1
|
Minorsky PV. The "plant neurobiology" revolution. PLANT SIGNALING & BEHAVIOR 2024; 19:2345413. [PMID: 38709727 PMCID: PMC11085955 DOI: 10.1080/15592324.2024.2345413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024]
Abstract
The 21st-century "plant neurobiology" movement is an amalgam of scholars interested in how "neural processes", broadly defined, lead to changes in plant behavior. Integral to the movement (now called plant behavioral biology) is a triad of historically marginalized subdisciplines, namely plant ethology, whole plant electrophysiology and plant comparative psychology, that set plant neurobiology apart from the mainstream. A central tenet held by these "triad disciplines" is that plants are exquisitely sensitive to environmental perturbations and that destructive experimental manipulations rapidly and profoundly affect plant function. Since destructive measurements have been the norm in plant physiology, much of our "textbook knowledge" concerning plant physiology is unrelated to normal plant function. As such, scientists in the triad disciplines favor a more natural and holistic approach toward understanding plant function. By examining the history, philosophy, sociology and psychology of the triad disciplines, this paper refutes in eight ways the criticism that plant neurobiology presents nothing new, and that the topics of plant neurobiology fall squarely under the purview of mainstream plant physiology. It is argued that although the triad disciplines and mainstream plant physiology share the common goal of understanding plant function, they are distinct in having their own intellectual histories and epistemologies.
Collapse
Affiliation(s)
- Peter V. Minorsky
- Department of Natural Sciences, Mercy University, Dobbs Ferry, NY, USA
| |
Collapse
|
2
|
Jiang H, Su J, Ren Z, Wang D, Hills A, Kinoshita T, Blatt MR, Wang Y, Wang Y. Dual function of overexpressing plasma membrane H +-ATPase in balancing carbon-water use. SCIENCE ADVANCES 2024; 10:eadp8017. [PMID: 39514663 PMCID: PMC11546806 DOI: 10.1126/sciadv.adp8017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Stomata respond slowly to changes in light when compared with photosynthesis, undermining plant water-use efficiency (WUE). We know much about stomatal mechanics, yet efforts to accelerate stomatal responsiveness have been limited despite the breadth of potential targets for manipulation. Here, we use mechanistic modeling to establish a hierarchy of putative targets affecting stomatal kinetics. Counterintuitively, modeling predicted that overexpressing plasma membrane H+-ATPases could speed stomata and enhance WUE under fluctuating light, even though overexpressed H+-ATPases is known to promote stomatal opening and reduce WUE in the steady state. Experiments validated the prediction, implicating an unexpected role of the H+-ATPases in improving WUE under fluctuating light. It suggests that H+-ATPases have a dual function, acting as a facilitator of carbon assimilation and water use, depending on the light conditions. These findings highlight the importance of integrating in silico modeling with experiments in future efforts toward enhancing stomatal function.
Collapse
Affiliation(s)
- Hangjin Jiang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Center for Data Science, Zhejiang University, Hangzhou 310058, China
| | - Jinghan Su
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zirong Ren
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Dexian Wang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Michael R. Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Yin Wang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yizhou Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Zhejiang University, Hangzhou 310058, China
- Key Lab of Plant Factory for Generation-adding Breeding of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Su J, He B, Li P, Yu B, Cen Q, Xia L, Jing Y, Wu F, Karnik R, Xue D, Blatt MR, Wang Y. Overexpression of tonoplast Ca 2+-ATPase in guard cells synergistically enhances stomatal opening and drought tolerance. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1587-1602. [PMID: 38923303 DOI: 10.1111/jipb.13721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Stomata play a crucial role in plants by controlling water status and responding to drought stress. However, simultaneously improving stomatal opening and drought tolerance has proven to be a significant challenge. To address this issue, we employed the OnGuard quantitative model, which accurately represents the mechanics and coordination of ion transporters in guard cells. With the guidance of OnGuard, we successfully engineered plants that overexpressed the main tonoplast Ca2+-ATPase gene, ACA11, which promotes stomatal opening and enhances plant growth. Surprisingly, these transgenic plants also exhibited improved drought tolerance due to reduced water loss through their stomata. Again, OnGuard assisted us in understanding the mechanism behind the unexpected stomatal behaviors observed in the ACA11 overexpressing plants. Our study revealed that the overexpression of ACA11 facilitated the accumulation of Ca2+ in the vacuole, thereby influencing Ca2+ storage and leading to an enhanced Ca2+ elevation in response to abscisic acid. This regulatory cascade finely tunes stomatal responses, ultimately leading to enhanced drought tolerance. Our findings underscore the importance of tonoplast Ca2+-ATPase in manipulating stomatal behavior and improving drought tolerance. Furthermore, these results highlight the diverse functions of tonoplast-localized ACA11 in response to different conditions, emphasizing its potential for future applications in plant enhancement.
Collapse
Affiliation(s)
- Jinghan Su
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Bingqing He
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Peiyuan Li
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Baiyang Yu
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Qiwen Cen
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Lingfeng Xia
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Yi Jing
- BGI Research, Sanya, 572025, China
| | - Feibo Wu
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Rucha Karnik
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Yizhou Wang
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
4
|
Blatt MR. A charged existence: A century of transmembrane ion transport in plants. PLANT PHYSIOLOGY 2024; 195:79-110. [PMID: 38163639 PMCID: PMC11060664 DOI: 10.1093/plphys/kiad630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/01/2023] [Indexed: 01/03/2024]
Abstract
If the past century marked the birth of membrane transport as a focus for research in plants, the past 50 years has seen the field mature from arcane interest to a central pillar of plant physiology. Ion transport across plant membranes accounts for roughly 30% of the metabolic energy consumed by a plant cell, and it underpins virtually every aspect of plant biology, from mineral nutrition, cell expansion, and development to auxin polarity, fertilization, plant pathogen defense, and senescence. The means to quantify ion flux through individual transporters, even single channel proteins, became widely available as voltage clamp methods expanded from giant algal cells to the fungus Neurospora crassa in the 1970s and the cells of angiosperms in the 1980s. Here, I touch briefly on some key aspects of the development of modern electrophysiology with a focus on the guard cells of stomata, now without dispute the premier plant cell model for ion transport and its regulation. Guard cells have proven to be a crucible for many technical and conceptual developments that have since emerged into the mainstream of plant science. Their study continues to provide fundamental insights and carries much importance for the global challenges that face us today.
Collapse
Affiliation(s)
- Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| |
Collapse
|
5
|
Nguyen T, Silva‐Alvim FAL, Hills A, Blatt MR. OnGuard3e: A predictive, ecophysiology-ready tool for gas exchange and photosynthesis research. PLANT, CELL & ENVIRONMENT 2023; 46:3644-3658. [PMID: 37498151 PMCID: PMC10946835 DOI: 10.1111/pce.14674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/20/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Gas exchange across the stomatal pores of leaves is a focal point in studies of plant-environmental relations. Stomata regulate atmospheric exchange with the inner air spaces of the leaf. They open to allow CO2 entry for photosynthesis and close to minimize water loss. Models that focus on the phenomenology of stomatal conductance generally omit the mechanics of the guard cells that regulate the pore aperture. The OnGuard platform fills this gap and offers a truly mechanistic approach with which to analyse stomatal gas exchange, whole-plant carbon assimilation and water-use efficiency. Previously, OnGuard required specialist knowledge of membrane transport, signalling and metabolism. Here we introduce OnGuard3e, a software package accessible to ecophysiologists and membrane biologists alike. We provide a brief guide to its use and illustrate how the package can be applied to explore and analyse stomatal conductance, assimilation and water use efficiencies, addressing a range of experimental questions with truly predictive outputs.
Collapse
Affiliation(s)
- Thanh‐Hao Nguyen
- Laboratory of Plant Physiology and BiophysicsUniversity of GlasgowGlasgowUK
| | | | - Adrian Hills
- Laboratory of Plant Physiology and BiophysicsUniversity of GlasgowGlasgowUK
| | - Michael R. Blatt
- Laboratory of Plant Physiology and BiophysicsUniversity of GlasgowGlasgowUK
| |
Collapse
|
6
|
Nguyen TBA, Lefoulon C, Nguyen TH, Blatt MR, Carroll W. Engineering stomata for enhanced carbon capture and water-use efficiency. TRENDS IN PLANT SCIENCE 2023; 28:1290-1309. [PMID: 37423785 DOI: 10.1016/j.tplants.2023.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 07/11/2023]
Abstract
Stomatal pores facilitate gaseous exchange between the inner air spaces of the leaf and the atmosphere. As gatekeepers that balance CO2 entry for photosynthesis against transpirational water loss, they are a focal point for efforts to improve crop performance, especially in the efficiency of water use, within the changing global environment. Until recently, engineering strategies had focused on stomatal conductance in the steady state. These strategies are limited by the physical constraints of CO2 and water exchange such that gains in water-use efficiency (WUE) commonly come at a cost in carbon assimilation. Attention to stomatal speed and responsiveness circumvents these constraints and offers alternatives to enhancing WUE that also promise increases in carbon assimilation in the field.
Collapse
Affiliation(s)
- Thu Binh-Anh Nguyen
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Cecile Lefoulon
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Thanh-Hao Nguyen
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - William Carroll
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
7
|
Lamport DTA. The Growth Oscillator and Plant Stomata: An Open and Shut Case. PLANTS (BASEL, SWITZERLAND) 2023; 12:2531. [PMID: 37447091 DOI: 10.3390/plants12132531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/12/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Since Darwin's "Power of Movement in Plants" the precise mechanism of oscillatory plant growth remains elusive. Hence the search continues for the hypothetical growth oscillator that regulates a huge range of growth phenomena ranging from circumnutation to pollen tube tip growth and stomatal movements. Oscillators are essentially simple devices with few components. A universal growth oscillator with only four major components became apparent recently with the discovery of a missing component, notably arabinogalactan glycoproteins (AGPs) that store dynamic Ca2+ at the cell surface. Demonstrably, auxin-activated proton pumps, AGPs, Ca2+ channels, and auxin efflux "PIN" proteins, embedded in the plasma membrane, combine to generate cytosolic Ca2+ oscillations that ultimately regulate oscillatory growth: Hechtian adhesion of the plasma membrane to the cell wall and auxin-activated proton pumps trigger the release of dynamic Ca2+ stored in periplasmic AGP monolayers. These four major components represent a molecular PINball machine a strong visual metaphor that also recognises auxin efflux "PIN" proteins as an essential component. Proton "pinballs" dissociate Ca2+ ions bound by paired glucuronic acid residues of AGP glycomodules, hence reassessing the role of proton pumps. It shifts the prevalent paradigm away from the recalcitrant "acid growth" theory that proposes direct action on cell wall properties, with an alternative explanation that connects proton pumps to Ca2+ signalling with dynamic Ca2+ storage by AGPs, auxin transport by auxin-efflux PIN proteins and Ca2+ channels. The extensive Ca2+ signalling literature of plants ignores arabinogalactan proteins (AGPs). Such scepticism leads us to reconsider the validity of the universal growth oscillator proposed here with some exceptions that involve marine plants and perhaps the most complex stress test, stomatal regulation.
Collapse
|
8
|
Yang JF, Berrueta TA, Brooks AM, Liu AT, Zhang G, Gonzalez-Medrano D, Yang S, Koman VB, Chvykov P, LeMar LN, Miskin MZ, Murphey TD, Strano MS. Emergent microrobotic oscillators via asymmetry-induced order. Nat Commun 2022; 13:5734. [PMID: 36229440 PMCID: PMC9561614 DOI: 10.1038/s41467-022-33396-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Spontaneous oscillations on the order of several hertz are the drivers of many crucial processes in nature. From bacterial swimming to mammal gaits, converting static energy inputs into slowly oscillating power is key to the autonomy of organisms across scales. However, the fabrication of slow micrometre-scale oscillators remains a major roadblock towards fully-autonomous microrobots. Here, we study a low-frequency oscillator that emerges from a collective of active microparticles at the air-liquid interface of a hydrogen peroxide drop. Their interactions transduce ambient chemical energy into periodic mechanical motion and on-board electrical currents. Surprisingly, these oscillations persist at larger ensemble sizes only when a particle with modified reactivity is added to intentionally break permutation symmetry. We explain such emergent order through the discovery of a thermodynamic mechanism for asymmetry-induced order. The on-board power harvested from the stabilised oscillations enables the use of electronic components, which we demonstrate by cyclically and synchronously driving a microrobotic arm. This work highlights a new strategy for achieving low-frequency oscillations at the microscale, paving the way for future microrobotic autonomy.
Collapse
Affiliation(s)
- Jing Fan Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas A Berrueta
- Center for Robotics and Biosystems, Northwestern University, Evanston, IL, USA
| | - Allan M Brooks
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Albert Tianxiang Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ge Zhang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David Gonzalez-Medrano
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Sungyun Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pavel Chvykov
- Physics of Living Systems, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lexy N LeMar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marc Z Miskin
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Todd D Murphey
- Center for Robotics and Biosystems, Northwestern University, Evanston, IL, USA
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
9
|
Kisnieriene V, Trębacz K, Pupkis V, Koselski M, Lapeikaite I. Evolution of long-distance signalling upon plant terrestrialization: comparison of action potentials in Characean algae and liverworts. ANNALS OF BOTANY 2022; 130:457-475. [PMID: 35913486 PMCID: PMC9510943 DOI: 10.1093/aob/mcac098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In this review, we summarize data concerning action potentials (APs) - long-distance electrical signals in Characean algae and liverworts. These lineages are key in understanding the mechanisms of plant terrestrialization. Liverworts are postulated to be pioneer land plants, whereas aquatic charophytes are considered the closest relatives to land plants. The drastic change of the habitat was coupled with the adaptation of signalling systems to the new environment. SCOPE APs fulfil the 'all-or-nothing' law, exhibit refractory periods and propagate with a uniform velocity. Their ion mechanism in the algae and liverworts consists of a Ca2+ influx (from external and internal stores) followed by/coincident with a Cl- efflux, which both evoke the membrane potential depolarization, and a K+ efflux leading to repolarization. The molecular identity of ion channels responsible for these fluxes remains unknown. Publication of the Chara braunii and Marchantia polymorpha genomes opened up new possibilities for studying the molecular basis of APs. Here we present the list of genes which can participate in AP electrogenesis. We also point out the differences between these plant species, e.g. the absence of Ca2+-permeable glutamate receptors (GLRs) and Cl--permeable SLAC1 channel homologues in the Chara genome. Both these channels play a vital role in long-distance signalling in liverworts and vascular plants. Among the common properties of APs in liverworts and higher plants is their duration (dozens of seconds) and the speed of propagation (mm s-1), which are much slower than in the algae (seconds, and dozens of mm s-1, respectively). CONCLUSIONS Future studies with combined application of electrophysiological and molecular techniques should unravel the ion channel proteins responsible for AP generation, their regulation and transduction of those signals to physiological responses. This should also help to understand the adaptation of the signalling systems to the land environment and further evolution of APs in vascular plants.
Collapse
Affiliation(s)
| | | | - Vilmantas Pupkis
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio Ave, Vilnius, Lithuania
| | - Mateusz Koselski
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka, Lublin, Poland
| | - Indre Lapeikaite
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio Ave, Vilnius, Lithuania
| |
Collapse
|
10
|
Sato K, Saito S, Endo K, Kono M, Kakei T, Taketa H, Kato M, Hamamoto S, Grenzi M, Costa A, Munemasa S, Murata Y, Ishimaru Y, Uozumi N. Green Tea Catechins, (-)-Catechin Gallate, and (-)-Gallocatechin Gallate are Potent Inhibitors of ABA-Induced Stomatal Closure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201403. [PMID: 35524639 PMCID: PMC9313475 DOI: 10.1002/advs.202201403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/06/2022] [Indexed: 06/04/2023]
Abstract
Stomatal movement is indispensable for plant growth and survival in response to environmental stimuli. Cytosolic Ca2+ elevation plays a crucial role in ABA-induced stomatal closure during drought stress; however, to what extent the Ca2+ movement across the plasma membrane from the apoplast to the cytosol contributes to this process still needs clarification. Here the authors identify (-)-catechin gallate (CG) and (-)-gallocatechin gallate (GCG), components of green tea, as inhibitors of voltage-dependent K+ channels which regulate K+ fluxes in Arabidopsis thaliana guard cells. In Arabidopsis guard cells CG/GCG prevent ABA-induced: i) membrane depolarization; ii) activation of Ca2+ permeable cation (ICa ) channels; and iii) cytosolic Ca2+ transients. In whole Arabidopsis plants co-treatment with CG/GCG and ABA suppressed ABA-induced stomatal closure and surface temperature increase. Similar to ABA, CG/GCG inhibited stomatal closure is elicited by the elicitor peptide, flg22 but has no impact on dark-induced stomatal closure or light- and fusicoccin-induced stomatal opening, suggesting that the inhibitory effect of CG/GCG is associated with Ca2+ -related signaling pathways. This study further supports the crucial role of ICa channels of the plasma membrane in ABA-induced stomatal closure. Moreover, CG and GCG represent a new tool for the study of abiotic or biotic stress-induced signal transduction pathways.
Collapse
Affiliation(s)
- Kanane Sato
- Department of Biomolecular EngineeringGraduate School of EngineeringTohoku UniversityAobayama 6‐6‐07Sendai980‐8579Japan
| | - Shunya Saito
- Department of Biomolecular EngineeringGraduate School of EngineeringTohoku UniversityAobayama 6‐6‐07Sendai980‐8579Japan
| | - Kohsuke Endo
- Department of Biomolecular EngineeringGraduate School of EngineeringTohoku UniversityAobayama 6‐6‐07Sendai980‐8579Japan
| | - Masaru Kono
- Department of BiologyGraduate School of ScienceUniversity of TokyoBunkyo‐ku113‐0033Japan
| | - Taishin Kakei
- Department of Biomolecular EngineeringGraduate School of EngineeringTohoku UniversityAobayama 6‐6‐07Sendai980‐8579Japan
| | - Haruka Taketa
- Department of Biomolecular EngineeringGraduate School of EngineeringTohoku UniversityAobayama 6‐6‐07Sendai980‐8579Japan
| | - Megumi Kato
- Department of Biomolecular EngineeringGraduate School of EngineeringTohoku UniversityAobayama 6‐6‐07Sendai980‐8579Japan
| | - Shin Hamamoto
- Department of Biomolecular EngineeringGraduate School of EngineeringTohoku UniversityAobayama 6‐6‐07Sendai980‐8579Japan
| | - Matteo Grenzi
- Department of BiosciencesUniversity of MilanVia G. Celoria 26Milan20133Italy
| | - Alex Costa
- Department of BiosciencesUniversity of MilanVia G. Celoria 26Milan20133Italy
- Institute of BiophysicsNational Research Council of Italy (CNR)Via G. Celoria 26Milan20133Italy
| | - Shintaro Munemasa
- Graduate School of Environmental and Life ScienceOkayama UniversityTsushimaOkayama700‐8530Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life ScienceOkayama UniversityTsushimaOkayama700‐8530Japan
| | - Yasuhiro Ishimaru
- Department of Biomolecular EngineeringGraduate School of EngineeringTohoku UniversityAobayama 6‐6‐07Sendai980‐8579Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular EngineeringGraduate School of EngineeringTohoku UniversityAobayama 6‐6‐07Sendai980‐8579Japan
| |
Collapse
|
11
|
Wang Y, Karnik R, Garcia-Mata C, Hu H. Editorial: Transport and Membrane Traffic in Stomatal Biology. FRONTIERS IN PLANT SCIENCE 2022; 13:898128. [PMID: 35712596 PMCID: PMC9197599 DOI: 10.3389/fpls.2022.898128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Yizhou Wang
- College of Agriculture and Biotechnology, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Rucha Karnik
- Laboratory of Plant Physiology and Biophysics, Plant Science Group, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Carlos Garcia-Mata
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Honghong Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Blatt MR, Jezek M, Lew VL, Hills A. What can mechanistic models tell us about guard cells, photosynthesis, and water use efficiency? TRENDS IN PLANT SCIENCE 2022; 27:166-179. [PMID: 34565672 DOI: 10.1016/j.tplants.2021.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Stomatal pores facilitate gaseous exchange between the inner air spaces of the leaf and the atmosphere. The pores open to enable CO2 entry for photosynthesis and close to reduce transpirational water loss. How stomata respond to the environment has long attracted interest in modeling as a tool to understand the consequences for the plant and for the ecosystem. Models that focus on stomatal conductance for gas exchange make intuitive sense, but such models need also to connect with the mechanics of the guard cells that regulate pore aperture if we are to understand the 'decisions made' by stomata, their impacts on the plant and on the global environment.
Collapse
Affiliation(s)
- Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK.
| | - Mareike Jezek
- Journal of Experimental Botany, Lancaster University, Lancaster LA1 4YW, UK
| | - Virgilio L Lew
- The Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, UK
| | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| |
Collapse
|
13
|
Resentini F, Ruberti C, Grenzi M, Bonza MC, Costa A. The signatures of organellar calcium. PLANT PHYSIOLOGY 2021; 187:1985-2004. [PMID: 33905517 PMCID: PMC8644629 DOI: 10.1093/plphys/kiab189] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/10/2021] [Indexed: 05/23/2023]
Abstract
Recent insights about the transport mechanisms involved in the in and out of calcium ions in plant organelles, and their role in the regulation of cytosolic calcium homeostasis in different signaling pathways.
Collapse
Affiliation(s)
| | - Cristina Ruberti
- Department of Biosciences, University of Milan, Milano 20133, Italy
| | - Matteo Grenzi
- Department of Biosciences, University of Milan, Milano 20133, Italy
| | | | - Alex Costa
- Department of Biosciences, University of Milan, Milano 20133, Italy
- Institute of Biophysics, National Research Council of Italy (CNR), Milano 20133, Italy
| |
Collapse
|
14
|
Jezek M, Silva-Alvim FAL, Hills A, Donald N, Ishka MR, Shadbolt J, He B, Lawson T, Harper JF, Wang Y, Lew VL, Blatt MR. Guard cell endomembrane Ca 2+-ATPases underpin a 'carbon memory' of photosynthetic assimilation that impacts on water-use efficiency. NATURE PLANTS 2021; 7:1301-1313. [PMID: 34326530 DOI: 10.1038/s41477-021-00966-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Stomata of most plants close to preserve water when the demand for CO2 by photosynthesis is reduced. Stomatal responses are slow compared with photosynthesis, and this kinetic difference erodes assimilation and water-use efficiency under fluctuating light. Despite a deep knowledge of guard cells that regulate the stoma, efforts to enhance stomatal kinetics are limited by our understanding of its control by foliar CO2. Guided by mechanistic modelling that incorporates foliar CO2 diffusion and mesophyll photosynthesis, here we uncover a central role for endomembrane Ca2+ stores in guard cell responsiveness to fluctuating light and CO2. Modelling predicted and experiments demonstrated a delay in Ca2+ cycling that was enhanced by endomembrane Ca2+-ATPase mutants, altering stomatal conductance and reducing assimilation and water-use efficiency. Our findings illustrate the power of modelling to bridge the gap from the guard cell to whole-plant photosynthesis, and they demonstrate an unforeseen latency, or 'carbon memory', of guard cells that affects stomatal dynamics, photosynthesis and water-use efficiency.
Collapse
Affiliation(s)
- Mareike Jezek
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK
| | | | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK
| | - Naomi Donald
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK
| | - Maryam Rahmati Ishka
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Jessica Shadbolt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK
| | - Bingqing He
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Yizhou Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Virgilio L Lew
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK.
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Mallatt J, Blatt MR, Draguhn A, Robinson DG, Taiz L. Debunking a myth: plant consciousness. PROTOPLASMA 2021; 258:459-476. [PMID: 33196907 PMCID: PMC8052213 DOI: 10.1007/s00709-020-01579-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/22/2020] [Indexed: 05/18/2023]
Abstract
Claims that plants have conscious experiences have increased in recent years and have received wide coverage, from the popular media to scientific journals. Such claims are misleading and have the potential to misdirect funding and governmental policy decisions. After defining basic, primary consciousness, we provide new arguments against 12 core claims made by the proponents of plant consciousness. Three important new conclusions of our study are (1) plants have not been shown to perform the proactive, anticipatory behaviors associated with consciousness, but only to sense and follow stimulus trails reactively; (2) electrophysiological signaling in plants serves immediate physiological functions rather than integrative-information processing as in nervous systems of animals, giving no indication of plant consciousness; (3) the controversial claim of classical Pavlovian learning in plants, even if correct, is irrelevant because this type of learning does not require consciousness. Finally, we present our own hypothesis, based on two logical assumptions, concerning which organisms possess consciousness. Our first assumption is that affective (emotional) consciousness is marked by an advanced capacity for operant learning about rewards and punishments. Our second assumption is that image-based conscious experience is marked by demonstrably mapped representations of the external environment within the body. Certain animals fit both of these criteria, but plants fit neither. We conclude that claims for plant consciousness are highly speculative and lack sound scientific support.
Collapse
Affiliation(s)
- Jon Mallatt
- The University of Washington WWAMI Medical Education Program at The University of Idaho, Moscow, ID 83844 USA
| | - Michael R. Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ UK
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany
| | - David G. Robinson
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Lincoln Taiz
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, CA 95064 USA
| |
Collapse
|
16
|
Mallatt J, Blatt MR, Draguhn A, Robinson DG, Taiz L. Debunking a myth: plant consciousness. PROTOPLASMA 2021. [PMID: 33196907 DOI: 10.1007/s00709-026-01579-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Claims that plants have conscious experiences have increased in recent years and have received wide coverage, from the popular media to scientific journals. Such claims are misleading and have the potential to misdirect funding and governmental policy decisions. After defining basic, primary consciousness, we provide new arguments against 12 core claims made by the proponents of plant consciousness. Three important new conclusions of our study are (1) plants have not been shown to perform the proactive, anticipatory behaviors associated with consciousness, but only to sense and follow stimulus trails reactively; (2) electrophysiological signaling in plants serves immediate physiological functions rather than integrative-information processing as in nervous systems of animals, giving no indication of plant consciousness; (3) the controversial claim of classical Pavlovian learning in plants, even if correct, is irrelevant because this type of learning does not require consciousness. Finally, we present our own hypothesis, based on two logical assumptions, concerning which organisms possess consciousness. Our first assumption is that affective (emotional) consciousness is marked by an advanced capacity for operant learning about rewards and punishments. Our second assumption is that image-based conscious experience is marked by demonstrably mapped representations of the external environment within the body. Certain animals fit both of these criteria, but plants fit neither. We conclude that claims for plant consciousness are highly speculative and lack sound scientific support.
Collapse
Affiliation(s)
- Jon Mallatt
- The University of Washington WWAMI Medical Education Program at The University of Idaho, Moscow, ID, 83844, USA.
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany
| | - David G Robinson
- Centre for Organismal Studies, University of Heidelberg, 69120, Heidelberg, Germany
| | - Lincoln Taiz
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, CA, 95064, USA
| |
Collapse
|
17
|
Klejchova M, Silva-Alvim FAL, Blatt MR, Alvim JC. Membrane voltage as a dynamic platform for spatiotemporal signaling, physiological, and developmental regulation. PLANT PHYSIOLOGY 2021; 185:1523-1541. [PMID: 33598675 PMCID: PMC8133626 DOI: 10.1093/plphys/kiab032] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/11/2021] [Indexed: 05/10/2023]
Abstract
Membrane voltage arises from the transport of ions through ion-translocating ATPases, ion-coupled transport of solutes, and ion channels, and is an integral part of the bioenergetic "currency" of the membrane. The dynamics of membrane voltage-so-called action, systemic, and variation potentials-have also led to a recognition of their contributions to signal transduction, both within cells and across tissues. Here, we review the origins of our understanding of membrane voltage and its place as a central element in regulating transport and signal transmission. We stress the importance of understanding voltage as a common intermediate that acts both as a driving force for transport-an electrical "substrate"-and as a product of charge flux across the membrane, thereby interconnecting all charge-carrying transport across the membrane. The voltage interconnection is vital to signaling via second messengers that rely on ion flux, including cytosolic free Ca2+, H+, and the synthesis of reactive oxygen species generated by integral membrane, respiratory burst oxidases. These characteristics inform on the ways in which long-distance voltage signals and voltage oscillations give rise to unique gene expression patterns and influence physiological, developmental, and adaptive responses such as systemic acquired resistance to pathogens and to insect herbivory.
Collapse
Affiliation(s)
- Martina Klejchova
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Fernanda A L Silva-Alvim
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
- Author for communication:
| | - Jonas Chaves Alvim
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
18
|
Hayashi M, Palmgren M. The quest for the central players governing pollen tube growth and guidance. PLANT PHYSIOLOGY 2021; 185:682-693. [PMID: 33793904 PMCID: PMC8133568 DOI: 10.1093/plphys/kiaa092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/06/2020] [Indexed: 05/02/2023]
Abstract
Recent insights into the mechanism of pollen tube growth and guidance point to the importance of H+ dynamics, which are regulated by the plasma membrane H+-ATPase.
Collapse
Affiliation(s)
- Maki Hayashi
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark
| | - Michael Palmgren
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000,China
- Author for communication:
| |
Collapse
|
19
|
Wong JH, Klejchová M, Snipes SA, Nagpal P, Bak G, Wang B, Dunlap S, Park MY, Kunkel EN, Trinidad B, Reed JW, Blatt MR, Gray WM. SAUR proteins and PP2C.D phosphatases regulate H+-ATPases and K+ channels to control stomatal movements. PLANT PHYSIOLOGY 2021; 185:256-273. [PMID: 33631805 PMCID: PMC8133658 DOI: 10.1093/plphys/kiaa023] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/27/2020] [Indexed: 05/12/2023]
Abstract
Activation of plasma membrane (PM) H+-ATPase activity is crucial in guard cells to promote light-stimulated stomatal opening, and in growing organs to promote cell expansion. In growing organs, SMALL AUXIN UP RNA (SAUR) proteins inhibit the PP2C.D2, PP2C.D5, and PP2C.D6 (PP2C.D2/5/6) phosphatases, thereby preventing dephosphorylation of the penultimate phosphothreonine of PM H+-ATPases and trapping them in the activated state to promote cell expansion. To elucidate whether SAUR-PP2C.D regulatory modules also affect reversible cell expansion, we examined stomatal apertures and conductances of Arabidopsis thaliana plants with altered SAUR or PP2C.D activity. Here, we report that the pp2c.d2/5/6 triple knockout mutant plants and plant lines overexpressing SAUR fusion proteins exhibit enhanced stomatal apertures and conductances. Reciprocally, saur56 saur60 double mutants, lacking two SAUR genes normally expressed in guard cells, displayed reduced apertures and conductances, as did plants overexpressing PP2C.D5. Although altered PM H+-ATPase activity contributes to these stomatal phenotypes, voltage clamp analysis showed significant changes also in K+ channel gating in lines with altered SAUR and PP2C.D function. Together, our findings demonstrate that SAUR and PP2C.D proteins act antagonistically to facilitate stomatal movements through a concerted targeting of both ATP-dependent H+ pumping and channel-mediated K+ transport.
Collapse
Affiliation(s)
- Jeh Haur Wong
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, Minnesota 55108, USA
- Present address: Department of Biological Sciences, National University of Singapore, Singapore
| | - Martina Klejchová
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, UK
| | - Stephen A Snipes
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Punita Nagpal
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Gwangbae Bak
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Bryan Wang
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Sonja Dunlap
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, Minnesota 55108, USA
| | - Mee Yeon Park
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, Minnesota 55108, USA
| | - Emma N Kunkel
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Brendan Trinidad
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Jason W Reed
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, UK
| | - William M Gray
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, Minnesota 55108, USA
- Author for communication:
| |
Collapse
|
20
|
Sukhova EM, Vodeneev VA, Sukhov VS. Mathematical Modeling of Photosynthesis and Analysis of Plant Productivity. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2021. [DOI: 10.1134/s1990747821010062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Wang N, Liu W, Yu L, Guo Z, Chen Z, Jiang S, Xu H, Fang H, Wang Y, Zhang Z, Chen X. HEAT SHOCK FACTOR A8a Modulates Flavonoid Synthesis and Drought Tolerance. PLANT PHYSIOLOGY 2020; 184:1273-1290. [PMID: 32958560 PMCID: PMC7608180 DOI: 10.1104/pp.20.01106] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/13/2020] [Indexed: 05/19/2023]
Abstract
Drought is an important environmental factor affecting the growth and production of agricultural crops and fruits worldwide, including apple (Malus domestica). Heat shock factors (HSFs) have well-documented functions in stress responses, but their roles in flavonoid synthesis and the flavonoid-mediated drought response mechanism remain elusive. In this study, we demonstrated that a drought-responsive HSF, designated MdHSFA8a, promotes the accumulation of flavonoids, scavenging of reactive oxygen species, and plant survival under drought conditions. A chaperone, HEAT SHOCK PROTEIN90 (HSP90), interacted with MdHSFA8a to inhibit its binding activity and transcriptional activation. However, under drought stress, the MdHSP90-MdHSFA8a complex dissociated and the released MdHSFA8a further interacted with the APETALA2/ETHYLENE RESPONSIVE FACTOR family transcription factor RELATED TO AP2.12 to activate downstream gene activity. In addition, we demonstrated that MdHSFA8a participates in abscisic acid-induced stomatal closure and promotes the expression of abscisic acid signaling-related genes. Collectively, these findings provide insight into the mechanism by which stress-inducible MdHSFA8a modulates flavonoid synthesis to regulate drought tolerance.
Collapse
Affiliation(s)
- Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences, Shandong Agricultural University, 271018 Tai'an, Shandong, China
| | - Wenjun Liu
- State Key Laboratory of Crop Biology, College of Horticulture Sciences, Shandong Agricultural University, 271018 Tai'an, Shandong, China
| | - Lei Yu
- State Key Laboratory of Crop Biology, College of Horticulture Sciences, Shandong Agricultural University, 271018 Tai'an, Shandong, China
| | - Zhangwen Guo
- State Key Laboratory of Crop Biology, College of Horticulture Sciences, Shandong Agricultural University, 271018 Tai'an, Shandong, China
| | - Zijing Chen
- State Key Laboratory of Crop Biology, College of Horticulture Sciences, Shandong Agricultural University, 271018 Tai'an, Shandong, China
| | - Shenghui Jiang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences, Shandong Agricultural University, 271018 Tai'an, Shandong, China
| | - Haifeng Xu
- State Key Laboratory of Crop Biology, College of Horticulture Sciences, Shandong Agricultural University, 271018 Tai'an, Shandong, China
| | - Hongcheng Fang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, 271018 Tai'an, Shandong, China
| | - Yicheng Wang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences, Shandong Agricultural University, 271018 Tai'an, Shandong, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences, Shandong Agricultural University, 271018 Tai'an, Shandong, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Sciences, Shandong Agricultural University, 271018 Tai'an, Shandong, China
| |
Collapse
|
22
|
Narayanasamy S, Thangappan S, Uthandi S. Plant Growth-Promoting Bacillus sp. Cahoots Moisture Stress Alleviation in Rice Genotypes by Triggering Antioxidant Defense System. Microbiol Res 2020; 239:126518. [PMID: 32604045 DOI: 10.1016/j.micres.2020.126518] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/19/2020] [Accepted: 05/23/2020] [Indexed: 11/15/2022]
Abstract
Drought is considered one of the major obstacles for agricultural productivity worldwide such that greater efforts are required to boost crop production under this stress. One of the methods to overcome this obstacle is to harness the potential of microbe-induced systemic tolerance against moisture stress. The present work evaluated the potential role of two bacterial strains, namely Bacillus altitudinis FD48 and Bacillus methylotrophicus RABA6 and their combination as a co-inoculant for promoting plant growth and moisture stress resilience in two contrast cultivars of Oryza sativa L: CO51 (moderately drought tolerant) and IR64 (drought susceptible) under conditions of terminal moisture stress. B. altitudinis FD48- and B. methylotrophicus-primed rice seeds (CO51 and IR64) significantly influenced the source-sink relationship and reduced the relative water content (RWC). While photosynthetic pigments and proline showed a steady increase owing to the co-inoculant priming, the activity of reactive oxygen species (ROS)-quenching enzymes, such as catalase, superoxide dismutase, ascorbate peroxidase, and peroxidase constitutively increased in plants treated with co-inoculant besides,reducing the trend during the recovery phase. The productive tillers and grain weight were further augmented by the co-inoculant under induced moisture stress. Moreover, the results revealed a 14% and 19% increase in the harvest index (HI) in CO51 and IR64, respectively, attenuated with Bacillus sp. as a co-inoculant. The key mechanism in augmenting energy metabolism by B. altitudinis FD48 and B. methylotrophicus RABA6 could be attributed to the regulation of ROS-quenching enzymes that aid in moisture stress resilience. The results of the present study conclude that these strains may be used as a novel bioinoculant for enhancing the drought tolerance in rice grown under moisture stress regimes.
Collapse
Affiliation(s)
- Shobana Narayanasamy
- Biocatalysts lab., Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Sugitha Thangappan
- Biocatalysts lab., Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Sivakumar Uthandi
- Biocatalysts lab., Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
23
|
Zhang L, Li D, Yao Y, Zhang S. H 2O 2, Ca 2+, and K + in subsidiary cells of maize leaves are involved in regulatory signaling of stomatal movement. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:243-251. [PMID: 32449683 DOI: 10.1016/j.plaphy.2020.04.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/11/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
The stomata of maize (Zea mays) contain a pair of guard cells and a pair of subsidiary cells. To determine whether H2O2, Ca2+, and K+ in subsidiary cells were involved in stomatal movement, we treated four-week-old maize (Zhengdan 958) leaves with H2O2, diphenylene iodonium (DPI), CaCl2, and LaCl3. Changes in content and distribution of H2O2, Ca2+, and K+ during stomatal movement were observed. When exogenous H2O2 was applied, Ca2+ increased and K+ decreased in guard cells, while both ions increased in subsidiary cells, leading to stomatal closure. After DPI treatment, Ca2+ decreased and K+ increased in guard cells, but both Ca2+ and K+ decreased in subsidiary cells, resulting in open stomata. Exogenous CaCl2 increased H2O2 and reduced K+ in guard cells, while significantly increasing them in subsidiary cells and causing stomatal closure. After LaCl3 treatment, H2O2 decreased and K+ increased in guard cells, whereas both decreased in subsidiary cells and stomata became open. Results indicate that H2O2 and Ca2+ correlate positively with each other and with K+ in subsidiary cells during stomatal movement. Both H2O2 and Ca2+ in subsidiary cells promote an inflow of K+, indirectly regulating stomatal closure.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongyang Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yaqin Yao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Suiqi Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
24
|
Klejchová M, Hills A, Blatt MR. Predicting the unexpected in stomatal gas exchange: not just an open-and-shut case. Biochem Soc Trans 2020; 48:881-889. [PMID: 32453378 PMCID: PMC7329339 DOI: 10.1042/bst20190632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022]
Abstract
Plant membrane transport, like transport across all eukaryotic membranes, is highly non-linear and leads to interactions with characteristics so complex that they defy intuitive understanding. The physiological behaviour of stomatal guard cells is a case in point in which, for example, mutations expected to influence stomatal closing have profound effects on stomatal opening and manipulating transport across the vacuolar membrane affects the plasma membrane. Quantitative mathematical modelling is an essential tool in these circumstances, both to integrate the knowledge of each transport process and to understand the consequences of their manipulation in vivo. Here, we outline the OnGuard modelling environment and its use as a guide to predicting the emergent properties arising from the interactions between non-linear transport processes. We summarise some of the recent insights arising from OnGuard, demonstrate its utility in interpreting stomatal behaviour, and suggest ways in which the OnGuard environment may facilitate 'reverse-engineering' of stomata to improve water use efficiency and carbon assimilation.
Collapse
Affiliation(s)
- Martina Klejchová
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, U.K
| | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, U.K
| | - Michael R. Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, U.K
| |
Collapse
|
25
|
Shafaque S, Ma Y, Rui M, He B, Zhu Z, Cao F, Wu F, Wang Y. Optimized Protocol for OnGuard2 Software in Studying Guard Cell Membrane Transport and Stomatal Physiology. FRONTIERS IN PLANT SCIENCE 2020; 11:131. [PMID: 32153622 PMCID: PMC7047851 DOI: 10.3389/fpls.2020.00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Stomata are key innovation in plants that drives the global carbon and water cycle. In the past few decades, many stomatal models have been developed for studying gas exchange, photosynthesis, and transpirational characteristics of plants, but they provide limited information on stomatal mechanisms at the molecular and cellular levels. Quantitative mathematical modeling offers an effective in silico approach to explore the link between microscopic transporter functioning and the macroscopic stomatal characteristics. As a first step, a dynamic system model based on the guard cell membrane transport system was developed and encoded in the OnGuard software. This software has already generated a wealth of testable predictions and outcomes sufficient to guide phenotypic and mutational studies. It has a user-friendly interface, which can be easily accessed by researchers to manipulate the key elements and parameters in the system for guard cell simulation in plants. To promote the adoption of this OnGuard application, here we outline a standard protocol that will enable users with experience in basic plant physiology, cell biology, and membrane transport to advance quickly in learning to use it.
Collapse
Affiliation(s)
- Sehar Shafaque
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Yue Ma
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Mengmeng Rui
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Bingqing He
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Ziyi Zhu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Fangbing Cao
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Feibo Wu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yizhou Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Jezek M, Hills A, Blatt MR, Lew VL. A constraint-relaxation-recovery mechanism for stomatal dynamics. PLANT, CELL & ENVIRONMENT 2019; 42:2399-2410. [PMID: 31032976 PMCID: PMC6771799 DOI: 10.1111/pce.13568] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 05/02/2023]
Abstract
Models of guard cell dynamics, built on the OnGuard platform, have provided quantitative insights into stomatal function, demonstrating substantial predictive power. However, the kinetics of stomatal opening predicted by OnGuard models were threefold to fivefold slower than observed in vivo. No manipulations of parameters within physiological ranges yielded model kinetics substantially closer to these data, thus highlighting a missing component in model construction. One well-documented process influencing stomata is the constraining effect of the surrounding epidermal cells on guard cell volume and stomatal aperture. Here, we introduce a mechanism to describe this effect in OnGuard2 constructed around solute release and a decline in turgor of the surrounding cells and its subsequent recovery during stomatal opening. The results show that this constraint-relaxation-recovery mechanism in OnGuard2 yields dynamics that are consistent with experimental observations in wild-type Arabidopsis, and it predicts the altered opening kinetics of ost2 H+ -ATPase and slac1 Cl- channel mutants. Thus, incorporating solute flux of the surrounding cells implicitly through their constraint on guard cell expansion provides a satisfactory representation of stomatal kinetics, and it predicts a substantial and dynamic role for solute flux across the apoplastic space between the guard cells and surrounding cells in accelerating stomatal kinetics.
Collapse
Affiliation(s)
- Mareike Jezek
- Laboratory of Plant Physiology and Biophysics, Bower BuildingUniversity of GlasgowGlasgowUK
| | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, Bower BuildingUniversity of GlasgowGlasgowUK
| | - Michael R. Blatt
- Laboratory of Plant Physiology and Biophysics, Bower BuildingUniversity of GlasgowGlasgowUK
| | | |
Collapse
|
27
|
Waidyarathne P, Samarasinghe S. Boolean Calcium Signalling Model Predicts Calcium Role in Acceleration and Stability of Abscisic Acid-Mediated Stomatal Closure. Sci Rep 2018; 8:17635. [PMID: 30518777 PMCID: PMC6281740 DOI: 10.1038/s41598-018-35872-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 11/09/2018] [Indexed: 11/09/2022] Open
Abstract
Inconsistent hypotheses have proposed Ca2+ as either being essential or irrelevant and redundant in ABA induced stomatal closure. This study integrates all available information from literature to define ABA signalling pathway and presents it in a systems view for clearer understanding of the role of Ca2+ in stomatal closure. Importantly, it incorporates into an Asynchronous Boolean model time delays sourced from an extensive literature search. The model predicted the timing of ABA events and mutant behaviour close to biology. It revealed biologically reported timing for Ca2+ activation and Ca2+ dynamics consistent with biology. It also predicts that Ca2+ elevation is not essential in stomatal closure but it can accelerate closure, consistent with previous findings, but our model further explains that acting as a mediator, Ca2+ accelerates stomatal closure by enhancing plasma membrane slowly activating anion channel SLAC1 and actin rearrangement. It shows statistical significance of Ca2+ induced acceleration of closure and that of Ca2+ induced acceleration of SLAC1 activation. Further, the model demonstrates that Ca2+ enhances resilience of closure to perturbation of important elements; especially, ROS pathway, as did previous ABA model, and even to the ABA signal disruption. It goes further to elucidate the mechanisms by which Ca2+ engenders stomatal closure in these perturbations.
Collapse
Affiliation(s)
- Pramuditha Waidyarathne
- Complex Systems, Big Data and Informatics Initiative (CSBII), Lincoln University, Christchurch, New Zealand.,Coconout Research Institute, Lunuwila, Sri Lanka
| | - Sandhya Samarasinghe
- Complex Systems, Big Data and Informatics Initiative (CSBII), Lincoln University, Christchurch, New Zealand.
| |
Collapse
|
28
|
Yoshida T, Anjos LD, Medeiros DB, Araújo WL, Fernie AR, Daloso DM. Insights into ABA-mediated regulation of guard cell primary metabolism revealed by systems biology approaches. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 146:37-49. [PMID: 30447225 DOI: 10.1016/j.pbiomolbio.2018.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/02/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023]
Abstract
Despite the fact that guard cell abscisic acid (ABA) signalling pathway is well documented, our understanding concerning how and to which extent ABA regulates guard cell metabolism remains fragmentary. Here we have adopted different systems approaches to investigate how ABA modulates guard cell central metabolism by providing genes that are possibly ABA-regulated. By using previous published Arabidopsis guard cell transcript profiling data, we carried out an extensive co-expression network analysis using ABA-related genes and those related to the metabolism and transport of sugars, starch and organic acids. Next, we investigated the presence of ABA responsive elements (ABRE) in the promoter of genes that are highly expressed in guard cells, responsive to ABA and co-expressed with ABA-related genes. Together, these analyses indicated that 44 genes are likely regulated by ABA and 8 of them are highly expressed in guard cells in both the presence and absence of ABA, including genes of the tricarboxylic acid cycle and those related to sucrose and hexose transport and metabolism. It seems likely that ABA may modulate both sucrose transport through guard cell plasma membrane and sucrose metabolism within guard cells. In this context, genes associated with sucrose synthase, sucrose phosphate synthase, trehalose-6-phosphate, invertase, UDP-glucose epimerase/pyrophosphorylase and different sugar transporters contain ABRE in their promoter and are thus possibly ABA regulated. Although validation experiments are required, our study highlights the importance of systems biology approaches to drive new hypothesis and to unravel genes and pathways that are regulated by ABA in guard cells.
Collapse
Affiliation(s)
- Takuya Yoshida
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Golm, 14476, Germany.
| | - Letícia Dos Anjos
- Departamento de Biologia Vegetal, Universidade Federal de Lavras, Lavras, Minas Gerais, 62700-000, Brazil
| | - David B Medeiros
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Golm, 14476, Germany; Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Wagner L Araújo
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Golm, 14476, Germany
| | - Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, 60451-970, Brazil.
| |
Collapse
|
29
|
Prodhan MY, Munemasa S, Nahar MNEN, Nakamura Y, Murata Y. Guard Cell Salicylic Acid Signaling Is Integrated into Abscisic Acid Signaling via the Ca 2+/CPK-Dependent Pathway. PLANT PHYSIOLOGY 2018; 178:441-450. [PMID: 30037808 PMCID: PMC6130018 DOI: 10.1104/pp.18.00321] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/05/2018] [Indexed: 05/19/2023]
Abstract
The phenolic hormone salicylic acid (SA) induces stomatal closure. It has been suggested that SA signaling is integrated with abscisic acid (ABA) signaling in guard cells, but the integration mechanism remains unclear. The Ca2+-independent protein kinase Open Stomata1 (OST1) and Ca2+-dependent protein kinases (CPKs) are key for ABA-induced activation of the slow-type anion channel SLAC1 and stomatal closure. Here, we show that SA-induced stomatal closure and SA activation of slow-type anion channel are impaired in the CPK disruption mutant cpk3-2 cpk6-1 but not in the OST1 disruption mutant ost1-3 We also found that the key phosphorylation sites of SLAC1 in ABA signaling, serine-59 and serine-120, also are important for SA signaling. Chemiluminescence-based detection of superoxide anion revealed that SA did not require CPK3 and CPK6 for the induction of reactive oxygen species production. Taken together, our results suggest that SA activates peroxidase-mediated reactive oxygen species signal that is integrated into Ca2+/CPK-dependent ABA signaling branch but not the OST1-dependent signaling branch in Arabidopsis (Arabidopsis thaliana) guard cells.
Collapse
Affiliation(s)
- Md Yeasin Prodhan
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama 700-8530 Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama 700-8530 Japan
| | - Mst Nur-E-Nazmun Nahar
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama 700-8530 Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama 700-8530 Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama 700-8530 Japan
| |
Collapse
|
30
|
Kudla J, Becker D, Grill E, Hedrich R, Hippler M, Kummer U, Parniske M, Romeis T, Schumacher K. Advances and current challenges in calcium signaling. THE NEW PHYTOLOGIST 2018; 218:414-431. [PMID: 29332310 DOI: 10.1111/nph.14966] [Citation(s) in RCA: 341] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/21/2017] [Indexed: 05/21/2023]
Abstract
Content Summary 414 I. Introduction 415 II. Ca2+ importer and exporter in plants 415 III. The Ca2+ decoding toolkit in plants 415 IV. Mechanisms of Ca2+ signal decoding 417 V. Immediate Ca2+ signaling in the regulation of ion transport 418 VI. Ca2+ signal integration into long-term ABA responses 419 VII Integration of Ca2+ and hormone signaling through dynamic complex modulation of the CCaMK/CYCLOPS complex 420 VIII Ca2+ signaling in mitochondria and chloroplasts 422 IX A view beyond recent advances in Ca2+ imaging 423 X Modeling approaches in Ca2+ signaling 424 XI Conclusions: Ca2+ signaling a still young blooming field of plant research 424 Acknowledgements 425 ORCID 425 References 425 SUMMARY: Temporally and spatially defined changes in Ca2+ concentration in distinct compartments of cells represent a universal information code in plants. Recently, it has become evident that Ca2+ signals not only govern intracellular regulation but also appear to contribute to long distance or even organismic signal propagation and physiological response regulation. Ca2+ signals are shaped by an intimate interplay of channels and transporters, and during past years important contributing individual components have been identified and characterized. Ca2+ signals are translated by an elaborate toolkit of Ca2+ -binding proteins, many of which function as Ca2+ sensors, into defined downstream responses. Intriguing progress has been achieved in identifying specific modules that interconnect Ca2+ decoding proteins and protein kinases with downstream target effectors, and in characterizing molecular details of these processes. In this review, we reflect on recent major advances in our understanding of Ca2+ signaling and cover emerging concepts and existing open questions that should be informative also for scientists that are currently entering this field of ever-increasing breath and impact.
Collapse
Affiliation(s)
- Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7/8, 48149, Münster, Germany
| | - Dirk Becker
- Department of Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Erwin Grill
- Lehrstuhl für Botanik, Technische Universität München, Am Hochanger 4, D-85354, Freising, Germany
| | - Rainer Hedrich
- Department of Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Michael Hippler
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7/8, 48149, Münster, Germany
| | - Ursula Kummer
- Department of Modeling of Biological Processes, COS Heidelberg/Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Martin Parniske
- Institute of Genetics, Biocenter University of Munich (LMU), Großhaderner Straße 4, 82152, Martinsried, Germany
| | - Tina Romeis
- Department of Plant Biochemistry, Dahlem Center of Plant Sciences, Freie Universität Berlin, 14195, Berlin, Germany
| | - Karin Schumacher
- Department of Developmental Biology, Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| |
Collapse
|
31
|
Cuin TA, Dreyer I, Michard E. The Role of Potassium Channels in Arabidopsis thaliana Long Distance Electrical Signalling: AKT2 Modulates Tissue Excitability While GORK Shapes Action Potentials. Int J Mol Sci 2018; 19:E926. [PMID: 29561764 PMCID: PMC5979599 DOI: 10.3390/ijms19040926] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/12/2018] [Accepted: 03/18/2018] [Indexed: 01/14/2023] Open
Abstract
Fast responses to an external threat depend on the rapid transmission of signals through a plant. Action potentials (APs) are proposed as such signals. Plant APs share similarities with their animal counterparts; they are proposed to depend on the activity of voltage-gated ion channels. Nonetheless, despite their demonstrated role in (a)biotic stress responses, the identities of the associated voltage-gated channels and transporters remain undefined in higher plants. By demonstrating the role of two potassium-selective channels in Arabidopsis thaliana in AP generation and shaping, we show that the plant AP does depend on similar Kv-like transport systems to those of the animal signal. We demonstrate that the outward-rectifying potassium-selective channel GORK limits the AP amplitude and duration, while the weakly-rectifying channel AKT2 affects membrane excitability. By computational modelling of plant APs, we reveal that the GORK activity not only determines the length of an AP but also the steepness of its rise and the maximal amplitude. Thus, outward-rectifying potassium channels contribute to both the repolarisation phase and the initial depolarisation phase of the signal. Additionally, from modelling considerations we provide indications that plant APs might be accompanied by potassium waves, which prime the excitability of the green cable.
Collapse
Affiliation(s)
- Tracey Ann Cuin
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia.
- SupAgro Montpellier, 2, Place Viala, 34060 Montpellier, France.
| | - Ingo Dreyer
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, 2 Norte 685, 3460000 Talca, Chile.
| | - Erwan Michard
- SupAgro Montpellier, 2, Place Viala, 34060 Montpellier, France.
- Cell Biology and Molecular Genetics, Biosciences Research Building, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
32
|
Watkins JM, Chapman JM, Muday GK. Abscisic Acid-Induced Reactive Oxygen Species Are Modulated by Flavonols to Control Stomata Aperture. PLANT PHYSIOLOGY 2017; 175:1807-1825. [PMID: 29051198 PMCID: PMC5717730 DOI: 10.1104/pp.17.01010] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/17/2017] [Indexed: 05/05/2023]
Abstract
Abscisic acid (ABA) increases reactive oxygen species (ROS) in guard cells to close Arabidopsis (Arabidopsis thaliana) stomata. In tomato (Solanum lycopersicum), we find that ABA-increased ROS is followed by stomatal closure and that both responses are blocked by inhibitors of ROS-producing respiratory burst oxidase enzymes. ABA-induced ROS sensor fluorescence accumulates in the nucleus, chloroplasts, and endomembranes. The accumulation of flavonol antioxidants in guard cells, but not surrounding pavement cells, was visualized by confocal microscopy using a flavonol-specific fluorescent dye. Decreased flavonols in guard cells in the anthocyanin reduced (are) mutant and elevated levels in the anthocyanin without (aw) mutant were quantified by confocal microscopy and in leaf extracts by mass spectrometry. Consistent with flavonols acting as antioxidants, higher levels of ROS were detected in guard cells of the tomato are mutant and lower levels were detected in aw both at homeostasis and after treatment with ABA. These results demonstrate the inverse relationship between flavonols and ROS. Guard cells of are show greater ABA-induced closure than the wild type, reduced light-dependent guard cell opening, and reduced water loss, with aw having opposite responses. Ethylene treatment of wild-type tomato plants increased flavonol accumulation in guard cells; however, no flavonol increases were observed in Neverripe (Nr), an ethylene receptor mutant. Consistent with lower levels of ROS due to elevated flavonols, ethylene treatments decreased ABA-induced stomatal closure in the wild type, but not Nr, with ethylene responses attenuated in the are mutant. Together, these results are consistent with flavonols dampening the ABA-dependent ROS burst that drives stomatal closure and facilitating stomatal opening to modulate leaf gas exchange.
Collapse
Affiliation(s)
- Justin M Watkins
- Wake Forest University, Department of Biology and Center for Molecular Signaling, Winston-Salem, North Carolina 27109
| | - Jordan M Chapman
- Wake Forest University, Department of Biology and Center for Molecular Signaling, Winston-Salem, North Carolina 27109
| | - Gloria K Muday
- Wake Forest University, Department of Biology and Center for Molecular Signaling, Winston-Salem, North Carolina 27109
| |
Collapse
|
33
|
Wang Y, Hills A, Vialet-Chabrand S, Papanatsiou M, Griffiths H, Rogers S, Lawson T, Lew VL, Blatt MR. Unexpected Connections between Humidity and Ion Transport Discovered Using a Model to Bridge Guard Cell-to-Leaf Scales. THE PLANT CELL 2017; 29:2921-2939. [PMID: 29093213 PMCID: PMC5728137 DOI: 10.1105/tpc.17.00694] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/11/2017] [Accepted: 10/31/2017] [Indexed: 05/18/2023]
Abstract
Stomatal movements depend on the transport and metabolism of osmotic solutes that drive reversible changes in guard cell volume and turgor. These processes are defined by a deep knowledge of the identities of the key transporters and of their biophysical and regulatory properties, and have been modeled successfully with quantitative kinetic detail at the cellular level. Transpiration of the leaf and canopy, by contrast, is described by quasilinear, empirical relations for the inputs of atmospheric humidity, CO2, and light, but without connection to guard cell mechanics. Until now, no framework has been available to bridge this gap and provide an understanding of their connections. Here, we introduce OnGuard2, a quantitative systems platform that utilizes the molecular mechanics of ion transport, metabolism, and signaling of the guard cell to define the water relations and transpiration of the leaf. We show that OnGuard2 faithfully reproduces the kinetics of stomatal conductance in Arabidopsis thaliana and its dependence on vapor pressure difference (VPD) and on water feed to the leaf. OnGuard2 also predicted with VPD unexpected alterations in K+ channel activities and changes in stomatal conductance of the slac1 Cl- channel and ost2 H+-ATPase mutants, which we verified experimentally. OnGuard2 thus bridges the micro-macro divide, offering a powerful tool with which to explore the links between guard cell homeostasis, stomatal dynamics, and foliar transpiration.
Collapse
Affiliation(s)
- Yizhou Wang
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | - Maria Papanatsiou
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Howard Griffiths
- Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Simon Rogers
- Computing Science, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Tracy Lawson
- Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Virgilio L Lew
- Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
34
|
Larson ER, Van Zelm E, Roux C, Marion-Poll A, Blatt MR. Clathrin Heavy Chain Subunits Coordinate Endo- and Exocytic Traffic and Affect Stomatal Movement. PLANT PHYSIOLOGY 2017; 175:708-720. [PMID: 28830938 PMCID: PMC5619909 DOI: 10.1104/pp.17.00970] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/17/2017] [Indexed: 05/20/2023]
Abstract
The current model for vesicular traffic to and from the plasma membrane is accepted, but the molecular requirements for this coordination are not well defined. We have identified the hot ABA-deficiency suppressor1 mutant, which has a stomatal function defect, as a clathrin heavy chain1 (CHC1) mutant allele and show that it has a decreased rate of endocytosis and growth defects that are shared with other chc1 mutant alleles. We used chc1 alleles and the related chc2 mutant as tools to investigate the effects that clathrin defects have on secretion pathways and plant growth. We show that secretion and endocytosis at the plasma membrane are sensitive to CHC1 and CHC2 function in seedling roots and that chc mutants have physiological defects in stomatal function and plant growth that have not been described previously. These findings suggest that clathrin supports specific functions in multiple cell types. Stomata movement and gas exchange are altered in chc mutants, indicating that clathrin is important for stomatal regulation. The aberrant function of chc mutant stomata is consistent with the growth phenotypes observed under different water and light conditions, which also are similar to those of the secretory SNARE mutant, syp121 The syp121 and chc mutants have impaired endocytosis and exocytosis compared with the wild type, indicating a link between SYP121-dependent secretion and clathrin-dependent endocytosis at the plasma membrane. Our findings provide evidence that clathrin and SYP121 functions are important for the coordination of endocytosis and exocytosis and have an impact on stomatal function, gas exchange, and vegetative growth in Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Emily R Larson
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Eva Van Zelm
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
- University of Amsterdam, Faculty of Science, Graduate School of Life and Earth Sciences, 1090 GE Amsterdam, The Netherlands
| | - Camille Roux
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, 78000 Versailles, France
| | - Annie Marion-Poll
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, 78000 Versailles, France
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
35
|
Robaina-Estévez S, Daloso DM, Zhang Y, Fernie AR, Nikoloski Z. Resolving the central metabolism of Arabidopsis guard cells. Sci Rep 2017; 7:8307. [PMID: 28814793 PMCID: PMC5559522 DOI: 10.1038/s41598-017-07132-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 06/23/2017] [Indexed: 12/22/2022] Open
Abstract
Photosynthesis and water use efficiency, key factors affecting plant growth, are directly controlled by microscopic and adjustable pores in the leaf-the stomata. The size of the pores is modulated by the guard cells, which rely on molecular mechanisms to sense and respond to environmental changes. It has been shown that the physiology of mesophyll and guard cells differs substantially. However, the implications of these differences to metabolism at a genome-scale level remain unclear. Here, we used constraint-based modeling to predict the differences in metabolic fluxes between the mesophyll and guard cells of Arabidopsis thaliana by exploring the space of fluxes that are most concordant to cell-type-specific transcript profiles. An independent 13C-labeling experiment using isolated mesophyll and guard cells was conducted and provided support for our predictions about the role of the Calvin-Benson cycle in sucrose synthesis in guard cells. The combination of in silico with in vivo analyses indicated that guard cells have higher anaplerotic CO2 fixation via phosphoenolpyruvate carboxylase, which was demonstrated to be an important source of malate. Beyond highlighting the metabolic differences between mesophyll and guard cells, our findings can be used in future integrated modeling of multi-cellular plant systems and their engineering towards improved growth.
Collapse
Affiliation(s)
- Semidán Robaina-Estévez
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Golm, Germany
| | - Danilo M Daloso
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Youjun Zhang
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Golm, Germany.
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Golm, Germany.
| |
Collapse
|
36
|
Zheng Y, Xie G, Zhang X, Chen Z, Cai Y, Yu W, Liu H, Shan J, Li R, Liu Y, Lei B. Bioimaging Application and Growth-Promoting Behavior of Carbon Dots from Pollen on Hydroponically Cultivated Rome Lettuce. ACS OMEGA 2017; 2:3958-3965. [PMID: 30023709 PMCID: PMC6044574 DOI: 10.1021/acsomega.7b00657] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/18/2017] [Indexed: 05/24/2023]
Abstract
Carbon dots (CDs) obtained from rapeseed pollen with a high production yield, good biocompatibility, good water solubility, low cost, and simple synthesis are systematically characterized. They can be directly added to Hoagland nutrient solution for planting hydroponically cultivated Lactuca sativa L. to explore their influence on the plants at different concentrations. By measuring lettuce indices of growth, morphology, nutrition quality, gas exchange, and content of photosynthetic pigment, amazing growth-promotion effects of CDs were discovered, and the mechanism was analyzed. Moreover, the in vivo transport route of CDs in lettuce was evaluated by macroscopic and microscopic observations under UV light excitation. The results demonstrate that pollen-derived CDs can be potentially used as a miraculous fertilizer for agricultural applications and as a great in vivo plant bioimaging probe.
Collapse
Affiliation(s)
- Yinjian Zheng
- Guangdong
Provincial Engineering Technology Research Center for Optical
Agriculture, College of Materials and Energy, College of Horticulture, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Gancheng Xie
- Guangdong
Provincial Engineering Technology Research Center for Optical
Agriculture, College of Materials and Energy, College of Horticulture, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Xuejie Zhang
- Guangdong
Provincial Engineering Technology Research Center for Optical
Agriculture, College of Materials and Energy, College of Horticulture, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Zhijie Chen
- Guangdong
Provincial Engineering Technology Research Center for Optical
Agriculture, College of Materials and Energy, College of Horticulture, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Yijin Cai
- Guangdong
Provincial Engineering Technology Research Center for Optical
Agriculture, College of Materials and Energy, College of Horticulture, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Wen Yu
- Guangdong
Provincial Engineering Technology Research Center for Optical
Agriculture, College of Materials and Energy, College of Horticulture, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Hechou Liu
- Guangdong
Provincial Engineering Technology Research Center for Optical
Agriculture, College of Materials and Energy, College of Horticulture, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Junyang Shan
- Guangdong
Provincial Engineering Technology Research Center for Optical
Agriculture, College of Materials and Energy, College of Horticulture, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Ruimin Li
- Guangdong
Provincial Engineering Technology Research Center for Optical
Agriculture, College of Materials and Energy, College of Horticulture, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Yingliang Liu
- Guangdong
Provincial Engineering Technology Research Center for Optical
Agriculture, College of Materials and Energy, College of Horticulture, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Bingfu Lei
- Guangdong
Provincial Engineering Technology Research Center for Optical
Agriculture, College of Materials and Energy, College of Horticulture, South China Agricultural University, Guangzhou 510642, P.R. China
| |
Collapse
|
37
|
Mathematical Models of Electrical Activity in Plants. J Membr Biol 2017; 250:407-423. [PMID: 28711950 DOI: 10.1007/s00232-017-9969-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022]
Abstract
Electrical activity plays an important role in plant life; in particular, electrical responses can participate in the reception of the action of stressors (local electrical responses and oscillations) and signal transduction into unstimulated parts of the plant (action potential, variation potential and system potential). Understanding the mechanisms of electrical responses and subsequent changes in physiological processes and the prediction of plant responses to stressors requires the elaboration of mathematical models of electrical activity in plant organisms. Our review describes approaches to the simulation of plant electrogenesis and summarizes current models of electrical activity in these organisms. It is shown that there are numerous models of the generation of electrical responses, which are based on various descriptions (from modifications of the classical Hodgkin-Huxley model to detailed models, which consider ion transporters, regulatory processes, buffers, etc.). A moderate number of works simulate the propagation of electrical signals using equivalent electrical circuits, systems of excitable elements with local electrical coupling and descriptions of chemical signal propagation. The transmission of signals from a plasma membrane to intracellular compartments (endoplasmic reticulum, vacuole) during the generation of electrical responses is much less modelled. Finally, only a few works simulate plant physiological changes that are connected with electrical responses or investigate the inverse problem: reconstruction of the type and parameters of stimuli through the analysis of electrical responses. In the conclusion of the review, we discuss future perspectives on the simulation of electrical activity in plants.
Collapse
|
38
|
Buckley TN. Modeling Stomatal Conductance. PLANT PHYSIOLOGY 2017; 174:572-582. [PMID: 28062836 PMCID: PMC5462010 DOI: 10.1104/pp.16.01772] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/03/2017] [Indexed: 05/12/2023]
Abstract
Recent advances have improved our ability to model stomatal conductance using process- or optimality-based models, and continuing research should focus on how stomata sense leaf turgor and on how to quantify the direct carbon costs of low leaf water potential.
Collapse
Affiliation(s)
- Thomas N Buckley
- Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Narrabri NSW 2390, Australia
| |
Collapse
|
39
|
Inoue SI, Kinoshita T. Blue Light Regulation of Stomatal Opening and the Plasma Membrane H +-ATPase. PLANT PHYSIOLOGY 2017; 174:531-538. [PMID: 28465463 PMCID: PMC5462062 DOI: 10.1104/pp.17.00166] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/01/2017] [Indexed: 05/18/2023]
Abstract
Recent progress of the blue light signaling pathway in guard cells highlights its regulation of H+-ATPase activity.
Collapse
Affiliation(s)
- Shin-Ichiro Inoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan (S.I., T.K.); and
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan (T.K.)
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan (S.I., T.K.); and
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan (T.K.)
| |
Collapse
|
40
|
Males J, Griffiths H. Stomatal Biology of CAM Plants. PLANT PHYSIOLOGY 2017; 174:550-560. [PMID: 28242656 PMCID: PMC5462028 DOI: 10.1104/pp.17.00114] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/24/2017] [Indexed: 05/19/2023]
Abstract
Recent advances in the stomatal biology of CAM plants are reviewed, and key opportunities for future progress are identified.
Collapse
Affiliation(s)
- Jamie Males
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
41
|
Malcheska F, Ahmad A, Batool S, Müller HM, Ludwig-Müller J, Kreuzwieser J, Randewig D, Hänsch R, Mendel RR, Hell R, Wirtz M, Geiger D, Ache P, Hedrich R, Herschbach C, Rennenberg H. Drought-Enhanced Xylem Sap Sulfate Closes Stomata by Affecting ALMT12 and Guard Cell ABA Synthesis. PLANT PHYSIOLOGY 2017; 174:798-814. [PMID: 28446637 PMCID: PMC5462012 DOI: 10.1104/pp.16.01784] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/18/2017] [Indexed: 05/20/2023]
Abstract
Water limitation of plants causes stomatal closure to prevent water loss by transpiration. For this purpose, progressing soil water deficit is communicated from roots to shoots. Abscisic acid (ABA) is the key signal in stress-induced stomatal closure, but ABA as an early xylem-delivered signal is still a matter of debate. In this study, poplar plants (Populus × canescens) were exposed to water stress to investigate xylem sap sulfate and ABA, stomatal conductance, and sulfate transporter (SULTR) expression. In addition, stomatal behavior and expression of ABA receptors, drought-responsive genes, transcription factors, and NCED3 were studied after feeding sulfate and ABA to detached poplar leaves and epidermal peels of Arabidopsis (Arabidopsis thaliana). The results show that increased xylem sap sulfate is achieved upon drought by reduced xylem unloading by PtaSULTR3;3a and PtaSULTR1;1, and by enhanced loading from parenchyma cells into the xylem via PtaALMT3b. Sulfate application caused stomatal closure in excised leaves and peeled epidermis. In the loss of sulfate-channel function mutant, Atalmt12, sulfate-triggered stomatal closure was impaired. The QUAC1/ALMT12 anion channel heterologous expressed in oocytes was gated open by extracellular sulfate. Sulfate up-regulated the expression of NCED3, a key step of ABA synthesis, in guard cells. In conclusion, xylem-derived sulfate seems to be a chemical signal of drought that induces stomatal closure via QUAC1/ALMT12 and/or guard cell ABA synthesis.
Collapse
Affiliation(s)
- Frosina Malcheska
- Professur für Baumphysiologie, Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, 79110 Freiburg, Germany (F.M., J.K., D.R., C.H., H.R.)
- Department of Botany, Faculty of Life Sciences, Aligrah Muslim University, Aligrah 202002, India (A.A.)
- Department IV Molecular Biology of Plants, Centre for Organismal Studies Heidelberg University, 69120 Heidelberg, Germany (S.B., Rü.H., M.W.)
- Julius-von-Sachs-Institut für Biowissenschaften, Julius-Maximulians-Universität Würzburg Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, 97082 Würzburg, Germany (H.M.M., D.G., P.A., Ra.H.)
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.)
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, 38106 Braunschweig, Germany (Ro.H., R.R.M.); and
- King Saud University, Riyadh 11451, Saudi Arabia (H.R.)
| | - Altaf Ahmad
- Professur für Baumphysiologie, Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, 79110 Freiburg, Germany (F.M., J.K., D.R., C.H., H.R.)
- Department of Botany, Faculty of Life Sciences, Aligrah Muslim University, Aligrah 202002, India (A.A.)
- Department IV Molecular Biology of Plants, Centre for Organismal Studies Heidelberg University, 69120 Heidelberg, Germany (S.B., Rü.H., M.W.)
- Julius-von-Sachs-Institut für Biowissenschaften, Julius-Maximulians-Universität Würzburg Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, 97082 Würzburg, Germany (H.M.M., D.G., P.A., Ra.H.)
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.)
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, 38106 Braunschweig, Germany (Ro.H., R.R.M.); and
- King Saud University, Riyadh 11451, Saudi Arabia (H.R.)
| | - Sundas Batool
- Professur für Baumphysiologie, Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, 79110 Freiburg, Germany (F.M., J.K., D.R., C.H., H.R.)
- Department of Botany, Faculty of Life Sciences, Aligrah Muslim University, Aligrah 202002, India (A.A.)
- Department IV Molecular Biology of Plants, Centre for Organismal Studies Heidelberg University, 69120 Heidelberg, Germany (S.B., Rü.H., M.W.)
- Julius-von-Sachs-Institut für Biowissenschaften, Julius-Maximulians-Universität Würzburg Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, 97082 Würzburg, Germany (H.M.M., D.G., P.A., Ra.H.)
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.)
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, 38106 Braunschweig, Germany (Ro.H., R.R.M.); and
- King Saud University, Riyadh 11451, Saudi Arabia (H.R.)
| | - Heike M Müller
- Professur für Baumphysiologie, Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, 79110 Freiburg, Germany (F.M., J.K., D.R., C.H., H.R.)
- Department of Botany, Faculty of Life Sciences, Aligrah Muslim University, Aligrah 202002, India (A.A.)
- Department IV Molecular Biology of Plants, Centre for Organismal Studies Heidelberg University, 69120 Heidelberg, Germany (S.B., Rü.H., M.W.)
- Julius-von-Sachs-Institut für Biowissenschaften, Julius-Maximulians-Universität Würzburg Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, 97082 Würzburg, Germany (H.M.M., D.G., P.A., Ra.H.)
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.)
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, 38106 Braunschweig, Germany (Ro.H., R.R.M.); and
- King Saud University, Riyadh 11451, Saudi Arabia (H.R.)
| | - Jutta Ludwig-Müller
- Professur für Baumphysiologie, Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, 79110 Freiburg, Germany (F.M., J.K., D.R., C.H., H.R.)
- Department of Botany, Faculty of Life Sciences, Aligrah Muslim University, Aligrah 202002, India (A.A.)
- Department IV Molecular Biology of Plants, Centre for Organismal Studies Heidelberg University, 69120 Heidelberg, Germany (S.B., Rü.H., M.W.)
- Julius-von-Sachs-Institut für Biowissenschaften, Julius-Maximulians-Universität Würzburg Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, 97082 Würzburg, Germany (H.M.M., D.G., P.A., Ra.H.)
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.)
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, 38106 Braunschweig, Germany (Ro.H., R.R.M.); and
- King Saud University, Riyadh 11451, Saudi Arabia (H.R.)
| | - Jürgen Kreuzwieser
- Professur für Baumphysiologie, Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, 79110 Freiburg, Germany (F.M., J.K., D.R., C.H., H.R.)
- Department of Botany, Faculty of Life Sciences, Aligrah Muslim University, Aligrah 202002, India (A.A.)
- Department IV Molecular Biology of Plants, Centre for Organismal Studies Heidelberg University, 69120 Heidelberg, Germany (S.B., Rü.H., M.W.)
- Julius-von-Sachs-Institut für Biowissenschaften, Julius-Maximulians-Universität Würzburg Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, 97082 Würzburg, Germany (H.M.M., D.G., P.A., Ra.H.)
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.)
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, 38106 Braunschweig, Germany (Ro.H., R.R.M.); and
- King Saud University, Riyadh 11451, Saudi Arabia (H.R.)
| | - Dörte Randewig
- Professur für Baumphysiologie, Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, 79110 Freiburg, Germany (F.M., J.K., D.R., C.H., H.R.)
- Department of Botany, Faculty of Life Sciences, Aligrah Muslim University, Aligrah 202002, India (A.A.)
- Department IV Molecular Biology of Plants, Centre for Organismal Studies Heidelberg University, 69120 Heidelberg, Germany (S.B., Rü.H., M.W.)
- Julius-von-Sachs-Institut für Biowissenschaften, Julius-Maximulians-Universität Würzburg Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, 97082 Würzburg, Germany (H.M.M., D.G., P.A., Ra.H.)
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.)
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, 38106 Braunschweig, Germany (Ro.H., R.R.M.); and
- King Saud University, Riyadh 11451, Saudi Arabia (H.R.)
| | - Robert Hänsch
- Professur für Baumphysiologie, Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, 79110 Freiburg, Germany (F.M., J.K., D.R., C.H., H.R.)
- Department of Botany, Faculty of Life Sciences, Aligrah Muslim University, Aligrah 202002, India (A.A.)
- Department IV Molecular Biology of Plants, Centre for Organismal Studies Heidelberg University, 69120 Heidelberg, Germany (S.B., Rü.H., M.W.)
- Julius-von-Sachs-Institut für Biowissenschaften, Julius-Maximulians-Universität Würzburg Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, 97082 Würzburg, Germany (H.M.M., D.G., P.A., Ra.H.)
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.)
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, 38106 Braunschweig, Germany (Ro.H., R.R.M.); and
- King Saud University, Riyadh 11451, Saudi Arabia (H.R.)
| | - Ralf R Mendel
- Professur für Baumphysiologie, Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, 79110 Freiburg, Germany (F.M., J.K., D.R., C.H., H.R.)
- Department of Botany, Faculty of Life Sciences, Aligrah Muslim University, Aligrah 202002, India (A.A.)
- Department IV Molecular Biology of Plants, Centre for Organismal Studies Heidelberg University, 69120 Heidelberg, Germany (S.B., Rü.H., M.W.)
- Julius-von-Sachs-Institut für Biowissenschaften, Julius-Maximulians-Universität Würzburg Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, 97082 Würzburg, Germany (H.M.M., D.G., P.A., Ra.H.)
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.)
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, 38106 Braunschweig, Germany (Ro.H., R.R.M.); and
- King Saud University, Riyadh 11451, Saudi Arabia (H.R.)
| | - Rüdiger Hell
- Professur für Baumphysiologie, Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, 79110 Freiburg, Germany (F.M., J.K., D.R., C.H., H.R.)
- Department of Botany, Faculty of Life Sciences, Aligrah Muslim University, Aligrah 202002, India (A.A.)
- Department IV Molecular Biology of Plants, Centre for Organismal Studies Heidelberg University, 69120 Heidelberg, Germany (S.B., Rü.H., M.W.)
- Julius-von-Sachs-Institut für Biowissenschaften, Julius-Maximulians-Universität Würzburg Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, 97082 Würzburg, Germany (H.M.M., D.G., P.A., Ra.H.)
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.)
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, 38106 Braunschweig, Germany (Ro.H., R.R.M.); and
- King Saud University, Riyadh 11451, Saudi Arabia (H.R.)
| | - Markus Wirtz
- Professur für Baumphysiologie, Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, 79110 Freiburg, Germany (F.M., J.K., D.R., C.H., H.R.)
- Department of Botany, Faculty of Life Sciences, Aligrah Muslim University, Aligrah 202002, India (A.A.)
- Department IV Molecular Biology of Plants, Centre for Organismal Studies Heidelberg University, 69120 Heidelberg, Germany (S.B., Rü.H., M.W.)
- Julius-von-Sachs-Institut für Biowissenschaften, Julius-Maximulians-Universität Würzburg Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, 97082 Würzburg, Germany (H.M.M., D.G., P.A., Ra.H.)
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.)
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, 38106 Braunschweig, Germany (Ro.H., R.R.M.); and
- King Saud University, Riyadh 11451, Saudi Arabia (H.R.)
| | - Dietmar Geiger
- Professur für Baumphysiologie, Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, 79110 Freiburg, Germany (F.M., J.K., D.R., C.H., H.R.)
- Department of Botany, Faculty of Life Sciences, Aligrah Muslim University, Aligrah 202002, India (A.A.)
- Department IV Molecular Biology of Plants, Centre for Organismal Studies Heidelberg University, 69120 Heidelberg, Germany (S.B., Rü.H., M.W.)
- Julius-von-Sachs-Institut für Biowissenschaften, Julius-Maximulians-Universität Würzburg Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, 97082 Würzburg, Germany (H.M.M., D.G., P.A., Ra.H.)
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.)
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, 38106 Braunschweig, Germany (Ro.H., R.R.M.); and
- King Saud University, Riyadh 11451, Saudi Arabia (H.R.)
| | - Peter Ache
- Professur für Baumphysiologie, Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, 79110 Freiburg, Germany (F.M., J.K., D.R., C.H., H.R.)
- Department of Botany, Faculty of Life Sciences, Aligrah Muslim University, Aligrah 202002, India (A.A.)
- Department IV Molecular Biology of Plants, Centre for Organismal Studies Heidelberg University, 69120 Heidelberg, Germany (S.B., Rü.H., M.W.)
- Julius-von-Sachs-Institut für Biowissenschaften, Julius-Maximulians-Universität Würzburg Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, 97082 Würzburg, Germany (H.M.M., D.G., P.A., Ra.H.)
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.)
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, 38106 Braunschweig, Germany (Ro.H., R.R.M.); and
- King Saud University, Riyadh 11451, Saudi Arabia (H.R.)
| | - Rainer Hedrich
- Professur für Baumphysiologie, Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, 79110 Freiburg, Germany (F.M., J.K., D.R., C.H., H.R.)
- Department of Botany, Faculty of Life Sciences, Aligrah Muslim University, Aligrah 202002, India (A.A.)
- Department IV Molecular Biology of Plants, Centre for Organismal Studies Heidelberg University, 69120 Heidelberg, Germany (S.B., Rü.H., M.W.)
- Julius-von-Sachs-Institut für Biowissenschaften, Julius-Maximulians-Universität Würzburg Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, 97082 Würzburg, Germany (H.M.M., D.G., P.A., Ra.H.)
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.)
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, 38106 Braunschweig, Germany (Ro.H., R.R.M.); and
- King Saud University, Riyadh 11451, Saudi Arabia (H.R.)
| | - Cornelia Herschbach
- Professur für Baumphysiologie, Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, 79110 Freiburg, Germany (F.M., J.K., D.R., C.H., H.R.);
- Department of Botany, Faculty of Life Sciences, Aligrah Muslim University, Aligrah 202002, India (A.A.);
- Department IV Molecular Biology of Plants, Centre for Organismal Studies Heidelberg University, 69120 Heidelberg, Germany (S.B., Rü.H., M.W.);
- Julius-von-Sachs-Institut für Biowissenschaften, Julius-Maximulians-Universität Würzburg Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, 97082 Würzburg, Germany (H.M.M., D.G., P.A., Ra.H.);
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.);
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, 38106 Braunschweig, Germany (Ro.H., R.R.M.); and
- King Saud University, Riyadh 11451, Saudi Arabia (H.R.)
| | - Heinz Rennenberg
- Professur für Baumphysiologie, Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, 79110 Freiburg, Germany (F.M., J.K., D.R., C.H., H.R.)
- Department of Botany, Faculty of Life Sciences, Aligrah Muslim University, Aligrah 202002, India (A.A.)
- Department IV Molecular Biology of Plants, Centre for Organismal Studies Heidelberg University, 69120 Heidelberg, Germany (S.B., Rü.H., M.W.)
- Julius-von-Sachs-Institut für Biowissenschaften, Julius-Maximulians-Universität Würzburg Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, 97082 Würzburg, Germany (H.M.M., D.G., P.A., Ra.H.)
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.)
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, 38106 Braunschweig, Germany (Ro.H., R.R.M.); and
- King Saud University, Riyadh 11451, Saudi Arabia (H.R.)
| |
Collapse
|
42
|
Jezek M, Blatt MR. The Membrane Transport System of the Guard Cell and Its Integration for Stomatal Dynamics. PLANT PHYSIOLOGY 2017; 174:487-519. [PMID: 28408539 PMCID: PMC5462021 DOI: 10.1104/pp.16.01949] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/11/2017] [Indexed: 05/17/2023]
Abstract
Stomatal guard cells are widely recognized as the premier plant cell model for membrane transport, signaling, and homeostasis. This recognition is rooted in half a century of research into ion transport across the plasma and vacuolar membranes of guard cells that drive stomatal movements and the signaling mechanisms that regulate them. Stomatal guard cells surround pores in the epidermis of plant leaves, controlling the aperture of the pore to balance CO2 entry into the leaf for photosynthesis with water loss via transpiration. The position of guard cells in the epidermis is ideally suited for cellular and subcellular research, and their sensitivity to endogenous signals and environmental stimuli makes them a primary target for physiological studies. Stomata underpin the challenges of water availability and crop production that are expected to unfold over the next 20 to 30 years. A quantitative understanding of how ion transport is integrated and controlled is key to meeting these challenges and to engineering guard cells for improved water use efficiency and agricultural yields.
Collapse
Affiliation(s)
- Mareike Jezek
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
43
|
Vialet-Chabrand S, Hills A, Wang Y, Griffiths H, Lew VL, Lawson T, Blatt MR, Rogers S. Global Sensitivity Analysis of OnGuard Models Identifies Key Hubs for Transport Interaction in Stomatal Dynamics. PLANT PHYSIOLOGY 2017; 174:680-688. [PMID: 28432256 PMCID: PMC5462055 DOI: 10.1104/pp.17.00170] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/20/2017] [Indexed: 05/18/2023]
Abstract
The physical requirement for charge to balance across biological membranes means that the transmembrane transport of each ionic species is interrelated, and manipulating solute flux through any one transporter will affect other transporters at the same membrane, often with unforeseen consequences. The OnGuard systems modeling platform has helped to resolve the mechanics of stomatal movements, uncovering previously unexpected behaviors of stomata. To date, however, the manual approach to exploring model parameter space has captured little formal information about the emergent connections between parameters that define the most interesting properties of the system as a whole. Here, we introduce global sensitivity analysis to identify interacting parameters affecting a number of outputs commonly accessed in experiments in Arabidopsis (Arabidopsis thaliana). The analysis highlights synergies between transporters affecting the balance between Ca2+ sequestration and Ca2+ release pathways, notably those associated with internal Ca2+ stores and their turnover. Other, unexpected synergies appear, including with the plasma membrane anion channels and H+-ATPase and with the tonoplast TPK K+ channel. These emergent synergies, and the core hubs of interaction that they define, identify subsets of transporters associated with free cytosolic Ca2+ concentration that represent key targets to enhance plant performance in the future. They also highlight the importance of interactions between the voltage regulation of the plasma membrane and tonoplast in coordinating transport between the different cellular compartments.
Collapse
Affiliation(s)
- Silvere Vialet-Chabrand
- Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom (S.V.-C., T.L.)
- Laboratory of Plant Physiology and Biophysics (A.H., Y.W., M.R.B.) and Computing Science (S.R.), University of Glasgow, Glasgow G12 8QQ, United Kingdom
- Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (H.G); and
- Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, United Kingdom (V.L.L.)
| | - Adrian Hills
- Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom (S.V.-C., T.L.)
- Laboratory of Plant Physiology and Biophysics (A.H., Y.W., M.R.B.) and Computing Science (S.R.), University of Glasgow, Glasgow G12 8QQ, United Kingdom
- Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (H.G); and
- Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, United Kingdom (V.L.L.)
| | - Yizhou Wang
- Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom (S.V.-C., T.L.)
- Laboratory of Plant Physiology and Biophysics (A.H., Y.W., M.R.B.) and Computing Science (S.R.), University of Glasgow, Glasgow G12 8QQ, United Kingdom
- Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (H.G); and
- Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, United Kingdom (V.L.L.)
| | - Howard Griffiths
- Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom (S.V.-C., T.L.)
- Laboratory of Plant Physiology and Biophysics (A.H., Y.W., M.R.B.) and Computing Science (S.R.), University of Glasgow, Glasgow G12 8QQ, United Kingdom
- Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (H.G); and
- Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, United Kingdom (V.L.L.)
| | - Virgilio L Lew
- Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom (S.V.-C., T.L.)
- Laboratory of Plant Physiology and Biophysics (A.H., Y.W., M.R.B.) and Computing Science (S.R.), University of Glasgow, Glasgow G12 8QQ, United Kingdom
- Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (H.G); and
- Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, United Kingdom (V.L.L.)
| | - Tracy Lawson
- Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom (S.V.-C., T.L.)
- Laboratory of Plant Physiology and Biophysics (A.H., Y.W., M.R.B.) and Computing Science (S.R.), University of Glasgow, Glasgow G12 8QQ, United Kingdom
- Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (H.G); and
- Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, United Kingdom (V.L.L.)
| | - Michael R Blatt
- Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom (S.V.-C., T.L.);
- Laboratory of Plant Physiology and Biophysics (A.H., Y.W., M.R.B.) and Computing Science (S.R.), University of Glasgow, Glasgow G12 8QQ, United Kingdom;
- Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (H.G); and
- Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, United Kingdom (V.L.L.)
| | - Simon Rogers
- Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom (S.V.-C., T.L.)
- Laboratory of Plant Physiology and Biophysics (A.H., Y.W., M.R.B.) and Computing Science (S.R.), University of Glasgow, Glasgow G12 8QQ, United Kingdom
- Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (H.G); and
- Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, United Kingdom (V.L.L.)
| |
Collapse
|
44
|
Eisenach C, De Angeli A. Ion Transport at the Vacuole during Stomatal Movements. PLANT PHYSIOLOGY 2017; 174:520-530. [PMID: 28381500 PMCID: PMC5462060 DOI: 10.1104/pp.17.00130] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/03/2017] [Indexed: 05/19/2023]
Abstract
Recent research on vacuolar ion channels, transporters, and pumps of Arabidopsis highlight their function and roles in stomatal opening and closure.
Collapse
Affiliation(s)
- Cornelia Eisenach
- Department of Plant and Microbial Biology, University of Zurich, Zurich CH-8008, Switzerland (C.E.); and
- Institut de Biologie Intégrative de la Cellule, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette, France (A.D.A.)
| | - Alexis De Angeli
- Department of Plant and Microbial Biology, University of Zurich, Zurich CH-8008, Switzerland (C.E.); and
- Institut de Biologie Intégrative de la Cellule, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette, France (A.D.A.)
| |
Collapse
|
45
|
Chen ZH, Chen G, Dai F, Wang Y, Hills A, Ruan YL, Zhang G, Franks PJ, Nevo E, Blatt MR. Molecular Evolution of Grass Stomata. TRENDS IN PLANT SCIENCE 2017; 22:124-139. [PMID: 27776931 DOI: 10.1016/j.tplants.2016.09.005] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 05/18/2023]
Abstract
Grasses began to diversify in the late Cretaceous Period and now dominate more than one third of global land area, including three-quarters of agricultural land. We hypothesize that their success is likely attributed to the evolution of highly responsive stomata capable of maximizing productivity in rapidly changing environments. Grass stomata harness the active turgor control mechanisms present in stomata of more ancient plant lineages, maximizing several morphological and developmental features to ensure rapid responses to environmental inputs. The evolutionary development of grass stomata appears to have been a gradual progression. Therefore, understanding the complex structures, developmental events, regulatory networks, and combinations of ion transporters necessary to drive rapid stomatal movement may inform future efforts towards breeding new crop varieties.
Collapse
Affiliation(s)
- Zhong-Hua Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Guang Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fei Dai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yizhou Wang
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Guoping Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Peter J Franks
- Faculty of Agriculture and Environment, The University of Sydney, Sydney, NSW 2006, Australia
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
46
|
Karnik R, Waghmare S, Zhang B, Larson E, Lefoulon C, Gonzalez W, Blatt MR. Commandeering Channel Voltage Sensors for Secretion, Cell Turgor, and Volume Control. TRENDS IN PLANT SCIENCE 2017; 22:81-95. [PMID: 27818003 PMCID: PMC5224186 DOI: 10.1016/j.tplants.2016.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 05/20/2023]
Abstract
Control of cell volume and osmolarity is central to cellular homeostasis in all eukaryotes. It lies at the heart of the century-old problem of how plants regulate turgor, mineral and water transport. Plants use strongly electrogenic H+-ATPases, and the substantial membrane voltages they foster, to drive solute accumulation and generate turgor pressure for cell expansion. Vesicle traffic adds membrane surface and contributes to wall remodelling as the cell grows. Although a balance between vesicle traffic and ion transport is essential for cell turgor and volume control, the mechanisms coordinating these processes have remained obscure. Recent discoveries have now uncovered interactions between conserved subsets of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins that drive the final steps in secretory vesicle traffic and ion channels that mediate in inorganic solute uptake. These findings establish the core of molecular links, previously unanticipated, that coordinate cellular homeostasis and cell expansion.
Collapse
Affiliation(s)
- Rucha Karnik
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Sakharam Waghmare
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ben Zhang
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Emily Larson
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Cécile Lefoulon
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Wendy Gonzalez
- Centro de Bioinformatica y Simulacion Molecular, Universidad de Talca, Casilla 721, Talca, Chile
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
47
|
Plieth C. Calcium, Metaphors, and Zeitgeist in Plant Sciences. PLANT PHYSIOLOGY 2016; 171:1790-3. [PMID: 27221616 PMCID: PMC4936587 DOI: 10.1104/pp.16.00645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/23/2016] [Indexed: 05/23/2023]
Affiliation(s)
- Christoph Plieth
- Zentrum für Biochemie und Molekularbiologie, Universität Kiel, 24118 Kiel, Germany
| |
Collapse
|
48
|
Schott S, Valdebenito B, Bustos D, Gomez-Porras JL, Sharma T, Dreyer I. Cooperation through Competition-Dynamics and Microeconomics of a Minimal Nutrient Trade System in Arbuscular Mycorrhizal Symbiosis. FRONTIERS IN PLANT SCIENCE 2016; 7:912. [PMID: 27446142 PMCID: PMC4921476 DOI: 10.3389/fpls.2016.00912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/09/2016] [Indexed: 05/17/2023]
Abstract
In arbuscular mycorrhizal (AM) symbiosis, fungi and plants exchange nutrients (sugars and phosphate, for instance) for reciprocal benefit. Until now it is not clear how this nutrient exchange system works. Here, we used computational cell biology to simulate the dynamics of a network of proton pumps and proton-coupled transporters that are upregulated during AM formation. We show that this minimal network is sufficient to describe accurately and realistically the nutrient trade system. By applying basic principles of microeconomics, we link the biophysics of transmembrane nutrient transport with the ecology of organismic interactions and straightforwardly explain macroscopic scenarios of the relations between plant and AM fungus. This computational cell biology study allows drawing far reaching hypotheses about the mechanism and the regulation of nutrient exchange and proposes that the "cooperation" between plant and fungus can be in fact the result of a competition between both for the same resources in the tiny periarbuscular space. The minimal model presented here may serve as benchmark to evaluate in future the performance of more complex models of AM nutrient exchange. As a first step toward this goal, we included SWEET sugar transporters in the model and show that their co-occurrence with proton-coupled sugar transporters results in a futile carbon cycle at the plant plasma membrane proposing that two different pathways for the same substrate should not be active at the same time.
Collapse
|