from RNA_seq data of the wild type and a BC3F2 bulk showing the mutant phenotype. TmBr1 encodes a COBL protein and a nonsense mutation within the region coding for the conserved COBRA domain caused premature translation termination. Introduction of TmBr1 to Arabidopsis AtCOBL4 mutant rescued the phenotype, demonstrating their functional conservation. Apart from the effect on cellulose content, the TmBr1 mutation might modulate synthesis of noncellulosic polysaccharide pectin as well. Application of the MapRseq approach to isolation of genes present in recombination cold spots and complicated genomes was discussed.
Collapse
Affiliation(s)
- Qingyan Deng
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu, China
| | - Zhongxin Kong
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu, China
| | - Xiaoxia Wu
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu, China
| | - Shengwei Ma
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu, China
| | - Yang Yuan
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu, China
| | - Haiyan Jia
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu, China
| | - Zhengqiang Ma
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu, China.
| |
Collapse
|
18
|
Sena JS, Lachance D, Duval I, Nguyen TTA, Stewart D, Mackay J, Séguin A. Functional Analysis of the PgCesA3 White Spruce Cellulose Synthase Gene Promoter in Secondary Xylem. FRONTIERS IN PLANT SCIENCE 2019; 10:626. [PMID: 31191566 PMCID: PMC6546725 DOI: 10.3389/fpls.2019.00626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/26/2019] [Indexed: 05/30/2023]
Abstract
Cellulose is an essential structural component of the plant cell wall. Its biosynthesis involves genes encoding cellulose synthase enzymes and a complex transcriptional regulatory network. Three cellulose synthases have been identified in conifers as being potentially involved in secondary cell wall biosynthesis because of their preferential expression in xylem tissues; however, no direct functional association has been made to date. In the present work, we characterized the white spruce [Picea glauca (Moench) Voss] cellulose synthase PgCesA3 gene and 5' regulatory elements. Phylogenetic analysis showed that PgCesA1-3 genes grouped with secondary cell wall-associated Arabidopsis cellulose synthase genes, such as AtCesA8, AtCesA4, and AtCesA7. We produced transgenic spruce expressing the GUS reporter gene driven by the PgCesA3 promoter. We observed blue staining in differentiating xylem cells from stem and roots, and in foliar guard cells indicating that PgCesA3 is clearly involved in secondary cell wall biosynthesis. The promoter region sequence of PgCesA3 contained several putative MYB cis-regulatory elements including AC-I like motifs and secondary wall MYB-responsive element (SMRE); however, it lacked SMRE4, 7 and 8 that correspond to the sequences of AC-I, II, and III. Based on these findings and results of previous transient trans-activation assays that identified interactions between the PgCesA3 promoter and different MYB transcription factors, we performed electrophoretic mobility shift assays with MYB recombinant proteins and cis-regulatory elements present in the PgCesA3 promoter. We found that PgMYB12 bound to a canonical AC-I element identified in the Pinus taeda PAL promoter and two AC-I like elements. We hypothesized that the PgMYB12 could regulate PgCesA3 in roots based on previous expression results. This functional study of PgCesA3 sequences and promoter opens the door for future studies on the interaction between PgMYBs and the PgCesA3 regulatory elements.
Collapse
Affiliation(s)
- Juliana Stival Sena
- Department of Wood and Forest Sciences, Université Laval, Quebec City, QC, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada
| | - Denis Lachance
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada
| | - Isabelle Duval
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada
| | - Thi Thuy An Nguyen
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada
| | - Don Stewart
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada
| | - John Mackay
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada
| |
Collapse
|
19
|
Morello L, Pydiura N, Galinousky D, Blume Y, Breviario D. Flax tubulin and CesA superfamilies represent attractive and challenging targets for a variety of genome- and base-editing applications. Funct Integr Genomics 2019; 20:163-176. [PMID: 30826923 DOI: 10.1007/s10142-019-00667-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 02/07/2019] [Indexed: 02/07/2023]
Abstract
Flax is both a valuable resource and an interesting model crop. Despite a long history of flax genetic transformation only one transgenic linseed cultivar has been so far registered in Canada. Implementation and use of the genome-editing technologies that allow site-directed modification of endogenous genes without the introduction of foreign genes might improve this situation. Besides its potential for boosting crop yields, genome editing is now one of the best tools for carrying out reverse genetics and it is emerging as an especially versatile tool for studying basic biology. A complex interplay between the flax tubulin family (6 α-, 14 β-, and 2 γ-tubulin genes), the building block of microtubules, and the CesA (15-16 genes), the subunit of the multimeric cellulose-synthesizing complex devoted to the oriented deposition of the cellulose microfibrils is fundamental for the biosynthesis of the cell wall. The role of the different members of each family in providing specificities to the assembled complexes in terms of structure, dynamics, activity, and interaction remains substantially obscure. Genome-editing strategies, recently shown to be successful in flax, can therefore be useful to unravel the issue of functional redundancy and provide evidence for specific interactions between different members of the tubulin and CesA gene families, in relation to different phase and mode of cell wall biosynthesis.
Collapse
Affiliation(s)
- Laura Morello
- Istituto di Biologia e Biotecnologia Agraria IBBA-CNR, Via Alfonso Corti 12, 20133, Milan, Italy
| | - Nikolay Pydiura
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osypovskoho St. 2a, Kyiv, 04123, Ukraine
| | - Dmitry Galinousky
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Akademicheskaya St. 27, 220072, Minsk, Belarus
| | - Yaroslav Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osypovskoho St. 2a, Kyiv, 04123, Ukraine.
| | - Diego Breviario
- Istituto di Biologia e Biotecnologia Agraria IBBA-CNR, Via Alfonso Corti 12, 20133, Milan, Italy.
| |
Collapse
|
20
|
Peng X, Pang H, Abbas M, Yan X, Dai X, Li Y, Li Q. Characterization of Cellulose synthase-like D (CSLD) family revealed the involvement of PtrCslD5 in root hair formation in Populus trichocarpa. Sci Rep 2019; 9:1452. [PMID: 30723218 PMCID: PMC6363781 DOI: 10.1038/s41598-018-36529-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/14/2018] [Indexed: 01/20/2023] Open
Abstract
Cellulose synthase-like D (CSLD) family was characterized for their expression and functions in Populus trichocarpa. Ten members, PtrCslD1-10, were identified in the P. trichocarpa genome, and they belong to 4 clades by phylogenetic tree analysis. qRT-PCR and promoter:GUS assays in Arabidopsis and P. trichocarpa displayed divergent expression patterns of these 10 PtrCSLD genes in root hairs, root tips, leaves, vascular tissues, xylem and flowers. Among PtrCslD2, PtrCslD4, PtrCslD5, PtrCslD6, and PtrCslD8 that all exhibited expression in root hairs, only PtrCslD5 could restore the root hairless phenotype of the atcsld3 mutant, demonstrating that PtrCslD5 is the functional ortholog of AtCslD3 for root hair formation. Our results suggest more possible functions for other PtrCslD genes in poplar.
Collapse
Affiliation(s)
- Xiaopeng Peng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Hongying Pang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Manzar Abbas
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xinren Dai
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yun Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China. .,Research Institute of Forestry, Chinese Academy of Forestry, 100091, Beijing, China.
| |
Collapse
|
21
|
Nawaz MA, Lin X, Chan TF, Imtiaz M, Rehman HM, Ali MA, Baloch FS, Atif RM, Yang SH, Chung G. Characterization of Cellulose Synthase A (CESA) Gene Family in Eudicots. Biochem Genet 2018; 57:248-272. [PMID: 30267258 DOI: 10.1007/s10528-018-9888-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/20/2018] [Indexed: 12/30/2022]
Abstract
Cellulose synthase A (CESA) is a key enzyme involved in the complex process of plant cell wall biosynthesis, and it remains a productive subject for research. We employed systems biology approaches to explore structural diversity of eudicot CESAs by exon-intron organization, mode of duplication, synteny, and splice site analyses. Using a combined phylogenetics and comparative genomics approach coupled with co-expression networks we reconciled the evolution of cellulose synthase gene family in eudicots and found that the basic forms of CESA proteins are retained in angiosperms. Duplications have played an important role in expansion of CESA gene family members in eudicots. Co-expression networks showed that primary and secondary cell wall modules are duplicated in eudicots. We also identified 230 simple sequence repeat markers in 103 eudicot CESAs. The 13 identified conserved motifs in eudicots will provide a basis for gene identification and functional characterization in other plants. Furthermore, we characterized (in silico) eudicot CESAs against senescence and found that expression levels of CESAs decreased during leaf senescence.
Collapse
Affiliation(s)
- Muhammad Amjad Nawaz
- Department of Biotechnology, Chonnam National University, Chonnam, 59626, Republic of Korea
| | - Xiao Lin
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ting-Fung Chan
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Muhammad Imtiaz
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510275, China
| | - Hafiz Mamoon Rehman
- Department of Biotechnology, Chonnam National University, Chonnam, 59626, Republic of Korea
| | - Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Faheem Shehzad Baloch
- Department of Field Crops, Faculty of Agricultural and Natural Science, Abant Izzet Baysal University, 14280, Bolu, Turkey
| | - Rana Muhammad Atif
- US-Pakistan Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Chonnam, 59626, Republic of Korea.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Chonnam, 59626, Republic of Korea.
| |
Collapse
|
22
|
Lim H, Paek SH, Oh SE. Effect of 1-aminocyclopropane-1-carboxylic acid (ACC)-induced ethylene on cellulose synthase A (CesA) genes in flax (Linum usitatissimum L. 'Nike') seedlings. Genes Genomics 2018; 40:1237-1248. [PMID: 30032481 DOI: 10.1007/s13258-018-0720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/08/2018] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Cellulose microfibril is a major cell wall polymer that plays an important role in the growth and development of plants. The gene cellulose synthase A (CesA), encoding cellulose synthases, is involved in the synthesis of cellulose microfibrils. However, the regulatory mechanism of CesA gene expression is not well understood, especially during the early developmental stages. OBJECTIVE To identify factor(s) that regulate the expression of CesA genes and ultimately control seedling growth and development. METHODS The presence of cis-elements in the promoter region of the eight CesA genes identified in flax (Linum usitatissimum L. 'Nike') seedlings was verified, and three kinds of ethylene-responsive cis-elements were identified in the promoters. Therefore, the effect of ethylene on the expression of four selected CesA genes classified into Clades 1 and 6 after treatment with 10-4 and 10-3 M 1-aminocyclopropane-1-carboxylic acid (ACC) was examined in the hypocotyl of 4-6-day-old flax seedlings. RESULTS ACC-induced ethylene either up- or down-regulated the expression of the CesA genes depending on the clade to which these genes belonged, age of seedlings, part of the hypocotyl, and concentration of ACC. CONCLUSION Ethylene might be one of the factors regulating the expression of CesA genes in flax seedlings.
Collapse
Affiliation(s)
- Hansol Lim
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Seung-Ho Paek
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
- Sogang University, Seoul, 04107, Republic of Korea
| | - Seung-Eun Oh
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
23
|
Scavuzzo-Duggan TR, Chaves AM, Singh A, Sethaphong L, Slabaugh E, Yingling YG, Haigler CH, Roberts AW. Cellulose synthase 'class specific regions' are intrinsically disordered and functionally undifferentiated. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:481-497. [PMID: 29380536 DOI: 10.1111/jipb.12637] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/27/2018] [Indexed: 05/16/2023]
Abstract
Cellulose synthases (CESAs) are glycosyltransferases that catalyze formation of cellulose microfibrils in plant cell walls. Seed plant CESA isoforms cluster in six phylogenetic clades, whose non-interchangeable members play distinct roles within cellulose synthesis complexes (CSCs). A 'class specific region' (CSR), with higher sequence similarity within versus between functional CESA classes, has been suggested to contribute to specific activities or interactions of different isoforms. We investigated CESA isoform specificity in the moss, Physcomitrella patens (Hedw.) B. S. G. to gain evolutionary insights into CESA structure/function relationships. Like seed plants, P. patens has oligomeric rosette-type CSCs, but the PpCESAs diverged independently and form a separate CESA clade. We showed that P. patens has two functionally distinct CESAs classes, based on the ability to complement the gametophore-negative phenotype of a ppcesa5 knockout line. Thus, non-interchangeable CESA classes evolved separately in mosses and seed plants. However, testing of chimeric moss CESA genes for complementation demonstrated that functional class-specificity is not determined by the CSR. Sequence analysis and computational modeling showed that the CSR is intrinsically disordered and contains predicted molecular recognition features, consistent with a possible role in CESA oligomerization and explaining the evolution of class-specific sequences without selection for class-specific function.
Collapse
Affiliation(s)
- Tess R Scavuzzo-Duggan
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI, 02881, USA
| | - Arielle M Chaves
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI, 02881, USA
| | - Abhishek Singh
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Latsavongsakda Sethaphong
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Erin Slabaugh
- Department of Crop and Soil Sciences and Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yaroslava G Yingling
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Candace H Haigler
- Department of Crop and Soil Sciences and Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Alison W Roberts
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI, 02881, USA
| |
Collapse
|
24
|
Hernández-Altamirano JM, Largo-Gosens A, Martínez-Rubio R, Pereda D, Álvarez JM, Acebes JL, Encina A, García-Angulo P. Effect of ancymidol on cell wall metabolism in growing maize cells. PLANTA 2018; 247:987-999. [PMID: 29330614 DOI: 10.1007/s00425-018-2840-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
Ancymidol inhibits the incorporation of cellulose into cell walls of maize cell cultures in a gibberellin-independent manner, impairing cell growth; the reduction in the cellulose content is compensated with xylans. Ancymidol is a plant growth retardant which impairs gibberellin biosynthesis. It has been reported to inhibit cellulose synthesis by tobacco cells, based on its cell-malforming effects. To ascertain the putative role of ancymidol as a cellulose biosynthesis inhibitor, we conducted a biochemical study of its effect on cell growth and cell wall metabolism in maize cultured cells. Ancymidol concentrations ≤ 500 µM progressively reduced cell growth and induced globular cell shape without affecting cell viability. However, cell growth and viability were strongly reduced by ancymidol concentrations ≥ 1.5 mM. The I50 value for the effect of ancymidol on FW gain was 658 µM. A reversal of the inhibitory effects on cell growth was observed when 500 µM ancymidol-treated cultures were supplemented with 100 µM GA3. Ancymidol impaired the accumulation of cellulose in cell walls, as monitored by FTIR spectroscopy. Cells treated with 500 µM ancymidol showed a ~ 60% reduction in cellulose content, with no further change as the ancymidol concentration increased. Cellulose content was partially restored by 100 µM GA3. Radiolabeling experiments confirmed that ancymidol reduced the incorporation of [14C]glucose into α-cellulose and this reduction was not reverted by the simultaneous application of GA3. RT-PCR analysis indicated that the cellulose biosynthesis inhibition caused by ancymidol is not related to a downregulation of ZmCesA gene expression. Additionally, ancymidol treatment increased the incorporation of [3H]arabinose into a hemicellulose-enriched fraction, and up-regulated ZmIRX9 and ZmIRX10L gene expression, indicating an enhancement in the biosynthesis of arabinoxylans as a compensatory response to cellulose reduction.
Collapse
Affiliation(s)
- J Mabel Hernández-Altamirano
- Departamento de Ingeniería y Ciencias Agrarias, Área de Fisiología Vegetal, Universidad de León, 24071, León, Spain
| | - Asier Largo-Gosens
- Departamento de Ingeniería y Ciencias Agrarias, Área de Fisiología Vegetal, Universidad de León, 24071, León, Spain
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Nacional Andrés Bello, 8370146, Santiago, Chile
| | - Romina Martínez-Rubio
- Departamento de Ingeniería y Ciencias Agrarias, Área de Fisiología Vegetal, Universidad de León, 24071, León, Spain
| | - Diego Pereda
- Departamento de Ingeniería y Ciencias Agrarias, Área de Fisiología Vegetal, Universidad de León, 24071, León, Spain
| | - Jesús M Álvarez
- Departamento de Ingeniería y Ciencias Agrarias, Área de Fisiología Vegetal, Universidad de León, 24071, León, Spain
| | - José L Acebes
- Departamento de Ingeniería y Ciencias Agrarias, Área de Fisiología Vegetal, Universidad de León, 24071, León, Spain.
| | - Antonio Encina
- Departamento de Ingeniería y Ciencias Agrarias, Área de Fisiología Vegetal, Universidad de León, 24071, León, Spain
| | - Penélope García-Angulo
- Departamento de Ingeniería y Ciencias Agrarias, Área de Fisiología Vegetal, Universidad de León, 24071, León, Spain
| |
Collapse
|
25
|
Molecular Mechanisms Affecting Cell Wall Properties and Leaf Architecture. THE LEAF: A PLATFORM FOR PERFORMING PHOTOSYNTHESIS 2018. [DOI: 10.1007/978-3-319-93594-2_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
26
|
Yurkevich OY, Kirov IV, Bolsheva NL, Rachinskaya OA, Grushetskaya ZE, Zoschuk SA, Samatadze TE, Bogdanova MV, Lemesh VA, Amosova AV, Muravenko OV. Integration of Physical, Genetic, and Cytogenetic Mapping Data for Cellulose Synthase ( CesA) Genes in Flax ( Linum usitatissimum L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1467. [PMID: 28878799 PMCID: PMC5572355 DOI: 10.3389/fpls.2017.01467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 08/07/2017] [Indexed: 05/07/2023]
Abstract
Flax, Linum usitatissimum L., is a valuable multi-purpose plant, and currently, its genome is being extensively investigated. Nevertheless, mapping of genes in flax genome is still remaining a challenging task. The cellulose synthase (CesA) multigene family involving in the process of cellulose synthesis is especially important for metabolism of this fiber crop. For the first time, fluorescent in situ hybridization (FISH)-based chromosomal localization of the CesA conserved fragment (KF011584.1), 5S, and 26S rRNA genes was performed in landrace, oilseed, and fiber varieties of L. usitatissimum. Intraspecific polymorphism in chromosomal distribution of KF011584.1 and 5S DNA loci was revealed, and the generalized chromosome ideogram was constructed. Using BLAST analysis, available data on physical/genetic mapping and also whole-genome sequencing of flax, localization of KF011584.1, 45S, and 5S rRNA sequences on genomic scaffolds, and their anchoring to the genetic map were conducted. The alignment of the results of FISH and BLAST analyses indicated that KF011584.1 fragment revealed on chromosome 3 could be anchored to linkage group (LG) 11. The common LG for 45S and 5S rDNA was not found probably due to the polymorphic localization of 5S rDNA on chromosome 1. Our findings indicate the complexity of integration of physical, genetic, and cytogenetic mapping data for multicopy gene families in plants. Nevertheless, the obtained results can be useful for future progress in constructing of integrated physical/genetic/cytological maps in L. usitatissimum which are essential for flax breeding.
Collapse
Affiliation(s)
- Olga Y. Yurkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Ilya V. Kirov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Olga A. Rachinskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Zoya E. Grushetskaya
- Institute of Genetics and Cytology, National Academy of Sciences of BelarusMinsk, Belarus
| | - Svyatoslav A. Zoschuk
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Tatiana E. Samatadze
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Marina V. Bogdanova
- Institute of Genetics and Cytology, National Academy of Sciences of BelarusMinsk, Belarus
| | - Valentina A. Lemesh
- Institute of Genetics and Cytology, National Academy of Sciences of BelarusMinsk, Belarus
| | - Alexandra V. Amosova
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| |
Collapse
|
27
|
Nawaz MA, Rehman HM, Baloch FS, Ijaz B, Ali MA, Khan IA, Lee JD, Chung G, Yang SH. Genome and transcriptome-wide analyses of cellulose synthase gene superfamily in soybean. JOURNAL OF PLANT PHYSIOLOGY 2017; 215:163-175. [PMID: 28704793 DOI: 10.1016/j.jplph.2017.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 05/28/2023]
Abstract
The plant cellulose synthase gene superfamily belongs to the category of type-2 glycosyltransferases, and is involved in cellulose and hemicellulose biosynthesis. These enzymes are vital for maintaining cell-wall structural integrity throughout plant life. Here, we identified 78 putative cellulose synthases (CS) in the soybean genome. Phylogenetic analysis against 40 reference Arabidopsis CS genes clustered soybean CSs into seven major groups (CESA, CSL A, B, C, D, E and G), located on 19 chromosomes (except chromosome 18). Soybean CS expansion occurred in 66 duplication events. Additionally, we identified 95 simple sequence repeat makers related to 44 CSs. We next performed digital expression analysis using publically available datasets to understand potential CS functions in soybean. We found that CSs were highly expressed during soybean seed development, a pattern confirmed with an Affymatrix soybean IVT array and validated with RNA-seq profiles. Within CS groups, CESAs had higher relative expression than CSLs. Soybean CS models were designed based on maximum average RPKM values. Gene co-expression networks were developed to explore which CSs could work together in soybean. Finally, RT-PCR analysis confirmed the expression of 15 selected CSs during all four seed developmental stages.
Collapse
Affiliation(s)
- Muhammad Amjad Nawaz
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea
| | - Hafiz Mamoon Rehman
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea
| | | | - Babar Ijaz
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Iqrar Ahmad Khan
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Jeong Dong Lee
- Division of Plant Biosciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea.
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea.
| |
Collapse
|
28
|
PhCESA3 silencing inhibits elongation and stimulates radial expansion in petunia. Sci Rep 2017; 7:41471. [PMID: 28150693 PMCID: PMC5288708 DOI: 10.1038/srep41471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/20/2016] [Indexed: 12/25/2022] Open
Abstract
Cellulose synthase catalytic subunits (CESAs) play important roles in plant growth, development and disease resistance. Previous studies have shown an essential role of Arabidopsis thaliana CESA3 in plant growth. However, little is known about the role of CESA3 in species other than A. thaliana. To gain a better understanding of CESA3, the petunia (Petunia hybrida) PhCESA3 gene was isolated, and the role of PhCESA3 in plant growth was analyzed in a wide range of plants. PhCESA3 mRNA was present at varying levels in tissues examined. VIGS-mediated PhCESA3 silencing resulted in dwarfing of plant height, which was consistent with the phenotype of the A. thaliana rsw1 mutant (a temperature-sensitive allele of AtCESA1), the A. thaliana cev1 mutant (the AtCESA3 mild mutant), and the antisense AtCESA3 line. However, PhCESA3 silencing led to swollen stems, pedicels, filaments, styles and epidermal hairs as well as thickened leaves and corollas, which were not observed in the A. thaliana cev1 mutant, the rsw1 mutant and the antisense AtCESA3 line. Further micrographs showed that PhCESA3 silencing reduced the length and increased the width of cells, suggesting that PhCESA3 silencing inhibits elongation and stimulates radial expansion in petunia.
Collapse
|
29
|
Zhang X, Liu Y, Fang Z, Li Z, Yang L, Zhuang M, Zhang Y, Lv H. Comparative Transcriptome Analysis between Broccoli ( Brassica oleracea var. italica) and Wild Cabbage ( Brassica macrocarpa Guss.) in Response to Plasmodiophora brassicae during Different Infection Stages. FRONTIERS IN PLANT SCIENCE 2016; 7:1929. [PMID: 28066482 DOI: 10.1007/s11104-019-04196-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/05/2016] [Indexed: 05/27/2023]
Abstract
Clubroot, one of the most devastating diseases to the Brassicaceae family, is caused by the obligate biotrophic pathogen Plasmodiophora brassicae. However, studies of the molecular basis of disease resistance are still poor especially in quantitative resistance. In the present paper, two previously identified genotypes, a clubroot-resistant genotype (wild cabbage, B2013) and a clubroot-susceptible genotype (broccoli, 90196) were inoculated by P. brassicae for 0 (T0), 7 (T7), and 14 (T14) day after inoculation (DAI). Gene expression pattern analysis suggested that response changes in transcript level of two genotypes under P. brassicae infection were mainly activated at the primary stage (T7). Based on the results of DEGs functional enrichments from two infection stages, genes associated with cell wall biosynthesis, glucosinolate biosynthesis, and plant hormone signal transduction showed down-regulated at T14 compared to T7, indicating that defense responses to P. brassicae were induced earlier, and related pathways were repressed at T14. In addition, the genes related to NBS-LRR proteins, SA signal transduction, cell wall and phytoalexins biosynthesis, chitinase, Ca2+ signals and RBOH proteins were mainly up-regulated in B2013 by comparing those of 90196, indicating the pathways of response defense to clubroot were activated in the resistant genotype. This is the first report about comparative transcriptome analysis for broccoli and its wild relative during the different stages of P. brassicae infection and the results should be useful for molecular assisted screening and breeding of clubroot-resistant genotypes.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Group of Cabbage and Broccoli Breeding, Institute of Vegetables and Flowers - Chinese Academy of Agricultural Sciences Beijing, China
| | - Yumei Liu
- Group of Cabbage and Broccoli Breeding, Institute of Vegetables and Flowers - Chinese Academy of Agricultural Sciences Beijing, China
| | - Zhiyuan Fang
- Group of Cabbage and Broccoli Breeding, Institute of Vegetables and Flowers - Chinese Academy of Agricultural Sciences Beijing, China
| | - Zhansheng Li
- Group of Cabbage and Broccoli Breeding, Institute of Vegetables and Flowers - Chinese Academy of Agricultural Sciences Beijing, China
| | - Limei Yang
- Group of Cabbage and Broccoli Breeding, Institute of Vegetables and Flowers - Chinese Academy of Agricultural Sciences Beijing, China
| | - Mu Zhuang
- Group of Cabbage and Broccoli Breeding, Institute of Vegetables and Flowers - Chinese Academy of Agricultural Sciences Beijing, China
| | - Yangyong Zhang
- Group of Cabbage and Broccoli Breeding, Institute of Vegetables and Flowers - Chinese Academy of Agricultural Sciences Beijing, China
| | - Honghao Lv
- Group of Cabbage and Broccoli Breeding, Institute of Vegetables and Flowers - Chinese Academy of Agricultural Sciences Beijing, China
| |
Collapse
|
30
|
Temple H, Saez-Aguayo S, Reyes FC, Orellana A. The inside and outside: topological issues in plant cell wall biosynthesis and the roles of nucleotide sugar transporters. Glycobiology 2016; 26:913-925. [PMID: 27507902 DOI: 10.1093/glycob/cww054] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/24/2016] [Indexed: 12/15/2022] Open
Abstract
The cell wall is a complex extracellular matrix composed primarily of polysaccharides. Noncellulosic polysaccharides, glycoproteins and proteoglycans are synthesized in the Golgi apparatus by glycosyltransferases (GTs), which use nucleotide sugars as donors to glycosylate nascent glycan and glycoprotein acceptors that are subsequently exported to the extracellular space. Many nucleotide sugars are synthesized in the cytosol, leading to a topological issue because the active sites of most GTs are located in the Golgi lumen. Nucleotide sugar transporters (NSTs) overcome this problem by translocating nucleoside diphosphate sugars from the cytosol into the lumen of the organelle. The structures of the cell wall components synthesized in the Golgi are diverse and complex; therefore, transporter activities are necessary so that the nucleotide sugars can provide substrates for the GTs. In this review, we describe the topology of reactions involved in polysaccharide biosynthesis in the Golgi and focus on the roles of NSTs as well as their impacts on cell wall structure when they are altered.
Collapse
Affiliation(s)
- Henry Temple
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| | - Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| | - Francisca C Reyes
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| |
Collapse
|
31
|
Baliardini C, Corso M, Verbruggen N. Transcriptomic analysis supports the role of CATION EXCHANGER 1 in cellular homeostasis and oxidative stress limitation during cadmium stress. PLANT SIGNALING & BEHAVIOR 2016; 11:e1183861. [PMID: 27172138 PMCID: PMC4973759 DOI: 10.1080/15592324.2016.1183861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 05/06/2023]
Abstract
Investigation of genetic determinants of Cd tolerance in the Zn/Cd hyperaccumulator Arabidopsis halleri allowed the identification of the vacuolar Ca(2+)/H(+) exchanger encoding CAX1 gene. CAX1 was proposed to interfere with the positive feedback loop between Reactive Oxygen Species (ROS) production and Cd-induced cytosolic Ca(2+) spikes, especially at low external Ca(2+) supply. In this study expression of genes involved in ROS homeostasis, cell wall composition, apoplastic pH regulation and Ca(2+) homeostasis were monitored in Arabidopsis thaliana wild-type and cax1-1 knock-out mutant and in Arabidopsis halleri wild-type exposed to cadmium or in control conditions. Clustering the outputs of the expression analysis in a gene co-expression network revealed that CAX1 and genes involved in Ca(2+) cellular homeostasis, apoplastic pH and oxidative stress response were highly correlated in A. thaliana, but not in A. halleri. Many of the studied genes were already highly expressed in A. halleri and/or their expression was not modified by exposure to Cd. The results further supported the role of CAX1 in the regulation of cytosolic ROS accumulation as well as the existence of different cell wall modifications strategies in response to Cd in Arabidopsis thaliana and halleri.
Collapse
Affiliation(s)
- Cecilia Baliardini
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Massimiliano Corso
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
32
|
Kaur S, Dhugga KS, Gill K, Singh J. Novel Structural and Functional Motifs in cellulose synthase (CesA) Genes of Bread Wheat (Triticum aestivum, L.). PLoS One 2016; 11:e0147046. [PMID: 26771740 PMCID: PMC4714848 DOI: 10.1371/journal.pone.0147046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/28/2015] [Indexed: 11/18/2022] Open
Abstract
Cellulose is the primary determinant of mechanical strength in plant tissues. Late-season lodging is inversely related to the amount of cellulose in a unit length of the stem. Wheat is the most widely grown of all the crops globally, yet information on its CesA gene family is limited. We have identified 22 CesA genes from bread wheat, which include homoeologs from each of the three genomes, and named them as TaCesAXA, TaCesAXB or TaCesAXD, where X denotes the gene number and the last suffix stands for the respective genome. Sequence analyses of the CESA proteins from wheat and their orthologs from barley, maize, rice, and several dicot species (Arabidopsis, beet, cotton, poplar, potato, rose gum and soybean) revealed motifs unique to monocots (Poales) or dicots. Novel structural motifs CQIC and SVICEXWFA were identified, which distinguished the CESAs involved in the formation of primary and secondary cell wall (PCW and SCW) in all the species. We also identified several new motifs specific to monocots or dicots. The conserved motifs identified in this study possibly play functional roles specific to PCW or SCW formation. The new insights from this study advance our knowledge about the structure, function and evolution of the CesA family in plants in general and wheat in particular. This information will be useful in improving culm strength to reduce lodging or alter wall composition to improve biofuel production.
Collapse
Affiliation(s)
- Simerjeet Kaur
- Department of Plant Science, McGill University, Sainte Anne de Bellevue, QC, Canada
| | - Kanwarpal S. Dhugga
- Genetic Discovery, DuPont Pioneer, 7300 NW 62nd Avenue, Johnston, IA, United States of America
| | - Kulvinder Gill
- Department of Crop and Soil Science, Washington State University, Pullman, WA, United States of America
| | - Jaswinder Singh
- Department of Plant Science, McGill University, Sainte Anne de Bellevue, QC, Canada
- * E-mail:
| |
Collapse
|
33
|
Vandavasi VG, Putnam DK, Zhang Q, Petridis L, Heller WT, Nixon BT, Haigler CH, Kalluri U, Coates L, Langan P, Smith JC, Meiler J, O'Neill H. A Structural Study of CESA1 Catalytic Domain of Arabidopsis Cellulose Synthesis Complex: Evidence for CESA Trimers. PLANT PHYSIOLOGY 2016; 170:123-35. [PMID: 26556795 PMCID: PMC4704586 DOI: 10.1104/pp.15.01356] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/05/2015] [Indexed: 05/18/2023]
Abstract
A cellulose synthesis complex with a "rosette" shape is responsible for synthesis of cellulose chains and their assembly into microfibrils within the cell walls of land plants and their charophyte algal progenitors. The number of cellulose synthase proteins in this large multisubunit transmembrane protein complex and the number of cellulose chains in a microfibril have been debated for many years. This work reports a low resolution structure of the catalytic domain of CESA1 from Arabidopsis (Arabidopsis thaliana; AtCESA1CatD) determined by small-angle scattering techniques and provides the first experimental evidence for the self-assembly of CESA into a stable trimer in solution. The catalytic domain was overexpressed in Escherichia coli, and using a two-step procedure, it was possible to isolate monomeric and trimeric forms of AtCESA1CatD. The conformation of monomeric and trimeric AtCESA1CatD proteins were studied using small-angle neutron scattering and small-angle x-ray scattering. A series of AtCESA1CatD trimer computational models were compared with the small-angle x-ray scattering trimer profile to explore the possible arrangement of the monomers in the trimers. Several candidate trimers were identified with monomers oriented such that the newly synthesized cellulose chains project toward the cell membrane. In these models, the class-specific region is found at the periphery of the complex, and the plant-conserved region forms the base of the trimer. This study strongly supports the "hexamer of trimers" model for the rosette cellulose synthesis complex that synthesizes an 18-chain cellulose microfibril as its fundamental product.
Collapse
Affiliation(s)
- Venu Gopal Vandavasi
- Biology and Soft Matter Division (V.G.V., Q.Z., W.T.H., L.C., H.O.), BioSciences Division (L.P., U.K.), Center for Molecular Biophysics (L.P., J.C.S.), and Neutron Sciences Directorate (P.L.), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831;Department of Biomedical Informatics (D.K.P., J.M.) and Department of Chemistry (J.M.), Vanderbilt University, Nashville, Tennessee 37232;Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802 (B.T.N.);Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, North Carolina 27695 (C.H.H.); andDepartment of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 (J.C.S., H.O.)
| | - Daniel K Putnam
- Biology and Soft Matter Division (V.G.V., Q.Z., W.T.H., L.C., H.O.), BioSciences Division (L.P., U.K.), Center for Molecular Biophysics (L.P., J.C.S.), and Neutron Sciences Directorate (P.L.), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831;Department of Biomedical Informatics (D.K.P., J.M.) and Department of Chemistry (J.M.), Vanderbilt University, Nashville, Tennessee 37232;Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802 (B.T.N.);Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, North Carolina 27695 (C.H.H.); andDepartment of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 (J.C.S., H.O.)
| | - Qiu Zhang
- Biology and Soft Matter Division (V.G.V., Q.Z., W.T.H., L.C., H.O.), BioSciences Division (L.P., U.K.), Center for Molecular Biophysics (L.P., J.C.S.), and Neutron Sciences Directorate (P.L.), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831;Department of Biomedical Informatics (D.K.P., J.M.) and Department of Chemistry (J.M.), Vanderbilt University, Nashville, Tennessee 37232;Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802 (B.T.N.);Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, North Carolina 27695 (C.H.H.); andDepartment of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 (J.C.S., H.O.)
| | - Loukas Petridis
- Biology and Soft Matter Division (V.G.V., Q.Z., W.T.H., L.C., H.O.), BioSciences Division (L.P., U.K.), Center for Molecular Biophysics (L.P., J.C.S.), and Neutron Sciences Directorate (P.L.), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831;Department of Biomedical Informatics (D.K.P., J.M.) and Department of Chemistry (J.M.), Vanderbilt University, Nashville, Tennessee 37232;Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802 (B.T.N.);Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, North Carolina 27695 (C.H.H.); andDepartment of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 (J.C.S., H.O.)
| | - William T Heller
- Biology and Soft Matter Division (V.G.V., Q.Z., W.T.H., L.C., H.O.), BioSciences Division (L.P., U.K.), Center for Molecular Biophysics (L.P., J.C.S.), and Neutron Sciences Directorate (P.L.), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831;Department of Biomedical Informatics (D.K.P., J.M.) and Department of Chemistry (J.M.), Vanderbilt University, Nashville, Tennessee 37232;Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802 (B.T.N.);Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, North Carolina 27695 (C.H.H.); andDepartment of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 (J.C.S., H.O.)
| | - B Tracy Nixon
- Biology and Soft Matter Division (V.G.V., Q.Z., W.T.H., L.C., H.O.), BioSciences Division (L.P., U.K.), Center for Molecular Biophysics (L.P., J.C.S.), and Neutron Sciences Directorate (P.L.), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831;Department of Biomedical Informatics (D.K.P., J.M.) and Department of Chemistry (J.M.), Vanderbilt University, Nashville, Tennessee 37232;Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802 (B.T.N.);Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, North Carolina 27695 (C.H.H.); andDepartment of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 (J.C.S., H.O.)
| | - Candace H Haigler
- Biology and Soft Matter Division (V.G.V., Q.Z., W.T.H., L.C., H.O.), BioSciences Division (L.P., U.K.), Center for Molecular Biophysics (L.P., J.C.S.), and Neutron Sciences Directorate (P.L.), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831;Department of Biomedical Informatics (D.K.P., J.M.) and Department of Chemistry (J.M.), Vanderbilt University, Nashville, Tennessee 37232;Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802 (B.T.N.);Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, North Carolina 27695 (C.H.H.); andDepartment of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 (J.C.S., H.O.)
| | - Udaya Kalluri
- Biology and Soft Matter Division (V.G.V., Q.Z., W.T.H., L.C., H.O.), BioSciences Division (L.P., U.K.), Center for Molecular Biophysics (L.P., J.C.S.), and Neutron Sciences Directorate (P.L.), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831;Department of Biomedical Informatics (D.K.P., J.M.) and Department of Chemistry (J.M.), Vanderbilt University, Nashville, Tennessee 37232;Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802 (B.T.N.);Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, North Carolina 27695 (C.H.H.); andDepartment of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 (J.C.S., H.O.)
| | - Leighton Coates
- Biology and Soft Matter Division (V.G.V., Q.Z., W.T.H., L.C., H.O.), BioSciences Division (L.P., U.K.), Center for Molecular Biophysics (L.P., J.C.S.), and Neutron Sciences Directorate (P.L.), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831;Department of Biomedical Informatics (D.K.P., J.M.) and Department of Chemistry (J.M.), Vanderbilt University, Nashville, Tennessee 37232;Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802 (B.T.N.);Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, North Carolina 27695 (C.H.H.); andDepartment of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 (J.C.S., H.O.)
| | - Paul Langan
- Biology and Soft Matter Division (V.G.V., Q.Z., W.T.H., L.C., H.O.), BioSciences Division (L.P., U.K.), Center for Molecular Biophysics (L.P., J.C.S.), and Neutron Sciences Directorate (P.L.), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831;Department of Biomedical Informatics (D.K.P., J.M.) and Department of Chemistry (J.M.), Vanderbilt University, Nashville, Tennessee 37232;Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802 (B.T.N.);Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, North Carolina 27695 (C.H.H.); andDepartment of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 (J.C.S., H.O.)
| | - Jeremy C Smith
- Biology and Soft Matter Division (V.G.V., Q.Z., W.T.H., L.C., H.O.), BioSciences Division (L.P., U.K.), Center for Molecular Biophysics (L.P., J.C.S.), and Neutron Sciences Directorate (P.L.), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831;Department of Biomedical Informatics (D.K.P., J.M.) and Department of Chemistry (J.M.), Vanderbilt University, Nashville, Tennessee 37232;Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802 (B.T.N.);Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, North Carolina 27695 (C.H.H.); andDepartment of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 (J.C.S., H.O.)
| | - Jens Meiler
- Biology and Soft Matter Division (V.G.V., Q.Z., W.T.H., L.C., H.O.), BioSciences Division (L.P., U.K.), Center for Molecular Biophysics (L.P., J.C.S.), and Neutron Sciences Directorate (P.L.), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831;Department of Biomedical Informatics (D.K.P., J.M.) and Department of Chemistry (J.M.), Vanderbilt University, Nashville, Tennessee 37232;Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802 (B.T.N.);Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, North Carolina 27695 (C.H.H.); andDepartment of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 (J.C.S., H.O.)
| | - Hugh O'Neill
- Biology and Soft Matter Division (V.G.V., Q.Z., W.T.H., L.C., H.O.), BioSciences Division (L.P., U.K.), Center for Molecular Biophysics (L.P., J.C.S.), and Neutron Sciences Directorate (P.L.), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831;Department of Biomedical Informatics (D.K.P., J.M.) and Department of Chemistry (J.M.), Vanderbilt University, Nashville, Tennessee 37232;Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802 (B.T.N.);Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, North Carolina 27695 (C.H.H.); andDepartment of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 (J.C.S., H.O.)
| |
Collapse
|
34
|
Butardo VM, Sreenivasulu N. Tailoring Grain Storage Reserves for a Healthier Rice Diet and its Comparative Status with Other Cereals. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 323:31-70. [DOI: 10.1016/bs.ircmb.2015.12.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
35
|
Pydiura NA, Bayer GY, Galinousky DV, Yemets AI, Pirko YV, Padvitski TA, Anisimova NV, Khotyleva LV, Kilchevsky AV, Blume YB. Bioinformatic search for cellulose synthase genes in flax (Linum usitatissimum) and their phylogenetic analysis. CYTOL GENET+ 2015. [DOI: 10.3103/s0095452715050084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Rosas-Cárdenas FDF, Escobar-Guzmán R, Cruz-Hernández A, Marsch-Martínez N, de Folter S. An efficient method for miRNA detection and localization in crop plants. FRONTIERS IN PLANT SCIENCE 2015; 6:99. [PMID: 25784917 PMCID: PMC4347446 DOI: 10.3389/fpls.2015.00099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/06/2015] [Indexed: 05/28/2023]
Abstract
microRNAs are a class of non-coding small RNAs (sRNAs) that are important regulators of gene expression at the post-transcriptional level by mRNA cleavage or translation inhibition. Another class of sRNAs are siRNAs, which also regulate gene expression but by causing DNA methylation. This epigenetic regulatory role has been observed for some miRNAs as well. The use of sRNAs allows the development of biotechnological applications in plants. To develop these types of applications, and to better understand the natural roles they play, it is important to be able to detect and to localize these sRNAs at the plant tissue level. Sometimes, in crop plants this can be challenging. Therefore, we developed a tissue printing hybridization protocol for easy and efficient detection of sRNAs and demonstrate this by the analysis of the spatio-temporal expression patterns of the miRNAs miR159 and miR164 in fruits of various crop plants. Moreover, we show the possibility to also detect the expression of miRNAs in fruit juice using a dot blot hybridization approach.
Collapse
Affiliation(s)
- Flor de Fátima Rosas-Cárdenas
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalGuanajuato, México
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico NacionalTlaxcala, México
| | - Rocío Escobar-Guzmán
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalGuanajuato, México
| | | | - Nayelli Marsch-Martínez
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalGuanajuato, México
| | - Stefan de Folter
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalGuanajuato, México
| |
Collapse
|
37
|
|
38
|
|
39
|
Takata N, Taniguchi T. Expression divergence of cellulose synthase (CesA) genes after a recent whole genome duplication event in Populus. PLANTA 2015; 241:29-42. [PMID: 25486888 DOI: 10.1007/s00425-014-2217-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/27/2014] [Indexed: 06/04/2023]
Abstract
Secondary cell wall-associated CesA genes in Populus have undergone a functional differentiation in expression pattern that may be attributable to evolutionary alteration of regulatory modules. Gene duplication is an important mechanism for functional divergence of genes. Secondary cell wall-associated cellulose synthase genes (CesA4, CesA7 and CesA8) are duplicated in Populus plants due to a recent whole genome duplication event. Here, we demonstrate that duplicate CesA genes show tissue-dependent expression divergence in Populus plants. Real-time PCR analysis of Populus CesA genes suggested that Pt × tCesA8-B was more highly expressed than Pt × tCesA8-A in phloem and secondary xylem tissue of mature stem. Histochemical and histological analyses of transformants expressing a GFP-GUS fusion gene driven by Populus CesA promoters revealed that the duplicate CesA genes showed different expression patterns in phloem fibers, secondary xylem, root cap and leaf trichomes. We predicted putative cis-regulatory motifs that regulate expression of secondary cell wall-associated CesA genes, and identified 19 motifs that are highly conserved in the CesA gene family of eudicotyledonous plants. Furthermore, a transient transactivation assay identified candidate transcription factors that affect levels and patterns of expression of Populus CesA genes. The present study reveals that secondary cell wall-associated CesA genes in Populus have undergone a functional differentiation in expression pattern that may be attributable to evolutionary alteration of regulatory modules.
Collapse
Affiliation(s)
- Naoki Takata
- Forest Bio-Research Center, Forestry and Forest Products Research Institute, Hitachi, Ibaraki, 319-1301, Japan,
| | | |
Collapse
|
40
|
Xia X, Shao Y, Jiang J, Ren L, Chen F, Fang W, Guan Z, Chen S. Gene expression profiles responses to aphid feeding in chrysanthemum (Chrysanthemum morifolium). BMC Genomics 2014; 15:1050. [PMID: 25466867 PMCID: PMC4265409 DOI: 10.1186/1471-2164-15-1050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/20/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Chrysanthemum is an important ornamental plant all over the world. It is easily attacked by aphid, Macrosiphoniella sanbourni. The molecular mechanisms of plant defense responses to aphid are only partially understood. Here, we investigate the gene expression changes in response to aphid feeding in chrysanthemum leaf by RNA-Seq technology. RESULTS Three libraries were generated from pooled leaf tissues of Chrysanthemum morifolium 'nannongxunzhang' that were collected at different time points with (Y) or without (CK) aphid infestations and mock puncture treatment (Z), and sequenced using an Illumina HiSeqTM 2000 platform. A total of 7,363,292, 7,215,860 and 7,319,841 clean reads were obtained in library CK, Y and Z, respectively. The proportion of clean reads was >97.29% in each library. Approximately 76.35% of the clean reads were mapped to a reference gene database including all known chrysanthemum unigene sequences. 1,157, 527 and 340 differentially expressed genes (DEGs) were identified in the comparison of CK-VS-Y, CK-VS-Z and Z-VS-Y, respectively. These DEGs were involved in phytohormone signaling, cell wall biosynthesis, photosynthesis, reactive oxygen species (ROS) pathway and transcription factor regulatory networks, and so on. CONCLUSIONS Changes in gene expression induced by aphid feeding are shown to be multifaceted. There are various forms of crosstalk between different pathways those genes belonging to, which would allow plants to fine-tune its defense responses.
Collapse
Affiliation(s)
- Xiaolong Xia
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| | - Yafeng Shao
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| | - Liping Ren
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| |
Collapse
|
41
|
Xu B, Tian J, Du Q, Gong C, Pan W, Zhang D. Single nucleotide polymorphisms in a cellulose synthase gene (PtoCesA3) are associated with growth and wood properties in Populus tomentosa. PLANTA 2014; 240:1269-86. [PMID: 25143249 DOI: 10.1007/s00425-014-2149-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/08/2014] [Indexed: 05/21/2023]
Abstract
In plants, the composition and organization of the cell wall determine cell shape, enable cell expansion, and affect the properties of woody tissues. Cellulose synthase (CesA) genes encode the enzymes involved in the synthesis of cellulose which is the major component of plant primary and secondary cell walls. Here, we isolated a full-length PtoCesA3 cDNA from the stem cambium tissue of Populus tomentosa. Tissue-specific expression profiling showed that PtoCesA3 is highly expressed during primary cell wall formation. Estimation of single nucleotide polymorphism (SNP) diversity and linkage disequilibrium (LD) revealed that PtoCesA3 harbors high SNP diversity (π(T) = 0.00995 and θ(w) = 0.0102) and low LD (r(2) ≥ 0.1, within 1,280 bp). Association analysis in a P. tomentosa association population (460 individuals) showed that seven SNPs (false discovery rate Q < 0.10) and five haplotypes (Q < 0.10) were significantly associated with growth and wood properties, explaining 4.09-7.02% of the phenotypic variance. All significant marker-trait associations were validated in at least one of the three smaller subsets (climatic regions) while five associations were repeated in the linkage population. Variation in RNA transcript abundance among genotypic classes of significant loci was also confirmed in the association or linkage populations. Identification of PtoCesA3 and examining its allelic polymorphisms using association studies open an avenue to understand the mechanism of cellulose synthesis in the primary cell wall and its effects on the properties of woody tissues.
Collapse
Affiliation(s)
- Baohua Xu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | | | | | | | | | | |
Collapse
|
42
|
Sundari BKR, Dasgupta MG. Isolation of developing secondary xylem specific cellulose synthase genes and their expression profiles during hormone signalling in Eucalyptus tereticornis. J Genet 2014; 93:403-14. [PMID: 25189235 DOI: 10.1007/s12041-014-0391-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cellulose synthases (CesA) represent a group of β-1, 4 glycosyl transferases involved in cellulose biosynthesis. Recent reports in higher plants have revealed that two groups of CesA gene families exist, which are associated with either primary or secondary cell wall deposition. The present study aimed at identifying developing secondary xylem specific cellulose synthase genes from Eucalyptus tereticornis, a species predominantly used in paper and pulp industries in the tropics. The differential expression analysis of the three EtCesA genes using qRT-PCR revealed 49 to 87 fold relative expression in developing secondary xylem tissues. Three full length gene sequences of EtCesA1, EtCesA2 and EtCesA3 were isolated with the size of 2940, 3114 and 3123 bp, respectively. Phytohormone regulation of all three EtCesA genes were studied by exogenous application of gibberellic acid, naphthalene acetic acid, indole acetic acid and 2, 4-epibrassinolide in internode tissues derived from three-month-old rooted cuttings. All three EtCesA transcripts were upregulated by indole acetic acid and gibberellic acid. This study demonstrates that the increased cellulose deposition in the secondary wood induced by hormones can be attributed to the upregulation of xylem specific CesAs.
Collapse
Affiliation(s)
- Balachandran Karpaga Raja Sundari
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, P.B. No. 1061, Forest Campus, R.S. Puram Coimbatore 641 002, India.
| | | |
Collapse
|
43
|
Systematic identification of cell-wall related genes in Populus based on analysis of functional modules in co-expression network. PLoS One 2014; 9:e95176. [PMID: 24736620 PMCID: PMC3988181 DOI: 10.1371/journal.pone.0095176] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/24/2014] [Indexed: 12/02/2022] Open
Abstract
The identification of novel genes relevant to plant cell wall (PCW) biosynthesis in Populus is a highly important and challenging problem. We surveyed candidate Populus cell wall genes using a non-targeted approach. First, a genome-wide Populus gene co-expression network (PGCN) was constructed using microarray data available in the public domain. Module detection was then performed, followed by gene ontology (GO) enrichment analysis, to assign the functional category to these modules. Based on GO annotation, the modules involved in PCW biosynthesis were then selected and analyzed in detail to annotate the candidate PCW genes in these modules, including gene annotation, expression of genes in different tissues, and so on. We examined the overrepresented cis-regulatory elements (CREs) in the gene promoters to understand the possible transcriptionally co-regulated relationships among the genes within the functional modules of cell wall biosynthesis. PGCN contains 6,854 nodes (genes) with 324,238 edges. The topological properties of the network indicate scale-free and modular behavior. A total of 435 modules were identified; among which, 67 modules were identified by overrepresented GO terms. Six modules involved in cell wall biosynthesis were identified. Module 9 was mainly involved in cellular polysaccharide metabolic process in the primary cell wall, whereas Module 4 comprises genes involved in secondary cell wall biogenesis. In addition, we predicted and analyzed 10 putative CREs in the promoters of the genes in Module 4 and Module 9. The non-targeted approach of gene network analysis and the data presented here can help further identify and characterize cell wall related genes in Populus.
Collapse
|
44
|
Gimeno J, Eattock N, Van Deynze A, Blumwald E. Selection and validation of reference genes for gene expression analysis in switchgrass (Panicum virgatum) using quantitative real-time RT-PCR. PLoS One 2014; 9:e91474. [PMID: 24621568 PMCID: PMC3951385 DOI: 10.1371/journal.pone.0091474] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 02/12/2014] [Indexed: 01/21/2023] Open
Abstract
Switchgrass (Panicum virgatum) has received a lot of attention as a forage and bioenergy crop during the past few years. Gene expression studies are in progress to improve new traits and develop new cultivars. Quantitative real time PCR (qRT-PCR) has emerged as an important technique to study gene expression analysis. For accurate and reliable results, normalization of data with reference genes is essential. In this work, we evaluate the stability of expression of genes to use as reference for qRT-PCR in the grass P. virgatum. Eleven candidate reference genes, including eEF-1α, UBQ6, ACT12, TUB6, eIF-4a, GAPDH, SAMDC, TUA6, CYP5, U2AF, and FTSH4, were validated for qRT-PCR normalization in different plant tissues and under different stress conditions. The expression stability of these genes was verified by the use of two distinct algorithms, geNorm and NormFinder. Differences were observed after comparison of the ranking of the candidate reference genes identified by both programs but eEF-1α, eIF-4a, CYP5 and U2AF are ranked as the most stable genes in the samples sets under study. Both programs discard the use of SAMDC and TUA6 for normalization. Validation of the reference genes proposed by geNorm and NormFinder were performed by normalization of transcript abundance of a group of target genes in different samples. Results show similar expression patterns when the best reference genes selected by both programs were used but differences were detected in the transcript abundance of the target genes. Based on the above research, we recommend the use of different statistical algorithms to identify the best reference genes for expression data normalization. The best genes selected in this study will help to improve the quality of gene expression data in a wide variety of samples in switchgrass.
Collapse
Affiliation(s)
- Jacinta Gimeno
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Nicholas Eattock
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Allen Van Deynze
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
45
|
Tian J, Chang M, Du Q, Xu B, Zhang D. Single-nucleotide polymorphisms in PtoCesA7 and their association with growth and wood properties in Populus tomentosa. Mol Genet Genomics 2014; 289:439-55. [PMID: 24549852 DOI: 10.1007/s00438-014-0824-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 02/04/2014] [Indexed: 12/30/2022]
Abstract
Cellulose synthase (CesA) genes encode the enzymes that synthesize cellulose; therefore, CesAs play central roles in plant development and affect the yield and quality of wood, essential properties for industrial applications of plant biomass. To effectively manipulate wood biosynthesis in trees and improve wood quality, we thus require a better understanding of the natural variation in CesAs. Association studies have emerged as a powerful tool for identification of variation associated with quantitative traits. Here, we used a candidate gene-based association mapping approach to identify PtoCesA7 allelic variants that associate with growth and wood quality traits in Populus tomentosa. We isolated a full-length PtoCesA7 cDNA and observed high PtoCesA7 expression in xylem, consistent with the xylem-specific expression of CesA7. Nucleotide diversity and linkage disequilibrium (LD) in PtoCesA7, sampled from the P. tomentosa natural distribution, revealed that PtoCesA7 harbors high nucleotide diversity (π(T) = 0.0091) and low LD (r(2) ≥ 0.1, within 800 bp). By association analysis, we identified seven single-nucleotide polymorphisms (SNPs) (false discovery rate Q < 0.10) and 12 haplotypes (Q < 0.10) that associated with growth and wood properties, explaining 3.62-10.59 % of the phenotypic variance. We also validated 9 of the 10 significant marker-trait associations in at least one of three smaller subsets (climatic regions) or in a linkage-mapping population. Thus, our study identified functional PtoCesA7 allelic variants associated with growth and wood quality traits, giving new insights into genes affecting wood quality and quantity. From an applied perspective, the SNPs revealed in this study have potential applications in marker-assisted breeding.
Collapse
Affiliation(s)
- Jiaxing Tian
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | | | | | | | | |
Collapse
|
46
|
de Castro M, Largo-Gosens A, Alvarez JM, García-Angulo P, Acebes JL. Early cell-wall modifications of maize cell cultures during habituation to dichlobenil. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:127-35. [PMID: 24331427 DOI: 10.1016/j.jplph.2013.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 05/15/2023]
Abstract
Studies involving the habituation of plant cell cultures to cellulose biosynthesis inhibitors have achieved significant progress as regards understanding the structural plasticity of cell walls. However, since habituation studies have typically used high concentrations of inhibitors and long-term habituation periods, information on initial changes associated with habituation has usually been lost. This study focuses on monitoring and characterizing the short-term habituation process of maize (Zea mays) cell suspensions to dichlobenil (DCB). Cellulose quantification and FTIR spectroscopy of cell walls from 20 cell lines obtained during an incipient DCB-habituation process showed a reduction in cellulose levels which tended to revert depending on the inhibitor concentration and the length of time that cells were in contact with it. Variations in the cellulose content were concomitant with changes in the expression of several ZmCesA genes, mainly involving overexpression of ZmCesA7 and ZmCesA8. In order to explore these changes in more depth, a cell line habituated to 1.5μM DCB was identified as representative of incipient DCB habituation and selected for further analysis. The cells of this habituated cell line grew more slowly and formed larger clusters. Their cell walls were modified, showing a 33% reduction in cellulose content, that was mainly counteracted by an increase in arabinoxylans, which presented increased extractability. This result was confirmed by immunodot assays graphically plotted by heatmaps, since habituated cell walls had a more extensive presence of epitopes for arabinoxylans and xylans, but also for homogalacturonan with a low degree of esterification and for galactan side chains of rhamnogalacturonan I. Furthermore, a partial shift of xyloglucan epitopes toward more easily extractable fractions was found. However, other epitopes, such as these specific for arabinan side chains of rhamnogalacturonan I or homogalacturonan with a high degree of esterification, seemed to be not affected. In conclusion, the early modifications occurring in maize cell walls as a consequence of DCB-habituation involved quantitative and qualitative changes of arabinoxylans, but also other polysaccharides. Thereby some of the changes that took place in the cell walls in order to compensate for the lack of cellulose differed according to the DCB-habituation level, and illustrate the ability of plant cells to adopt appropriate coping strategies depending on the herbicide concentration and length of exposure time.
Collapse
Affiliation(s)
- María de Castro
- Área de Fisiología Vegetal, Facultad de CC Biológicas y Ambientales, Universidad de León, E-24071 León, Spain.
| | - Asier Largo-Gosens
- Área de Fisiología Vegetal, Facultad de CC Biológicas y Ambientales, Universidad de León, E-24071 León, Spain
| | - Jesús Miguel Alvarez
- Área de Fisiología Vegetal, Facultad de CC Biológicas y Ambientales, Universidad de León, E-24071 León, Spain
| | - Penélope García-Angulo
- Área de Fisiología Vegetal, Facultad de CC Biológicas y Ambientales, Universidad de León, E-24071 León, Spain
| | - José Luis Acebes
- Área de Fisiología Vegetal, Facultad de CC Biológicas y Ambientales, Universidad de León, E-24071 León, Spain
| |
Collapse
|
47
|
Lei L, Li S, Bashline L, Gu Y. Dissecting the molecular mechanism underlying the intimate relationship between cellulose microfibrils and cortical microtubules. FRONTIERS IN PLANT SCIENCE 2014; 5:90. [PMID: 24659994 PMCID: PMC3952479 DOI: 10.3389/fpls.2014.00090] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 02/24/2014] [Indexed: 05/04/2023]
Abstract
A central question in plant cell development is how the cell wall determines directional cell expansion and therefore the final shape of the cell. As the major load-bearing component of the cell wall, cellulose microfibrils are laid down transversely to the axis of elongation, thus forming a spring-like structure that reinforces the cell laterally and while favoring longitudinal expansion in most growing cells. Mounting evidence suggests that cortical microtubules organize the deposition of cellulose microfibrils, but the precise molecular mechanisms linking microtubules to cellulose organization have remained unclear until the recent discovery of cellulose synthase interactive protein 1 , a linker protein between the cortical microtubules and the cellulose biosynthesizing machinery. In this review, we will focus on the intimate relationship between cellulose microfibrils and cortical microtubules, in particular, we will discuss microtubule arrangement and cell wall architecture, the linkage between cellulose synthase complexes and microtubules, and the feedback mechanisms between cell wall and microtubules.
Collapse
Affiliation(s)
| | | | | | - Ying Gu
- *Correspondence: Ying Gu, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA e-mail:
| |
Collapse
|
48
|
Plant Cell Wall Polysaccharides: Structure and Biosynthesis. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_73-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
49
|
Du Q, Xu B, Pan W, Gong C, Wang Q, Tian J, Li B, Zhang D. Allelic variation in a cellulose synthase gene (PtoCesA4) associated with growth and wood properties in Populus tomentosa. G3 (BETHESDA, MD.) 2013; 3:2069-84. [PMID: 24048648 PMCID: PMC3815066 DOI: 10.1534/g3.113.007724] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/11/2013] [Indexed: 12/12/2022]
Abstract
Lignocellulosic biomass from trees provides a renewable feedstock for biofuels, lumber, pulp, paper, and other uses. Dissecting the mechanism underlying natural variation of the complex traits controlling growth and lignocellulose biosynthesis in trees can enable marker-assisted breeding to improve wood quality and yield. Here, we combined linkage disequilibrium (LD)-based association analysis with traditional linkage analysis to detect the genetic effect of a Populus tomentosa cellulose synthase gene, PtoCesA4. PtoCesA4 is strongly expressed in developing xylem and leaves. Nucleotide diversity and LD in PtoCesA4, sampled from the P. tomentosa natural distribution, revealed that PtoCesA4 harbors high single nucleotide polymorphism (SNP) diversity (πT = 0.0080 and θw = 0.0098) and low LD (r(2) ≥ 0.1, within 1400 bp), demonstrating that the potential of a candidate-gene-based LD approach in understanding the molecular basis underlying quantitative variation in this species. By combining single SNP, multi-SNP, and haplotype-based associations in an association population of 460 individuals with single SNP linkage analysis in a family-based linkage populations (1200 individuals), we identified three strong associations (false discovery rate Q < 0.05) in both populations. These include two nonsynonymous markers (SNP49 associated with α-cellulose content and SNP59 associated with fiber width) and a noncoding marker (SNP18 associated with α-cellulose content). Variation in RNA transcript abundance among genotypic classes of SNP49 was confirmed in these two populations. Therefore, combining different methods allowed us to examine functional PtoCesA4 allelic variation underlying natural variation in complex quantitative traits related to growth and lignocellulosic biosynthesis.
Collapse
Affiliation(s)
- Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Baohua Xu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Wei Pan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Chenrui Gong
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Qingshi Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Jiaxing Tian
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Bailian Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
- Department of Forestry, North Carolina State University, Raleigh, North Carolina 27695-8203
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| |
Collapse
|
50
|
Li A, Xia T, Xu W, Chen T, Li X, Fan J, Wang R, Feng S, Wang Y, Wang B, Peng L. An integrative analysis of four CESA isoforms specific for fiber cellulose production between Gossypium hirsutum and Gossypium barbadense. PLANTA 2013; 237:1585-97. [PMID: 23508664 DOI: 10.1007/s00425-013-1868-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 03/04/2013] [Indexed: 05/20/2023]
Abstract
Cotton fiber is an excellent model system of cellulose biosynthesis; however, it has not been widely studied due to the lack of information about the cellulose synthase (CESA) family of genes in cotton. In this study, we initially identified six full-length CESA genes designated as GhCESA5-GhCESA10. Phylogenetic analysis and gene co-expression profiling revealed that CESA1, CESA2, CESA7, and CESA8 were the major isoforms for secondary cell wall biosynthesis, whereas CESA3, CESA5, CESA6, CESA9, and CESA10 should involve in primary cell wall formation for cotton fiber initiation and elongation. Using integrative analysis of gene expression patterns, CESA protein levels, and cellulose biosynthesis in vivo, we detected that CESA8 could play an enhancing role for rapid and massive cellulose accumulation in Gossypium hirsutum and Gossypium barbadense. We found that CESA2 displayed a major expression in non-fiber tissues and that CESA1, a housekeeping gene like, was predominantly expressed in all tissues. Further, a dynamic alteration was observed in cell wall composition and a significant discrepancy was observed between the cotton species during fiber elongation, suggesting that pectin accumulation and xyloglucan reduction might contribute to cell wall transition. In addition, we discussed that callose synthesis might be regulated in vivo for massive cellulose production during active secondary cell wall biosynthesis in cotton fibers.
Collapse
Affiliation(s)
- Ao Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|