1
|
Lin Y, Liu G, Liu P, Chen Q, Guo X, Lu X, Cai Z, Sun L, Liu J, Chen K, Liu G, Tian J, Liang C. Border-like cell formation mediated by SgPG1 confers aluminum resistance in Stylosanthes guianensis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39453443 DOI: 10.1111/tpj.17073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
Stylosanthes is an important forage legume in tropical areas with strong resistance to aluminum (Al) toxicity, though knowledge of mechanisms underlying this resistance remains fragmentary. We found that border-like cells (BLCs) were constitutively produced surrounding the root tips of all 54 examined Stylosanthes guianensis genotypes, but not the Stylosanthes viscose genotype TF0140. In genotypic comparisons under Al conditions, the S. guianensis genotype RY#2 retained significantly more Al in BLCs and thereby showed higher relative root growth than TF0140. Formation of BLCs accompanied changes in cell wall pectin epitopes and differential expression of genes involved in pectin metabolism, including a polygalacturonase (SgPG1). The expression pattern of SgPG1 was consistent with the formation of BLCs in both RY#2 and TF0140. SgPG1 was localized in cell walls and exhibited high activities mediating demethyl-esterified homogalacturonan degradation. Overexpressing SgPG1 changed cell wall pectin epitopes, enhanced BLCs production, and Al resistance in both Arabidopsis and Stylosanthes hairy roots. Furthermore, combining protein-DNA binding assays in vitro and in vivo, a bHLH transcription factor SgbHLH19 was demonstrated to be the upstream regulator of SgPG1. Our study demonstrates that S. guianensis Al resistance mainly relies on BLCs, whose formation involves cell wall pectin epitope modification by SgPG1.
Collapse
Affiliation(s)
- Yan Lin
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Guoxuan Liu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Pandao Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou, 571101, P. R. China
| | - Qianqian Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Xueqiong Guo
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Xing Lu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Zefei Cai
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Lili Sun
- Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Jiping Liu
- Robert Holley Center, US Department of Agriculture, Agricultural Research Service, Cornell University, Ithaca, New York, 14853, USA
| | - Kang Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Guodao Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou, 571101, P. R. China
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| |
Collapse
|
2
|
Das KK, Mohapatra A, George AP, Chavali S, Witzel K, Ramireddy E. The proteome landscape of the root cap reveals a role for the jacalin-associated lectin JAL10 in the salt-induced endoplasmic reticulum stress pathway. PLANT COMMUNICATIONS 2023; 4:100726. [PMID: 37789617 PMCID: PMC10721516 DOI: 10.1016/j.xplc.2023.100726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/18/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
Rapid climate change has led to enhanced soil salinity, one of the major determinants of land degradation, resulting in low agricultural productivity. This has a strong negative impact on food security and environmental sustainability. Plants display various physiological, developmental, and cellular responses to deal with salt stress. Recent studies have highlighted the root cap as the primary stress sensor and revealed its crucial role in halotropism. The root cap covers the primary root meristem and is the first cell type to sense and respond to soil salinity, relaying the signal to neighboring cell types. However, it remains unclear how root-cap cells perceive salt stress and contribute to the salt-stress response. Here, we performed a root-cap cell-specific proteomics study to identify changes in the proteome caused by salt stress. The study revealed a very specific salt-stress response pattern in root-cap cells compared with non-root-cap cells and identified several novel proteins unique to the root cap. Root-cap-specific protein-protein interaction (PPI) networks derived by superimposing proteomics data onto known global PPI networks revealed that the endoplasmic reticulum (ER) stress pathway is specifically activated in root-cap cells upon salt stress. Importantly, we identified root-cap-specific jacalin-associated lectins (JALs) expressed in response to salt stress. A JAL10-GFP fusion protein was shown to be localized to the ER. Analysis of jal10 mutants indicated a role for JAL10 in regulating the ER stress pathway in response to salt. Taken together, our findings highlight the participation of specific root-cap proteins in salt-stress response pathways. Furthermore, root-cap-specific JAL proteins and their role in the salt-mediated ER stress pathway open a new avenue for exploring tolerance mechanisms and devising better strategies to increase plant salinity tolerance and enhance agricultural productivity.
Collapse
Affiliation(s)
- Krishna Kodappully Das
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Ankita Mohapatra
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Abin Panackal George
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Sreenivas Chavali
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Katja Witzel
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany.
| | - Eswarayya Ramireddy
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India.
| |
Collapse
|
3
|
Li W, Ullah S, Xu Y, Bai T, Ye S, Jiang W, Yang M. Effects of Elevated Aluminum Concentration and Distribution on Root Damage, Cell Wall Polysaccharides, and Nutrient Uptake in Different Tolerant Eucalyptus Clones. Int J Mol Sci 2022; 23:13438. [PMID: 36362232 PMCID: PMC9657315 DOI: 10.3390/ijms232113438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 05/12/2024] Open
Abstract
Aluminized acidic soil can damage Eucalyptus roots and limit tree growth, hindering the productivity of Eucalyptus plantations. At present, the negative impacts of elevated aluminum (Al) on the cell morphology and cell wall properties of Eucalyptus root tip are still unclear. In order to investigate the responses of two different tolerant clones, Eucalyptus urophylla (G4) and Eucalyptus grandis × Eucalyptus urophylla (G9), to Al toxicity, seedling roots were treated hydroponically with an Al solution, and the polysaccharide content in the root tip cell wall and the characteristics of programmed cell death were studied. The results show that the distribution of Al was similar in both clones, although G9 was found to be more tolerant to Al toxicity than G4. The Al3+ uptake of pectin in root tip cell walls was significantly higher in G4 than in G9. The root tip in G4 was obviously damaged, enlarged, thickened, and shorter; the root crown cells were cracked and fluffy; and the cell elongation area was squeezed. The lower cell wall polysaccharide content and PME activity may result in fewer carboxylic groups in the root tip cell wall to serve as Al-binding sites, which may explain the stronger Al resistance of G9 than G4. The uptake of nitrogen and potassium in G4 was significantly reduced after aluminum application and was lower than in G9. Al-resistant Eucalyptus clones may have synergistic pleiotropic effects in resisting high aluminum-low phosphorus stress, and maintaining higher nitrogen and potassium levels in roots may be an important mechanism for effectively alleviating Al toxicity.
Collapse
Affiliation(s)
- Wannian Li
- Guangxi Key Laboratory of Forest Ecology and Conservation, Forestry College, Guangxi University, Nanning 530004, China
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, Forestry College, Guangxi University, Nanning 530004, China
| | - Saif Ullah
- Guangxi Key Laboratory of Forest Ecology and Conservation, Forestry College, Guangxi University, Nanning 530004, China
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, Forestry College, Guangxi University, Nanning 530004, China
| | - Yuanyuan Xu
- Guangxi Key Laboratory of Forest Ecology and Conservation, Forestry College, Guangxi University, Nanning 530004, China
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, Forestry College, Guangxi University, Nanning 530004, China
| | - Tiandao Bai
- Guangxi Key Laboratory of Forest Ecology and Conservation, Forestry College, Guangxi University, Nanning 530004, China
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, Forestry College, Guangxi University, Nanning 530004, China
| | - Shaoming Ye
- Guangxi Key Laboratory of Forest Ecology and Conservation, Forestry College, Guangxi University, Nanning 530004, China
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, Forestry College, Guangxi University, Nanning 530004, China
| | - Weixin Jiang
- Guangxi Key Laboratory of Forest Ecology and Conservation, Forestry College, Guangxi University, Nanning 530004, China
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, Forestry College, Guangxi University, Nanning 530004, China
| | - Mei Yang
- Guangxi Key Laboratory of Forest Ecology and Conservation, Forestry College, Guangxi University, Nanning 530004, China
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, Forestry College, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Ma W, Tang S, Dengzeng Z, Zhang D, Zhang T, Ma X. Root exudates contribute to belowground ecosystem hotspots: A review. Front Microbiol 2022; 13:937940. [PMID: 36274740 PMCID: PMC9581264 DOI: 10.3389/fmicb.2022.937940] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/30/2022] [Indexed: 09/19/2023] Open
Abstract
Root exudates are an essential carrier for material cycling, energy exchange, and information transfer between the belowground parts of plants and the soil. We synthesize current properties and regulators of root exudates and their role in the belowground ecosystem as substances cycle and signal regulation. We discussed the composition and amount of root exudates and their production mechanism, indicating that plant species, growth stage, environmental factors, and microorganisms are primary influence factors. The specific mechanisms by which root secretions mobilize the soil nutrients were summarized. First, plants improve the nutrient status of the soil by releasing organic acids for acidification and chelation. Then, root exudates accelerated the SOC turnover due to their dual impacts, forming and destabilizing aggregates and MASOC. Eventually, root exudates mediate the plant-plant interaction and plant-microbe interaction. Additionally, a summary of the current collection methods of root exudates is presented.
Collapse
Affiliation(s)
- Wenming Ma
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
5
|
Ganesh A, Shukla V, Mohapatra A, George AP, Bhukya DPN, Das KK, Kola VSR, Suresh A, Ramireddy E. Root Cap to Soil Interface: A Driving Force Toward Plant Adaptation and Development. PLANT & CELL PHYSIOLOGY 2022; 63:1038-1051. [PMID: 35662353 DOI: 10.1093/pcp/pcac078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Land plants have developed robust roots to grow in diverse soil ecosystems. The distal end of the root tip has a specialized organ called the 'root cap'. The root cap assists the roots in penetrating the ground, absorbing water and minerals, avoiding heavy metals and regulating the rhizosphere microbiota. Furthermore, root-cap-derived auxin governs the lateral root patterning and directs root growth under varying soil conditions. The root cap formation is hypothesized as one of the key innovations during root evolution. Morphologically diversified root caps in early land plant lineage and later in angiosperms aid in improving the adaptation of roots and, thereby, plants in diverse soil environments. This review article presents a retrospective view of the root cap's important morphological and physiological characteristics for the root-soil interaction and their response toward various abiotic and biotic stimuli. Recent single-cell RNAseq data shed light on root cap cell-type-enriched genes. We compiled root cap cell-type-enriched genes from Arabidopsis, rice, maize and tomato and analyzed their transcription factor (TF) binding site enrichment. Further, the putative gene regulatory networks derived from root-cap-enriched genes and their TF regulators highlight the species-specific biological functions of root cap genes across the four plant species.
Collapse
Affiliation(s)
- Alagarasan Ganesh
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Vishnu Shukla
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Ankita Mohapatra
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Abin Panackal George
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Durga Prasad Naik Bhukya
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Krishna Kodappully Das
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Vijaya Sudhakara Rao Kola
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Aparna Suresh
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Eswarayya Ramireddy
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| |
Collapse
|
6
|
Xie L, Li H, Zhong Z, Guo J, Hu G, Gao Y, Tong Z, Liu M, Hu S, Tong H, Zhang P. Metabolome Analysis under Aluminum Toxicity between Aluminum-Tolerant and -Sensitive Rice (Oryza sativa L.). PLANTS 2022; 11:plants11131717. [PMID: 35807670 PMCID: PMC9269133 DOI: 10.3390/plants11131717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/05/2022]
Abstract
Aluminum (Al) solubilizes into trivalent ions (Al3+) on acidic soils, inhibiting root growth. Since about 13% of global rice cultivation is grown on acidic soils, improving Al tolerance in rice may significantly increase yields. In the present study, metabolome analysis under Al toxicity between the Al-tolerant variety Nipponbare and the Al-sensitive variety H570 were performed. There were 45 and 83 differential metabolites which were specifically detected in Nipponbare and H570 under Al toxicity, respectively. Furthermore, the results showed that 16 lipids out of 45 total metabolites were down-regulated, and 7 phenolic acids as well as 4 alkaloids of 45 metabolites were up-regulated in Nipponbare, while 12 amino acids and their derivatives were specifically detected in H570, of which 11 amino acids increased, including L-homoserine and L-methionine, which are involved in cysteine synthesis, L-ornithine and L-proline, which are associated with putrescine synthesis, and 1-aminocyclopropane-1-carboxylate, which is associated with ethylene synthesis. The contents of cysteine and s-(methyl) glutathione, which were reported to be related to Al detoxification in rice, decreased significantly. Meanwhile, putrescine was accumulated in H570, while there was no significant change in Nipponbare, so we speculated that it might be an intermediate product of Al detoxification in rice. The differential metabolites detected between Al-tolerant and -sensitive rice variants in the present study might play important roles in Al tolerance. These results provide new insights in the mechanisms of Al tolerance in rice.
Collapse
Affiliation(s)
- Lihua Xie
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.X.); (H.L.); (Z.Z.); (J.G.); (G.H.); (Y.G.); (Z.T.); (M.L.)
- Research Center of Plant Functional Genes and Tissue Culture Technology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huijuan Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.X.); (H.L.); (Z.Z.); (J.G.); (G.H.); (Y.G.); (Z.T.); (M.L.)
| | - Zhengzheng Zhong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.X.); (H.L.); (Z.Z.); (J.G.); (G.H.); (Y.G.); (Z.T.); (M.L.)
| | - Junjie Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.X.); (H.L.); (Z.Z.); (J.G.); (G.H.); (Y.G.); (Z.T.); (M.L.)
| | - Guocheng Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.X.); (H.L.); (Z.Z.); (J.G.); (G.H.); (Y.G.); (Z.T.); (M.L.)
| | - Yu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.X.); (H.L.); (Z.Z.); (J.G.); (G.H.); (Y.G.); (Z.T.); (M.L.)
| | - Zhihua Tong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.X.); (H.L.); (Z.Z.); (J.G.); (G.H.); (Y.G.); (Z.T.); (M.L.)
| | - Meilan Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.X.); (H.L.); (Z.Z.); (J.G.); (G.H.); (Y.G.); (Z.T.); (M.L.)
| | - Songping Hu
- Research Center of Plant Functional Genes and Tissue Culture Technology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence: author: (S.H.); (H.T.); (P.Z.)
| | - Hanhua Tong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.X.); (H.L.); (Z.Z.); (J.G.); (G.H.); (Y.G.); (Z.T.); (M.L.)
- Correspondence: author: (S.H.); (H.T.); (P.Z.)
| | - Peng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.X.); (H.L.); (Z.Z.); (J.G.); (G.H.); (Y.G.); (Z.T.); (M.L.)
- Correspondence: author: (S.H.); (H.T.); (P.Z.)
| |
Collapse
|
7
|
Genome-Wide Identification and Characterisation of Wheat MATE Genes Reveals Their Roles in Aluminium Tolerance. Int J Mol Sci 2022; 23:ijms23084418. [PMID: 35457236 PMCID: PMC9030646 DOI: 10.3390/ijms23084418] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
The Multidrug and toxin efflux (MATE) gene family plays crucial roles in plant growth and development and response to adverse stresses. This work investigated the structural and evolutionary characteristics, expression profiling and potential functions involved in aluminium (Al) tolerance from a genome-wide level. In total, 211 wheat MATE genes were identified, which were classified into four subfamilies and unevenly distributed on chromosomes. Duplication analysis showed that fragments and tandem repeats played the main roles in the amplification of TaMATEs, and Type II functional disproportionation had a leading role in the differentiation of TaMATEs. TaMATEs had abundant Al resistance and environmental stress-related elements, and generally had a high expression level in roots and leaves and in response to Al stress. The 3D structure prediction by AlphaFold and molecular docking showed that six TaMATE proteins localised in the plasmalemma could combine with citrate via amino acids in the citrate exuding motif and other sites, and then transport citrate to soil to form citrate aluminium. Meanwhile, citrate aluminium formed in root cells might be transported to leaves by TaMATEs to deposit in vacuoles, thereby alleviating Al toxicity.
Collapse
|
8
|
Xiao Z, Liang Y. Silicon prevents aluminum from entering root tip by promoting formation of root border cells in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 175:12-22. [PMID: 35158318 DOI: 10.1016/j.plaphy.2022.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/08/2021] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Root border cells (RBCs) and their mucilage are considered to play an important role in protecting root tip from aluminum (Al) toxicity, but their interactions with silicon (Si) under Al stress still remain unclear. Here, we investigated the effect of Si on the formation of RBCs under Al stress and the related detoxification mechanism in hydroponically grown rice (Oryza sativa L.). The results showed that Si could prevent the separation of RBCs from each other by increasing the degree of pectin methylesterification in root tip cell wall, thereby keeping more RBCs around the root tip. Also, Si maintained the viability of RBCs, increased the amount of mucilage, and reduced the content of total Al and free Al in root tips. Moreover, the RBCs accumulated more Al and Si simultaneously than root tip in the Al treatments with Si supply. Overall, these results indicated that Si reduced the toxicity of Al to RBCs through formation of Si-Al complex on the RBCs, thereby improving the viability of RBCs and promoting the secretion of mucilage. Concomitantly, Si, RBCs and their mucilage could form a protective sheath at the root tip, which prevented Al from diffusing into the root tip, thereby alleviating Al toxicity in rice root tips.
Collapse
Affiliation(s)
- Zhuoxi Xiao
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
9
|
Effects of Exogenous Phthalic Acid on Seed Germination, Root Physiological Characteristics, and Mineral Element Absorption of Watermelon. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To understand the effect of exogenous PA on the watermelon root system, the watermelon variety ‘Zaojia 84–24’ was used as experimental material. This study investigated the effects of allelochemicals DIBP and DOP at varying different concentrations (0, 0.05, 0.1, 0.5, 1, and 4 mmol·L−1) on the physiological characteristics and mineral content of watermelon roots. The results revealed that proper PA treatment concentrations (0.05~0.1 mmol·L−1) promoted seed germination, increased the number of RBCs and the survival rate of RBCs, and enhanced the activities of PME and dehydrogenase in watermelon roots. In addition, proper PA treatment concentrations (0.05~0.1 mmol·L−1) promoted the activities of SOD, POD, CAT, and NR in watermelon roots. The contents of MDA and soluble protein were increased at 0.05~4 mmol·L−1 PA. In addition, proper PA treatment concentrations promoted the absorption and accumulation of P, K, Ca, Fe, Cu, and Zn elements in watermelon roots. These results indicate that PA at a concentration of 0.05~0.5 mmol·L−1 can promote watermelon seed germination, improve antioxidant enzyme activity of watermelon roots, and maintain normal physiological activities of watermelon by affecting absorption and accumulation of mineral elements in the root system.
Collapse
|
10
|
Fu Q, Lai JL, Li C, Ji XH, Luo XG. Phytotoxicity mechanism of the natural radionuclide thorium in Vicia faba. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127718. [PMID: 34815127 DOI: 10.1016/j.jhazmat.2021.127718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/26/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Elucidation of the phytotoxic mechanisms of thorium (Th) is important for controlling Th accumulation in crops and improving the efficiency of phytoremediation. Here, we analyzed the subcellular distribution of Th in Vicia faba seedlings and the toxic reaction of seedlings to Th (5-40 μmol·L-1) at the subcellular and cellular levels. Increasing the phosphate level in the culture medium from 0.01 to 0.1 mmol·L-1 decreased the Th accumulation by the roots by 47-57%. Th was mainly distributed in the root cell walls (94-96%) and existed mainly in the form of residue (92-94%). Th accumulation in the root was similar to the changes observed for P, Ni, Cu, and Fe. High concentrations of Th (40 μmol·L-1) induced abnormal root growth and leaf photosynthetic metabolism. At the cellular level, Th (40 μmol·L-1) induced root edge cell death and inhibited root respiration and cell mitosis. SOD, POD and CAT activities were involved in the regulation of reactive oxygen species accumulation in the roots. Untargeted metabolomics identified 580 and 262 differentially expressed metabolites in roots and leaves. At the metabolic level, its toxicological mechanism involved a severe inhibition of the expression of nucleotides in roots and leaves.
Collapse
Affiliation(s)
- Qian Fu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jin-Long Lai
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Chen Li
- College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong 723000, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xiao-Hui Ji
- College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong 723000, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
11
|
Ninmanont P, Wongchai C, Pfeiffer W, Chaidee A. Salt stress of two rice varieties: root border cell response and multi-logistic quantification. PROTOPLASMA 2021; 258:1119-1131. [PMID: 33677735 DOI: 10.1007/s00709-021-01629-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
How to capture the rice varieties salt stress sensitivity? Here, we measure responses of root border cells (1 day, ± 60 mM NaCl) and apply multi-logistic quantification of growth variables (21 days, ± 60 mM NaCl) to two rice varieties, salt-sensitive IR29 and tolerant Pokkali. Thus, logistic models determine the maximum response velocities (Vmax) and times of half-maximum (T0) for root border cell (RBC) and growth parameters. Thereof, seven variables show logistic models (0.58 < R ≤ 1) and monotonous responses in both Pokkali and IR29: root to shoot ratio by water content, primary root length, shoot water, adventitious root number, shoot dry and fresh weight, and root dry weight. Moreover, the regression to lognormal distribution (R = 0.99) of these seven Vmax fractionated by T0 represents the rice variety's comprehensive response. Its quotient IR29/Pokkali is peaking at 98-fold higher velocity of IR29, thus capturing the variety's sensitivity. Consequently, our finding of 66-fold higher Vmax of primary root length response of IR29 indicates an essential salt sensor in the root, including RBC. Finally, the effects of salt stress on RBC confirm multi-logistic quantification, showing 36% decrease of RBC mucilage layer in IR29, without change in Pokkali. Inversely, RBC number of Pokkali increases 43% without change in IR29. Briefly, this suggests both RBC and multi-logistic quantification for the screening for salt tolerance in two thousand rice varieties.
Collapse
Affiliation(s)
- Ployphilin Ninmanont
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chatchawal Wongchai
- Division of Biology, School of Science, University of Phayao, Phayao, 56000, Thailand
| | - Wolfgang Pfeiffer
- Fachbereich Biowissenschaften, Universität Salzburg, 5020, Salzburg, Austria
| | - Anchalee Chaidee
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
12
|
Zhang H, Mo X, Tang D, Ma Y, Xie Y, Yang H, Shi M, Li L, Li W, Yan F, Zhang Y, Zhang H, Xu J. Comparative analysis of volatile and carotenoid metabolites and mineral elements in the flesh of 17 kiwifruit. J Food Sci 2021; 86:3023-3032. [PMID: 34146407 DOI: 10.1111/1750-3841.15796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/26/2021] [Accepted: 05/07/2021] [Indexed: 11/29/2022]
Abstract
Kiwifruit contains abundant nutritive compounds and is highly favored by the consumers worldwide. Therefore, detailed metabolic profiling is important to provide theoretic basis for the improvement of kiwifruit quality. In this study, the levels of volatiles, carotenoids, and mineral elements in the flesh of 17 kiwifruit accessions were evaluated. Acids and esters were the main volatiles in kiwifruit. During these 17 kiwifruit accessions, "Chenhong," three "Jinyan," and two "Guichang" germplasms were specifically rich in aromatic esters, which might be associated with their special taste. The main carotenoids were lutein, β-carotene, and zeaxanthin, and their levels were also genotype specific, with the green-fleshed "Guichang" having the highest level of carotenoids, and red-fleshed "Fuhong" and "Chenhong" being rich in zeaxanthin. Partial correlation analysis showed that the contents of some mineral elements were significantly correlated with those of specific volatiles and carotenoids, indicating the impacts of mineral elements on the accumulation of volatiles and carotenoids in the kiwifruit flesh. These results indicated that the contents of carotenoids and volatiles seemed to be affected by mineral elements and also provided a new potential method for improving fruit flavor quality in production.
Collapse
Affiliation(s)
- Haipeng Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, PR China
| | - Xiaoqin Mo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
| | - Dongmei Tang
- Citrus Fruit Research Institute, Guiyang, Guizhou Province, PR China
| | - Yuhua Ma
- Citrus Fruit Research Institute, Guiyang, Guizhou Province, PR China
| | - Yunxia Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
| | - Hongbin Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
| | - Meiyan Shi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
| | - Lin Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
| | - Wenyun Li
- Citrus Fruit Research Institute, Guiyang, Guizhou Province, PR China
| | - Fuhua Yan
- Lishui Academy of Agricultural and Forestry Sciences, Lishui, Zhejiang Province, PR China
| | - Yajuan Zhang
- Enshi Agriculture Bureau, Enshi, Hubei Province, PR China
| | - Hongyan Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
13
|
Adamczyk B. Root-Derived Proteases as a Plant Tool to Access Soil Organic Nitrogen; Current Stage of Knowledge and Controversies. PLANTS 2021; 10:plants10040731. [PMID: 33918076 PMCID: PMC8069566 DOI: 10.3390/plants10040731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 02/03/2023]
Abstract
Anthropogenic deterioration of the global nitrogen (N) cycle emerges mainly from overuse of inorganic N fertilizers in nutrient-limited cropping systems. To counteract a further dysregulation of the N cycle, we need to improve plant nitrogen use efficiency. This aim may be reached via unravelling all plant mechanisms to access soil N, with special attention to the dominating high-molecular-mass N pool. Traditionally, we believe that inorganic N is the only plant-available N pool, however, more recent studies point to acquisition of organic N compounds, i.e., amino acids, short peptides, and proteins. The least known mechanism of plants to increase the N uptake is a direct increase of soil proteolysis via root-derived proteases. This paper provides a review of the knowledge about root-derived proteases and also controversies behind this phenomenon.
Collapse
Affiliation(s)
- Bartosz Adamczyk
- The Natural Resources Institute, Luonnonvarakeskus, Viikinkaari 4, 00790 Helsinki, Finland
| |
Collapse
|
14
|
Ropitaux M, Bernard S, Schapman D, Follet-Gueye ML, Vicré M, Boulogne I, Driouich A. Root Border Cells and Mucilage Secretions of Soybean, Glycine Max (Merr) L.: Characterization and Role in Interactions with the Oomycete Phytophthora Parasitica. Cells 2020; 9:E2215. [PMID: 33008016 PMCID: PMC7650559 DOI: 10.3390/cells9102215] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 01/06/2023] Open
Abstract
Root border cells (BCs) and their associated secretions form a protective structure termed the root extracellular trap (RET) that plays a major role in root interactions with soil borne microorganisms. In this study, we investigated the release and morphology of BCs of Glycine max using light and cryo-scanning electron microscopy (SEM). We also examined the occurrence of cell-wall glycomolecules in BCs and secreted mucilage using immunofluorescence microscopy in conjunction with anti-glycan antibodies. Our data show that root tips released three populations of BCs defined as spherical, intermediate and elongated cells. The mechanism of shedding seemed to be cell morphotype-specific. The data also show that mucilage contained pectin, cellulose, extracellular DNA, histones and two hemicellulosic polysaccharides, xyloglucan and heteromannan. The latter has never been reported previously in any plant root secretions. Both hemicellulosic polysaccharides formed a dense fibrillary network embedding BCs and holding them together within the mucilage. Finally, we investigated the effect of the RET on the interactions of root with the pathogenic oomycete Phytophthora parasitica early during infection. Our findings reveal that the RET prevented zoospores from colonizing root tips by blocking their entry into root tissues and inducing their lysis.
Collapse
Affiliation(s)
- Marc Ropitaux
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche « Normandie-Végétal »-FED 4277, Université de ROUEN Normandie, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France; (M.R.); (S.B.); (M.-L.F.-G.); (M.V.); (I.B.)
| | - Sophie Bernard
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche « Normandie-Végétal »-FED 4277, Université de ROUEN Normandie, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France; (M.R.); (S.B.); (M.-L.F.-G.); (M.V.); (I.B.)
- Cell Imaging Platform (PRIMACEN-IRIB), Université de ROUEN Normandie, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France;
| | - Damien Schapman
- Cell Imaging Platform (PRIMACEN-IRIB), Université de ROUEN Normandie, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France;
| | - Marie-Laure Follet-Gueye
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche « Normandie-Végétal »-FED 4277, Université de ROUEN Normandie, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France; (M.R.); (S.B.); (M.-L.F.-G.); (M.V.); (I.B.)
- Cell Imaging Platform (PRIMACEN-IRIB), Université de ROUEN Normandie, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France;
| | - Maïté Vicré
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche « Normandie-Végétal »-FED 4277, Université de ROUEN Normandie, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France; (M.R.); (S.B.); (M.-L.F.-G.); (M.V.); (I.B.)
| | - Isabelle Boulogne
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche « Normandie-Végétal »-FED 4277, Université de ROUEN Normandie, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France; (M.R.); (S.B.); (M.-L.F.-G.); (M.V.); (I.B.)
| | - Azeddine Driouich
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche « Normandie-Végétal »-FED 4277, Université de ROUEN Normandie, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France; (M.R.); (S.B.); (M.-L.F.-G.); (M.V.); (I.B.)
- Cell Imaging Platform (PRIMACEN-IRIB), Université de ROUEN Normandie, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France;
| |
Collapse
|
15
|
Ma J, Feng X, Yang X, Cao Y, Zhao W, Sun L. The leaf extract of crofton weed ( Eupatorium adenophorum) inhibits primary root growth by inducing cell death in maize root border cells. PLANT DIVERSITY 2020; 42:174-180. [PMID: 32695950 PMCID: PMC7361134 DOI: 10.1016/j.pld.2020.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 05/24/2023]
Abstract
The extract of crofton weed (Eupatorium adenophorum) inhibits seed germination and weed growth; however, the physiological mechanisms underlying the effect of crofton weed extract on the modulation of seedling growth and root system development remain largely unclear. In this study, we investigated the effects of the leaf extract of crofton weed (LECW) on primary root (PR) growth in maize seedlings. Treatment with LECW markedly inhibited seed germination and seedling growth in a dose-dependent manner. Physiological analysis indicated that the LECW induced reactive oxygen species (ROS) accumulation in root tips, thereby leading to cell swelling and deformation both in the root cap and elongation zone of root tips, finally leading to cell death in root border cells (RBCs) and PR growth inhibition. The LECW also inhibited pectin methyl esterase (PME) activity, thereby decreasing the RBC number. Taken together, our results indicated that the LECW inhibited PR growth by inducing ROS accumulation and subsequent cell death in RBCs. The present study provides a better understanding of how the LECW modifies root system development and provides insight for evaluating the toxicity of crofton weed extracts in plants.
Collapse
Affiliation(s)
- Jinhu Ma
- College of Engineering, Shanxi Agricultural University, Taigu, 030801, China
| | - Xinxin Feng
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaohuan Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Yongheng Cao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Weifeng Zhao
- Faculty of Tropical Crops, Yunnan Agricultural University, Puer, 665000, China
| | - Liangliang Sun
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| |
Collapse
|
16
|
Kumar N, Iyer-Pascuzzi AS. Shedding the Last Layer: Mechanisms of Root Cap Cell Release. PLANTS 2020; 9:plants9030308. [PMID: 32121604 PMCID: PMC7154840 DOI: 10.3390/plants9030308] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 01/06/2023]
Abstract
The root cap, a small tissue at the tip of the root, protects the root from environmental stress and functions in gravity perception. To perform its functions, the position and size of the root cap remains stable throughout root growth. This occurs due to constant root cap cell turnover, in which the last layer of the root cap is released, and new root cap cells are produced. Cells in the last root cap layer are known as border cells or border-like cells, and have important functions in root protection against bacterial and fungal pathogens. Despite the importance of root cap cell release to root health and plant growth, the mechanisms regulating this phenomenon are not well understood. Recent work identified several factors including transcription factors, auxin, and small peptides with roles in the production and release of root cap cells. Here, we review the involvement of the known players in root cap cell release, compare the release of border-like cells and border cells, and discuss the importance of root cap cell release to root health and survival.
Collapse
|
17
|
Carreras A, Bernard S, Durambur G, Gügi B, Loutelier C, Pawlak B, Boulogne I, Vicré M, Driouich A, Goffner D, Follet-Gueye ML. In vitro characterization of root extracellular trap and exudates of three Sahelian woody plant species. PLANTA 2019; 251:19. [PMID: 31781905 DOI: 10.1007/s00425-019-03302-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
Arabinogalactan protein content in both root extracellular trap and root exudates varies in three Sahelian woody plant species that are differentially tolerant to drought. At the root tip, mature root cap cells, mainly border cells (BCs)/border-like cells (BLCs) and their associated mucilage, form a web-like structure known as the "Root Extracellular Trap" (RET). Although the RET along with the entire suite of root exudates are known to influence rhizosphere function, their features in woody species is poorly documented. Here, RET and root exudates were analyzed from three Sahelian woody species with contrasted sensitivity to drought stress (Balanites aegyptiaca, Acacia raddiana and Tamarindus indica) and that have been selected for reforestation along the African Great Green Wall in northern Senegal. Optical and transmission electron microscopy show that Balanites aegyptiaca, the most drought-tolerant species, produces only BC, whereas Acacia raddiana and Tamarindus indica release both BCs and BLCs. Biochemical analyses reveal that RET and root exudates of Balanites aegyptiaca and Acacia raddiana contain significantly more abundant arabinogalactan proteins (AGPs) compared to Tamarindus indica, the most drought-sensitive species. Root exudates of the three woody species also differentially impact the plant soil beneficial bacteria Azospirillum brasilense growth. These results highlight the importance of root secretions for woody species survival under dry conditions.
Collapse
Affiliation(s)
- Alexis Carreras
- Normandie Univ, UNIROUEN, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821, Mont Saint-Aignan, France
- Fédération de Recherche « Normandie-Végétal » , FED 4277, 76821, Mont-Saint-Aignan, France
| | - Sophie Bernard
- Normandie Univ, UNIROUEN, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821, Mont Saint-Aignan, France
- Fédération de Recherche « Normandie-Végétal » , FED 4277, 76821, Mont-Saint-Aignan, France
- Normandie Univ, UNIROUEN, PRIMACEN, IRIB, 76821, Mont-Saint-Aignan, France
| | - Gaëlle Durambur
- Normandie Univ, UNIROUEN, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821, Mont Saint-Aignan, France
- Fédération de Recherche « Normandie-Végétal » , FED 4277, 76821, Mont-Saint-Aignan, France
| | - Bruno Gügi
- Normandie Univ, UNIROUEN, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821, Mont Saint-Aignan, France
- Fédération de Recherche « Normandie-Végétal » , FED 4277, 76821, Mont-Saint-Aignan, France
| | - Corinne Loutelier
- Normandie Univ, UNIROUEN, COBRA CNRS UMR 6014, 76821, Mont-Saint-Aignan, France
| | - Barbara Pawlak
- Normandie Univ, UNIROUEN, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821, Mont Saint-Aignan, France
- Fédération de Recherche « Normandie-Végétal » , FED 4277, 76821, Mont-Saint-Aignan, France
| | - Isabelle Boulogne
- Normandie Univ, UNIROUEN, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821, Mont Saint-Aignan, France
- Fédération de Recherche « Normandie-Végétal » , FED 4277, 76821, Mont-Saint-Aignan, France
| | - Maite Vicré
- Normandie Univ, UNIROUEN, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821, Mont Saint-Aignan, France
- Fédération de Recherche « Normandie-Végétal » , FED 4277, 76821, Mont-Saint-Aignan, France
| | - Azeddine Driouich
- Normandie Univ, UNIROUEN, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821, Mont Saint-Aignan, France
- Fédération de Recherche « Normandie-Végétal » , FED 4277, 76821, Mont-Saint-Aignan, France
| | - Deborah Goffner
- CNRS UMI 3189 ESS, Pôle France, 13344, Marseille Cedex 15, France
| | - Marie-Laure Follet-Gueye
- Normandie Univ, UNIROUEN, Glyco-MEV EA4358, SFR NORVEGE FED 4277, 76821, Mont Saint-Aignan, France.
- Fédération de Recherche « Normandie-Végétal » , FED 4277, 76821, Mont-Saint-Aignan, France.
- Normandie Univ, UNIROUEN, PRIMACEN, IRIB, 76821, Mont-Saint-Aignan, France.
| |
Collapse
|
18
|
Wang X, Cheng Y, Yang C, Yang C, Mu Y, Xia Q, Ma Q. QTL mapping for aluminum tolerance in RIL population of soybean (Glycine max L.) by RAD sequencing. PLoS One 2019; 14:e0223674. [PMID: 31661499 PMCID: PMC6818782 DOI: 10.1371/journal.pone.0223674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/25/2019] [Indexed: 11/23/2022] Open
Abstract
Aluminum (Al3+) toxicity is a typical abiotic stress that severely limits crop production in acidic soils. In this study, an RIL (recombinant inbred line, F12) population derived from the cross of Zhonghuang 24 (ZH 24) and Huaxia 3 (HX 3) (160 lines) was tested using hydroponic cultivation. Relative root elongation (RRE) and apical Al3+ content (AAC) were evaluated for each line, and a significant negative correlation was detected between the two indicators. Based on a high-density genetic linkage map, the phenotypic data were used to identify quantitative trait loci (QTLs) associated with these traits. With composite interval mapping (CIM) of the linkage map, five QTLs that explained 39.65% of RRE and AAC variation were detected on chromosomes (Chrs) Gm04, Gm16, Gm17 and Gm19. Two new QTLs, qRRE_04 and qAAC_04, were located on the same region of bin93-bin94 on Chr Gm04, which explained 7.09% and 8.98% phenotypic variation, respectively. Furthermore, the results of the expression analysis of candidate genes in the five genetic regions of the QTLs showed that six genes (Glyma.04g218700, Glyma.04g212800, Glyma.04g213300, Glyma.04g217400, Glyma.04g216100 and Glyma.04g220600) exhibited significant differential expression between the Al3+ treatment and the control of two parents. The results of qRT-PCR analysis indicated that Glyma.04g218700 was upregulated by Al3+ treatment with the hundreds-fold increased expression level and may be a candidate gene with potential roles in the response to aluminum stress. Therefore, our efforts will enable future functional analysis of candidate genes and will contribute to the strategies for improvement of aluminum tolerance in soybean.
Collapse
Affiliation(s)
- Xinxin Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ce Yang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Cunyi Yang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yinghui Mu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qiuju Xia
- The Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
|
20
|
Jaskowiak J, Kwasniewska J, Milewska-Hendel A, Kurczynska EU, Szurman-Zubrzycka M, Szarejko I. Aluminum Alters the Histology and Pectin Cell Wall Composition of Barley Roots. Int J Mol Sci 2019; 20:ijms20123039. [PMID: 31234423 PMCID: PMC6628276 DOI: 10.3390/ijms20123039] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 01/05/2023] Open
Abstract
Aluminum (Al) is one of the most important crust elements causing reduced plant production in acidic soils. Barley (Hordeum vulgare L.) is considered to be one of the crops that is most sensitive to Al, and the root cell wall is the primary target of Al toxicity. In this study, we evaluate the possible involvement of specific pectic epitopes in the cells of barley roots in response to aluminum exposure. We targeted four different pectic epitopes recognized by LM5, LM6, LM19, and LM20 antibodies using an immunocytochemical approach. Since Al becomes available and toxic to plants in acidic soils, we performed our analyses on barley roots that had been grown in acidic conditions (pH 4.0) with and without Al and in control conditions (pH 6.0). Differences connected with the presence and distribution of the pectic epitopes between the control and Al-treated roots were observed. In the Al-treated roots, pectins with galactan sidechains were detected with a visually lower fluorescence intensity than in the control roots while pectins with arabinan sidechains were abundantly present. Furthermore, esterified homogalacturonans (HGs) were present with a visually higher fluorescence intensity compared to the control, while methyl-esterified HGs were present in a similar amount. Based on the presented results, it was concluded that methyl-esterified HG can be a marker for newly arising cell walls. Additionally, histological changes were detected in the roots grown under Al exposure. Among them, an increase in root diameter, shortening of root cap, and increase in the size of rhizodermal cells and divisions of exodermal and cortex cells were observed. The presented data extend upon the knowledge on the chemical composition of the cell wall of barley root cells under stress conditions. The response of cells to Al can be expressed by the specific distribution of pectins in the cell wall and, thus, enables the knowledge on Al toxicity to be extended by explaining the mechanism by which Al inhibits root elongation.
Collapse
Affiliation(s)
- Joanna Jaskowiak
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Jolanta Kwasniewska
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Anna Milewska-Hendel
- Department of Cell Biology, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Ewa Urszula Kurczynska
- Department of Cell Biology, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Miriam Szurman-Zubrzycka
- Department of Genetics, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Iwona Szarejko
- Department of Genetics, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland.
| |
Collapse
|
21
|
Maeda K, Kunieda T, Tamura K, Hatano K, Hara-Nishimura I, Shimada T. Identification of Periplasmic Root-Cap Mucilage in Developing Columella Cells of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2019; 60:1296-1303. [PMID: 30892660 DOI: 10.1093/pcp/pcz047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
Plant roots secrete various substances with diverse functions against both plants and microbes in the rhizosphere. A major secretory substance is root-cap mucilage, whose functions have been well characterized, albeit mainly in crops. However, little is currently known about the developmental mechanisms of root-cap mucilage. Here, we show the accumulation and extrusion of root-cap mucilage in Arabidopsis. We found propidium iodide (PI) stainable structures between the plasma membrane and cell wall in the sixth layer of columella cells (c6) from the quiescent center. Ruthenium red staining and PI staining with calcium ions suggested that the structure comprises in part pectin polysaccharides. Electron microscopy revealed that the structure had a meshwork of electron-dense filaments that resembled periplasmic mucilage in other plants. In the c6 cells, we also observed many large vesicles with denser meshwork filaments to periplasmic mucilage, which likely mediate the transport of mucilage components. Extruded mucilage was observed outside a partially degraded cell wall in the c7 cells. Moreover, we found that the Class IIB NAC transcription factors BEARSKIN1 (BRN1) and BRN2, which are known to regulate the terminal differentiation of columella cells, were required for the efficient accumulation of root-cap mucilage in Arabidopsis. Taken together, our findings reveal the accumulation of and dynamic changes in periplasmic mucilage during columella cell development in Arabidopsis.
Collapse
Affiliation(s)
- Kazuki Maeda
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Tadashi Kunieda
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Kentaro Tamura
- Department of Environmental and Life Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kyoko Hatano
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Ikuko Hara-Nishimura
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Tomoo Shimada
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
22
|
Ropitaux M, Bernard S, Follet-Gueye ML, Vicré M, Boulogne I, Driouich A. Xyloglucan and cellulose form molecular cross-bridges connecting root border cells in pea (Pisum sativum). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:191-196. [PMID: 30904720 DOI: 10.1016/j.plaphy.2019.03.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 05/22/2023]
Abstract
Pea (Pisum sativum) root cap releases a large number of living border cells that secrete abundant mucilage into the extracellular medium. Mucilage contains a complex mixture of polysaccharides, proteins and secondary metabolites important for its structure and function in defense. Unlike xyloglucan and cellulose, pectin and arabinogalactan proteins have been investigated in pea root and shown to be major components of border cell walls and mucilage. In this study, we investigated the occurrence of xyloglucan and cellulose in pea border cells and mucilage using cytochemical staining, immunocytochemistry and laser scanning confocal microscopy. Our data show that i) unlike cellulose, xyloglucan is highly present in the released mucilage as a dense fibrillary network enclosing border cells and ii) that xyloglucan and cellulose form molecular cross-bridges that tether cells and maintain them attached together. These findings suggest that secreted xyloglucan is essential for mucilage strengthening and border cell attachment and functioning.
Collapse
Affiliation(s)
- Marc Ropitaux
- Université de ROUEN, UFR des Sciences et Techniques, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche « Normandie-Végétal », FED 4277, F-76821, Mont-Saint-Aignan, France.
| | - Sophie Bernard
- Université de ROUEN, UFR des Sciences et Techniques, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche « Normandie-Végétal », FED 4277, F-76821, Mont-Saint-Aignan, France; Cell Imaging Platform (PRIMACEN-IRIB), Normandie Université, UNIROUEN, F-76821, Mont-Saint-Aignan, France
| | - Marie-Laure Follet-Gueye
- Université de ROUEN, UFR des Sciences et Techniques, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche « Normandie-Végétal », FED 4277, F-76821, Mont-Saint-Aignan, France; Cell Imaging Platform (PRIMACEN-IRIB), Normandie Université, UNIROUEN, F-76821, Mont-Saint-Aignan, France
| | - Maïté Vicré
- Université de ROUEN, UFR des Sciences et Techniques, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche « Normandie-Végétal », FED 4277, F-76821, Mont-Saint-Aignan, France
| | - Isabelle Boulogne
- Université de ROUEN, UFR des Sciences et Techniques, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche « Normandie-Végétal », FED 4277, F-76821, Mont-Saint-Aignan, France
| | - Azeddine Driouich
- Université de ROUEN, UFR des Sciences et Techniques, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche « Normandie-Végétal », FED 4277, F-76821, Mont-Saint-Aignan, France; Cell Imaging Platform (PRIMACEN-IRIB), Normandie Université, UNIROUEN, F-76821, Mont-Saint-Aignan, France
| |
Collapse
|
23
|
Huskey DA, Curlango‐Rivera G, Hawes MC. Use of rhodizonic acid for rapid detection of root border cell trapping of lead and reversal of trapping with DNase. APPLICATIONS IN PLANT SCIENCES 2019; 7:e01240. [PMID: 31024783 PMCID: PMC6476171 DOI: 10.1002/aps3.1240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY Lead (Pb) is a contaminant whose removal from soil remains a challenge. In a previous study, border cells released from root tips were found to trap Pb, alter its chemistry, and prevent root uptake. Rhodizonic acid (RA) is a forensic tool used to reveal gunshot residue, and also to detect Pb within plant tissues. Here we report preliminary observations to assess the potential application of RA in exploring the dynamics of Pb accumulation at the root tip surface. METHODS AND RESULTS Corn root tips were immersed in Pb solution, stained with RA, and observed microscopically. Pb trapping by border cells was evident within minutes. The role of extracellular DNA was revealed when addition of nucleases resulted in dispersal of RA-stained Pb particles. CONCLUSIONS RA is an efficient tool to monitor Pb-root interactions. Trapping by border cells may control Pb levels and chemistry at the root tip surface. Understanding how plants influence Pb distribution in soil may facilitate its remediation.
Collapse
Affiliation(s)
- David A. Huskey
- Department of Soil, Water and Environmental SciencesUniversity of Arizona429 Shantz Building, #38 1177 E. Fourth Street, P.O. Box 210038TucsonArizona85721‐0038USA
| | - Gilberto Curlango‐Rivera
- Department of Soil, Water and Environmental SciencesUniversity of Arizona429 Shantz Building, #38 1177 E. Fourth Street, P.O. Box 210038TucsonArizona85721‐0038USA
| | - Martha C. Hawes
- Department of Soil, Water and Environmental SciencesUniversity of Arizona429 Shantz Building, #38 1177 E. Fourth Street, P.O. Box 210038TucsonArizona85721‐0038USA
| |
Collapse
|
24
|
Krasnov GS, Dmitriev AA, Zyablitsin AV, Rozhmina TA, Zhuchenko AA, Kezimana P, Snezhkina AV, Fedorova MS, Novakovskiy RO, Pushkova EN, Povkhova LV, Bolsheva NL, Kudryavtseva AV, Melnikova NV. Aluminum Responsive Genes in Flax ( Linum usitatissimum L.). BIOMED RESEARCH INTERNATIONAL 2019; 2019:5023125. [PMID: 30941364 PMCID: PMC6421055 DOI: 10.1155/2019/5023125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/22/2018] [Accepted: 12/12/2018] [Indexed: 01/08/2023]
Abstract
Flax (Linum usitatissimum L.) is a multipurpose crop which is used for the production of textile, oils, composite materials, pharmaceuticals, etc. Soil acidity results in a loss of seed and fiber production of flax, and aluminum toxicity is a major factor that depresses plant growth and development in acid conditions. In the present work, we evaluated gene expression alterations in four flax genotypes with diverse tolerance to aluminum exposure. Using RNA-Seq approach, we revealed genes that are differentially expressed under aluminum stress in resistant (Hermes, TMP1919) and sensitive (Lira, Orshanskiy) cultivars and selectively confirmed the identified alterations using qPCR. To search for differences in response to aluminum between resistant and sensitive genotypes, we developed the scoring that allowed us to suggest the involvement of MADS-box and NAC transcription factors regulating plant growth and development and enzymes participating in cell wall modifications in aluminum tolerance in flax. Using Gene Ontology (GO) enrichment analysis, we revealed that glutathione metabolism, oxidoreductase, and transmembrane transporter activities are the most affected by the studied stress in flax. Thus, we identified genes that are involved in aluminum response in resistant and sensitive genotypes and suggested genes that contribute to flax tolerance to the aluminum stress.
Collapse
Affiliation(s)
- George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexander V. Zyablitsin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Tatiana A. Rozhmina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Federal Research Center for Bast Fiber Crops, Torzhok 172002, Russia
| | - Alexander A. Zhuchenko
- Federal Research Center for Bast Fiber Crops, Torzhok 172002, Russia
- All-Russian Horticultural Institute for Breeding, Agrotechnology and Nursery, Moscow 115598, Russia
| | - Parfait Kezimana
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Anastasiya V. Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Maria S. Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Liubov V. Povkhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
25
|
Association of Proteomics Changes with Al-Sensitive Root Zones in Switchgrass. Proteomes 2018; 6:proteomes6020015. [PMID: 29565292 PMCID: PMC6027131 DOI: 10.3390/proteomes6020015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/13/2018] [Accepted: 03/21/2018] [Indexed: 12/25/2022] Open
Abstract
In this paper, we report on aluminum (Al)-induced root proteomic changes in switchgrass. After growth in a hydroponic culture system supplemented with 400 μM of Al, plants began to show signs of physiological stress such as a reduction in photosynthetic rate. At this time, the basal 2-cm long root tips were harvested and divided into two segments, each of 1-cm in length, for protein extraction. Al-induced changes in proteomes were identified using tandem mass tags mass spectrometry (TMT-MS)-based quantitative proteomics analysis. A total of 216 proteins (approximately 3.6% of total proteins) showed significant differences between non-Al treated control and treated groups with significant fold change (twice the standard deviation; FDR adjusted p-value < 0.05). The apical root tip tissues expressed more dramatic proteome changes (164 significantly changed proteins; 3.9% of total proteins quantified) compared to the elongation/maturation zones (52 significantly changed proteins, 1.1% of total proteins quantified). Significantly changed proteins from the apical 1-cm root apex tissues were clustered into 25 biological pathways; proteins involved in the cell cycle (rotamase FKBP 1 isoforms, and CDC48 protein) were all at a reduced abundance level compared to the non-treated control group. In the root elongation/maturation zone tissues, the identified proteins were placed into 18 pathways, among which proteins involved in secondary metabolism (lignin biosynthesis) were identified. Several STRING protein interaction networks were developed for these Al-induced significantly changed proteins. This study has identified a large number of Al-responsive proteins, including transcription factors, which will be used for exploring new Al tolerance genes and mechanisms. Data are available via ProteomeXchange with identifiers PXD008882 and PXD009125.
Collapse
|
26
|
Yuan J, Raza W, Shen Q. Root Exudates Dominate the Colonization of Pathogen and Plant Growth-Promoting Rhizobacteria. SOIL BIOLOGY 2018. [DOI: 10.1007/978-3-319-75910-4_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Chuberre C, Plancot B, Driouich A, Moore JP, Bardor M, Gügi B, Vicré M. Plant Immunity Is Compartmentalized and Specialized in Roots. FRONTIERS IN PLANT SCIENCE 2018; 9:1692. [PMID: 30546372 PMCID: PMC6279857 DOI: 10.3389/fpls.2018.01692] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/31/2018] [Indexed: 05/21/2023]
Abstract
Roots are important organs for plant survival. In recent years, clear differences between roots and shoots in their respective plant defense strategies have been highlighted. Some putative gene markers of defense responses usually used in leaves are less relevant in roots and are sometimes not even expressed. Immune responses in roots appear to be tissue-specific suggesting a compartmentalization of defense mechanisms in root systems. Furthermore, roots are able to activate specific defense mechanisms in response to various elicitors including Molecular/Pathogen Associated Molecular Patterns, (MAMPs/PAMPs), signal compounds (e.g., hormones) and plant defense activator (e.g., β-aminobutyric acid, BABA). This review discusses recent findings in root defense mechanisms and illustrates the necessity to discover new root specific biomarkers. The development of new strategies to control root disease and improve crop quality will also be reviewed.
Collapse
Affiliation(s)
- Coralie Chuberre
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Rouen, France
- Fédération de Recherche “NORVEGE”- FED 4277, Rouen, France
| | - Barbara Plancot
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Rouen, France
- Fédération de Recherche “NORVEGE”- FED 4277, Rouen, France
| | - Azeddine Driouich
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Rouen, France
- Fédération de Recherche “NORVEGE”- FED 4277, Rouen, France
| | - John P. Moore
- Department of Viticulture and Oenology, Faculty of AgriSciences, Institute for Wine Biotechnology, Stellenbosch University, Matieland, South Africa
| | - Muriel Bardor
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Rouen, France
- Fédération de Recherche “NORVEGE”- FED 4277, Rouen, France
- Institut Universitaire de France, Paris, France
| | - Bruno Gügi
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Rouen, France
- Fédération de Recherche “NORVEGE”- FED 4277, Rouen, France
- *Correspondence: Bruno Gügi, Maïté Vicré,
| | - Maïté Vicré
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Rouen, France
- Fédération de Recherche “NORVEGE”- FED 4277, Rouen, France
- *Correspondence: Bruno Gügi, Maïté Vicré,
| |
Collapse
|
28
|
Avellan A, Schwab F, Masion A, Chaurand P, Borschneck D, Vidal V, Rose J, Santaella C, Levard C. Nanoparticle Uptake in Plants: Gold Nanomaterial Localized in Roots of Arabidopsis thaliana by X-ray Computed Nanotomography and Hyperspectral Imaging. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8682-8691. [PMID: 28686423 DOI: 10.1021/acs.est.7b01133] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Terrestrial plants can internalize and translocate nanoparticles (NPs). However, direct evidence for the processes driving the NP uptake and distribution in plants is scarce at the cellular level. Here, NP-root interactions were investigated after 10 days of exposure of Arabidopsis thaliana to 10 mg·L-1 of negatively or positively charged gold NPs (∼12 nm) in gels. Two complementary imaging tools were used: X-ray computed nanotomography (nano-CT) and enhanced dark-field microscopy combined with hyperspectral imaging (DF-HSI). The use of these emerging techniques improved our ability to detect and visualize NP in plant tissue: by spectral confirmation via DF-HSI, and in three dimensions via nano-CT. The resulting imaging provides direct evidence that detaching border-like cells (i.e., sheets of border cells detaching from the root) and associated mucilage can accumulate and trap NPs irrespective of particle charge. On the contrary, border cells on the root cap behaved in a charge-specific fashion: positively charged NPs induced a higher mucilage production and adsorbed to it, which prevented translocation into the root tissue. Negatively charged NPs did not adsorb to the mucilage and were able to translocate into the apoplast. These observations provide direct mechanistic insight into NP-plant interactions, and reveal the important function of border cells and mucilage in interactions of plants with charged NPs.
Collapse
Affiliation(s)
- Astrid Avellan
- Aix Marseille Université , CNRS, IRD, College De France, CEREGE, Aix en Provence, France
- iCEINT, International Center for the Environmental Implications of Nanotechologies, CNRS-Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
- Aix Marseille Université, CEA, CNRS, Laboratory of Microbial Ecology of the Rhizosphere and Extreme Environments (LEMIRE) , Biosciences and Biotechnology Institute of Aix-Marseille (BIAM) ECCOREV, FR 3098, CEA/Cadarache, St-Paul-lez-Durance, France
| | - Fabienne Schwab
- Aix Marseille Université , CNRS, IRD, College De France, CEREGE, Aix en Provence, France
- iCEINT, International Center for the Environmental Implications of Nanotechologies, CNRS-Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| | - Armand Masion
- Aix Marseille Université , CNRS, IRD, College De France, CEREGE, Aix en Provence, France
- iCEINT, International Center for the Environmental Implications of Nanotechologies, CNRS-Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| | - Perrine Chaurand
- Aix Marseille Université , CNRS, IRD, College De France, CEREGE, Aix en Provence, France
- iCEINT, International Center for the Environmental Implications of Nanotechologies, CNRS-Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| | - Daniel Borschneck
- Aix Marseille Université , CNRS, IRD, College De France, CEREGE, Aix en Provence, France
- iCEINT, International Center for the Environmental Implications of Nanotechologies, CNRS-Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| | - Vladimir Vidal
- Aix Marseille Université , CNRS, IRD, College De France, CEREGE, Aix en Provence, France
- iCEINT, International Center for the Environmental Implications of Nanotechologies, CNRS-Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| | - Jérôme Rose
- Aix Marseille Université , CNRS, IRD, College De France, CEREGE, Aix en Provence, France
- iCEINT, International Center for the Environmental Implications of Nanotechologies, CNRS-Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| | - Catherine Santaella
- iCEINT, International Center for the Environmental Implications of Nanotechologies, CNRS-Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
- Aix Marseille Université, CEA, CNRS, Laboratory of Microbial Ecology of the Rhizosphere and Extreme Environments (LEMIRE) , Biosciences and Biotechnology Institute of Aix-Marseille (BIAM) ECCOREV, FR 3098, CEA/Cadarache, St-Paul-lez-Durance, France
| | - Clément Levard
- Aix Marseille Université , CNRS, IRD, College De France, CEREGE, Aix en Provence, France
- iCEINT, International Center for the Environmental Implications of Nanotechologies, CNRS-Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| |
Collapse
|
29
|
Weiller F, Moore JP, Young P, Driouich A, Vivier MA. The Brassicaceae species Heliophila coronopifolia produces root border-like cells that protect the root tip and secrete defensin peptides. ANNALS OF BOTANY 2017; 119:803-813. [PMID: 27481828 PMCID: PMC5379576 DOI: 10.1093/aob/mcw141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/03/2016] [Accepted: 06/02/2016] [Indexed: 05/16/2023]
Abstract
Background and Aims Root border cells and border-like cells (BLCs), the latter originally described in Arabidopsis thaliana , have been described as cells released at the root tips of the species in which they occur. BLCs are thought to provide protection to root meristems similar to classical root border cells. In addition, four defensin peptides (Hc-AFP1-4) have previously been characterized from Heliophila coronopifolia , a South African semi-desert flower, and found to be strongly antifungal. This provided an opportunity to evaluate if the BLCs of H. coronopifolia indeed produce these defensins, which would provide evidence towards a defence role for BLCs. Methods Fluorescence microscopy, using live-cell-imaging technology, was used to characterize the BLCs of H. coronopifolia . Quantitative real-time PCR (qRT-PCR) analysis and immunofluorescence microscopy was used to characterize these defensin peptides. Key Results BLCs originated at the root apical meristem and formed a protective sheath at the tip and along the sides as the root elongated in solid medium. BLCs have a cellulose-enriched cell wall, intact nuclei and are embedded in a layer of pectin-rich mucilage. Pectinase treatments led to the dissolution of the sheath and dissociation of the root BLCs. Hc-AFP1-4 genes were all expressed in root tissues, but Hc-AFP3 transcripts were the most abundant in these tissues as measured by qRT-PCR. A polyclonal antibody that was cross-reactive with all four defensins, and probably recognizing a general plant defensin epitope, was used in fluorescence microscopy analysis to examine the presence of the peptides in the root tip and BLCs. Data confirmed the peptides present in the root tip tissues, the mucilage sheath and the BLCs. Conclusions This study provides a link between defensin peptides and BLCs, both embedded in a protective pectin mucilage sheath, during normal plant growth and development. The presence of the Hc-AFP3 defensin peptides in the BLCs suggests a role for these cells in root protection.
Collapse
Affiliation(s)
- Florent Weiller
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Grand Réseau de Recherche VASI de Haute Normandie, Normandie Université, Université de Rouen, 76821 Mont Saint Aignan cedex, France
| | - John P. Moore
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
| | - Philip Young
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
| | - Azeddine Driouich
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Grand Réseau de Recherche VASI de Haute Normandie, Normandie Université, Université de Rouen, 76821 Mont Saint Aignan cedex, France
| | - Melané A. Vivier
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
| |
Collapse
|
30
|
Bojórquez-Quintal E, Escalante-Magaña C, Echevarría-Machado I, Martínez-Estévez M. Aluminum, a Friend or Foe of Higher Plants in Acid Soils. FRONTIERS IN PLANT SCIENCE 2017; 8:1767. [PMID: 29075280 PMCID: PMC5643487 DOI: 10.3389/fpls.2017.01767] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/27/2017] [Indexed: 05/11/2023]
Abstract
Aluminum (Al) is the most abundant metal in the earth's crust, but its availability depends on soil pH. Despite this abundance, Al is not considered an essential element and so far no experimental evidence has been put forward for a biological role. In plants and other organisms, Al can have a beneficial or toxic effect, depending on factors such as, metal concentration, the chemical form of Al, growth conditions and plant species. Here we review recent advances in the study of Al in plants at physiological, biochemical and molecular levels, focusing mainly on the beneficial effect of Al in plants (stimulation of root growth, increased nutrient uptake, the increase in enzyme activity, and others). In addition, we discuss the possible mechanisms involved in improving the growth of plants cultivated in soils with acid pH, as well as mechanisms of tolerance to the toxic effect of Al.
Collapse
Affiliation(s)
- Emanuel Bojórquez-Quintal
- CONACYT-Laboratorio de Análisis y Diagnóstico del Patrimonio, El Colegio de Michoacán, La Piedad, Mexico
| | - Camilo Escalante-Magaña
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Ileana Echevarría-Machado
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Manuel Martínez-Estévez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
- *Correspondence: Manuel Martínez-Estévez,
| |
Collapse
|
31
|
Adams J, Wright M, Wagner H, Valiente J, Britt D, Anderson A. Cu from dissolution of CuO nanoparticles signals changes in root morphology. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 110:108-117. [PMID: 27544889 DOI: 10.1016/j.plaphy.2016.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/03/2016] [Accepted: 08/03/2016] [Indexed: 05/29/2023]
Abstract
Utilization of CuO nanoparticles (NPs) in agriculture, as fertilizers or pesticides, requires understanding of their impact on plant metabolism. Inhibition of root elongation by CuO NPs (>10 mg Cu/kg) occurred in wheat grown in sand. Morphological changes included root hair proliferation and shortening of the zones of division and elongation. The epidermal cells in the compressed root tip were abnormal in shape and file patterning but staining with SYTOX Blue did not reveal a general increase in epidermal cell death. Inhibition of root elongation and proliferation of root hair formation occurred also in response to exogenous indole acetic acid (IAA) supplied through tryptophan metabolism by the root-colonizing bacterium, Pseudomonas chlororaphis O6. Altered root morphology caused by the CuO NPs was likely due to release of Cu from dissolution at the root surface because similar changes occurred with Cu ions (≥6 mg/kg). Use of a fluorescent probe showed the accumulation of nitric oxide (NO), required for root hair formation, was not changed by the NPs. These findings suggested that dissolution of the NPs in the rhizosphere resulted levels of Cu that modified IAA distribution to causing root shortening but permitted NO cell signaling to promote root hair proliferation.
Collapse
Affiliation(s)
- Josh Adams
- Department of Biological Engineering, Utah State University, Logan, UT 84322 4105, USA
| | - Melanie Wright
- Department of Biology, Utah State University, Logan, UT 84322 5305, USA
| | - Hannah Wagner
- Department of Biology, Utah State University, Logan, UT 84322 5305, USA
| | - Jonathan Valiente
- Department of Biological Engineering, Utah State University, Logan, UT 84322 4105, USA
| | - David Britt
- Department of Biological Engineering, Utah State University, Logan, UT 84322 4105, USA
| | - Anne Anderson
- Department of Biological Engineering, Utah State University, Logan, UT 84322 4105, USA; Department of Biology, Utah State University, Logan, UT 84322 5305, USA.
| |
Collapse
|
32
|
Differential Physiological Responses of Portuguese Bread Wheat (Triticum aestivum L.) Genotypes under Aluminium Stress. DIVERSITY 2016. [DOI: 10.3390/d8040026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Zhou S, Okekeogbu I, Sangireddy S, Ye Z, Li H, Bhatti S, Hui D, McDonald DW, Yang Y, Giri S, Howe KJ, Fish T, Thannhauser TW. Proteome Modification in Tomato Plants upon Long-Term Aluminum Treatment. J Proteome Res 2016; 15:1670-84. [DOI: 10.1021/acs.jproteome.6b00128] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Suping Zhou
- Department
of Agricultural and Environmental Sciences, College of Agriculture,
Human and Natural Sciences, Tennessee State University, 3500 John
A Merritt Blvd, Nashville, Tennessee 37209, United States
| | - Ikenna Okekeogbu
- Department
of Agricultural and Environmental Sciences, College of Agriculture,
Human and Natural Sciences, Tennessee State University, 3500 John
A Merritt Blvd, Nashville, Tennessee 37209, United States
| | - Sasikiran Sangireddy
- Department
of Agricultural and Environmental Sciences, College of Agriculture,
Human and Natural Sciences, Tennessee State University, 3500 John
A Merritt Blvd, Nashville, Tennessee 37209, United States
| | - Zhujia Ye
- Department
of Agricultural and Environmental Sciences, College of Agriculture,
Human and Natural Sciences, Tennessee State University, 3500 John
A Merritt Blvd, Nashville, Tennessee 37209, United States
| | - Hui Li
- Department
of Agricultural and Environmental Sciences, College of Agriculture,
Human and Natural Sciences, Tennessee State University, 3500 John
A Merritt Blvd, Nashville, Tennessee 37209, United States
| | - Sarabjit Bhatti
- Department
of Agricultural and Environmental Sciences, College of Agriculture,
Human and Natural Sciences, Tennessee State University, 3500 John
A Merritt Blvd, Nashville, Tennessee 37209, United States
| | - Dafeng Hui
- Department
of Agricultural and Environmental Sciences, College of Agriculture,
Human and Natural Sciences, Tennessee State University, 3500 John
A Merritt Blvd, Nashville, Tennessee 37209, United States
| | - Daniel W. McDonald
- Phenotype Screening Corporation, 4028 Papermill Road, Knoxville, Tennessee 37909, United States
| | - Yong Yang
- RW Holley
Center for Agriculture and Health, Plant, Soil and Nutrition Research Unit, USDA-ARS, Tower Rd, Ithaca, New York 14853, United States
| | - Shree Giri
- RW Holley
Center for Agriculture and Health, Plant, Soil and Nutrition Research Unit, USDA-ARS, Tower Rd, Ithaca, New York 14853, United States
| | - Kevin J. Howe
- RW Holley
Center for Agriculture and Health, Plant, Soil and Nutrition Research Unit, USDA-ARS, Tower Rd, Ithaca, New York 14853, United States
| | - Tara Fish
- RW Holley
Center for Agriculture and Health, Plant, Soil and Nutrition Research Unit, USDA-ARS, Tower Rd, Ithaca, New York 14853, United States
| | - Theodore W. Thannhauser
- RW Holley
Center for Agriculture and Health, Plant, Soil and Nutrition Research Unit, USDA-ARS, Tower Rd, Ithaca, New York 14853, United States
| |
Collapse
|
34
|
Peng C, Wang Y, Sun L, Xu C, Zhang L, Shi J. Distribution and Speciation of Cu in the Root Border Cells of Rice by STXM Combined with NEXAFS. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 96:408-414. [PMID: 26679325 DOI: 10.1007/s00128-015-1716-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
Root border cells (RBCs) serve plants in their initial line of defense against stress from the presence of heavy metals in the soil. In this research, light microscopy and synchrotron-based scanning transmission X-ray microscopy (STXM) combined with near edge X-ray absorption fine structure spectroscopy (NEXAFS) with a nanoscale spatial resolution were used to investigate the effects of copper (Cu) upon the RBCs, as well as its distribution and speciation within the RBCs of rice (Oryza sativa L.) under aeroponic culture. The results indicated that with increasing exposure time and concentration, the attached RBCs were surrounded by a thick mucilage layer which changed in form from an ellipse into a strip in response to Cu ion stress. Copper was present as Cu(II), which accumulated not only in the cell wall but also in the cytoplasm. To our knowledge, this is the first time that STXM has been used in combination with NEXAFS to provide new insight into the distribution and speciation of metal elements in isolated plant cells.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi Wang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lijuan Sun
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chen Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lijuan Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
35
|
Sade H, Meriga B, Surapu V, Gadi J, Sunita MSL, Suravajhala P, Kavi Kishor PB. Toxicity and tolerance of aluminum in plants: tailoring plants to suit to acid soils. Biometals 2016; 29:187-210. [DOI: 10.1007/s10534-016-9910-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
|
36
|
Extracellular Trapping of Soil Contaminants by Root Border Cells: New Insights into Plant Defense. AGRONOMY-BASEL 2016. [DOI: 10.3390/agronomy6010005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Yang J, Qu M, Fang J, Shen RF, Feng YM, Liu JY, Bian JF, Wu LS, He YM, Yu M. Alkali-Soluble Pectin Is the Primary Target of Aluminum Immobilization in Root Border Cells of Pea (Pisum sativum). FRONTIERS IN PLANT SCIENCE 2016; 7:1297. [PMID: 27679639 PMCID: PMC5020075 DOI: 10.3389/fpls.2016.01297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/15/2016] [Indexed: 05/20/2023]
Abstract
We investigated the hypothesis that a discrepancy of Al binding in cell wall constituents determines Al mobility in root border cells (RBCs) of pea (Pisum sativum), which provides protection for RBCs and root apices under Al toxicity. Plants of pea (P. sativum L. 'Zhongwan no. 6') were subjected to Al treatments under mist culture. The concentration of Al in RBCs was much higher than that in the root apex. The Al content in RBCs surrounding one root apex (10(4) RBCs) was approximately 24.5% of the total Al in the root apex (0-2.5 mm), indicating a shielding role of RBCs for the root apex under Al toxicity. Cell wall analysis showed that Al accumulated predominantly in alkali-soluble pectin (pectin 2) of RBCs. This could be attributed to a significant increase of uronic acids under Al toxicity, higher capacity of Al adsorption in pectin 2 [5.3-fold higher than that of chelate-soluble pectin (pectin 1)], and lower ratio of Al desorption from pectin 2 (8.5%) compared with pectin 1 (68.5%). These results indicate that pectin 2 is the primary target of Al immobilization in RBCs of pea, which impairs Al access to the intracellular space of RBCs and mobility to root apices, and therefore protects root apices and RBCs from Al toxicity.
Collapse
Affiliation(s)
- Jin Yang
- Department of Horticulture, Foshan UniversityFoshan, China
- College of Resources and Environment, Huazhong Agricultural UniversityWuhan, China
| | - Mei Qu
- Department of Horticulture, Foshan UniversityFoshan, China
- College of Resources and Environment, Huazhong Agricultural UniversityWuhan, China
| | - Jing Fang
- Department of Horticulture, Foshan UniversityFoshan, China
- College of Resources and Environment, Huazhong Agricultural UniversityWuhan, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of ScienceNanjing, China
| | - Ying Ming Feng
- Department of Horticulture, Foshan UniversityFoshan, China
| | - Jia You Liu
- Department of Horticulture, Foshan UniversityFoshan, China
| | - Jian Feng Bian
- Department of Horticulture, Foshan UniversityFoshan, China
| | - Li Shu Wu
- College of Resources and Environment, Huazhong Agricultural UniversityWuhan, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of ScienceNanjing, China
| | - Yong Ming He
- College of Life Science and Engineering, Foshan UniversityFoshan, China
| | - Min Yu
- Department of Horticulture, Foshan UniversityFoshan, China
- *Correspondence: Min Yu,
| |
Collapse
|
38
|
Watson BS, Bedair MF, Urbanczyk-Wochniak E, Huhman DV, Yang DS, Allen SN, Li W, Tang Y, Sumner LW. Integrated metabolomics and transcriptomics reveal enhanced specialized metabolism in Medicago truncatula root border cells. PLANT PHYSIOLOGY 2015; 167:1699-716. [PMID: 25667316 PMCID: PMC4378151 DOI: 10.1104/pp.114.253054] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Integrated metabolomics and transcriptomics of Medicago truncatula seedling border cells and root tips revealed substantial metabolic differences between these distinct and spatially segregated root regions. Large differential increases in oxylipin-pathway lipoxygenases and auxin-responsive transcript levels in border cells corresponded to differences in phytohormone and volatile levels compared with adjacent root tips. Morphological examinations of border cells revealed the presence of significant starch deposits that serve as critical energy and carbon reserves, as documented through increased β-amylase transcript levels and associated starch hydrolysis metabolites. A substantial proportion of primary metabolism transcripts were decreased in border cells, while many flavonoid- and triterpenoid-related metabolite and transcript levels were increased dramatically. The cumulative data provide compounding evidence that primary and secondary metabolism are differentially programmed in border cells relative to root tips. Metabolic resources normally destined for growth and development are redirected toward elevated accumulation of specialized metabolites in border cells, resulting in constitutively elevated defense and signaling compounds needed to protect the delicate root cap and signal motile rhizobia required for symbiotic nitrogen fixation. Elevated levels of 7,4'-dihydroxyflavone were further increased in border cells of roots exposed to cotton root rot (Phymatotrichopsis omnivora), and the value of 7,4'-dihydroxyflavone as an antimicrobial compound was demonstrated using in vitro growth inhibition assays. The cumulative and pathway-specific data provide key insights into the metabolic programming of border cells that strongly implicate a more prominent mechanistic role for border cells in plant-microbe signaling, defense, and interactions than envisioned previously.
Collapse
Affiliation(s)
- Bonnie S Watson
- Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (B.S.W., D.V.H., D.S.Y., S.N.A., W.L., Y.T., L.W.S.); andMonsanto Company, St. Louis, Missouri 63167 (M.F.B., E.U.-W.)
| | - Mohamed F Bedair
- Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (B.S.W., D.V.H., D.S.Y., S.N.A., W.L., Y.T., L.W.S.); andMonsanto Company, St. Louis, Missouri 63167 (M.F.B., E.U.-W.)
| | - Ewa Urbanczyk-Wochniak
- Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (B.S.W., D.V.H., D.S.Y., S.N.A., W.L., Y.T., L.W.S.); andMonsanto Company, St. Louis, Missouri 63167 (M.F.B., E.U.-W.)
| | - David V Huhman
- Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (B.S.W., D.V.H., D.S.Y., S.N.A., W.L., Y.T., L.W.S.); andMonsanto Company, St. Louis, Missouri 63167 (M.F.B., E.U.-W.)
| | - Dong Sik Yang
- Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (B.S.W., D.V.H., D.S.Y., S.N.A., W.L., Y.T., L.W.S.); andMonsanto Company, St. Louis, Missouri 63167 (M.F.B., E.U.-W.)
| | - Stacy N Allen
- Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (B.S.W., D.V.H., D.S.Y., S.N.A., W.L., Y.T., L.W.S.); andMonsanto Company, St. Louis, Missouri 63167 (M.F.B., E.U.-W.)
| | - Wensheng Li
- Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (B.S.W., D.V.H., D.S.Y., S.N.A., W.L., Y.T., L.W.S.); andMonsanto Company, St. Louis, Missouri 63167 (M.F.B., E.U.-W.)
| | - Yuhong Tang
- Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (B.S.W., D.V.H., D.S.Y., S.N.A., W.L., Y.T., L.W.S.); andMonsanto Company, St. Louis, Missouri 63167 (M.F.B., E.U.-W.)
| | - Lloyd W Sumner
- Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (B.S.W., D.V.H., D.S.Y., S.N.A., W.L., Y.T., L.W.S.); andMonsanto Company, St. Louis, Missouri 63167 (M.F.B., E.U.-W.)
| |
Collapse
|
39
|
Lutts S, Lefèvre I. How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas? ANNALS OF BOTANY 2015; 115:509-28. [PMID: 25672360 PMCID: PMC4332614 DOI: 10.1093/aob/mcu264] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/01/2014] [Accepted: 12/10/2014] [Indexed: 05/15/2023]
Abstract
BACKGROUND Many areas throughout the world are simultaneously contaminated by high concentrations of soluble salts and by high concentrations of heavy metals that constitute a serious threat to human health. The use of plants to extract or stabilize pollutants is an interesting alternative to classical expensive decontamination procedures. However, suitable plant species still need to be identified for reclamation of substrates presenting a high electrical conductivity. SCOPE Halophytic plant species are able to cope with several abiotic constraints occurring simultaneously in their natural environment. This review considers their putative interest for remediation of polluted soil in relation to their ability to sequester absorbed toxic ions in trichomes or vacuoles, to perform efficient osmotic adjustment and to limit the deleterious impact of oxidative stress. These physiological adaptations are considered in relation to the impact of salt on heavy metal bioavailabilty in two types of ecosystem: (1) salt marshes and mangroves, and (2) mine tailings in semi-arid areas. CONCLUSIONS Numerous halophytes exhibit a high level of heavy metal accumulation and external NaCl may directly influence heavy metal speciation and absorption rate. Maintenance of biomass production and plant water status makes some halophytes promising candidates for further management of heavy-metal-polluted areas in both saline and non-saline environments.
Collapse
Affiliation(s)
- Stanley Lutts
- Groupe de Recherche en Physiologie végétale (GRPV) - Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, 4-5 (Bte 7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, France and Institute of Plant Molecular Biology, Biology Centre CAS, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Isabelle Lefèvre
- Groupe de Recherche en Physiologie végétale (GRPV) - Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, 4-5 (Bte 7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, France and Institute of Plant Molecular Biology, Biology Centre CAS, Branišovská 31, 37005 České Budějovice, Czech Republic Groupe de Recherche en Physiologie végétale (GRPV) - Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, 4-5 (Bte 7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, France and Institute of Plant Molecular Biology, Biology Centre CAS, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
40
|
Transcriptome analysis highlights changes in the leaves of maize plants cultivated in acidic soil containing toxic levels of Al3+. Mol Biol Rep 2014; 41:8107-16. [DOI: 10.1007/s11033-014-3709-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
|
41
|
Balestri M, Ceccarini A, Forino LMC, Zelko I, Martinka M, Lux A, Ruffini Castiglione M. Cadmium uptake, localization and stress-induced morphogenic response in the fern Pteris vittata. PLANTA 2014; 239:1055-64. [PMID: 24519545 DOI: 10.1007/s00425-014-2036-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/21/2014] [Indexed: 05/08/2023]
Abstract
Cadmium uptake, tissue localization and structural changes induced at cellular level are essential to understand Cd tolerance in plants. In this study we have exposed plants of Pteris vittata to different concentrations of CdCl2 (0, 30, 60, 100 μM) to evaluate the tolerance of the fern to cadmium. Cadmium content determination and its histochemical localization showed that P. vittata not only takes up, but also transports and accumulates cadmium in the aboveground tissues, delocalizing it mainly in the less bioactive tissues of the frond, the trichomes and the scales. Cadmium tolerance in P. vittata was strictly related to morphogenic response induced by the metal itself in the root system. Adaptive response regarded changes of the root apex size, the developmental pattern of root hairs, the differentiation of xylem elements and endodermal suberin lamellae. All the considered parameters suggest that, in our experimental conditions, 60 μM of Cd may represent the highest concentration that P. vittata can tolerate; indeed this Cd level even improves the absorbance features of the root and allows good transport and accumulation of the metal in the fronds. The results of this study can provide useful information for phytoremediation strategies of soils contaminated by Cd, exploiting the established ability of P. vittata to transport, delocalize in the aboveground biomass and accumulate polluting metals.
Collapse
Affiliation(s)
- Mirko Balestri
- Department of Biology, University of Pisa, via L. Ghini 13, 56126, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
42
|
Arenhart RA, Bai Y, Valter de Oliveira LF, Bucker Neto L, Schunemann M, Maraschin FDS, Mariath J, Silverio A, Sachetto-Martins G, Margis R, Wang ZY, Margis-Pinheiro M. New insights into aluminum tolerance in rice: the ASR5 protein binds the STAR1 promoter and other aluminum-responsive genes. MOLECULAR PLANT 2014; 7:709-21. [PMID: 24253199 PMCID: PMC3973494 DOI: 10.1093/mp/sst160] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/05/2013] [Indexed: 05/18/2023]
Abstract
Aluminum (Al) toxicity in plants is one of the primary constraints in crop production. Al³⁺, the most toxic form of Al, is released into soil under acidic conditions and causes extensive damage to plants, especially in the roots. In rice, Al tolerance requires the ASR5 gene, but the molecular function of ASR5 has remained unknown. Here, we perform genome-wide analyses to identify ASR5-dependent Al-responsive genes in rice. Based on ASR5_RNAi silencing in plants, a global transcriptome analysis identified a total of 961 genes that were responsive to Al treatment in wild-type rice roots. Of these genes, 909 did not respond to Al in the ASR5_RNAi plants, indicating a central role for ASR5 in Al-responsive gene expression. Under normal conditions, without Al treatment, the ASR5_RNAi plants expressed 1.756 genes differentially compared to the wild-type plants, and 446 of these genes responded to Al treatment in the wild-type plants. Chromatin immunoprecipitation followed by deep sequencing identified 104 putative target genes that were directly regulated by ASR5 binding to their promoters, including the STAR1 gene, which encodes an ABC transporter required for Al tolerance. Motif analysis of the binding peak sequences revealed the binding motif for ASR5, which was confirmed via in vitro DNA-binding assays using the STAR1 promoter. These results demonstrate that ASR5 acts as a key transcription factor that is essential for Al-responsive gene expression and Al tolerance in rice.
Collapse
Affiliation(s)
- Rafael Augusto Arenhart
- Programa de Pós-Graduação em Genética e Biologia Molecular Avenida Bento Gonçalves 9500, Departamento de Genética, sala 207, prédio 43312, Universidade Federal do Rio Grande do Sul, 91501–970, Porto Alegre, Brasil
| | - Yang Bai
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Luiz Felipe Valter de Oliveira
- Programa de Pós-Graduação em Genética e Biologia Molecular Avenida Bento Gonçalves 9500, Departamento de Genética, sala 207, prédio 43312, Universidade Federal do Rio Grande do Sul, 91501–970, Porto Alegre, Brasil
| | - Lauro Bucker Neto
- Programa de Pós-Graduação em Genética e Biologia Molecular Avenida Bento Gonçalves 9500, Departamento de Genética, sala 207, prédio 43312, Universidade Federal do Rio Grande do Sul, 91501–970, Porto Alegre, Brasil
| | - Mariana Schunemann
- Programa de Pós-Graduação em Genética e Biologia Molecular Avenida Bento Gonçalves 9500, Departamento de Genética, sala 207, prédio 43312, Universidade Federal do Rio Grande do Sul, 91501–970, Porto Alegre, Brasil
| | | | - Jorge Mariath
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Adriano Silverio
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | | | - Rogerio Margis
- Programa de Pós-Graduação em Genética e Biologia Molecular Avenida Bento Gonçalves 9500, Departamento de Genética, sala 207, prédio 43312, Universidade Federal do Rio Grande do Sul, 91501–970, Porto Alegre, Brasil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Marcia Margis-Pinheiro
- Programa de Pós-Graduação em Genética e Biologia Molecular Avenida Bento Gonçalves 9500, Departamento de Genética, sala 207, prédio 43312, Universidade Federal do Rio Grande do Sul, 91501–970, Porto Alegre, Brasil
- To whom correspondence should be addressed. E-mail , fax 55-51-3308-7311, tel. 55 (51) 3308–9814
| |
Collapse
|
43
|
Cai M, Wang N, Xing C, Wang F, Wu K, Du X. Immobilization of aluminum with mucilage secreted by root cap and root border cells is related to aluminum resistance in Glycine max L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:8924-33. [PMID: 23749363 DOI: 10.1007/s11356-013-1815-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/08/2013] [Indexed: 05/25/2023]
Abstract
The root cap and root border cells (RBCs) of most plant species produced pectinaceous mucilage, which can bind metal cations. In order to evaluate the potential role of root mucilage on aluminum (Al) resistance, two soybean cultivars differing in Al resistance were aeroponic cultured, the effects of Al on root mucilage secretion, root growth, contents of mucilage-bound Al and root tip Al, and the capability of mucilage to bind Al were investigated. Increasing Al concentration and exposure time significantly enhanced mucilage excretion from both root caps and RBCs, decreased RBCs viability and relative root elongation except roots exposed to 400 μM Al for 48 h in Al-resistant cultivar. Removal of root mucilage from root tips resulted in a more severe inhibition of root elongation. Of the total Al accumulated in root, mucilage accounted 48-72 and 12-27 %, while root tip accounted 22-52 and 73-88 % in Al-resistant and Al-sensitive cultivars, respectively. A (27)Al nuclear magnetic resonance spectrum of the Al-adsorbed mucilage showed Al tightly bound to mucilage. Higher capacity to exclude Al in Al-resistant soybean cultivar is related to the immobilization and detoxification of Al by the mucilage secreted from root cap and RBCs.
Collapse
Affiliation(s)
- Miaozhen Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, 688 Yingbin Avenue, Jinhua, Zhejiang Province, 321004, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
44
|
Curlango-Rivera G, Huskey DA, Mostafa A, Kessler JO, Xiong Z, Hawes MC. Intraspecies variation in cotton border cell production: rhizosphere microbiome implications. AMERICAN JOURNAL OF BOTANY 2013; 100:1706-1712. [PMID: 23942085 DOI: 10.3732/ajb.1200607] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PREMISE OF THE STUDY Border cells, which separate from the root cap, can comprise >90% of carbon-based exudates released into the rhizosphere, but may not provide a general source of nutrients for soil microorganisms. Instead, this population of specialized cells appears to function in defense of the root tip by an extracellular trapping process similar to that of mammalian white blood cells. Border cell production is tightly regulated, and direct tests of their impact on crop production have been hindered by lack of intraspecies variation. • METHODS Border cell number, viability, and clumping were compared among 22 cotton cultivars. Slime layer "extracellular trap" production by border cells in response to copper chloride, an elicitor of plant defenses, was compared in two cultivars with divergent border cell production. Trapping of bacteria by border cells in these lines also was measured. • KEY RESULTS Emerging roots of some cultivars produced more than 20000 border cells per root, a 100% increase over previously reported values for this species. No differences in border cell morphology, viability, or clumping were found. Copper chloride-induced extracellular trap formation by border cells from a cultivar that produced 27921 ± 2111 cells per root was similar to that of cells from a cultivar with 10002 ± 614 cells, but bacterial trapping was reduced. • CONCLUSIONS Intraspecific variation in border cell production provides a tool to measure their impact on plant development in the laboratory, greenhouse, and field. Further research is needed to determine the basis for this variation, and its impact on rhizosphere community structure.
Collapse
Affiliation(s)
- Gilberto Curlango-Rivera
- Department of Soil, Water and Environmental Sciences, 429 Shantz Building #38, The University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | |
Collapse
|
45
|
Simões CC, Melo JO, Magalhaes JV, Guimarães CT. Genetic and molecular mechanisms of aluminum tolerance in plants. GENETICS AND MOLECULAR RESEARCH 2012; 11:1949-57. [PMID: 22869550 DOI: 10.4238/2012.july.19.14] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Aluminum (Al) toxicity restricts root growth and agricultural yield in acid soils, which constitute approximately 40% of the potentially arable lands worldwide. The two main mechanisms of Al tolerance in plants are internal detoxification of Al and its exclusion from root cells. Genes encoding membrane transporters and accessory transcription factors, as well as cis-elements that enhance gene expression, are involved in Al tolerance in plants; thus studies of these genes and accessory factors should be the focus of molecular breeding efforts aimed at improving Al tolerance in crops. In this review, we describe the main genetic and molecular studies that led to the identification and cloning of genes associated with Al tolerance in plants. We include recent findings on the regulation of genes associated with Al tolerance. Understanding the genetic, molecular, and physiological aspects of Al tolerance in plants is important for generating cultivars adapted to acid soils, thereby contributing to food security worldwide.
Collapse
Affiliation(s)
- C C Simões
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | | | | |
Collapse
|
46
|
Siqueira-Silva AI, da Silva LC, Azevedo AA, Oliva MA. Iron plaque formation and morphoanatomy of roots from species of restinga subjected to excess iron. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 78:265-275. [PMID: 22169228 DOI: 10.1016/j.ecoenv.2011.11.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 11/18/2011] [Accepted: 11/23/2011] [Indexed: 05/31/2023]
Abstract
The restingas, a sandy coastal plain ecosystem of Brazil, have received an additional amount of iron due to the activity of mining industries. The present study aims to characterize morphoanatomically and histochemically the iron plaque formation on roots of Ipomoea pes-caprae L. and Canavalia rosea DC, cultivated in hydroponic solution with and without excess iron. The iron plaque formation as well as changes in the external morphology of the lateral roots of both species were observed after the subjection to excess iron. Changes in the nutrient uptake, and in the organization and form of the pericycle and cortex cells were observed for both species. Scanning electron microscopy showed evident iron plaques on the whole surface of the root. The iron was histolocalized in all root tissues of both species. The species of restinga studied here formed iron plaque in their roots when exposed to excess of this element, which may compromise their development in environments polluted by particulated iron.
Collapse
Affiliation(s)
- Advanio Inácio Siqueira-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa. PH Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais 36.570-000, Brazil
| | | | | | | |
Collapse
|
47
|
Unity Is Strength: The Power of Border Cells and Border-Like Cells in Relation with Plant Defense. SIGNALING AND COMMUNICATION IN PLANTS 2012. [DOI: 10.1007/978-3-642-23047-9_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
48
|
Aluminium-induced changes in root epidermal cell patterning, a distinctive feature of hyperresistance to Al in Brachiaria decumbens. J Inorg Biochem 2011; 105:1477-83. [DOI: 10.1016/j.jinorgbio.2011.07.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 01/18/2023]
|
49
|
Endo I, Tange T, Osawa H. A cell-type-specific defect in border cell formation in the Acacia mangium root cap developing an extraordinary sheath of sloughed-off cells. ANNALS OF BOTANY 2011; 108:279-90. [PMID: 21712296 PMCID: PMC3143049 DOI: 10.1093/aob/mcr139] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 04/15/2011] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS Root caps release border cells, which play central roles in microbe interaction and root protection against soil stresses. However, the number and connectivity of border cells differ widely among plant species. Better understanding of key border-cell phenotype across species will help define the total function of border cells and associated genes. METHODS The spatio-temporal detachment of border cells in the leguminous tree Acacia mangium was investigated by using light and fluorescent microscopy with fluorescein diacetate, and their number and structural connectivity compared with that in soybean (Glycine max). KEY RESULTS Border-like cells with a sheet structure peeled bilaterally from the lateral root cap of A. mangium. Hydroponic root elongation partially facilitated acropetal peeling of border-like cells, which accumulate as a sheath that covers the 0- to 4-mm tip within 1 week. Although root elongation under friction caused basipetal peeling, lateral root caps were minimally trimmed as compared with hydroponic roots. In the meantime, A. mangium columella caps simultaneously released single border cells with a number similar to those in soybean. CONCLUSIONS These results suggest that cell type-specific inhibitory factors induce a distinct defective phenotype in single border-cell formation in A. mangium lateral root caps.
Collapse
Affiliation(s)
| | | | - Hiroki Osawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
50
|
Cai MZ, Wang FM, Li RF, Zhang SN, Wang N, Xu GD. Response and tolerance of root border cells to aluminum toxicity in soybean seedlings. J Inorg Biochem 2011; 105:966-71. [PMID: 21549660 DOI: 10.1016/j.jinorgbio.2011.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Revised: 03/26/2011] [Accepted: 04/06/2011] [Indexed: 11/24/2022]
Abstract
Root border cells (RBCs) and their secreted mucilage are suggested to participate in the resistance against toxic metal cations, including aluminum (Al), in the rhizosphere. However, the mechanisms by which the individual cell populations respond to Al and their role in Al resistance still remain unclear. In this research, the response and tolerance of RBCs to Al toxicity were investigated in the root tips of two soybean cultivars [Zhechun No. 2 (Al-tolerant cultivar) and Huachun No. 18 (Al-sensitive cultivar)]. Al inhibited root elongation and increased pectin methylesterase (PME) activity in the root tip. Removal of RBCs from the root tips resulted in a more severe inhibition of root elongation, especially in Huachun No. 18. Increasing Al levels and treatment time decreased the relative percent viability of RBCs in situ and in vitro in both soybean cultivars. Al application significantly increased mucilage layer thickness around the detached RBCs of both cultivars. Additionally, a significantly higher relative percent cell viability of attached and detached RBCs and thicker mucilage layers were observed in Zhechun No. 2. The higher viability of attached and detached RBCs, as well as the thickening of the mucilage layer in separated RBCs, suggest that RBCs play an important role in protecting root apices from Al toxicity.
Collapse
Affiliation(s)
- Miao-Zhen Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang, China.
| | | | | | | | | | | |
Collapse
|