1
|
Rolletschek H, Muszynska A, Schwender J, Radchuk V, Heinemann B, Hilo A, Plutenko I, Keil P, Ortleb S, Wagner S, Kalms L, Gündel A, Shi H, Fuchs J, Szymanski JJ, Braun HP, Borisjuk L. Mechanical forces orchestrate the metabolism of the developing oilseed rape embryo. THE NEW PHYTOLOGIST 2024; 244:1328-1344. [PMID: 39044722 DOI: 10.1111/nph.19990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024]
Abstract
The initial free expansion of the embryo within a seed is at some point inhibited by its contact with the testa, resulting in its formation of folds and borders. Although less obvious, mechanical forces appear to trigger and accelerate seed maturation. However, the mechanistic basis for this effect remains unclear. Manipulation of the mechanical constraints affecting either the in vivo or in vitro growth of oilseed rape embryos was combined with analytical approaches, including magnetic resonance imaging and computer graphic reconstruction, immunolabelling, flow cytometry, transcriptomic, proteomic, lipidomic and metabolomic profiling. Our data implied that, in vivo, the imposition of mechanical restraints impeded the expansion of testa and endosperm, resulting in the embryo's deformation. An acceleration in embryonic development was implied by the cessation of cell proliferation and the stimulation of lipid and protein storage, characteristic of embryo maturation. The underlying molecular signature included elements of cell cycle control, reactive oxygen species metabolism and transcriptional reprogramming, along with allosteric control of glycolytic flux. Constricting the space allowed for the expansion of in vitro grown embryos induced a similar response. The conclusion is that the imposition of mechanical constraints over the growth of the developing oilseed rape embryo provides an important trigger for its maturation.
Collapse
Affiliation(s)
- Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland, OT Gatersleben, 06466, Germany
| | - Aleksandra Muszynska
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland, OT Gatersleben, 06466, Germany
- Amatera Biosciences, 4 rue Pierre Fontaine, Evry, 91000, France
| | - Jörg Schwender
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Volodymyr Radchuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland, OT Gatersleben, 06466, Germany
| | - Björn Heinemann
- Institut für Pflanzengenetik, Universität Hannover, Herrenhäuser Strasse, Hannover, 30419, Germany
| | - Alexander Hilo
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland, OT Gatersleben, 06466, Germany
| | - Iaroslav Plutenko
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland, OT Gatersleben, 06466, Germany
| | - Peter Keil
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland, OT Gatersleben, 06466, Germany
| | - Stefan Ortleb
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland, OT Gatersleben, 06466, Germany
| | - Steffen Wagner
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland, OT Gatersleben, 06466, Germany
| | - Laura Kalms
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland, OT Gatersleben, 06466, Germany
| | - André Gündel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland, OT Gatersleben, 06466, Germany
- Department of Ecology, Environment and Plant Sciences, University of Stockholm, Stockholm, 10691, Sweden
| | - Hai Shi
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jörg Fuchs
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland, OT Gatersleben, 06466, Germany
| | - Jedrzej Jakub Szymanski
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland, OT Gatersleben, 06466, Germany
- Institute of Bio- and Geosciences, IBG-4: Bioinformatics, Forschungszentrum Jülich, Jülich, D-52428, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-Universität Düsseldorf, Düsseldorf, 40225, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Universität Hannover, Herrenhäuser Strasse, Hannover, 30419, Germany
| | - Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland, OT Gatersleben, 06466, Germany
| |
Collapse
|
2
|
Wang C, Du M, Jiang Z, Cong R, Wang W, Zhang T, Chen J, Zhang G, Li L. MAPK/ERK-PK(Ser11) pathway regulates divergent thermal metabolism of two congeneric oyster species. iScience 2024; 27:110321. [PMID: 39055946 PMCID: PMC11269933 DOI: 10.1016/j.isci.2024.110321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/25/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Pyruvate kinase (PK), as a key rate-limiting enzyme in glycolysis, has been widely used to assess the stress tolerance and sensitivity of organisms. However, its phosphorylation regulatory mechanisms mainly focused on human cancer research, with no reports in marine organisms. In this study, we firstly reported a conserved PK Ser11 phosphorylation site in mollusks, which enhanced enzyme activity by promoting substrate binding, thereby regulating divergent thermal metabolism of two allopatric congeneric oyster species with differential habitat temperature. It was phosphorylated by ERK kinase, and regulated by the classical MAPK pathway. The MAPK/ERK-PK signaling cascade responded to increased environmental temperature and exhibited stronger activation pattern in the relatively thermotolerant species (Crassostrea angulata), indicating its involvement in shaping temperature adaptation. These findings highlight the presence of complex and unique phosphorylation-mediated signaling transduction mechanisms in marine organisms, and provide new insights into the evolution and function of the crosstalk between classical pathways.
Collapse
Affiliation(s)
- Chaogang Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingyang Du
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhuxiang Jiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rihao Cong
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Wei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Taiping Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jincheng Chen
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| |
Collapse
|
3
|
Chen F, Zang J, Wang Z, Wang J, Shi L, Xiu Y, Lin S, Lin W. Mandelonitrile lyase MDL2-mediated regulation of seed amygdalin and oil accumulation of Prunus Sibirica. BMC PLANT BIOLOGY 2024; 24:590. [PMID: 38902595 PMCID: PMC11191352 DOI: 10.1186/s12870-024-05300-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND The Prunus sibirica seeds with rich oils has great utilization, but contain amygdalin that can be hydrolyzed to release toxic HCN. Thus, how to effectively reduce seed amygdalin content of P. sibirica is an interesting question. Mandelonitrile is known as one key intermediate of amygdalin metabolism, but which mandelonitrile lyase (MDL) family member essential for its dissociation destined to low amygdalin accumulation in P. sibirica seeds still remains enigmatic. An integration of our recent 454 RNA-seq data, amygdalin and mandelonitrile content detection, qRT-PCR analysis and function determination is described as a critical attempt to determine key MDL and to highlight its function in governing mandelonitrile catabolism with low amygdalin accumulation in Prunus sibirica seeds for better developing edible oil and biodiesel in China. RESULTS To identify key MDL and to unravel its function in governing seed mandelonitrile catabolism with low amygdalin accumulation in P. sibirica. Global identification of mandelonitrile catabolism-associated MDLs, integrated with the across-accessions/developing stages association of accumulative amount of amygdalin and mandelonitrile with transcriptional level of MDLs was performed on P. sibirica seeds of 5 accessions to determine crucial MDL2 for seed mandelonitrile catabolism of P. sibirica. MDL2 gene was cloned from the seeds of P. sibirica, and yeast eukaryotic expression revealed an ability of MDL2 to specifically catalyze the dissociation of mandelonitrile with the ideal values of Km (0.22 mM) and Vmax (178.57 U/mg). A combination of overexpression and mutation was conducted in Arabidopsis. Overexpression of PsMDL2 decreased seed mandelonitrile content with an increase of oil accumulation, upregulated transcript of mandelonitrile metabolic enzymes and oil synthesis enzymes (involving FA biosynthesis and TAG assembly), but exhibited an opposite situation in mdl2 mutant, revealing a role of PsMDL2-mediated regulation in seed amygdalin and oil biosynthesis. The PsMDL2 gene has shown as key molecular target for bioengineering high seed oil production with low amygdalin in oilseed plants. CONCLUSIONS This work presents the first integrated assay of genome-wide identification of mandelonitrile catabolism-related MDLs and the comparative association of transcriptional level of MDLs with accumulative amount of amygdalin and mandelonitrile in the seeds across different germplasms and developmental periods of P. sibirica to determine MDL2 for mandelonitrile dissociation, and an effective combination of PsMDL2 expression and mutation, oil and mandelonitrile content detection and qRT-PCR assay was performed to unravel a mechanism of PsMDL2 for controlling amygdalin and oil production in P. sibirica seeds. These findings could offer new bioengineering strategy for high oil production with low amygdalin in oil plants.
Collapse
Affiliation(s)
- Feng Chen
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Junxin Zang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Zirui Wang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Jing Wang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Lingling Shi
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Yu Xiu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Shanzhi Lin
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China.
| | - Weijun Lin
- West China Hospital, Sichuan University, Chengdu, 610044, Sichuan, China.
| |
Collapse
|
4
|
Chen F, Shi L, Hu J, Wang J, Li Z, Xiu Y, He B, Lin S, Liang D. Revelation of enzyme/transporter-mediated metabolic regulatory model for high-quality terpene accumulation in developing fruits of Lindera glauca. Int J Biol Macromol 2024; 264:130763. [PMID: 38467223 DOI: 10.1016/j.ijbiomac.2024.130763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/12/2023] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Lindera glauca with rich resource and fruit terpene has emerged as potential material for utilization in China, but different germplasms show a variation for essential oil content and volatile profiling. This work aimed to determine key regulators (enzymes or transporters) and unravel mechanism of governing high production of essential oil of L. glauca fruit (EO-LGF). Temporal analysis of fruit growth and EO-LGF accumulation (yield, volatile compounds and contents) during development revealed a notable change in the contents of EO-LGF and its 45 compounds in developing fruits, and the major groups were monoterpene and sesquiterpene, showing good antioxidant and antimicrobial activities. To highlight molecular mechanism that govern such difference in terpene content and compound in developing fruits, Genome-wide assay was used to annotate 104 genes for terpene-synthesis pathway based on recent transcriptome data, and the comparative associations of terpene accumulative amount with gene transcriptional level were conducted on developing fruits to identify some crucial determinants (enzymes and transporters) with metabolic regulation model for high-quality terpene accumulation, involving in carbon allocation (sucrose cleavage, glycolysis and OPP pathway), metabolite transport, isoprene precursor production, C5-unit formation (MEP and MVA pathways), and mono-/sesqui-terpene synthesis. Our findings may present strategy for engineering terpene accumulation for utilization.
Collapse
Affiliation(s)
- Feng Chen
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Lingling Shi
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Jinhe Hu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Jing Wang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Zhi Li
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China.
| | - Yu Xiu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China.
| | - Boxiang He
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China.
| | - Shanzhi Lin
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China.
| | - Dongcheng Liang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China.
| |
Collapse
|
5
|
Bellin L, Melzer M, Hilo A, Garza Amaya DL, Keller I, Meurer J, Möhlmann T. Nucleotide Limitation Results in Impaired Photosynthesis, Reduced Growth and Seed Yield Together with Massively Altered Gene Expression. PLANT & CELL PHYSIOLOGY 2023; 64:1494-1510. [PMID: 37329302 DOI: 10.1093/pcp/pcad063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/04/2023] [Accepted: 06/16/2023] [Indexed: 06/19/2023]
Abstract
Nucleotide limitation and imbalance is a well-described phenomenon in animal research but understudied in the plant field. A peculiarity of pyrimidine de novo synthesis in plants is the complex subcellular organization. Here, we studied two organellar localized enzymes in the pathway, with chloroplast aspartate transcarbamoylase (ATC) and mitochondrial dihydroorotate dehydrogenase (DHODH). ATC knock-downs were most severely affected, exhibiting low levels of pyrimidine nucleotides, a low energy state, reduced photosynthetic capacity and accumulation of reactive oxygen species. Furthermore, altered leaf morphology and chloroplast ultrastructure were observed in ATC mutants. Although less affected, DHODH knock-down mutants showed impaired seed germination and altered mitochondrial ultrastructure. Thus, DHODH might not only be regulated by respiration but also exert a regulatory function on this process. Transcriptome analysis of an ATC-amiRNA line revealed massive alterations in gene expression with central metabolic pathways being downregulated and stress response and RNA-related pathways being upregulated. In addition, genes involved in central carbon metabolism, intracellular transport and respiration were markedly downregulated in ATC mutants, being most likely responsible for the observed impaired growth. We conclude that impairment of the first committed step in pyrimidine metabolism, catalyzed by ATC, leads to nucleotide limitation and by this has far-reaching consequences on metabolism and gene expression. DHODH might closely interact with mitochondrial respiration, as seen in delayed germination, which is the reason for its localization in this organelle.
Collapse
Affiliation(s)
- Leo Bellin
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern D-67663, Germany
| | - Michael Melzer
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, Seeland, OT Gatersleben 06466, Germany
| | - Alexander Hilo
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, Seeland, OT Gatersleben 06466, Germany
| | - Diana Laura Garza Amaya
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern D-67663, Germany
| | - Isabel Keller
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern D-67663, Germany
| | - Jörg Meurer
- Plant Sciences, Department Biology I, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, Planegg-Martinsried 82152, Germany
| | - Torsten Möhlmann
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern D-67663, Germany
| |
Collapse
|
6
|
Guo L, Chao H, Yin Y, Li H, Wang H, Zhao W, Hou D, Zhang L, Zhang C, Li M. New insight into the genetic basis of oil content based on noninvasive three-dimensional phenotyping and tissue-specific transcriptome in Brassica napus. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:88. [PMID: 37221547 DOI: 10.1186/s13068-023-02324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/18/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Increasing seed oil content is the most important breeding goal in Brassica napus, and phenotyping is crucial to dissect its genetic basis in crops. To date, QTL mapping for oil content has been based on whole seeds, and the lipid distribution is far from uniform in different tissues of seeds in B. napus. In this case, the phenotype based on whole seeds was unable to sufficiently reveal the complex genetic characteristics of seed oil content. RESULTS Here, the three-dimensional (3D) distribution of lipid was determined for B. napus seeds by magnetic resonance imaging (MRI) and 3D quantitative analysis, and ten novel oil content-related traits were obtained by subdividing the seeds. Based on a high-density genetic linkage map, 35 QTLs were identified for 4 tissues, the outer cotyledon (OC), inner cotyledon (IC), radicle (R) and seed coat (SC), which explained up to 13.76% of the phenotypic variation. Notably, 14 tissue-specific QTLs were reported for the first time, 7 of which were novel. Moreover, haplotype analysis showed that the favorable alleles for different seed tissues exhibited cumulative effects on oil content. Furthermore, tissue-specific transcriptomes revealed that more active energy and pyruvate metabolism influenced carbon flow in the IC, OC and R than in the SC at the early and middle seed development stages, thus affecting the distribution difference in oil content. Combining tissue-specific QTL mapping and transcriptomics, 86 important candidate genes associated with lipid metabolism were identified that underlie 19 unique QTLs, including the fatty acid synthesis rate-limiting enzyme-related gene CAC2, in the QTLs for OC and IC. CONCLUSIONS The present study provides further insight into the genetic basis of seed oil content at the tissue-specific level.
Collapse
Affiliation(s)
- Liangxing Guo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hongbo Chao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huaixin Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hao Wang
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, 712100, China
| | - Weiguo Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, 712100, China
| | - Dalin Hou
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Libin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chunyu Zhang
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
7
|
Fell DA, Taylor DC, Weselake RJ, Harwood JL. Metabolic Control Analysis of triacylglycerol accumulation in oilseed rape. Biosystems 2023; 227-228:104905. [PMID: 37100112 DOI: 10.1016/j.biosystems.2023.104905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
The increasing global demand for vegetable oils will only be met if there are significant improvements in the productivity of the major oil crops, such as oilseed rape. Metabolic engineering offers the prospect of further gains in yield beyond that already achieved by breeding and selection but requires guidance as to the changes that need to be made. Metabolic Control Analysis, through measurement and estimation of flux control coefficients, can indicate which enzymes have the most influence on a desired flux. Some experiments have previously reported flux control coefficients for oil accumulation in the seeds of oilseed rape, and others have measured control coefficient distributions for multi-enzyme segments of oil synthesis in seed embryo metabolism measured in vitro. In addition, other reported manipulations of oil accumulation contain results that are exploited further here to calculate previously unknown flux control coefficients. These results are then assembled within a framework that allows an integrated interpretation of the controls on oil accumulation from the assimilation of CO2 to deposition of oil in the seed. The analysis shows that the control is distributed to an extent that the gains from amplifying any single target are necessarily limited, but there are candidates for joint amplification that are likely to act synergistically to produce much more significant gains.
Collapse
Affiliation(s)
| | - David C Taylor
- National Research Council of Canada 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - John L Harwood
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, Wales, UK
| |
Collapse
|
8
|
Li H, Ma X, Wang W, Zhang J, Liu Y, Yuan D. Enhancing the accumulation of linoleic acid and α-linolenic acid through the pre-harvest ethylene treatment in Camellia oleifera. FRONTIERS IN PLANT SCIENCE 2023; 14:1080946. [PMID: 36909386 PMCID: PMC9999010 DOI: 10.3389/fpls.2023.1080946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Camellia oleifera Abel. (C. oleifera) is an important woody edible oil tree species in China. The quality of C. oleifera oil (tea oil) is mainly determined by the contents of linoleic acid (LA) and α-linolenic acid (ALA). However, how to increase the contents of LA and ALA in tea oil and the corresponding regulating mechanism have not been clarified. In the present study, we found that the LA and ALA contents in C. oleifera seeds were significant positively associated with the concentrations of ethephon and were decreased by ethylene inhibitor treatment. Furthermore, 1.5 g L-1 ethephon could receive an optimal LA and ALA contents without adverse effects to the growth of 'Huashuo' trees in this study. The ethephon treatment also increased the contents of 1-aminocyclopropane-1-carboxylic acid (ACC), sucrose, soluble sugar and reducing sugar contents in seeds. Transcriptome analysis further suggested that exogenous ethephon application enhanced the accumulation of LA and ALA via regulating genes involved in LA and ALA metabolism, plant hormone signal transduction pathways, and starch and sucrose metabolism. Our findings confirm the role of ethylene in LA and ALA regulation and provide new insights into the potential utilization of ethylene as a LA and ALA inducer in C. oleifera cultivation.
Collapse
Affiliation(s)
| | | | | | | | | | - Deyi Yuan
- *Correspondence: Xiaoling Ma, ; Deyi Yuan,
| |
Collapse
|
9
|
Deslandes-Hérold G, Zanella M, Solhaug E, Fischer-Stettler M, Sharma M, Buergy L, Herrfurth C, Colinas M, Feussner I, Abt MR, Zeeman SC. The PRK/Rubisco shunt strongly influences Arabidopsis seed metabolism and oil accumulation, affecting more than carbon recycling. THE PLANT CELL 2023; 35:808-826. [PMID: 36454674 PMCID: PMC9940875 DOI: 10.1093/plcell/koac338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The carbon efficiency of storage lipid biosynthesis from imported sucrose in green Brassicaceae seeds is proposed to be enhanced by the PRK/Rubisco shunt, in which ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) acts outside the context of the Calvin-Benson-Bassham cycle to recycle CO2 molecules released during fatty acid synthesis. This pathway utilizes metabolites generated by the nonoxidative steps of the pentose phosphate pathway. Photosynthesis provides energy for reactions such as the phosphorylation of ribulose 5-phosphate by phosphoribulokinase (PRK). Here, we show that loss of PRK in Arabidopsis thaliana (Arabidopsis) blocks photoautotrophic growth and is seedling-lethal. However, seeds containing prk embryos develop normally, allowing us to use genetics to assess the importance of the PRK/Rubisco shunt. Compared with nonmutant siblings, prk embryos produce one-third less lipids-a greater reduction than expected from simply blocking the proposed PRK/Rubisco shunt. However, developing prk seeds are also chlorotic and have elevated starch contents compared with their siblings, indicative of secondary effects. Overexpressing PRK did not increase embryo lipid content, but metabolite profiling suggested that Rubisco activity becomes limiting. Overall, our findings show that the PRK/Rubisco shunt is tightly integrated into the carbon metabolism of green Arabidopsis seeds, and that its manipulation affects seed glycolysis, starch metabolism, and photosynthesis.
Collapse
Affiliation(s)
- Gabriel Deslandes-Hérold
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Martina Zanella
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Erik Solhaug
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Michaela Fischer-Stettler
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Mayank Sharma
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Léo Buergy
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Cornelia Herrfurth
- Department for Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, D-37077 Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, D-37077 Göttingen, Germany
| | - Maite Colinas
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Ivo Feussner
- Department for Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, D-37077 Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, D-37077 Göttingen, Germany
| | - Melanie R Abt
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Samuel C Zeeman
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
10
|
Lin Z, Chen F, Wang H, Hu J, Shi L, Zhang Z, Xiu Y, Lin S. Evaluation of oil accumulation and biodiesel property of Lindera glauca fruits among different germplasms and revelation of high oil producing mechanism for developing biodiesel. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:14. [PMID: 36698212 PMCID: PMC9878744 DOI: 10.1186/s13068-023-02265-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Lindera glauca with rich resource and fruit oil has emerged as novel source of biodiesel in China, but different germplasms show a variation for fruit oil content and FA profile. To develop L. glauca fruit oils as biodiesel, a concurrent exploration of oil content, FA composition, biodiesel yield, fuel property and prediction model construction was conducted on the fruits from 8 plus germplasms to select superior genotype for ideal biodiesel production. Another vital focus was to highlight mechanism that govern the differences in oil content and FA profile of different germplasms. The cross-accessions comparisons associated with oil-synthesized gene transcriptional level and oil accumulative amount led to the identification of potential determinants (enzymes, transporters or transcription factors) and regulatory mechanisms responsible for high-quality oil accumulation. RESULTS To select superior germplasm and unravel regulatory mechanism of high oil production for developing L. glauca fruit oils as biodiesel, 8 plus trees (accession LG01/02/03/04/05/06/07/08) with high-yield fruits were selected to evaluate the differences in oil content, FA profile, biodiesel yield and fuel property, and to construct fuel property prediction model, revealing a variation in the levels of fruit oil (45.12-60.95%), monounsaturated FA (52.43-78.46%) and polyunsaturated FA (17.69-38.73%), and biodiesel yield (80.12-98.71%) across different accessions. Of note, LG06 had a maximum yield of oil (60.95%) and biodiesel (98.71%), and ideal proportions of C18:1 (77.89%), C18:2 (14.16%) and C18:3 (1.55%), indicating that fruit oils from accession LG06 was the most suitable for high-quality biodiesel production. To highlight molecular mechanism that govern such differences in oil content and FA composition of different accessions, the quantitative relationship between oil-synthesized gene transcription and oil accumulative amount were conducted on different accessions to identify some vital determinants (enzymes, transporters or transcription factors) with a model of carbon metabolic regulatory for high-quality oil accumulation by an integrated analysis of our recent transcriptome data and qRT-PCR detection. Our findings may present strategies for developing L. glauca fruit oils as biodiesel feedstock and engineering its oil accumulation. CONCLUSIONS This is the first report on the cross-accessions evaluations of L. glauca fruit oils to determine ideal accession for producing ideal biodiesel, and the associations of oil accumulative amount with oil-synthesized gene transcription was performed to identify some crucial determinants (enzymes, transporters or transcription factors) with metabolic regulation model established for governing high oil production. Our finding may provide molecular basis for new strategies of developing biodiesel resource and engineering oil accumulation.
Collapse
Affiliation(s)
- Zixin Lin
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083 China
| | - Feng Chen
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083 China
| | - Hongjuan Wang
- Department of Biochemistry and Molecular Biology, Yanjing Medical College, Capital Medical University, Beijing, 101300 China
| | - Jinhe Hu
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083 China
| | - Lingling Shi
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083 China
| | - Zhixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083 China
| | - Yu Xiu
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083 China
| | - Shanzhi Lin
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
11
|
Smith EN, Ratcliffe RG, Kruger NJ. Isotopically non-stationary metabolic flux analysis of heterotrophic Arabidopsis thaliana cell cultures. FRONTIERS IN PLANT SCIENCE 2023; 13:1049559. [PMID: 36699846 PMCID: PMC9868915 DOI: 10.3389/fpls.2022.1049559] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Fluxes are the ultimate phenotype of metabolism and their accurate quantification is fundamental to any understanding of metabolic networks. Steady state metabolic flux analysis has been the method of choice for quantifying fluxes in heterotrophic cells, but it is unable to measure fluxes during short-lived metabolic states, such as a transient oxidative load. Isotopically non-stationary metabolic flux analysis (INST-MFA) can be performed over shorter timescales (minutes - hours) and might overcome this limitation. INST-MFA has recently been applied to photosynthesising leaves, but agriculturally important tissues such as roots and storage organs, or plants during the night are heterotrophic. Here we outline the application of INST-MFA to heterotrophic plant cells. Using INST-MFA we were able to identify changes in the fluxes supported by phosphoenolpyruvate carboxylase and malic enzyme under oxidative load, highlighting the potential of INST-MFA to measure fluxes during short-lived metabolic states. We discuss the challenges in applying INST-MFA, and highlight further development required before it can be routinely used to quantify fluxes in heterotrophic plant cells.
Collapse
Affiliation(s)
- Edward N. Smith
- Molecular Plant Biology, Department of Biology, University of Oxford, Oxford, United Kingdom
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - R. George Ratcliffe
- Molecular Plant Biology, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. Kruger
- Molecular Plant Biology, Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Kuczynski C, McCorkle S, Keereetaweep J, Shanklin J, Schwender J. An expanded role for the transcription factor WRINKLED1 in the biosynthesis of triacylglycerols during seed development. FRONTIERS IN PLANT SCIENCE 2022; 13:955589. [PMID: 35991420 PMCID: PMC9389262 DOI: 10.3389/fpls.2022.955589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/28/2022] [Indexed: 06/12/2023]
Abstract
The transcription factor WRINKLED1 (WRI1) is known as a master regulator of fatty acid synthesis in developing oilseeds of Arabidopsis thaliana and other species. WRI1 is known to directly stimulate the expression of many fatty acid biosynthetic enzymes and a few targets in the lower part of the glycolytic pathway. However, it remains unclear to what extent and how the conversion of sugars into fatty acid biosynthetic precursors is controlled by WRI1. To shortlist possible gene targets for future in-planta experimental validation, here we present a strategy that combines phylogenetic foot printing of cis-regulatory elements with additional layers of evidence. Upstream regions of protein-encoding genes in A. thaliana were searched for the previously described DNA-binding consensus for WRI1, the ASML1/WRI1 (AW)-box. For about 900 genes, AW-box sites were found to be conserved across orthologous upstream regions in 11 related species of the crucifer family. For 145 select potential target genes identified this way, affinity of upstream AW-box sequences to WRI1 was assayed by Microscale Thermophoresis. This allowed definition of a refined WRI1 DNA-binding consensus. We find that known WRI1 gene targets are predictable with good confidence when upstream AW-sites are phylogenetically conserved, specifically binding WRI1 in the in vitro assay, positioned in proximity to the transcriptional start site, and if the gene is co-expressed with WRI1 during seed development. When targets predicted in this way are mapped to central metabolism, a conserved regulatory blueprint emerges that infers concerted control of contiguous pathway sections in glycolysis and fatty acid biosynthesis by WRI1. Several of the newly predicted targets are in the upper glycolysis pathway and the pentose phosphate pathway. Of these, plastidic isoforms of fructokinase (FRK3) and of phosphoglucose isomerase (PGI1) are particularly corroborated by previously reported seed phenotypes of respective null mutations.
Collapse
|
13
|
Lambour B, Glenz R, Forner C, Krischke M, Mueller MJ, Fekete A, Waller F. Sphingolipid Long-Chain Base Phosphate Degradation Can Be a Rate-Limiting Step in Long-Chain Base Homeostasis. FRONTIERS IN PLANT SCIENCE 2022; 13:911073. [PMID: 35783987 PMCID: PMC9240600 DOI: 10.3389/fpls.2022.911073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Sphingolipid long-chain bases (LCBs) are building blocks for membrane-localized sphingolipids, and are involved in signal transduction pathways in plants. Elevated LCB levels are associated with the induction of programmed cell death and pathogen-derived toxin-induced cell death. Therefore, levels of free LCBs can determine survival of plant cells. To elucidate the contribution of metabolic pathways regulating high LCB levels, we applied the deuterium-labeled LCB D-erythro-sphinganine-d7 (D7-d18:0), the first LCB in sphingolipid biosynthesis, to Arabidopsis leaves and quantified labeled LCBs, LCB phosphates (LCB-Ps), and 14 abundant ceramide (Cer) species over time. We show that LCB D7-d18:0 is rapidly converted into the LCBs d18:0P, t18:0, and t18:0P. Deuterium-labeled ceramides were less abundant, but increased over time, with the highest levels detected for Cer(d18:0/16:0), Cer(d18:0/24:0), Cer(t18:0/16:0), and Cer(t18:0/22:0). A more than 50-fold increase of LCB-P levels after leaf incubation in LCB D7-d18:0 indicated that degradation of LCBs via LCB-Ps is important, and we hypothesized that LCB-P degradation could be a rate-limiting step to reduce high levels of LCBs. To functionally test this hypothesis, we constructed a transgenic line with dihydrosphingosine-1-phosphate lyase 1 (DPL1) under control of an inducible promotor. Higher expression of DPL1 significantly reduced elevated LCB-P and LCB levels induced by Fumonisin B1, and rendered plants more resistant against this fungal toxin. Taken together, we provide quantitative data on the contribution of major enzymatic pathways to reduce high LCB levels, which can trigger cell death. Specifically, we provide functional evidence that DPL1 can be a rate-limiting step in regulating high LCB levels.
Collapse
|
14
|
Staudinger C, Dissanayake BM, Duncan O, Millar AH. The wheat secreted root proteome: Implications for phosphorus mobilisation and biotic interactions. J Proteomics 2022; 252:104450. [PMID: 34890868 DOI: 10.1016/j.jprot.2021.104450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022]
Abstract
Root secreted acid phosphatases and organic anions are widely perceived as major players of plant phosphorus (P) mobilisation from the rhizosphere under P limiting growth conditions. Previous research indicated that other mechanisms play a role, especially in species with fine roots, such as wheat. In this study we characterised the plant-derived extracellular proteome of wheat roots by profiling root tip mucilage, soluble root secreted and root tip proteomes. Extracellular acid phosphatases and enzymes of the central carbon metabolism were targeted using selected reaction monitoring. More than 140 proteins with extracellular localisation prediction were identified in mucilage. P starvation induced proteins predicted to be localised to the apoplast which are related to cell wall modification and defence in both, root tip and soluble root-secreted proteomes. Glycolytic enzymes were strongly increased in abundance by P limitation in root tips, as were PEPC and plastidial MDH. Soluble acid phosphatases were not identified in extracellular protein samples. Our results indicate that root tip mucilage contains proteins with the functional potential to actively shape their immediate environment by modification of plant structural components and biotic interactions. Wheat acid phosphatases appear to play a minor role in P mobilisation beyond the immediate root surface. SIGNIFICANCE: Phosphorus (P) is a plant growth limiting nutrient in many agricultural situations and the development of phosphorus efficient crops is of paramount importance for future agricultural management practices. As P is relatively immobile in soils, processes occurring at the root-soil interface, the rhizosphere, are suspected to play a key role in plant-induced P mobilisation. According to the current view, the secretion of extracellular acid phosphatases and organic anions enhances P mobilisation within several millimetres beyond the root surface, either directly or indirectly through the selection and appropriate soil microbes. However, the mechanisms of P mobilisation in species with fine roots, such as wheat, and the role of other secreted root proteins are poorly understood. Here, we carried out the profiling of wheat root tip mucilage, soluble root secreted and root tip proteomes. We analysed proteome changes in response to P starvation. We found that proteins with a predicted localisation to the apoplast made up a major proportion of stress-responsive proteins. Acid phosphatases were not identified within extracellular protein samples, which were enriched in proteins with predicted extracellular localisation. The absence of extracellular APases was further validated by multiple reaction monitoring. Our data indicates that wheat acid phosphatases play a minor role in P mobilisation beyond the immediate root surface and provides a resource for breeding strategies and further investigations of the functional roles of root tip-released proteins in the rhizosphere under P limitation.
Collapse
Affiliation(s)
- Christiana Staudinger
- School of Biological Sciences, The University of Western Australia, Australia; The ARC Centre of Excellence in Plant Energy Biology, 35 Stirling Highway, Crawley, Perth 6009, Australia; University of Natural Resources and Life Sciences, BOKU-Vienna, Department of Forest and Soil Sciences, Rhizosphere Ecology and Biogeochemistry Group, Austria.
| | - Bhagya M Dissanayake
- The ARC Centre of Excellence in Plant Energy Biology, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - Owen Duncan
- The ARC Centre of Excellence in Plant Energy Biology, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - A Harvey Millar
- The ARC Centre of Excellence in Plant Energy Biology, 35 Stirling Highway, Crawley, Perth 6009, Australia
| |
Collapse
|
15
|
Chu KL, Koley S, Jenkins LM, Bailey SR, Kambhampati S, Foley K, Arp JJ, Morley SA, Czymmek KJ, Bates PD, Allen DK. Metabolic flux analysis of the non-transitory starch tradeoff for lipid production in mature tobacco leaves. Metab Eng 2022; 69:231-248. [PMID: 34920088 PMCID: PMC8761171 DOI: 10.1016/j.ymben.2021.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/12/2021] [Accepted: 12/11/2021] [Indexed: 12/19/2022]
Abstract
The metabolic plasticity of tobacco leaves has been demonstrated via the generation of transgenic plants that can accumulate over 30% dry weight as triacylglycerols. In investigating the changes in carbon partitioning in these high lipid-producing (HLP) leaves, foliar lipids accumulated stepwise over development. Interestingly, non-transient starch was observed to accumulate with plant age in WT but not HLP leaves, with a drop in foliar starch concurrent with an increase in lipid content. The metabolic carbon tradeoff between starch and lipid was studied using 13CO2-labeling experiments and isotopically nonstationary metabolic flux analysis, not previously applied to the mature leaves of a crop. Fatty acid synthesis was investigated through assessment of acyl-acyl carrier proteins using a recently derived quantification method that was extended to accommodate isotopic labeling. Analysis of labeling patterns and flux modeling indicated the continued production of unlabeled starch, sucrose cycling, and a significant contribution of NADP-malic enzyme to plastidic pyruvate production for the production of lipids in HLP leaves, with the latter verified by enzyme activity assays. The results suggest an inherent capacity for a developmentally regulated carbon sink in tobacco leaves and may in part explain the uniquely successful leaf lipid engineering efforts in this crop.
Collapse
Affiliation(s)
- Kevin L Chu
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Somnath Koley
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Lauren M Jenkins
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Sally R Bailey
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA; United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | | | - Kevin Foley
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Jennifer J Arp
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Stewart A Morley
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA; United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Kirk J Czymmek
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Philip D Bates
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, USA
| | - Doug K Allen
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA; United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA.
| |
Collapse
|
16
|
Rolletschek H, Mayer S, Boughton B, Wagner S, Ortleb S, Kiel C, Roessner U, Borisjuk L. The metabolic environment of the developing embryo: A multidisciplinary approach on oilseed rapeseed. JOURNAL OF PLANT PHYSIOLOGY 2021; 265:153505. [PMID: 34481359 DOI: 10.1016/j.jplph.2021.153505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Brassicaceae seeds consist of three genetically distinct structures: the embryo, endosperm and seed coat, all of which are involved in assimilate allocation during seed development. The complexity of their metabolic interrelations remains unresolved to date. In the present study, we apply state-of-the-art imaging and analytical approaches to assess the metabolic environment of the Brassica napus embryo. Nuclear magnetic resonance imaging (MRI) provided volumetric data on the living embryo and endosperm, revealing how the endosperm envelops the embryo, determining endosperm's priority in assimilate uptake from the seed coat during early development. MRI analysis showed higher levels of sugars in the peripheral endosperm facing the seed coat, but a lower sugar content within the central vacuole and the region surrounding the embryo. Feeding intact siliques with 13C-labeled sucrose allowed tracing of the post-phloem route of sucrose transfer within the seed at the heart stage of embryogenesis, by means of mass spectrometry imaging. Quantification of over 70 organic and inorganic compounds in the endosperm revealed shifts in their abundance over different stages of development, while sugars and potassium were the main determinants of osmolality throughout these stages. Our multidisciplinary approach allows access to the hidden aspects of endosperm metabolism, a task which remains unattainable for the small-seeded model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hardy Rolletschek
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Simon Mayer
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Berin Boughton
- Australian National Phenome Centre, Murdoch University, Western Australia, 6150, Australia.
| | - Steffen Wagner
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Stefan Ortleb
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Christina Kiel
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Victoria, 3010, Australia.
| | - Ljudmilla Borisjuk
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| |
Collapse
|
17
|
Wei YM, Ren ZJ, Wang BH, Zhang L, Zhao YJ, Wu JW, Li LG, Zhang XS, Zhao XY. A nitrate transporter encoded by ZmNPF7.9 is essential for maize seed development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 308:110901. [PMID: 34034862 DOI: 10.1016/j.plantsci.2021.110901] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Nitrogen is an essential macronutrient for plants and regulates many aspects of plant growth and development. Nitrate is one of the major forms of nitrogen in plants. However, the role of nitrate uptake and allocation in seed development is not fully understood. Here, we identified the maize (Zea mays) small-kernel mutant zmnpf7.9 and characterized the candidate gene, ZmNPF7.9, which was the same gene as nitrate transport 1.5 (NRT1.5) in maize. This gene is specifically expressed in the basal endosperm transfer layer cells of maize endosperm. Dysfunction of ZmNPF7.9 resulted in delayed endosperm development, abnormal starch deposition and decreased hundred-grain weight. Functional analysis of cRNA-injected Xenopus oocytes showed that ZmNPF7.9 is a low-affinity, pH-dependent bidirectional nitrate transporter. Moreover, the amount of nitrate in mature seeds of the zmnpf7.9 mutant was reduced. These suggest that ZmNPF7.9 is involved in delivering nitrate from maternal tissues to the developing endosperm. Moreover, most of the key genes associated with glycolysis/gluconeogenesis, carbon fixation, carbon metabolism and biosynthesis of amino acids pathways in the zmnpf7.9 mutant were significantly down-regulated. Thus, our results demonstrate that ZmNPF7.9 plays a specific role in seed development and grain weight by regulating nutrition transport and metabolism, which might provide useful information for maize genetic improvement.
Collapse
Affiliation(s)
- Yi Ming Wei
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Zhi Jie Ren
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Bo Hui Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Lin Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Ya Jie Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jia Wen Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Le Gong Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China; College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| | - Xiang Yu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China; College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
18
|
Radchuk V, Tran V, Hilo A, Muszynska A, Gündel A, Wagner S, Fuchs J, Hensel G, Ortleb S, Munz E, Rolletschek H, Borisjuk L. Grain filling in barley relies on developmentally controlled programmed cell death. Commun Biol 2021; 4:428. [PMID: 33785858 PMCID: PMC8009944 DOI: 10.1038/s42003-021-01953-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/02/2021] [Indexed: 11/25/2022] Open
Abstract
Cereal grains contribute substantially to the human diet. The maternal plant provides the carbohydrate and nitrogen sources deposited in the endosperm, but the basis for their spatial allocation during the grain filling process is obscure. Here, vacuolar processing enzymes have been shown to both mediate programmed cell death (PCD) in the maternal tissues of a barley grain and influence the delivery of assimilate to the endosperm. The proposed centrality of PCD has implications for cereal crop improvement. Radchuk et al. report on the role of vacuolar processing enzymes (VPEs) in mediating programmed cell death (PCD) in the maternal tissues of a barley grain and influencing the delivery of assimilate to the endosperm. This study presents a means of increasing the efficiency of the grain filling process in the major cereal crop species by manipulating the timing of PCD.
Collapse
Affiliation(s)
- Volodymyr Radchuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
| | - Van Tran
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Alexander Hilo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Aleksandra Muszynska
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Andre Gündel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Steffen Wagner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Joerg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Goetz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Stefan Ortleb
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Eberhard Munz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Ljudmilla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
| |
Collapse
|
19
|
Meitzel T, Radchuk R, McAdam EL, Thormählen I, Feil R, Munz E, Hilo A, Geigenberger P, Ross JJ, Lunn JE, Borisjuk L. Trehalose 6-phosphate promotes seed filling by activating auxin biosynthesis. THE NEW PHYTOLOGIST 2021; 229:1553-1565. [PMID: 32984971 DOI: 10.1111/nph.16956] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/13/2020] [Indexed: 05/21/2023]
Abstract
Plants undergo several developmental transitions during their life cycle. One of these, the differentiation of the young embryo from a meristem-like structure into a highly specialized storage organ, is believed to be controlled by local connections between sugars and hormonal response systems. However, we know little about the regulatory networks underpinning the sugar-hormone interactions in developing seeds. By modulating the trehalose 6-phosphate (T6P) content in growing embryos of garden pea (Pisum sativum), we investigate here the role of this signaling sugar during the seed-filling process. Seeds deficient in T6P are compromised in size and starch production, resembling the wrinkled seeds studied by Gregor Mendel. We show also that T6P exerts these effects by stimulating the biosynthesis of the pivotal plant hormone, auxin. We found that T6P promotes the expression of the auxin biosynthesis gene TRYPTOPHAN AMINOTRANSFERASE RELATED2 (TAR2), and the resulting effect on auxin concentrations is required to mediate the T6P-induced activation of storage processes. Our results suggest that auxin acts downstream of T6P to facilitate seed filling, thereby providing a salient example of how a metabolic signal governs the hormonal control of an integral phase transition in a crop plant.
Collapse
Affiliation(s)
- Tobias Meitzel
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, Stadt Seeland OT Gatersleben, 06466, Germany
| | - Ruslana Radchuk
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, Stadt Seeland OT Gatersleben, 06466, Germany
- DeepTrait S.A., Dobrzańskiego 3, Lublin, 20-262, Poland
| | - Erin L McAdam
- School of Natural Sciences, University of Tasmania, Sandy Bay, 7001, Australia
| | - Ina Thormählen
- Faculty of Biology, Ludwig Maximilians University of Munich, Großhaderner Str. 2, Planegg-Martinsried, 82152, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Eberhard Munz
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, Stadt Seeland OT Gatersleben, 06466, Germany
| | - Alexander Hilo
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, Stadt Seeland OT Gatersleben, 06466, Germany
| | - Peter Geigenberger
- Faculty of Biology, Ludwig Maximilians University of Munich, Großhaderner Str. 2, Planegg-Martinsried, 82152, Germany
| | - John J Ross
- School of Natural Sciences, University of Tasmania, Sandy Bay, 7001, Australia
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Ljudmilla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, Stadt Seeland OT Gatersleben, 06466, Germany
| |
Collapse
|
20
|
Rolletschek H, Muszynska A, Borisjuk L. The process of seed maturation is influenced by mechanical constraints. THE NEW PHYTOLOGIST 2021; 229:19-23. [PMID: 32735708 DOI: 10.1111/nph.16815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland-Gatersleben, 06466, Germany
| | - Aleksandra Muszynska
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland-Gatersleben, 06466, Germany
| | - Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland-Gatersleben, 06466, Germany
| |
Collapse
|
21
|
Correa SM, Alseekh S, Atehortúa L, Brotman Y, Ríos-Estepa R, Fernie AR, Nikoloski Z. Model-assisted identification of metabolic engineering strategies for Jatropha curcas lipid pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:76-95. [PMID: 33001507 DOI: 10.1111/tpj.14906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Efficient approaches to increase plant lipid production are necessary to meet current industrial demands for this important resource. While Jatropha curcas cell culture can be used for in vitro lipid production, scaling up the system for industrial applications requires an understanding of how growth conditions affect lipid metabolism and yield. Here we present a bottom-up metabolic reconstruction of J. curcas supported with labeling experiments and biomass characterization under three growth conditions. We show that the metabolic model can accurately predict growth and distribution of fluxes in cell cultures and use these findings to pinpoint energy expenditures that affect lipid biosynthesis and metabolism. In addition, by using constraint-based modeling approaches we identify network reactions whose joint manipulation optimizes lipid production. The proposed model and computational analyses provide a stepping stone for future rational optimization of other agronomically relevant traits in J. curcas.
Collapse
Affiliation(s)
- Sandra M Correa
- Genetics of Metabolic Traits Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- Grupo de Biotecnología, Departamento de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Saleh Alseekh
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- Centre for Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Lucía Atehortúa
- Grupo de Biotecnología, Departamento de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Yariv Brotman
- Genetics of Metabolic Traits Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Rigoberto Ríos-Estepa
- Grupo de Bioprocesos, Departamento de Ingeniería Química, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- Centre for Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Zoran Nikoloski
- Centre for Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, 14476, Germany
- Systems Biology and Mathematical Modelling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| |
Collapse
|
22
|
Correa SM, Fernie AR, Nikoloski Z, Brotman Y. Towards model-driven characterization and manipulation of plant lipid metabolism. Prog Lipid Res 2020; 80:101051. [PMID: 32640289 DOI: 10.1016/j.plipres.2020.101051] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 01/09/2023]
Abstract
Plant lipids have versatile applications and provide essential fatty acids in human diet. Therefore, there has been a growing interest to better characterize the genetic basis, regulatory networks, and metabolic pathways that shape lipid quantity and composition. Addressing these issues is challenging due to context-specificity of lipid metabolism integrating environmental, developmental, and tissue-specific cues. Here we systematically review the known metabolic pathways and regulatory interactions that modulate the levels of storage lipids in oilseeds. We argue that the current understanding of lipid metabolism provides the basis for its study in the context of genome-wide plant metabolic networks with the help of approaches from constraint-based modeling and metabolic flux analysis. The focus is on providing a comprehensive summary of the state-of-the-art of modeling plant lipid metabolic pathways, which we then contrast with the existing modeling efforts in yeast and microalgae. We then point out the gaps in knowledge of lipid metabolism, and enumerate the recent advances of using genome-wide association and quantitative trait loci mapping studies to unravel the genetic regulations of lipid metabolism. Finally, we offer a perspective on how advances in the constraint-based modeling framework can propel further characterization of plant lipid metabolism and its rational manipulation.
Collapse
Affiliation(s)
- Sandra M Correa
- Genetics of Metabolic Traits Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel; Departamento de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín 050010, Colombia.
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Zoran Nikoloski
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria; Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modelling Group, Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm 14476, Germany.
| | - Yariv Brotman
- Genetics of Metabolic Traits Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| |
Collapse
|
23
|
Rolletschek H, Schwender J, König C, Chapman KD, Romsdahl T, Lorenz C, Braun HP, Denolf P, Van Audenhove K, Munz E, Heinzel N, Ortleb S, Rutten T, McCorkle S, Borysyuk T, Guendel A, Shi H, Vander Auwermeulen M, Bourot S, Borisjuk L. Cellular Plasticity in Response to Suppression of Storage Proteins in the Brassica napus Embryo. THE PLANT CELL 2020; 32:2383-2401. [PMID: 32358071 PMCID: PMC7346569 DOI: 10.1105/tpc.19.00879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/15/2020] [Accepted: 04/30/2020] [Indexed: 05/16/2023]
Abstract
The tradeoff between protein and oil storage in oilseed crops has been tested here in oilseed rape (Brassica napus) by analyzing the effect of suppressing key genes encoding protein storage products (napin and cruciferin). The phenotypic outcomes were assessed using NMR and mass spectrometry imaging, microscopy, transcriptomics, proteomics, metabolomics, lipidomics, immunological assays, and flux balance analysis. Surprisingly, the profile of storage products was only moderately changed in RNA interference transgenics. However, embryonic cells had undergone remarkable architectural rearrangements. The suppression of storage proteins led to the elaboration of membrane stacks enriched with oleosin (sixfold higher protein abundance) and novel endoplasmic reticulum morphology. Protein rebalancing and amino acid metabolism were focal points of the metabolic adjustments to maintain embryonic carbon/nitrogen homeostasis. Flux balance analysis indicated a rather minor additional demand for cofactors (ATP and NADPH). Thus, cellular plasticity in seeds protects against perturbations to its storage capabilities and, hence, contributes materially to homeostasis. This study provides mechanistic insights into the intriguing link between lipid and protein storage, which have implications for biotechnological strategies directed at improving oilseed crops.
Collapse
Affiliation(s)
- Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research OT Gatersleben, D-06466 Seeland, Germany
| | - Jörg Schwender
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Christina König
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Kent D Chapman
- University of North Texas, BioDiscovery Institute, Department of Biological Sciences, Denton, Texas 76203
| | - Trevor Romsdahl
- University of North Texas, BioDiscovery Institute, Department of Biological Sciences, Denton, Texas 76203
| | - Christin Lorenz
- Institut für Pflanzengenetik, Universität Hannover, 30419 Hannover, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Universität Hannover, 30419 Hannover, Germany
| | - Peter Denolf
- BASF Innovation Center Ghent, 9052-Zwijnaarde, Belgium
| | | | - Eberhard Munz
- Leibniz Institute of Plant Genetics and Crop Plant Research OT Gatersleben, D-06466 Seeland, Germany
| | - Nicolas Heinzel
- Leibniz Institute of Plant Genetics and Crop Plant Research OT Gatersleben, D-06466 Seeland, Germany
| | - Stefan Ortleb
- Leibniz Institute of Plant Genetics and Crop Plant Research OT Gatersleben, D-06466 Seeland, Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research OT Gatersleben, D-06466 Seeland, Germany
| | - Sean McCorkle
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | | | - André Guendel
- Leibniz Institute of Plant Genetics and Crop Plant Research OT Gatersleben, D-06466 Seeland, Germany
| | - Hai Shi
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | | | | | - Ljudmilla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research OT Gatersleben, D-06466 Seeland, Germany
| |
Collapse
|
24
|
Benes B, Guan K, Lang M, Long SP, Lynch JP, Marshall-Colón A, Peng B, Schnable J, Sweetlove LJ, Turk MJ. Multiscale computational models can guide experimentation and targeted measurements for crop improvement. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:21-31. [PMID: 32053236 DOI: 10.1111/tpj.14722] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/23/2020] [Indexed: 05/18/2023]
Abstract
Computational models of plants have identified gaps in our understanding of biological systems, and have revealed ways to optimize cellular processes or organ-level architecture to increase productivity. Thus, computational models are learning tools that help direct experimentation and measurements. Models are simplifications of complex systems, and often simulate specific processes at single scales (e.g. temporal, spatial, organizational, etc.). Consequently, single-scale models are unable to capture the critical cross-scale interactions that result in emergent properties of the system. In this perspective article, we contend that to accurately predict how a plant will respond in an untested environment, it is necessary to integrate mathematical models across biological scales. Computationally mimicking the flow of biological information from the genome to the phenome is an important step in discovering new experimental strategies to improve crops. A key challenge is to connect models across biological, temporal and computational (e.g. CPU versus GPU) scales, and then to visualize and interpret integrated model outputs. We address this challenge by describing the efforts of the international Crops in silico consortium.
Collapse
Affiliation(s)
- Bedrich Benes
- Computer Graphics Technology and Computer Science, Purdue University, Knoy Hall of Technology, West Lafayette, IN, 47906, USA
| | - Kaiyu Guan
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
- National Center of Supercomputing Applications, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Meagan Lang
- National Center of Supercomputing Applications, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Stephen P Long
- Carl R. Woese Institute for Genomic Biology, University of Illinois, 1206 West Gregory Drive, Urbana, IL, 61801, USA
- Lancaster Environment Centre, University of Lancaster, Lancaster, LA1 1YX, UK
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Amy Marshall-Colón
- National Center of Supercomputing Applications, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Department of Plant Biology, University of Illinois Urbana-Champaign, 265 Morrill Hall, MC-116, 505 South Goodwin Ave., Urbana, IL, 61801, USA
| | - Bin Peng
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
- National Center of Supercomputing Applications, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - James Schnable
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Matthew J Turk
- National Center of Supercomputing Applications, University of Illinois at Urbana Champaign, Urbana, IL, USA
- School of Information Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
25
|
O'Leary B, Plaxton WC. Multifaceted functions of post-translational enzyme modifications in the control of plant glycolysis. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:28-37. [PMID: 32200227 DOI: 10.1016/j.pbi.2020.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/24/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Glycolysis is a central feature of metabolism and its regulation plays important roles during plant developmental and stress responses. Recent advances in proteomics and mass spectrometry have documented extensive and dynamic post-translational modifications (PTMs) of most glycolytic enzymes in diverse plant tissues. Protein PTMs represent fundamental regulatory events that integrate signalling and gene expression with cellular metabolic networks, and can regulate glycolytic enzyme activity, localization, protein:protein interactions, moonlighting functions, and turnover. Serine/threonine phosphorylation and redox PTMs of cysteine thiol groups appear to be the most prevalent forms of reversible covalent modification involved in plant glycolytic control. Additional PTMs including monoubiquitination also have important functions. However, the molecular functions and mechanisms of most glycolytic enzyme PTMs remain unknown, and represent important objectives for future studies.
Collapse
Affiliation(s)
- Brendan O'Leary
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Australia
| | - William C Plaxton
- Department of Biology, Queen's University, Kingston, Ontario K7L3N6, Canada.
| |
Collapse
|
26
|
Clark TJ, Guo L, Morgan J, Schwender J. Modeling Plant Metabolism: From Network Reconstruction to Mechanistic Models. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:303-326. [PMID: 32017600 DOI: 10.1146/annurev-arplant-050718-100221] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mathematical modeling of plant metabolism enables the plant science community to understand the organization of plant metabolism, obtain quantitative insights into metabolic functions, and derive engineering strategies for manipulation of metabolism. Among the various modeling approaches, metabolic pathway analysis can dissect the basic functional modes of subsections of core metabolism, such as photorespiration, and reveal how classical definitions of metabolic pathways have overlapping functionality. In the many studies using constraint-based modeling in plants, numerous computational tools are currently available to analyze large-scale and genome-scale metabolic networks. For 13C-metabolic flux analysis, principles of isotopic steady state have been used to study heterotrophic plant tissues, while nonstationary isotope labeling approaches are amenable to the study of photoautotrophic and secondary metabolism. Enzyme kinetic models explore pathways in mechanistic detail, and we discuss different approaches to determine or estimate kinetic parameters. In this review, we describe recent advances and challenges in modeling plant metabolism.
Collapse
Affiliation(s)
- Teresa J Clark
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA; ,
| | - Longyun Guo
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA; ,
| | - John Morgan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA; ,
| | - Jorg Schwender
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA; ,
| |
Collapse
|
27
|
The dynamic response of the Arabidopsis root metabolome to auxin and ethylene is not predicted by changes in the transcriptome. Sci Rep 2020; 10:679. [PMID: 31959762 PMCID: PMC6971091 DOI: 10.1038/s41598-019-57161-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/19/2019] [Indexed: 12/27/2022] Open
Abstract
While the effects of phytohormones on plant gene expression have been well characterized, comparatively little is known about how hormones influence metabolite profiles. This study examined the effects of elevated auxin and ethylene on the metabolome of Arabidopsis roots using a high-resolution 24 h time course, conducted in parallel to time-matched transcriptomic analyses. Mass spectrometry using orthogonal UPLC separation strategies (reversed phase and HILIC) in both positive and negative ionization modes was used to maximize identification of metabolites with altered levels. The findings show that the root metabolome responds rapidly to hormone stimulus and that compounds belonging to the same class of metabolites exhibit similar changes. The responses were dominated by changes in phenylpropanoid, glucosinolate, and fatty acid metabolism, although the nature and timing of the response was unique for each hormone. These alterations in the metabolome were not directly predicted by the corresponding transcriptome data, suggesting that post-transcriptional events such as changes in enzyme activity and/or transport processes drove the observed changes in the metabolome. These findings underscore the need to better understand the biochemical mechanisms underlying the temporal reconfiguration of plant metabolism, especially in relation to the hormone-metabolome interface and its subsequent physiological and morphological effects.
Collapse
|
28
|
Huang R, Liu Z, Xing M, Yang Y, Wu X, Liu H, Liang W. Heat Stress Suppresses Brassica napus Seed Oil Accumulation by Inhibition of Photosynthesis and BnWRI1 Pathway. PLANT & CELL PHYSIOLOGY 2019; 60:1457-1470. [PMID: 30994920 DOI: 10.1093/pcp/pcz052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 03/25/2019] [Indexed: 05/08/2023]
Abstract
Heat stress during Brassica napus seed filling severely impairs yield and oil content. However, the mechanisms underlying heat-stress effects on B. napus seed photosynthesis and oil accumulation remain elusive. In this study, we showed that heat stress resulted in reduction of seed oil accumulation, whereas the seed sugar content was enhanced, which indicated that incorporation of carbohydrates into triacylglycerols was impaired. Photosynthesis and respiration rates, and the maximum quantum yield of photosystem II in developing seeds were inhibited by heat stress. Transcriptome analysis revealed that heat stress led to up-regulation of genes associated with high light response, providing evidence that photoinhibition was induced by heat stress. BnWRI1 and its downstream genes, including genes involved in de novo fatty acid biosynthesis pathway, were down-regulated by heat stress. Overexpression of BnWRI1 with a seed-specific promoter stabilized both oil accumulation and photosynthesis under the heat-stress condition, which suggested BnWRI1 plays an important role in mediating the effect of heat stress on fatty acid biosynthesis. A number of sugar transporter genes were inhibited by heat stress, resulting in defective integration of carbohydrates into triacylglycerols units. The results collectively demonstrated that disturbances of the seed photosynthesis machinery, impairment of carbohydrates incorporation into triacylglycerols and transcriptional deregulation of the BnWRI1 pathway by heat stress might be the major cause of decreased oil accumulation in the seed.
Collapse
Affiliation(s)
- Ruizhi Huang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhihong Liu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Meiqing Xing
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yong Yang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xuelong Wu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Heqin Liu
- Institute of Crop Science and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weifang Liang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
29
|
Li H, Thrash A, Tang JD, He L, Yan J, Warburton ML. Leveraging GWAS data to identify metabolic pathways and networks involved in maize lipid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:853-863. [PMID: 30742331 PMCID: PMC6850169 DOI: 10.1111/tpj.14282] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 05/21/2023]
Abstract
Maize (Zea mays mays) oil is a rich source of polyunsaturated fatty acids (FAs) and energy, making it a valuable resource for human food, animal feed, and bio-energy. Although this trait has been studied via conventional genome-wide association study (GWAS), the single nucleotide polymorphism (SNP)-trait associations generated by GWAS may miss the underlying associations when traits are based on many genes, each with small effects that can be overshadowed by genetic background and environmental variation. Detecting these SNPs statistically is also limited by the levels set for false discovery rate. A complementary pathways analysis that emphasizes the cumulative aspects of SNP-trait associations, rather than just the significance of single SNPs, was performed to understand the balance of lipid metabolism, conversion, and catabolism in this study. This pathway analysis indicated that acyl-lipid pathways, including biosynthesis of wax esters, sphingolipids, phospholipids and flavonoids, along with FA and triacylglycerol (TAG) biosynthesis, were important for increasing oil and FA content. The allelic variation found among the genes involved in many degradation pathways, and many biosynthesis pathways leading from FAs and carbon partitioning pathways, was critical for determining final FA content, changing FA ratios and, ultimately, to final oil content. The pathways and pathway networks identified in this study, and especially the acyl-lipid associated pathways identified beyond what had been found with GWAS alone, provide a real opportunity to precisely and efficiently manipulate high-oil maize genetic improvement.
Collapse
Affiliation(s)
- Hui Li
- School of Biological Science and TechnologyUniversity of JinanJinan250022China
| | - Adam Thrash
- Institute for Genomics, Biocomputing & BiotechnologyMississippi State UniversityMS39762USA
| | - Juliet D. Tang
- USDA FS Forest Products LaboratoryDurability and Wood ProtectionStarkvilleMS39759USA
| | - Linlin He
- School of Biological Science and TechnologyUniversity of JinanJinan250022China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Marilyn L. Warburton
- USDA ARS Corn Host Plant Resistance Research Unit (CHPRRU)Mississippi StateMS39762USA
| |
Collapse
|
30
|
Savchenko T, Rolletschek H, Heinzel N, Tikhonov K, Dehesh K. Waterlogging tolerance rendered by oxylipin-mediated metabolic reprogramming in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2919-2932. [PMID: 30854562 PMCID: PMC6506769 DOI: 10.1093/jxb/erz110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/26/2019] [Indexed: 05/20/2023]
Abstract
Environmental stresses induce production of oxylipins synthesized by the two main biosynthetic branches, allene oxide synthase (AOS) and hydroperoxide lyase (HPL). Here, we investigate how waterlogging-mediated alteration of AOS- and HPL-derived metabolic profile results in modulation of central metabolism and ultimately enhanced tolerance to this environmental stress in Arabidopsis thaliana. Waterlogging leads to increased levels of AOS- and HPL-derived metabolites, and studies of genotypes lacking either one or both branches further support the key function of these oxylipins in waterlogging tolerance. Targeted quantitative metabolic profiling revealed oxylipin-dependent alterations in selected primary metabolites, and glycolytic and citric acid cycle intermediates, as well as a prominent shift in sucrose cleavage, hexose activation, the methionine salvage pathway, shikimate pathway, antioxidant system, and energy metabolism in genotypes differing in the presence of one or both functional branches of the oxylipin biosynthesis pathway. Interestingly, despite some distinct metabolic alterations caused specifically by individual branches, overexpression of HPL partially or fully alleviates the majority of altered metabolic profiles observed in AOS-depleted lines. Collectively, these data identify the key role of AOS- and HPL-derived oxylipins in altering central metabolism, and further provide a metabolic platform targeted at identification of gene candidates for enhancing plant tolerance to waterlogging.
Collapse
Affiliation(s)
- Tatyana Savchenko
- Institute of Basic Biological Problems, RAS, Pushchino, Russia
- Correspondence:
| | - Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Nicolas Heinzel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | - Katayoon Dehesh
- Institute for Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
31
|
Vanhercke T, Dyer JM, Mullen RT, Kilaru A, Rahman MM, Petrie JR, Green AG, Yurchenko O, Singh SP. Metabolic engineering for enhanced oil in biomass. Prog Lipid Res 2019; 74:103-129. [PMID: 30822461 DOI: 10.1016/j.plipres.2019.02.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
Abstract
The world is hungry for energy. Plant oils in the form of triacylglycerol (TAG) are one of the most reduced storage forms of carbon found in nature and hence represent an excellent source of energy. The myriad of applications for plant oils range across foods, feeds, biofuels, and chemical feedstocks as a unique substitute for petroleum derivatives. Traditionally, plant oils are sourced either from oilseeds or tissues surrounding the seed (mesocarp). Most vegetative tissues, such as leaves and stems, however, accumulate relatively low levels of TAG. Since non-seed tissues constitute the majority of the plant biomass, metabolic engineering to improve their low-intrinsic TAG-biosynthetic capacity has recently attracted significant attention as a novel, sustainable and potentially high-yielding oil production platform. While initial attempts predominantly targeted single genes, recent combinatorial metabolic engineering strategies have focused on the simultaneous optimization of oil synthesis, packaging and degradation pathways (i.e., 'push, pull, package and protect'). This holistic approach has resulted in dramatic, seed-like TAG levels in vegetative tissues. With the first proof of concept hurdle addressed, new challenges and opportunities emerge, including engineering fatty acid profile, translation into agronomic crops, extraction, and downstream processing to deliver accessible and sustainable bioenergy.
Collapse
Affiliation(s)
- Thomas Vanhercke
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia.
| | - John M Dyer
- USDA-ARS, US Arid-Land Agricultural Research Center, Maricopa, AZ, USA
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Md Mahbubur Rahman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| | - James R Petrie
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia; Folear, Goulburn, NSW, Australia
| | - Allan G Green
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Olga Yurchenko
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Surinder P Singh
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| |
Collapse
|
32
|
Decker D, Kleczkowski LA. UDP-Sugar Producing Pyrophosphorylases: Distinct and Essential Enzymes With Overlapping Substrate Specificities, Providing de novo Precursors for Glycosylation Reactions. FRONTIERS IN PLANT SCIENCE 2019; 9:1822. [PMID: 30662444 PMCID: PMC6329318 DOI: 10.3389/fpls.2018.01822] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/23/2018] [Indexed: 05/02/2023]
Abstract
Nucleotide sugars are the key precursors for all glycosylation reactions and are required both for oligo- and polysaccharides synthesis and protein and lipid glycosylation. Among all nucleotide sugars, UDP-sugars are the most important precursors for biomass production in nature (e.g., synthesis of cellulose, hemicellulose, and pectins for cell wall production). Several recent studies have already suggested a potential role for UDP-Glc in plant growth and development, and UDP-Glc has also been suggested as a signaling molecule, in addition to its precursor function. In this review, we will cover primary mechanisms of formation of UDP-sugars, by focusing on UDP-sugar metabolizing pyrophosphorylases. The pyrophosphorylases can be divided into three families: UDP-Glc pyrophosphorylase (UGPase), UDP-sugar pyrophosphorylase (USPase), and UDP-N-acetyl glucosamine pyrophosphorylase (UAGPase), which can be distinguished both by their amino acid sequences and by differences in substrate specificity. Substrate specificities of these enzymes are discussed, along with structure-function relationships, based on their crystal structures and homology modeling. Earlier studies with transgenic plants have revealed that each of the pyrophosphorylases is essential for plant survival, and their loss or a decrease in activity results in reproductive impairment. This constitutes a problem when studying exact in vivo roles of the enzymes using classical reverse genetics approaches. Thus, strategies involving the use of specific inhibitors (reverse chemical genetics) are also discussed. Further characterization of the properties/roles of pyrophosphorylases should address fundamental questions dealing with mechanisms and control of carbohydrate synthesis and may allow to identify targets for manipulation of biomass production in plants.
Collapse
Affiliation(s)
| | - Leszek A. Kleczkowski
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| |
Collapse
|
33
|
Wang J, Lin W, Yin Z, Wang L, Dong S, An J, Lin Z, Yu H, Shi L, Lin S, Chen S. Comprehensive evaluation of fuel properties and complex regulation of intracellular transporters for high oil production in developing seeds of Prunus sibirica for woody biodiesel. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:6. [PMID: 30622648 PMCID: PMC6318995 DOI: 10.1186/s13068-018-1347-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/24/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Based on our previous studies of 17 Prunus sibirica germplasms, one plus tree with high quality and quantity of seed oils has emerged as novel potential source of biodiesel. To better develop P. sibirica seed oils as woody biodiesel, a concurrent exploration of oil content, FA composition, biodiesel yield and fuel properties as well as prediction model construction for fuel properties was conducted on developing seeds to determine the optimal seed harvest time for producing high-quality biodiesel. Oil synthesis required supply of carbon source, energy and FA, but their transport mechanisms still remains enigmatic. Our recent 454 sequencing of P. sibirica could provide long-read sequences to identify membrane transporters for a better understanding of regulatory mechanism for high oil production in developing seeds. RESULTS To better develop the seed oils of P. sibirica as woody biodiesel, we firstly focused on a temporal and comparative evaluation of growth tendency, oil content, FA composition, biodiesel yield and fuel properties as well as model construction for biodiesel property prediction in different developing seeds from P. sibirica plus tree (accession AS-80), revealing that the oils from developing seeds harvested after 60 days after flowering (DAF) could be as novel potential feedstock for producing biodiesel with ideal fuel property. To gain new insight into membrane transport mechanism for high oil yield in developing seeds of P. sibirica, we presented a global analysis of transporter based on our recent 454 sequencing data of P. sibirica. We annotated a total of 116 genes for membrane-localized transporters at different organelles (plastid, endoplasmatic reticulum, tonoplast, mitochondria and peroxisome), of which some specific transporters were identified to be involved in carbon allocation, metabolite transport and energy supply for oil synthesis by both RT-PCR and qRT-PCR. Importantly, the transporter-mediated model was well established for high oil synthesis in developing P. sibirica seeds. Our findings could help to reveal molecular mechanism of increased oil production and may also present strategies for engineering oil accumulation in oilseed plants. CONCLUSIONS This study presents a temporal and comparative evaluation of developing P. sibirica seed oils as a potential feedstock for producing high-quality biodiesel and a global identification for membrane transporters was to gain better insights into regulatory mechanism of high oil production in developing seeds of P. sibirica. Our findings may present strategies for developing woody biodiesel resources and engineering oil accumulation.
Collapse
Affiliation(s)
- Jia Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Weijun Lin
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Zhongdong Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Libing Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
| | - ShuBin Dong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Jiyong An
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Zixin Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Haiyan Yu
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
| | - Lingling Shi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Shanzhi Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
34
|
Lorenz C, Brandt S, Borisjuk L, Rolletschek H, Heinzel N, Tohge T, Fernie AR, Braun HP, Hildebrandt TM. The Role of Persulfide Metabolism During Arabidopsis Seed Development Under Light and Dark Conditions. FRONTIERS IN PLANT SCIENCE 2018; 9:1381. [PMID: 30283487 PMCID: PMC6156424 DOI: 10.3389/fpls.2018.01381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/30/2018] [Indexed: 05/25/2023]
Abstract
The sulfur dioxygenase ETHE1 oxidizes persulfides in the mitochondrial matrix and is involved in the degradation of L-cysteine and hydrogen sulfide. ETHE1 has an essential but as yet undefined function in early embryo development of Arabidopsis thaliana. In leaves, ETHE1 is strongly induced by extended darkness and participates in the use of amino acids as alternative respiratory substrates during carbohydrate starvation. Thus, we tested the effect of darkness on seed development in an ETHE1 deficient mutant in comparison to the wild type. Since ETHE1 knock-out is embryo lethal, the knock-down line ethe1-1 with about 1% residual sulfur dioxygenase activity was used for this study. We performed phenotypic analysis, metabolite profiling and comparative proteomics in order to investigate the general effect of extended darkness on seed metabolism and further define the specific function of the mitochondrial sulfur dioxygenase ETHE1 in seeds. Shading of the siliques had no morphological effect on embryogenesis in wild type plants. However, the developmental delay that was already visible in ethe1-1 seeds under control conditions was further enhanced in the darkness. Dark conditions strongly affected seed quality parameters of both wild type and mutant plants. The effect of ETHE1 knock-down on amino acid profiles was clearly different from that found in leaves indicating that in seeds persulfide oxidation interacts with alanine and glycine rather than branched-chain amino acid metabolism. Sulfur dioxygenase deficiency led to defects in endosperm development possibly due to alterations in the cellularization process. In addition, we provide evidence for a potential role of persulfide metabolism in abscisic acid (ABA) signal transduction in seeds. We conclude that the knock-down of ETHE1 causes metabolic re-arrangements in seeds that differ from those in leaves. Putative mechanisms that cause the aberrant endosperm and embryo development are discussed.
Collapse
Affiliation(s)
- Christin Lorenz
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University Hannover, Hanover, Germany
| | - Saskia Brandt
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University Hannover, Hanover, Germany
| | - Ljudmilla Borisjuk
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Hardy Rolletschek
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Nicolas Heinzel
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Hans-Peter Braun
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University Hannover, Hanover, Germany
| | - Tatjana M. Hildebrandt
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University Hannover, Hanover, Germany
| |
Collapse
|
35
|
Wang P, Guo L, Jaini R, Klempien A, McCoy RM, Morgan JA, Dudareva N, Chapple C. A 13C isotope labeling method for the measurement of lignin metabolic flux in Arabidopsis stems. PLANT METHODS 2018; 14:51. [PMID: 29977324 PMCID: PMC6015466 DOI: 10.1186/s13007-018-0318-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/16/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND Metabolic fluxes represent the functional phenotypes of biochemical pathways and are essential to reveal the distribution of precursors among metabolic networks. Although analysis of metabolic fluxes, facilitated by stable isotope labeling and mass spectrometry detection, has been applied in the studies of plant metabolism, we lack experimental measurements for carbon flux towards lignin, one of the most abundant polymers in nature. RESULTS We developed a feeding strategy of excised Arabidopsis stems with 13C labeled phenylalanine (Phe) for the analysis of lignin biosynthetic flux. We optimized the feeding methods and found the stems continued to grow and lignify. Consistent with lignification profiles along the stems, higher levels of phenylpropanoids and activities of lignin biosynthetic enzymes were detected in the base of the stem. In the feeding experiments, 13C labeled Phe was quickly accumulated and used for the synthesis of phenylpropanoid intermediates and lignin. The intermediates displayed two different patterns of labeling kinetics during the feeding period. Analysis of lignin showed rapid incorporation of label into all three subunits in the polymers. CONCLUSIONS Our feeding results demonstrate the effectiveness of the stem feeding system and suggest a potential application for the investigations of other aspects in plant metabolism. The supply of exogenous Phe leading to a higher lignin deposition rate indicates the availability of Phe is a determining factor for lignification rates.
Collapse
Affiliation(s)
- Peng Wang
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
| | - Longyun Guo
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
| | - Rohit Jaini
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Antje Klempien
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
| | - Rachel M. McCoy
- Department of Horticulture and Landscape, Purdue University, West Lafayette, IN 47907 USA
| | - John A. Morgan
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
36
|
3D Reconstruction of Lipid Droplets in the Seed of Brassica napus. Sci Rep 2018; 8:6560. [PMID: 29700334 PMCID: PMC5920073 DOI: 10.1038/s41598-018-24812-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/10/2018] [Indexed: 12/11/2022] Open
Abstract
Rapeseed is one of the most important and widely cultured oilseed crops for food and nonfood purposes worldwide. Neutral lipids are stored in lipid droplets (LDs) as fuel for germination and subsequent seedling growth. Most of the LD detection in seeds was still in 2D levels, and some of the details might have been lost in previous studies. In the present work, the configuration of LDs in seeds was obtained by confocal imaging combined with 3D reconstruction technology in Brassica napus. The size and shape of LDs, LD numbers, cell interval spaces and cell size were observed and compared at 3D levels in the seeds of different materials with high and low oil content. It was also revealed that different cells located in the same tissue exhibited various oil contents according to the construction at the 3D level, which was not previously reported in B. napus. The present work provides a new way to understand the differential in cell populations and enhance the seed oil content at the single cell level within seeds.
Collapse
|
37
|
Functions of maize genes encoding pyruvate phosphate dikinase in developing endosperm. Proc Natl Acad Sci U S A 2017; 115:E24-E33. [PMID: 29255019 DOI: 10.1073/pnas.1715668115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Maize opaque2 (o2) mutations are beneficial for endosperm nutritional quality but cause negative pleiotropic effects for reasons that are not fully understood. Direct targets of the bZIP transcriptional regulator encoded by o2 include pdk1 and pdk2 that specify pyruvate phosphate dikinase (PPDK). This enzyme reversibly converts AMP, pyrophosphate, and phosphoenolpyruvate to ATP, orthophosphate, and pyruvate and provides diverse functions in plants. This study addressed PPDK function in maize starchy endosperm where it is highly abundant during grain fill. pdk1 and pdk2 were inactivated individually by transposon insertions, and both genes were simultaneously targeted by endosperm-specific RNAi. pdk2 accounts for the large majority of endosperm PPDK, whereas pdk1 specifies the abundant mesophyll form. The pdk1- mutation is seedling-lethal, indicating that C4 photosynthesis is essential in maize. RNAi expression in transgenic endosperm eliminated detectable PPDK protein and enzyme activity. Transgenic kernels weighed the same on average as nontransgenic siblings, with normal endosperm starch and total N contents, indicating that PPDK is not required for net storage compound synthesis. An opaque phenotype resulted from complete PPDK knockout, including loss of vitreous endosperm character similar to the phenotype conditioned by o2-. Concentrations of multiple glycolytic intermediates were elevated in transgenic endosperm, energy charge was altered, and starch granules were more numerous but smaller on average than normal. The data indicate that PPDK modulates endosperm metabolism, potentially through reversible adjustments to energy charge, and reveal that o2- mutations can affect the opaque phenotype through regulation of PPDK in addition to their previously demonstrated effects on storage protein gene expression.
Collapse
|
38
|
Munz E, Rolletschek H, Oeltze-Jafra S, Fuchs J, Guendel A, Neuberger T, Ortleb S, Jakob PM, Borisjuk L. A functional imaging study of germinating oilseed rape seed. THE NEW PHYTOLOGIST 2017; 216:1181-1190. [PMID: 28800167 DOI: 10.1111/nph.14736] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/04/2017] [Indexed: 05/24/2023]
Abstract
Germination, the process whereby a dry, quiescent seed springs to life, has been a focus of plant biologist for many years, yet the early events following water uptake, during which metabolism of the embryo is restarted, remain enigmatic. Here, the nature of the cues required for this restarting in oilseed rape (Brassica napus) seed has been investigated. A holistic in vivo approach was designed to display the link between the entry and allocation of water, metabolic events and structural changes occurring during germination. For this, we combined functional magnetic resonance imaging with Fourier transform infrared microscopy, fluorescence-based respiration mapping, computer-aided seed modeling and biochemical tools. We uncovered an endospermal lipid gap, which channels water to the radicle tip, from whence it is distributed via embryonic vasculature toward cotyledon tissues. The resumption of respiration is initiated first in the endosperm, only later spreading to the embryo. Sugar metabolism and lipid utilization are linked to the spatiotemporal sequence of tissue rehydration. Together, this imaging study provides insights into the spatial aspects of key events in oilseed rape seeds leading to germination. It demonstrates how seed architecture predetermines the pattern of water intake, which sets the stage for the orchestrated restart of life.
Collapse
Affiliation(s)
- Eberhard Munz
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Steffen Oeltze-Jafra
- Innovation Center Computer Assisted Surgery, University of Leipzig, Semmelweisstraße 14, 04103, Leipzig, Germany
| | - Johannes Fuchs
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - André Guendel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Thomas Neuberger
- Huck Institutes of the Life Sciences, 113 Chandlee Lab, University Park, PA, 16802, USA
| | - Stefan Ortleb
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Peter M Jakob
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| |
Collapse
|
39
|
Cell-Type Specific Metabolic Flux Analysis: A Challenge for Metabolic Phenotyping and a Potential Solution in Plants. Metabolites 2017; 7:metabo7040059. [PMID: 29137184 PMCID: PMC5746739 DOI: 10.3390/metabo7040059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/22/2022] Open
Abstract
Stable isotope labelling experiments are used routinely in metabolic flux analysis (MFA) to determine the metabolic phenotype of cells and tissues. A complication arises in multicellular systems because single cell measurements of transcriptomes, proteomes and metabolomes in multicellular organisms suggest that the metabolic phenotype will differ between cell types. In silico analysis of simulated metabolite isotopomer datasets shows that cellular heterogeneity confounds conventional MFA because labelling data averaged over multiple cell types does not necessarily yield averaged flux values. A potential solution to this problem—the use of cell-type specific reporter proteins as a source of cell-type specific labelling data—is proposed and the practicality of implementing this strategy in the roots of Arabidopsis thaliana seedlings is explored. A protocol for the immunopurification of ectopically expressed green fluorescent protein (GFP) from Arabidopsis thaliana seedlings using a GFP-binding nanobody is developed, and through GC-MS analysis of protein hydrolysates it is established that constitutively expressed GFP reports accurately on the labelling of total protein in root tissues. It is also demonstrated that the constitutive expression of GFP does not perturb metabolism. The principal obstacle to the implementation of the method in tissues with cell-type specific GFP expression is the sensitivity of the GC-MS system.
Collapse
|
40
|
McAdam EL, Meitzel T, Quittenden LJ, Davidson SE, Dalmais M, Bendahmane AI, Thompson R, Smith JJ, Nichols DS, Urquhart S, Gélinas-Marion A, Aubert G, Ross JJ. Evidence that auxin is required for normal seed size and starch synthesis in pea. THE NEW PHYTOLOGIST 2017; 216:193-204. [PMID: 28748561 DOI: 10.1111/nph.14690] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/31/2017] [Indexed: 05/02/2023]
Abstract
In recent years the biosynthesis of auxin has been clarified with the aid of mutations in auxin biosynthesis genes. However, we know little about the effects of these mutations on the seed-filling stage of seed development. Here we investigate a key auxin biosynthesis mutation of the garden pea, which results in auxin deficiency in developing seeds. We exploit the large seed size of this model species, which facilitates the measurement of compounds in individual seeds. The mutation results in small seeds with reduced starch content and a wrinkled phenotype at the dry stage. The phenotypic effects of the mutation were fully reversed by introduction of the wild-type gene as a transgene, and partially reversed by auxin application. The results indicate that auxin is required for normal seed size and starch accumulation in pea, an important grain legume crop.
Collapse
Affiliation(s)
- Erin L McAdam
- School of Biological Sciences, University of Tasmania, Sandy Bay, 7001, Australia
| | - Tobias Meitzel
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, D-06466, Germany
| | - Laura J Quittenden
- School of Biological Sciences, University of Tasmania, Sandy Bay, 7001, Australia
| | - Sandra E Davidson
- School of Biological Sciences, University of Tasmania, Sandy Bay, 7001, Australia
| | - Marion Dalmais
- Institute of Plant Sciences - Paris-Saclay, Bâtiment 630, Plateau du Moulon Rue Noetzlin CS 80004, 91192, Gif-sur-Yvette Cedex, France
| | - Abdelhafid I Bendahmane
- Institute of Plant Sciences - Paris-Saclay, Bâtiment 630, Plateau du Moulon Rue Noetzlin CS 80004, 91192, Gif-sur-Yvette Cedex, France
| | - Richard Thompson
- INRA (National Institute for Agronomic Research), UMR 1347 Agroécologie, BP 86510, Dijon, France
| | - Jennifer J Smith
- School of Biological Sciences, University of Tasmania, Sandy Bay, 7001, Australia
| | - David S Nichols
- Central Science Laboratory, University of Tasmania, Sandy Bay, 7001, Australia
| | - Shelley Urquhart
- School of Biological Sciences, University of Tasmania, Sandy Bay, 7001, Australia
| | | | - Gregoire Aubert
- INRA (National Institute for Agronomic Research), UMR 1347 Agroécologie, BP 86510, Dijon, France
| | - John J Ross
- School of Biological Sciences, University of Tasmania, Sandy Bay, 7001, Australia
| |
Collapse
|
41
|
Wang X, Zhu W, Hashiguchi A, Nishimura M, Tian J, Komatsu S. Metabolic profiles of flooding-tolerant mechanism in early-stage soybean responding to initial stress. PLANT MOLECULAR BIOLOGY 2017; 94:669-685. [PMID: 28733872 DOI: 10.1007/s11103-017-0635-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
KEY MESSAGE Metabolomic analysis of flooding-tolerant mutant and abscisic acid-treated soybeans suggests that accumulated fructose might play a role in initial flooding tolerance through regulation of hexokinase and phosphofructokinase. Soybean is sensitive to flooding stress, which markedly reduces plant growth. To explore the mechanism underlying initial-flooding tolerance in soybean, mass spectrometry-based metabolomic analysis was performed using flooding-tolerant mutant and abscisic-acid treated soybeans. Among the commonly-identified metabolites in both flooding-tolerant materials, metabolites involved in carbohydrate and organic acid displayed same profile at initial-flooding stress. Sugar metabolism was highlighted in both flooding-tolerant materials with the decreased and increased accumulation of sucrose and fructose, respectively, compared to flooded soybeans. Gene expression of hexokinase 1 was upregulated in flooded soybean; however, it was downregulated in both flooding-tolerant materials. Metabolites involved in carbohydrate/organic acid and proteins related to glycolysis/tricarboxylic acid cycle were integrated. Increased protein abundance of phosphofructokinase was identified in both flooding-tolerant materials, which was in agreement with its enzyme activity. Furthermore, sugar metabolism was pointed out as the tolerant-responsive process at initial-flooding stress with the integration of metabolomics, proteomics, and transcriptomics. Moreover, application of fructose declined the increased fresh weight of plant induced by flooding stress. These results suggest that fructose might be the critical metabolite through regulation of hexokinase and phosphofructokinase to confer initial-flooding stress in soybean.
Collapse
Affiliation(s)
- Xin Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8572, Japan
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, 305-8518, Japan
| | - Wei Zhu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Akiko Hashiguchi
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, 305-8518, Japan
| | - Minoru Nishimura
- Graduate School of Life and Food Sciences, Niigata University, Niigata, 950-2181, Japan
| | - Jingkui Tian
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8572, Japan.
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, 305-8518, Japan.
| |
Collapse
|
42
|
Huang KL, Zhang ML, Ma GJ, Wu H, Wu XM, Ren F, Li XB. Transcriptome profiling analysis reveals the role of silique in controlling seed oil content in Brassica napus. PLoS One 2017; 12:e0179027. [PMID: 28594951 PMCID: PMC5464616 DOI: 10.1371/journal.pone.0179027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/23/2017] [Indexed: 12/13/2022] Open
Abstract
Seed oil content is an important agronomic trait in oilseed rape. However, the molecular mechanism of oil accumulation in rapeseeds is unclear so far. In this report, RNA sequencing technique (RNA-Seq) was performed to explore differentially expressed genes in siliques of two Brassica napus lines (HFA and LFA which contain high and low oil contents in seeds, respectively) at 15 and 25 days after pollination (DAP). The RNA-Seq results showed that 65746 and 66033 genes were detected in siliques of low oil content line at 15 and 25 DAP, and 65236 and 65211 genes were detected in siliques of high oil content line at 15 and 25 DAP, respectively. By comparative analysis, the differentially expressed genes (DEGs) were identified in siliques of these lines. The DEGs were involved in multiple pathways, including metabolic pathways, biosynthesis of secondary metabolic, photosynthesis, pyruvate metabolism, fatty metabolism, glycophospholipid metabolism, and DNA binding. Also, DEGs were related to photosynthesis, starch and sugar metabolism, pyruvate metabolism, and lipid metabolism at different developmental stage, resulting in the differential oil accumulation in seeds. Furthermore, RNA-Seq and qRT-PCR data revealed that some transcription factors positively regulate seed oil content. Thus, our data provide the valuable information for further exploring the molecular mechanism of lipid biosynthesis and oil accumulation in B. nupus.
Collapse
Affiliation(s)
- Ke-Lin Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Mei-Li Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Guang-Jing Ma
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Huan Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xiao-Ming Wu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Feng Ren
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
- * E-mail: (XBL); (FR)
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
- * E-mail: (XBL); (FR)
| |
Collapse
|
43
|
Van K, McHale LK. Meta-Analyses of QTLs Associated with Protein and Oil Contents and Compositions in Soybean [Glycine max (L.) Merr.] Seed. Int J Mol Sci 2017; 18:E1180. [PMID: 28587169 PMCID: PMC5486003 DOI: 10.3390/ijms18061180] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 11/16/2022] Open
Abstract
Soybean [Glycine max (L.) Merr.] is a valuable and nutritious crop in part due to the high protein meal and vegetable oil produced from its seed. Soybean producers desire cultivars with both elevated seed protein and oil concentrations as well as specific amino acid and fatty acid profiles. Numerous studies have identified quantitative trait loci (QTLs) associated with seed composition traits, but validation of these QTLs has rarely been carried out. In this study, we have collected information, including genetic location and additive effects, on each QTL for seed contents of protein and oil, as well as amino acid and fatty acid compositions from over 80 studies. Using BioMercator V. 4.2, a meta-QTL analysis was performed with genetic information comprised of 175 QTLs for protein, 205 QTLs for oil, 156 QTLs for amino acids, and 113 QTLs for fatty acids. A total of 55 meta-QTL for seed composition were detected on 6 out of 20 chromosomes. Meta-QTL possessed narrower confidence intervals than the original QTL and candidate genes were identified within each meta-QTL. These candidate genes elucidate potential natural genetic variation in genes contributing to protein and oil biosynthesis and accumulation, providing meaningful information to further soybean breeding programs.
Collapse
Affiliation(s)
- Kyujung Van
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA.
| | - Leah K McHale
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA.
- Center for Soybean Research, The Ohio State University, Columbus, OH 43210, USA.
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
44
|
Sweetlove LJ, Nielsen J, Fernie AR. Engineering central metabolism - a grand challenge for plant biologists. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:749-763. [PMID: 28004455 DOI: 10.1111/tpj.13464] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 06/06/2023]
Abstract
The goal of increasing crop productivity and nutrient-use efficiency is being addressed by a number of ambitious research projects seeking to re-engineer photosynthetic biochemistry. Many of these projects will require the engineering of substantial changes in fluxes of central metabolism. However, as has been amply demonstrated in simpler systems such as microbes, central metabolism is extremely difficult to rationally engineer. This is because of multiple layers of regulation that operate to maintain metabolic steady state and because of the highly connected nature of central metabolism. In this review we discuss new approaches for metabolic engineering that have the potential to address these problems and dramatically improve the success with which we can rationally engineer central metabolism in plants. In particular, we advocate the adoption of an iterative 'design-build-test-learn' cycle using fast-to-transform model plants as test beds. This approach can be realised by coupling new molecular tools to incorporate multiple transgenes in nuclear and plastid genomes with computational modelling to design the engineering strategy and to understand the metabolic phenotype of the engineered organism. We also envisage that mutagenesis could be used to fine-tune the balance between the endogenous metabolic network and the introduced enzymes. Finally, we emphasise the importance of considering the plant as a whole system and not isolated organs: the greatest increase in crop productivity will be achieved if both source and sink metabolism are engineered.
Collapse
Affiliation(s)
- Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41128, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800, Lyngby, Denmark
- Science for Life Laboratory, Royal Institute of Technology, SE17121, Stockholm, Sweden
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| |
Collapse
|
45
|
Salon C, Avice JC, Colombié S, Dieuaide-Noubhani M, Gallardo K, Jeudy C, Ourry A, Prudent M, Voisin AS, Rolin D. Fluxomics links cellular functional analyses to whole-plant phenotyping. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2083-2098. [PMID: 28444347 DOI: 10.1093/jxb/erx126] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Fluxes through metabolic pathways reflect the integration of genetic and metabolic regulations. While it is attractive to measure all the mRNAs (transcriptome), all the proteins (proteome), and a large number of the metabolites (metabolome) in a given cellular system, linking and integrating this information remains difficult. Measurement of metabolome-wide fluxes (termed the fluxome) provides an integrated functional output of the cell machinery and a better tool to link functional analyses to plant phenotyping. This review presents and discusses sets of methodologies that have been developed to measure the fluxome. First, the principles of metabolic flux analysis (MFA), its 'short time interval' version Inst-MFA, and of constraints-based methods, such as flux balance analysis and kinetic analysis, are briefly described. The use of these powerful methods for flux characterization at the cellular scale up to the organ (fruits, seeds) and whole-plant level is illustrated. The added value given by fluxomics methods for unravelling how the abiotic environment affects flux, the process, and key metabolic steps are also described. Challenges associated with the development of fluxomics and its integration with 'omics' for thorough plant and organ functional phenotyping are discussed. Taken together, these will ultimately provide crucial clues for identifying appropriate target plant phenotypes for breeding.
Collapse
Affiliation(s)
- Christophe Salon
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - Jean-Christophe Avice
- UNICAEN, UMR INRA 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, Université Caen Normandie, 14032 Caen Cedex 5, France
| | - Sophie Colombié
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, 33882 Villenave d'Ornon, France
| | - Martine Dieuaide-Noubhani
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, 33882 Villenave d'Ornon, France
| | - Karine Gallardo
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - Christian Jeudy
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - Alain Ourry
- UNICAEN, UMR INRA 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, Université Caen Normandie, 14032 Caen Cedex 5, France
| | - Marion Prudent
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - Anne-Sophie Voisin
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - Dominique Rolin
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, 33882 Villenave d'Ornon, France
| |
Collapse
|
46
|
Shulaev V, Chapman KD. Plant lipidomics at the crossroads: From technology to biology driven science. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:786-791. [PMID: 28238862 DOI: 10.1016/j.bbalip.2017.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/19/2017] [Accepted: 02/21/2017] [Indexed: 12/25/2022]
Abstract
The identification and quantification of lipids from plant tissues have become commonplace and many researchers now incorporate lipidomics approaches into their experimental studies. Plant lipidomics research continues to involve technological developments such as those in mass spectrometry imaging, but in large part, lipidomics approaches have matured to the point of being accessible to the novice. Here we review some important considerations for those planning to apply plant lipidomics to their biological questions, and offer suggestions for appropriate tools and practices. This article is part of a Special Issue entitled: BBALIP_Lipidomics Opinion Articles edited by Sepp Kohlwein.
Collapse
Affiliation(s)
- Vladimir Shulaev
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, United States.
| | - Kent D Chapman
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, United States.
| |
Collapse
|
47
|
Abernathy MH, Yu J, Ma F, Liberton M, Ungerer J, Hollinshead WD, Gopalakrishnan S, He L, Maranas CD, Pakrasi HB, Allen DK, Tang YJ. Deciphering cyanobacterial phenotypes for fast photoautotrophic growth via isotopically nonstationary metabolic flux analysis. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:273. [PMID: 29177008 PMCID: PMC5691832 DOI: 10.1186/s13068-017-0958-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/06/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Synechococcus elongatus UTEX 2973 is the fastest growing cyanobacterium characterized to date. Its genome was found to be 99.8% identical to S. elongatus 7942 yet it grows twice as fast. Current genome-to-phenome mapping is still poorly performed for non-model organisms. Even for species with identical genomes, cell phenotypes can be strikingly different. To understand Synechococcus 2973's fast-growth phenotype and its metabolic features advantageous to photo-biorefineries, 13C isotopically nonstationary metabolic flux analysis (INST-MFA), biomass compositional analysis, gene knockouts, and metabolite profiling were performed on both strains under various growth conditions. RESULTS The Synechococcus 2973 flux maps show substantial carbon flow through the Calvin cycle, glycolysis, photorespiration and pyruvate kinase, but minimal flux through the malic enzyme and oxidative pentose phosphate pathways under high light/CO2 conditions. During fast growth, its pool sizes of key metabolites in central pathways were lower than suboptimal growth. Synechococcus 2973 demonstrated similar flux ratios to Synechococcus 7942 (under fast growth conditions), but exhibited greater carbon assimilation, higher NADPH concentrations, higher energy charge (relative ATP ratio over ADP and AMP), less accumulation of glycogen, and potentially metabolite channeling. Furthermore, Synechococcus 2973 has very limited flux through the TCA pathway with small pool sizes of acetyl-CoA/TCA intermediates under all growth conditions. CONCLUSIONS This study employed flux analysis to investigate phenotypic heterogeneity among two cyanobacterial strains with near-identical genome background. The flux/metabolite profiling, biomass composition analysis, and genetic modification results elucidate a highly effective metabolic topology for CO2 assimilatory and biosynthesis in Synechococcus 2973. Comparisons across multiple Synechococcus strains indicate faster metabolism is also driven by proportional increases in both photosynthesis and key central pathway fluxes. Moreover, the flux distribution in Synechococcus 2973 supports the use of its strong sugar phosphate pathways for optimal bio-productions. The integrated methodologies in this study can be applied for characterizing non-model microbial metabolism.
Collapse
Affiliation(s)
- Mary H. Abernathy
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO 63130 USA
| | - Jingjie Yu
- Department of Biology, Temple University, Philadelphia, PA 19122 USA
| | - Fangfang Ma
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | - Michelle Liberton
- Department of Biology, Washington University, St. Louis, MO 63130 USA
| | - Justin Ungerer
- Department of Biology, Washington University, St. Louis, MO 63130 USA
| | - Whitney D. Hollinshead
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO 63130 USA
| | - Saratram Gopalakrishnan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Lian He
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO 63130 USA
| | - Costas D. Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Himadri B. Pakrasi
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO 63130 USA
- Department of Biology, Washington University, St. Louis, MO 63130 USA
| | - Doug K. Allen
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
- United States Department of Agriculture, Agricultural Research Service, St. Louis, MO 63132 USA
| | - Yinjie J. Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO 63130 USA
| |
Collapse
|
48
|
O’Leary BM, Plaxton WC. Mechanisms and Functions of Post-translational Enzyme Modifications in the Organization and Control of Plant Respiratory Metabolism. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2017. [DOI: 10.1007/978-3-319-68703-2_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
49
|
Keil P, Liebsch G, Borisjuk L, Rolletschek H. MultiSense: A Multimodal Sensor Tool Enabling the High-Throughput Analysis of Respiration. Methods Mol Biol 2017; 1670:47-56. [PMID: 28871533 DOI: 10.1007/978-1-4939-7292-0_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The high-throughput analysis of respiratory activity has become an important component of many biological investigations. Here, a technological platform, denoted the "MultiSense tool," is described. The tool enables the parallel monitoring of respiration in 100 samples over an extended time period, by dynamically tracking the concentrations of oxygen (O2) and/or carbon dioxide (CO2) and/or pH within an airtight vial. Its flexible design supports the quantification of respiration based on either oxygen consumption or carbon dioxide release, thereby allowing for the determination of the physiologically significant respiratory quotient (the ratio between the quantities of CO2 released and the O2 consumed). It requires an LED light source to be mounted above the sample, together with a CCD camera system, adjusted to enable the capture of analyte-specific wavelengths, and fluorescent sensor spots inserted into the sample vial. Here, a demonstration is given of the use of the MultiSense tool to quantify respiration in imbibing plant seeds, for which an appropriate step-by-step protocol is provided. The technology can be easily adapted for a wide range of applications, including the monitoring of gas exchange in any kind of liquid culture system (algae, embryo and tissue culture, cell suspensions, microbial cultures).
Collapse
Affiliation(s)
- Peter Keil
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, D-06466, Stadt Seeland OT Gatersleben, Germany
| | - Gregor Liebsch
- PreSens Precision Sensing GmbH, Josef-Engert-Strasse 11, 93053, Regensburg, Germany
| | - Ljudmilla Borisjuk
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, D-06466, Stadt Seeland OT Gatersleben, Germany
| | - Hardy Rolletschek
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, D-06466, Stadt Seeland OT Gatersleben, Germany.
| |
Collapse
|
50
|
Lin Z, An J, Wang J, Niu J, Ma C, Wang L, Yuan G, Shi L, Liu L, Zhang J, Zhang Z, Qi J, Lin S. Integrated analysis of 454 and Illumina transcriptomic sequencing characterizes carbon flux and energy source for fatty acid synthesis in developing Lindera glauca fruits for woody biodiesel. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:134. [PMID: 28559925 PMCID: PMC5445305 DOI: 10.1186/s13068-017-0820-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/15/2017] [Indexed: 05/11/2023]
Abstract
BACKGROUND Lindera glauca fruit with high quality and quantity of oil has emerged as a novel potential source of biodiesel in China, but the molecular regulatory mechanism of carbon flux and energy source for oil biosynthesis in developing fruits is still unknown. To better develop fruit oils of L. glauca as woody biodiesel, a combination of two different sequencing platforms (454 and Illumina) and qRT-PCR analysis was used to define a minimal reference transcriptome of developing L. glauca fruits, and to construct carbon and energy metabolic model for regulation of carbon partitioning and energy supply for FA biosynthesis and oil accumulation. RESULTS We first analyzed the dynamic patterns of growth tendency, oil content, FA compositions, biodiesel properties, and the contents of ATP and pyridine nucleotide of L. glauca fruits from seven different developing stages. Comprehensive characterization of transcriptome of the developing L. glauca fruit was performed using a combination of two different next-generation sequencing platforms, of which three representative fruit samples (50, 125, and 150 DAF) and one mixed sample from seven developing stages were selected for Illumina and 454 sequencing, respectively. The unigenes separately obtained from long and short reads (201, and 259, respectively, in total) were reconciled using TGICL software, resulting in a total of 60,031 unigenes (mean length = 1061.95 bp) to describe a transcriptome for developing L. glauca fruits. Notably, 198 genes were annotated for photosynthesis, sucrose cleavage, carbon allocation, metabolite transport, acetyl-CoA formation, oil synthesis, and energy metabolism, among which some specific transporters, transcription factors, and enzymes were identified to be implicated in carbon partitioning and energy source for oil synthesis by an integrated analysis of transcriptomic sequencing and qRT-PCR. Importantly, the carbon and energy metabolic model was well established for oil biosynthesis of developing L. glauca fruits, which could help to reveal the molecular regulatory mechanism of the increased oil production in developing fruits. CONCLUSIONS This study presents for the first time the application of an integrated two different sequencing analyses (Illumina and 454) and qRT-PCR detection to define a minimal reference transcriptome for developing L. glauca fruits, and to elucidate the molecular regulatory mechanism of carbon flux control and energy provision for oil synthesis. Our results will provide a valuable resource for future fundamental and applied research on the woody biodiesel plants.
Collapse
Affiliation(s)
- Zixin Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Jiyong An
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Jia Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Jun Niu
- College of Horticulture and Landscape Architecture, Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resources, Ministry of Education, Hainan University, Haikou, 570228 China
| | - Chao Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Libing Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 10091 China
| | - Guanshen Yuan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Lingling Shi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Lili Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Jinsong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Zhixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Ji Qi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Shanzhi Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| |
Collapse
|