1
|
Chen L, Cai M, Zhang Q, Pan Y, Chen M, Zhang X, Wu J, Luo H, Peng C. Why can Mikania micrantha cover trees quickly during invasion? BMC PLANT BIOLOGY 2024; 24:511. [PMID: 38844870 PMCID: PMC11157800 DOI: 10.1186/s12870-024-05210-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
The invasion of Mikania micrantha by climbing and covering trees has rapidly caused the death of many shrubs and trees, seriously endangering forest biodiversity. In this study, M. micrantha seedlings were planted together with local tree species (Cryptocarya concinna) to simulate the process of M. micrantha climbing under the forest. We found that the upper part of the M. micrantha stem lost its support after climbing to the top of the tree, grew in a turning and creeping manner, and then grew branches rapidly to cover the tree canopy. Then, we simulated the branching process through turning treatment. We found that a large number of branches had been formed near the turning part of the M. micrantha stem (TP). Compared with the upper part of the main stem (UP), the contents of plant hormones (auxin, cytokinin, gibberellin), soluble sugars (sucrose, glucose, fructose) and trehalose-6-phosphate (T6P) were significantly accumulated at TP. Further combining the transcriptome data of different parts of the main stem under erect or turning treatment, a hypothetical regulation model to illustrate how M. micrantha can quickly cover trees was proposed based on the regulation of sugars and hormones on plant branching; that is, the lack of support after ascending the top of the tree led to turning growth of the main stem, and the enhancement of sugars and T6P levels in the TP may first drive the release of nearby dormant buds. Plant hormone accumulation may regulate the entrance of buds into sustained growth and maintain the elongation of branches together with sugars to successfully covering trees.
Collapse
Affiliation(s)
- Lihua Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Minling Cai
- School of Life Sciences, Huizhou University, Huizhou, 516007, China
| | - Qilei Zhang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Yanru Pan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Manting Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xiaowen Zhang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jirong Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Haoshen Luo
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Changlian Peng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
2
|
Huang X, Zhu Y, Su W, Song S, Chen R. Widely-targeted metabolomics and transcriptomics identify metabolites associated with flowering regulation of Choy Sum. Sci Rep 2024; 14:10682. [PMID: 38724517 PMCID: PMC11081954 DOI: 10.1038/s41598-024-60801-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Choy Sum, a stalk vegetable highly valued in East and Southeast Asia, is characterized by its rich flavor and nutritional profile. Metabolite accumulation is a key factor in Choy Sum stalk development; however, no research has focused on metabolic changes during the development of Choy Sum, especially in shoot tip metabolites, and their effects on growth and flowering. Therefore, in the present study, we used a widely targeted metabolomic approach to analyze metabolites in Choy Sum stalks at the seedling (S1), bolting (S3), and flowering (S5) stages. In total, we identified 493 metabolites in 31 chemical categories across all three developmental stages. We found that the levels of most carbohydrates and amino acids increased during stalk development and peaked at S5. Moreover, the accumulation of amino acids and their metabolites was closely related to G6P, whereas the expression of flowering genes was closely related to the content of T6P, which may promote flowering by upregulating the expressions of BcSOC1, BcAP1, and BcSPL5. The results of this study contribute to our understanding of the relationship between the accumulation of stem tip substances during development and flowering and of the regulatory mechanisms of stalk development in Choy Sum and other related species.
Collapse
Affiliation(s)
- Xinmin Huang
- Guangdong Provincial Engineering Technology Research Center for Protected Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, People's Republic of China
| | - Yunna Zhu
- Guangdong Provincial Engineering Technology Research Center for Protected Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Wei Su
- Guangdong Provincial Engineering Technology Research Center for Protected Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Shiwei Song
- Guangdong Provincial Engineering Technology Research Center for Protected Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
| | - Riyuan Chen
- Guangdong Provincial Engineering Technology Research Center for Protected Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
| |
Collapse
|
3
|
Asad MAU, Yan Z, Zhou L, Guan X, Cheng F. How abiotic stresses trigger sugar signaling to modulate leaf senescence? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108650. [PMID: 38653095 DOI: 10.1016/j.plaphy.2024.108650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Plants have evolved the adaptive capacity to mitigate the negative effect of external adversities at chemical, molecular, cellular, and physiological levels. This capacity is conferred by triggering the coordinated action of internal regulatory factors, in which sugars play an essential role in the regulating chloroplast degradation and leaf senescence under various stresses. In this review, we summarize the recent findings on the senescent-associated changes in carbohydrate metabolism and its relation to chlorophyl degradation, oxidative damage, photosynthesis inhibition, programmed cell death (PCD), and sink-source relation as affected by abiotic stresses. The action of sugar signaling in regulating the initiation and progression of leaf senescence under abiotic stresses involves interactions with various plant hormones, reactive oxygen species (ROS) burst, and protein kinases. This discussion aims to elucidate the complex regulatory network and molecular mechanisms that underline sugar-induced leaf senescence in response to various abiotic stresses. The imperative role of sugar signaling in regulating plant stress responses potentially enables the production of crop plants with modified sugar metabolism. This, in turn, may facilitate the engineering of plants with improved stress responses, optimal life span and higher yield achievement.
Collapse
Affiliation(s)
- Muhmmad Asad Ullah Asad
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhang Yan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lujian Zhou
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xianyue Guan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fangmin Cheng
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Collaborative Innovation Centre for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing, China.
| |
Collapse
|
4
|
Pegler JL, Patrick JW, McDermott B, Brown A, Oultram JMJ, Grof CPL, Ward JM. Phaseolus vulgaris STP13.1 is an H +-coupled monosaccharide transporter, present in source leaves and seed coats, with higher substrate affinity at depolarized potentials. PLANT DIRECT 2024; 8:e585. [PMID: 38651017 PMCID: PMC11033725 DOI: 10.1002/pld3.585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Sugar transport proteins (STPs) are high-affinity H+-coupled hexose symporters. Recently, the contribution of STP13 to bacterial and fungal pathogen resistance across multiple plant species has garnered significant interest. Quantitative PCR analysis of source leaves, developing embryos, and seed coats of Phaseolus vulgaris L. (common bean) revealed that PvSTP13.1 was expressed in source leaves and seed coats throughout seed development. In contrast, PvSTP13.1 transcripts were detected at exceedingly low levels in developing embryos. To characterize the transport mechanism, PvSTP13.1 was expressed in Xenopus laevis oocytes, and inward-directed currents were analyzed using two-electrode voltage clamping. PvSTP13.1 was shown to function as an H+-coupled monosaccharide symporter exhibiting a unique high affinity for hexoses and aldopentoses at depolarized membrane potentials. Specifically, of the 31 assessed substrates, which included aldohexoses, deoxyhexoses, fructose, 3-O-methyl-D-glucose, aldopentoses, polyols, glycosides, disaccharides, trisaccharides, and glucuronic acid, PvSTP13.1 displayed the highest affinity (K 0.5) for glucose (43 μM), mannose (92 μM), galactose (145 μM), fructose (224 μM), xylose (1.0 mM), and fucose (3.7 mM) at pH 5.6 at a depolarized membrane potential of -40 mV. The results presented here suggest PvSTP13.1 contributes to retrieval of hexoses from the apoplasmic space in source leaves and coats of developing seeds.
Collapse
Affiliation(s)
- Joseph L. Pegler
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - John W. Patrick
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Benjamin McDermott
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Anthony Brown
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Jackson M. J. Oultram
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Christopher P. L. Grof
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - John M. Ward
- Plant and Microbial BiologyUniversity of Minnesota Twin CitiesSt. PaulMinnesotaUSA
| |
Collapse
|
5
|
Jeon SJ, Zhang Y, Castillo C, Nava V, Ristroph K, Therrien B, Meza L, Lowry GV, Giraldo JP. Targeted Delivery of Sucrose-Coated Nanocarriers with Chemical Cargoes to the Plant Vasculature Enhances Long-Distance Translocation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304588. [PMID: 37840413 DOI: 10.1002/smll.202304588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Current practices for delivering agrochemicals are inefficient, with only a fraction reaching the intended targets in plants. The surfaces of nanocarriers are functionalized with sucrose, enabling rapid and efficient foliar delivery into the plant phloem, a vascular tissue that transports sugars, signaling molecules, and agrochemicals through the whole plant. The chemical affinity of sucrose molecules to sugar membrane transporters on the phloem cells enhances the uptake of sucrose-coated quantum dots (sucQD) and biocompatible carbon dots with β-cyclodextrin molecular baskets (suc-β-CD) that can carry a wide range of agrochemicals. The QD and CD fluorescence emission properties allowed detection and monitoring of rapid translocation (<40 min) in the vasculature of wheat leaves by confocal and epifluorescence microscopy. The suc-β-CDs more than doubled the delivery of chemical cargoes into the leaf vascular tissue. Inductively coupled plasma mass spectrometry (ICP-MS) analysis showed that the fraction of sucQDs loaded into the phloem and transported to roots is over 6.8 times higher than unmodified QDs. The sucrose coating of nanoparticles approach enables unprecedented targeted delivery to roots with ≈70% of phloem-loaded nanoparticles delivered to roots. The use of plant biorecognition molecules mediated delivery provides an efficient approach for guiding nanocarriers containing agrochemicals to the plant vasculature and whole plants.
Collapse
Affiliation(s)
- Su-Ji Jeon
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Yilin Zhang
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Christopher Castillo
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Valeria Nava
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Kurt Ristroph
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Benjamin Therrien
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Leticia Meza
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Gregory V Lowry
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Juan Pablo Giraldo
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
6
|
Choi JH, Cho E, Kim JW, Lee SM, Choi GJ, Choi SR, Yang MS, Lim YP, Oh MH. Role of Brassica rapa SWEET genes in the defense response to Plasmodiophora brassicae. Genes Genomics 2024; 46:253-261. [PMID: 38236352 DOI: 10.1007/s13258-023-01486-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Interactions of plants with biotic stress factors including bacteria, fungi, and viruses have been extensively investigated to date. Plasmodiophora brassicae, a protist pathogen, causes clubroot disease in Cruciferae plants. Infection of Chinese cabbage (Brassica rapa) plants with P. brassica results in the formation of root galls, which inhibits the roots from absorbing soil nutrients and water. Sugar, the major source of carbon for all living organisms including pathogens and host plants, plays an important role in plant growth and development. OBJECTIVE To explore the roles of BrSWEET2, BrSWEET13, and BrSWEET14 in P. brassicae resistance, Arabidopsis thaliana T-DNA knockout mutants sweet2, sweet13, and sweet14 were employed. METHODS To isolate total RNA from the collected root nodules, the root tissues washed several times with running water and frozen tissues with liquid nitrogen. Total RNA was extracted using the Spectrum™ Plant Total RNA Kit (SIGMA) and cDNA was synthesized in a 20 μl reaction volume using the ReverTra Ace-α-® kit (TOYOBO). Real-time PCR was performed in a 10 μl reaction volume containing 1 μl of template DNA, 1 μl of forward primer, 1 μl of reverse primer, 5 μl of 2× iQTM SYBR® Green Supermix (BioRad), and 2 μl of sterile distilled water. The SWEET genes were genotyped using BioFACT™ 2× TaqBasic PCR Master Mix 2. RESULTS Both sweet2 and sweet14 showed strong resistance to P. brassicae compared with wild-type Arabidopsis and Chinese cabbage plants and sweet13 mutant plants. Pathogenicity assays indicated that the SWEET2 gene plays an important role in clubroot disease resistance in higher plants.
Collapse
Affiliation(s)
- Jae-Han Choi
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eun Cho
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ji-Woo Kim
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Soo Min Lee
- Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Gyung Ja Choi
- Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Su Ryan Choi
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Man Sung Yang
- Hankook Seed Co., Yucheon-Ro, Pyeongtaek, Gyeonggi, 17877, Republic of Korea
| | - Yong Pyo Lim
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Man-Ho Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
7
|
Asad MAU, Guan X, Zhou L, Qian Z, Yan Z, Cheng F. Involvement of plant signaling network and cell metabolic homeostasis in nitrogen deficiency-induced early leaf senescence. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111855. [PMID: 37678563 DOI: 10.1016/j.plantsci.2023.111855] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Nitrogen (N) is a basic building block that plays an essential role in the maintenance of normal plant growth and its metabolic functions through complex regulatory networks. Such the N metabolic network comprises a series of transcription factors (TFs), with the coordinated actions of phytohormone and sugar signaling to sustain cell homeostasis. The fluctuating N concentration in plant tissues alters the sensitivity of several signaling pathways to stressful environments and regulates the senescent-associated changes in cellular structure and metabolic process. Here, we review recent advances in the interaction between N assimilation and carbon metabolism in response to N deficiency and its regulation to the nutrient remobilization from source to sink during leaf senescence. The regulatory networks of N and sugar signaling for N deficiency-induced leaf senescence is further discussed to explain the effects of N deficiency on chloroplast disassembly, reactive oxygen species (ROS) burst, asparagine metabolism, sugar transport, autophagy process, Ca2+ signaling, circadian clock response, brassinazole-resistant 1 (BZRI), and other stress cell signaling. A comprehensive understanding for the metabolic mechanism and regulatory network underlying N deficiency-induced leaf senescence may provide a theoretical guide to optimize the source-sink relationship during grain filling for the achievement of high yield by a selection of crop cultivars with the properly prolonged lifespan of functional leaves and/or by appropriate agronomic managements.
Collapse
Affiliation(s)
- Muhammad Asad Ullah Asad
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xianyue Guan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lujian Zhou
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhao Qian
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Zhang Yan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fangmin Cheng
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing, China.
| |
Collapse
|
8
|
Xue X, Beuchat G, Wang J, Yu YC, Moose S, Chen J, Chen LQ. Sugar accumulation enhancement in sorghum stem is associated with reduced reproductive sink strength and increased phloem unloading activity. FRONTIERS IN PLANT SCIENCE 2023; 14:1233813. [PMID: 37767289 PMCID: PMC10519796 DOI: 10.3389/fpls.2023.1233813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
Sweet sorghum has emerged as a promising source of bioenergy mainly due to its high biomass and high soluble sugar yield in stems. Studies have shown that loss-of-function Dry locus alleles have been selected during sweet sorghum domestication, and decapitation can further boost sugar accumulation in sweet sorghum, indicating that the potential for improving sugar yields is yet to be fully realized. To maximize sugar accumulation, it is essential to gain a better understanding of the mechanism underlying the massive accumulation of soluble sugars in sweet sorghum stems in addition to the Dry locus. We performed a transcriptomic analysis upon decapitation of near-isogenic lines for mutant (d, juicy stems, and green leaf midrib) and functional (D, dry stems and white leaf midrib) alleles at the Dry locus. Our analysis revealed that decapitation suppressed photosynthesis in leaves, but accelerated starch metabolic processes in stems. SbbHLH093 negatively correlates with sugar levels supported by genotypes (DD vs. dd), treatments (control vs. decapitation), and developmental stages post anthesis (3d vs.10d). D locus gene SbNAC074A and other programmed cell death-related genes were downregulated by decapitation, while sugar transporter-encoding gene SbSWEET1A was induced. Both SbSWEET1A and Invertase 5 were detected in phloem companion cells by RNA in situ assay. Loss of the SbbHLH093 homolog, AtbHLH093, in Arabidopsis led to a sugar accumulation increase. This study provides new insights into sugar accumulation enhancement in bioenergy crops, which can be potentially achieved by reducing reproductive sink strength and enhancing phloem unloading.
Collapse
Affiliation(s)
- Xueyi Xue
- Department of Energy (DOE) Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Gabriel Beuchat
- Department of Energy (DOE) Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jiang Wang
- Department of Energy (DOE) Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ya-Chi Yu
- Department of Energy (DOE) Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Stephen Moose
- Department of Energy (DOE) Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jin Chen
- Institute for Biomedical Informatics, University of Kentucky, Lexington, KY, United States
| | - Li-Qing Chen
- Department of Energy (DOE) Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
9
|
Chen L, Ganguly DR, Shafik SH, Danila F, Grof CPL, Sharwood RE, Furbank RT. The role of SWEET4 proteins in the post-phloem sugar transport pathway of Setaria viridis sink tissues. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2968-2986. [PMID: 36883216 PMCID: PMC10560085 DOI: 10.1093/jxb/erad076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/06/2023] [Indexed: 05/21/2023]
Abstract
In the developing seeds of all higher plants, filial cells are symplastically isolated from the maternal tissue supplying photosynthate to the reproductive structure. Photoassimilates must be transported apoplastically, crossing several membrane barriers, a process facilitated by sugar transporters. Sugars Will Eventually be Exported Transporters (SWEETs) have been proposed to play a crucial role in apoplastic sugar transport during phloem unloading and the post-phloem pathway in sink tissues. Evidence for this is presented here for developing seeds of the C4 model grass Setaria viridis. Using immunolocalization, SvSWEET4 was detected in various maternal and filial tissues within the seed along the sugar transport pathway, in the vascular parenchyma of the pedicel, and in the xylem parenchyma of the stem. Expression of SvSWEET4a in Xenopus laevis oocytes indicated that it functions as a high-capacity glucose and sucrose transporter. Carbohydrate and transcriptional profiling of Setaria seed heads showed that there were some developmental shifts in hexose and sucrose content and consistent expression of SvSWEET4 homologues. Collectively, these results provide evidence for the involvement of SWEETs in the apoplastic transport pathway of sink tissues and allow a pathway for post-phloem sugar transport into the seed to be proposed.
Collapse
Affiliation(s)
- Lily Chen
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, New South Wales 2753, Australia
| | - Diep R Ganguly
- Research School of Biology, ARC Centre of Excellence in Plant Energy Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, Australian Capital Territory 2601, Australia
| | - Sarah H Shafik
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Florence Danila
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Christopher P L Grof
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Robert E Sharwood
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, New South Wales 2753, Australia
| | - Robert T Furbank
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
10
|
Proietti S, Paradiso R, Moscatello S, Saccardo F, Battistelli A. Light Intensity Affects the Assimilation Rate and Carbohydrates Partitioning in Spinach Grown in a Controlled Environment. PLANTS (BASEL, SWITZERLAND) 2023; 12:804. [PMID: 36840153 PMCID: PMC9962497 DOI: 10.3390/plants12040804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/25/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The cultivation of spinach (Spinacia oleracea L.) has been increasing during the last years in controlled environment agriculture, where light represents a key factor for controlling plant growth and development and the highest energetic costs. The aim of the experiment was to evaluate the plant's response to two light intensities, corresponding to an optimal and a reduced level, in terms of the photosynthetic process, photoassimilates partitioning, and the biosynthesis of sucrose and starch. Plants of spinach cv. 'Gigante d'Inverno' were grown in a phytotron under controlled conditions, comparing two values of photosynthetic photon flux density (PPFD), 800 μmol m-2 s-1 (800 PPFD) and 200 μmol m-2 s-1 (200 PPFD), at a 10 h light/14 h dark regime. Compared to 800 PPFD, under 200 PPFD, plants showed a reduction in biomass accumulation and a redirection of photoassimilates to leaves, determining a leaf expansion to optimize the light interception, without changes in the photosynthetic process. A shift in carbon partitioning favouring the synthesis of starch, causing an increase in the starch/sucrose ratio at the end of light period, occurred in low-light leaves. The activity of enzymes cFBAse, SPS, and AGPase, involved in the synthesis of sucrose and starch in leaves, decreased under lower light intensity, explaining the rate of accumulation of photoassimilates.
Collapse
Affiliation(s)
- Simona Proietti
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), 05010 Porano, Italy
| | - Roberta Paradiso
- Department of Agriculture, University of Naples Federico II, 80055 Naples, Italy
| | - Stefano Moscatello
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), 05010 Porano, Italy
| | - Francesco Saccardo
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Alberto Battistelli
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), 05010 Porano, Italy
| |
Collapse
|
11
|
Liu H, Lin X, Li X, Luo Z, Lu X, You Q, Yang X, Xu C, Liu X, Liu J, Wu C, Wang J. Haplotype variations of sucrose phosphate synthase B gene among sugarcane accessions with different sucrose content. BMC Genomics 2023; 24:42. [PMID: 36698074 PMCID: PMC9875459 DOI: 10.1186/s12864-023-09139-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Sucrose phosphate synthase B (SPSB) gene encoding an important rate-limiting enzyme for sucrose synthesis in sugarcane is mainly expressed on leaves, where its alleles control sucrose synthesis. In this study, genetic variation of SPSB gene represented by different haplotypes in sugarcane was investigated in hybrid clones with high and low sugar content and various accessory species. RESULTS A total of 39 haplotypes of SPSB gene with 2, 824 bp in size were identified from 18 sugarcane accessions. These haplotypes mainly distributed on Chr3B, Chr3C, and Chr3D according to the AP85-441 reference genome. Single nucleotide polymorphisms (SNPs) and insertion/deletion (InDels) were very dense (42 bp/sequence variation) including 44 transitional and 23 transversional SNPs among the 39 haplotypes. The sequence diversity related Hd, Eta, and Pi values were all lower in clones of high sucrose content (HS) than those in clones of low sucrose content (LS). The evolutionary network analysis showed that about half SPSB haplotypes (19 out of 39) were clustered into one group, including 6 (HAP4, HAP6, HAP7, HAP9, HAP17 and HAP20) haplotypes under positive selection in comparison to HAP26 identified in Badila (S. officinarum), an ancestry noble cane species and under purification selection (except HAP19 under neutral selection) in comparison to HAP18 identified from India1 (S. spontaneum), an ancestry species with low sugar content but high stress tolerance. The average number of haplotypes under positive selection in HS clones was twice as that in LS. Most of the SNPs and InDels sequence variation sites were positively correlated with sucrose and fiber content and negatively correlated with reducing sugar. CONCLUSIONS A total of 39 haplotypes of SPSB gene were identified in this study. Haplotypes potentially associated with high sucrose synthesis efficiency were identified. The mutations of SPSB haplotypes in HS were favorable and tended to be selected and fixed. The results of this study are informative and beneficial to the molecular assisted breeding of sucrose synthesis in sugarcane in the future.
Collapse
Affiliation(s)
- Hongbo Liu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699 China ,grid.15276.370000 0004 1936 8091Agronomy Department, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Genetics Institute, Plant Molecular and Biology Program, University of Florida, Gainesville, FL 32610 USA ,grid.256609.e0000 0001 2254 5798Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Guangxi 530004 Kaiyuan, China
| | - Xiuqin Lin
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699 China
| | - Xujuan Li
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699 China
| | - Ziliang Luo
- grid.15276.370000 0004 1936 8091Agronomy Department, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Genetics Institute, Plant Molecular and Biology Program, University of Florida, Gainesville, FL 32610 USA
| | - Xin Lu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699 China
| | - Qian You
- grid.15276.370000 0004 1936 8091Agronomy Department, University of Florida, Gainesville, FL 32610 USA
| | - Xiping Yang
- grid.15276.370000 0004 1936 8091Agronomy Department, University of Florida, Gainesville, FL 32610 USA ,grid.256609.e0000 0001 2254 5798Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Guangxi 530004 Kaiyuan, China
| | - Chaohua Xu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699 China
| | - Xinlong Liu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699 China
| | - Jiayong Liu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699 China
| | - Caiwen Wu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699 China
| | - Jianping Wang
- grid.15276.370000 0004 1936 8091Agronomy Department, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Genetics Institute, Plant Molecular and Biology Program, University of Florida, Gainesville, FL 32610 USA
| |
Collapse
|
12
|
McKinley BA, Thakran M, Zemelis-Durfee S, Huang X, Brandizzi F, Rooney WL, Mansfield SD, Mullet JE. Transcriptional regulation of the raffinose family oligosaccharides pathway in Sorghum bicolor reveals potential roles in leaf sucrose transport and stem sucrose accumulation. FRONTIERS IN PLANT SCIENCE 2022; 13:1062264. [PMID: 36570942 PMCID: PMC9785717 DOI: 10.3389/fpls.2022.1062264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Bioenergy sorghum hybrids are being developed with enhanced drought tolerance and high levels of stem sugars. Raffinose family oligosaccharides (RFOs) contribute to plant environmental stress tolerance, sugar storage, transport, and signaling. To better understand the role of RFOs in sorghum, genes involved in myo-inositol and RFO metabolism were identified and relative transcript abundance analyzed during development. Genes involved in RFO biosynthesis (SbMIPS1, SbInsPase, SbGolS1, SbRS) were more highly expressed in leaves compared to stems and roots, with peak expression early in the morning in leaves. SbGolS, SbRS, SbAGA1 and SbAGA2 were also expressed at high levels in the leaf collar and leaf sheath. In leaf blades, genes involved in myo-inositol biosynthesis (SbMIPS1, SbInsPase) were expressed in bundle sheath cells, whereas genes involved in galactinol and raffinose synthesis (SbGolS1, SbRS) were expressed in mesophyll cells. Furthermore, SbAGA1 and SbAGA2, genes that encode neutral-alkaline alpha-galactosidases that hydrolyze raffinose, were differentially expressed in minor vein bundle sheath cells and major vein and mid-rib vascular and xylem parenchyma. This suggests that raffinose synthesized from sucrose and galactinol in mesophyll cells diffuses into vascular bundles where hydrolysis releases sucrose for long distance phloem transport. Increased expression (>20-fold) of SbAGA1 and SbAGA2 in stem storage pith parenchyma of sweet sorghum between floral initiation and grain maturity, and higher expression in sweet sorghum compared to grain sorghum, indicates these genes may play a key role in non-structural carbohydrate accumulation in stems.
Collapse
Affiliation(s)
- Brian A. McKinley
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Manish Thakran
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Starla Zemelis-Durfee
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, United States
| | - Xinyi Huang
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, United States
| | - William L. Rooney
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Shawn D. Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - John E. Mullet
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| |
Collapse
|
13
|
Sun L, Deng R, Liu J, Lai M, Wu J, Liu X, Shahid MQ. An overview of sucrose transporter (SUT) genes family in rice. Mol Biol Rep 2022; 49:5685-5695. [PMID: 35699859 DOI: 10.1007/s11033-022-07611-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Photosynthesis provides the energy basis for the life activities of plants by producing organic compounds, mainly sugar. As the main energy form of photosynthesis, sugar affects the growth and development of plants. During long-distance transportation, sucrose is the main form of transportation. The rate of sugar transport and the allocation of carbohydrates affect the biomass of crops and are closely related to the reproductive growth of crops. MAIN TEXT The transportation of sugar is divided into active transportation and passive transportation. So how does the sucrose transporters (SUT) genes, which are the main carriers of sucrose in active transportation, affect the performance of rice agronomic traits is still to be explored. In this article, we describe the structure of inflorescence and review the transport forms and metabolic processes of sucrose in rice, such as how CO2 is fixed, carbohydrate assimilation, and transport of organic matter. Sucrose transporters exhibited remarkable effects on the development of reproductive organs in rice. CONCLUSIONS Here, the effects of different factors, such as the effects of anthers morphology on starch enrichment of pollen, effects of biotic and abiotic factors on sucrose transporters, effects of changes in trace elements on sucrose transporters, were discussed. Moreover, the regulation of transcription or translation level provides ideas for future research on sucrose transporters.
Collapse
Affiliation(s)
- Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Ruilian Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jingwen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Mingyu Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China. .,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
14
|
Zhang G, Cui K, Li G, Pan J, Huang J, Peng S. Stem small vascular bundles have greater accumulation and translocation of non-structural carbohydrates than large vascular bundles in rice. PHYSIOLOGIA PLANTARUM 2022; 174:e13695. [PMID: 35491933 DOI: 10.1111/ppl.13695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/14/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Phloem unloading and loading are associated with stem non-structural carbohydrates (NSCs) accumulation and remobilization in rice (Oryza sativa L.). Four rice recombinant inbred lines (R032, R191, R046, and R146) derived from a cross between Zhenshan 97 and Minghui 63 were used to investigate the contributions of stem large and small vascular bundles (SVBs) to NSCs accumulation and translocation. Before heading, the parenchyma cells in stem cortex tissues (PCs) surrounding SVBs had higher starch density than those surrounding large vascular bundles (LVBs). Moreover, the protein levels of sucrose transporters (SUTs), cell wall invertase, sucrose synthase, and adenosine diphosphate glucose pyrophosphorylase, as well as the phloem plasmodesma densities were higher in SVBs than those in LVBs. After heading, starch density decreased more in PCs surrounding SVBs than in LVBs. Also, the protein levels of SUTs, α-amylase, sucrose phosphate synthase and sucrose synthase, the phloem plasmodesma densities in SVBs were higher than those in LVBs. The correlations of the number and total cross-sectional area of SVBs with mass and contribution to yield of transferred NSCs were higher than those of LVBs. Our results suggest that SVBs may have higher contributions to pre-anthesis stem NSCs accumulation and post-anthesis translocation than LVBs, which is potentially attributed to the high level of protein and enzyme involved in stem unloading and loading via apoplastic and symplastic pathways.
Collapse
Affiliation(s)
- Guo Zhang
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Corp Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kehui Cui
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Corp Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guohui Li
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Corp Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Junfeng Pan
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Corp Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Corp Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Corp Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Integrative Physiological and Transcriptomic Analysis Reveals the Transition Mechanism of Sugar Phloem Unloading Route in Camellia oleifera Fruit. Int J Mol Sci 2022; 23:ijms23094590. [PMID: 35562980 PMCID: PMC9102078 DOI: 10.3390/ijms23094590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Sucrose phloem unloading plays a vital role in photoassimilate distribution and storage in sink organs such as fruits and seeds. In most plants, the phloem unloading route was reported to shift between an apoplasmic and a symplasmic pattern with fruit development. However, the molecular transition mechanisms of the phloem unloading pathway still remain largely unknown. In this study, we applied RNA sequencing to profile the specific gene expression patterns for sucrose unloading in C. oleifera fruits in the apo- and symplasmic pathways that were discerned by CF fluoresce labelling. Several key structural genes were identified that participate in phloem unloading, such as PDBG11, PDBG14, SUT8, CWIN4, and CALS10. In particular, the key genes controlling the process were involved in callose metabolism, which was confirmed by callose staining. Based on the co-expression network analysis with key structural genes, a number of transcription factors belonging to the MYB, C2C2, NAC, WRKY, and AP2/ERF families were identified to be candidate regulators for the operation and transition of phloem unloading. KEGG enrichment analysis showed that some important metabolism pathways such as plant hormone metabolism, starch, and sucrose metabolism altered with the change of the sugar unloading pattern. Our study provides innovative insights into the different mechanisms responsible for apo- and symplasmic phloem unloading in oil tea fruit and represents an important step towards the omics delineation of sucrose phloem unloading transition in crops.
Collapse
|
16
|
Dominguez PG, Niittylä T. Mobile forms of carbon in trees: metabolism and transport. TREE PHYSIOLOGY 2022; 42:458-487. [PMID: 34542151 PMCID: PMC8919412 DOI: 10.1093/treephys/tpab123] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/16/2021] [Accepted: 09/12/2021] [Indexed: 05/26/2023]
Abstract
Plants constitute 80% of the biomass on earth, and almost two-thirds of this biomass is found in wood. Wood formation is a carbon (C)-demanding process and relies on C transport from photosynthetic tissues. Thus, understanding the transport process is of major interest for understanding terrestrial biomass formation. Here, we review the molecules and mechanisms used to transport and allocate C in trees. Sucrose is the major form in which C is transported in plants, and it is found in the phloem sap of all tree species investigated so far. However, in several tree species, sucrose is accompanied by other molecules, notably polyols and the raffinose family of oligosaccharides. We describe the molecules that constitute each of these transport groups, and their distribution across different tree species. Furthermore, we detail the metabolic reactions for their synthesis, the mechanisms by which trees load and unload these compounds in and out of the vascular system, and how they are radially transported in the trunk and finally catabolized during wood formation. We also address a particular C recirculation process between phloem and xylem that occurs in trees during the annual cycle of growth and dormancy. A search of possible evolutionary drivers behind the diversity of C-carrying molecules in trees reveals no consistent differences in C transport mechanisms between angiosperm and gymnosperm trees. Furthermore, the distribution of C forms across species suggests that climate-related environmental factors will not explain the diversity of C transport forms. However, the consideration of C-transport mechanisms in relation to tree-rhizosphere coevolution deserves further attention. To conclude the review, we identify possible future lines of research in this field.
Collapse
Affiliation(s)
- Pia Guadalupe Dominguez
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires B1686IGC, Argentina
| | - Totte Niittylä
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 90183, Sweden
| |
Collapse
|
17
|
Miras M, Pottier M, Schladt TM, Ejike JO, Redzich L, Frommer WB, Kim JY. Plasmodesmata and their role in assimilate translocation. JOURNAL OF PLANT PHYSIOLOGY 2022; 270:153633. [PMID: 35151953 DOI: 10.1016/j.jplph.2022.153633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
During multicellularization, plants evolved unique cell-cell connections, the plasmodesmata (PD). PD of angiosperms are complex cellular domains, embedded in the cell wall and consisting of multiple membranes and a large number of proteins. From the beginning, it had been assumed that PD provide passage for a wide range of molecules, from ions to metabolites and hormones, to RNAs and even proteins. In the context of assimilate allocation, it has been hypothesized that sucrose produced in mesophyll cells is transported via PD from cell to cell down a concentration gradient towards the phloem. Entry into the sieve element companion cell complex (SECCC) is then mediated on three potential routes, depending on the species and conditions, - either via diffusion across PD, after conversion to raffinose via PD using a polymer trap mechanism, or via a set of transporters which secrete sucrose from one cell and secondary active uptake into the SECCC. Multiple loading mechanisms can likely coexist. We here review the current knowledge regarding photoassimilate transport across PD between cells as a prerequisite for translocation from leaves to recipient organs, in particular roots and developing seeds. We summarize the state-of-the-art in protein composition, structure, transport mechanism and regulation of PD to apprehend their functions in carbohydrate allocation. Since many aspects of PD biology remain elusive, we highlight areas that require new approaches and technologies to advance our understanding of these enigmatic and important cell-cell connections.
Collapse
Affiliation(s)
- Manuel Miras
- Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - Mathieu Pottier
- Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - T Moritz Schladt
- Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - J Obinna Ejike
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - Laura Redzich
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - Wolf B Frommer
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| | - Ji-Yun Kim
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| |
Collapse
|
18
|
Guo Y, Song H, Zhao Y, Qin X, Cao Y, Zhang L. Switch from symplasmic to aspoplasmic phloem unloading in Xanthoceras sorbifolia fruit and sucrose influx XsSWEET10 as a key candidate for Sugar transport. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111089. [PMID: 34763874 DOI: 10.1016/j.plantsci.2021.111089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
The process of phloem unloading and post-unloading transport of photoassimilate is critical to crop output. Xanthoceras sorbifolia is a woody oil species with great biomass energy prospects in China; however, underproduction of seeds seriously restricts its development. Here, our cytological studies by ultrastructural observation revealed that the sieve element-companion cell complex in carpellary bundle was symplasmically interconnected with surrounding parenchyma cells at the early and late fruit developmental stages, whereas it was symplasmically isolated at middle stage. Consistently, real-time imaging showed that fluorescent tracer 6(5)carboxyfluorescein was confined to phloem strands at middle stage but released into surrounding parenchymal cells at early and late stages. Enzymatic assay showed that sucrose synthase act as the key enzyme catalyzing the progress of Suc degradation post-unloading pathway whether in pericarp or in seed, while vacuolar acid invertase and neutral invertase play compensation roles in sucrose decomposition. Sugar transporter XsSWEET10 had a high expression profile in fruit, especially at middle stage. XsSWEET10 is a plasma membrane-localized protein and heterologous expression in SUC2-deficient yeast strain SUSY7/ura3 confirmed its ability to uptake sucrose. These findings approved the transition from symplasmic to apoplasmic phloem unloading in Xanthoceras sorbifolia fruit and XsSWEET10 as a key candidate in sugar transport.
Collapse
Affiliation(s)
- Yuxiao Guo
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, China
| | - Huifang Song
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, China
| | - Yangyang Zhao
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, China
| | - Xuejing Qin
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, China
| | - Yibo Cao
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, China
| | - Lingyun Zhang
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, China.
| |
Collapse
|
19
|
Dhungana SR, Braun DM. Sugar transporters in grasses: Function and modulation in source and storage tissues. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153541. [PMID: 34634553 DOI: 10.1016/j.jplph.2021.153541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/11/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Carbohydrate partitioning, the process of transporting carbohydrates from photosynthetic (source) tissues, such as leaves, to non-photosynthetic (sink) tissues, such as stems, roots, and reproductive structures, is vital not only for the growth and development of plants but also for withstanding biotic and abiotic stress. In many plants, sucrose is the primary form of carbohydrate loaded into the phloem for long-distance transport and unloaded into the sink tissues for utilization or storage. We highlight recent findings about 1) phloem loading in grasses, 2) the principal families of sugar transporters involved in sucrose transport, and 3) novel mechanisms by which the activities of sugar transporters are modulated. We discuss exciting discoveries from eudicot species that provide valuable insights regarding the regulation of these sugar transporters, which may be translatable to monocot species. As we better understand the intricate pathways that control the activities of various sugar transporters, we can utilize this knowledge for developing improved crop varieties.
Collapse
Affiliation(s)
- Singha R Dhungana
- Divisions of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri-Columbia, USA
| | - David M Braun
- Divisions of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri-Columbia, USA; Plant Science and Technology, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri-Columbia, USA.
| |
Collapse
|
20
|
Sanden NC, Schulz A. Stationary sieve element proteins. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153511. [PMID: 34537466 DOI: 10.1016/j.jplph.2021.153511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/13/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Vascular plants use the phloem to move sugars and other molecules from source leaves to sink organs such as roots and fruits. Within the phloem, enucleate sieve elements provide the low-resistance pipe system that enable bulk flow of sap. In this review, we provide an overview of the highly specific protein machinery that localize to mature sieve elements without entering the phloem translocation stream. Generally, the proteins either maintain the flow, protect the sieve element against pathogens or transmit system wide signals. A notable exception is found in poppy, where part of the opium biosynthesis is compartmentalized in sieve elements. Biosynthesis of sieve element proteins happens either continuously in companion cell or transiently in immature sieve elements before nuclear disintegration. The latter population is translated during differentiation and stays functional without turnover during the entire lifespan of sieve elements. We discuss how protein longevity imposes some interesting restrictions on plants, especially in arborescent monocots with long living sieve elements.
Collapse
Affiliation(s)
- Niels Christian Sanden
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark; Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Alexander Schulz
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark; Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
21
|
Wang Y, Chen Y, Wei Q, Wan H, Sun C. Phylogenetic relationships of sucrose transporters (SUTs) in plants and genome-wide characterization of SUT genes in Orchidaceae reveal roles in floral organ development. PeerJ 2021; 9:e11961. [PMID: 34603845 PMCID: PMC8445082 DOI: 10.7717/peerj.11961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022] Open
Abstract
Sucrose is the primary form of photosynthetically produced carbohydrates transported long distance in many plant species and substantially affects plant growth, development and physiology. Sucrose transporters (SUTs or SUCs) are a group of membrane proteins that play vital roles in mediating sucrose allocation within cells and at the whole-plant level. In this study, we investigated the relationships among SUTs in 24 representative plant species and performed an analysis of SUT genes in three sequenced Orchidaceae species: Dendrobium officinale, Phalaenopsis equestris, and Apostasia shenzhenica. All the SUTs from the 24 plant species were classified into three groups and five subgroups, subgroups A, B1, B2.1, B2.2, and C, based on their evolutionary relationships. A total of 22 SUT genes were identified among Orchidaceae species, among which D. officinale had 8 genes (DoSUT01-08), P. equestris had eight genes (PeqSUT01-08) and A. shenzhenica had 6 genes (AsSUT01-06). For the 22 OrchidaceaeSUTs, subgroups A, B2.2 and C contained three genes, whereas the SUT genes were found to have significantly expanded in the monocot-specific subgroup B2.1, which contained 12 genes. To understand sucrose partitioning and the functions of sucrose transporters in Orchidaceae species, we analyzed the water-soluble sugar content and performed RNA sequencing of different tissues of D. officinale, including leaves, stems, flowers and roots. The results showed that although the total content of water-soluble polysaccharides was highest in the stems of D. officinale, the sucrose content was highest in the flowers. Moreover, gene expression analysis showed that most of the DoSUTs were expressed in the flowers, among which DoSUT01,DoSUT07 and DoSUT06 had significantly increased expression levels. These results indicated that stems are used as the main storage sinks for photosynthetically produced sugar in D. officinale and that DoSUTs mainly function in the cellular machinery and development of floral organs. Our findings provide valuable information on sucrose partitioning and the evolution and functions of SUT genes in Orchidaceae and other species.
Collapse
Affiliation(s)
- Yunzhu Wang
- Institute of Horticulture Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yue Chen
- Institute of Horticulture Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qingzhen Wei
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongjian Wan
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chongbo Sun
- Institute of Horticulture Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
22
|
van Bel AJE. The plant axis as the command centre for (re)distribution of sucrose and amino acids. JOURNAL OF PLANT PHYSIOLOGY 2021; 265:153488. [PMID: 34416599 DOI: 10.1016/j.jplph.2021.153488] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/13/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Along with the increase in size required for optimal colonization of terrestrial niches, channels for bidirectional bulk transport of materials in land plants evolved during a period of about 100 million years. These transport systems are essentially still in operation - though perfected over the following 400 million years - and make use of hydrostatic differentials. Substances are accumulated or released at the loading and unloading ends, respectively, of the transport channels. The intermediate stretch between the channel termini is bifunctional and executes orchestrated release and retrieval of solutes. Analyses of anatomical and physiological data demonstrate that the release/retrieval zone extends deeper into sources and sinks than is commonly thought and covers usually much more than 99% of the translocation stretch. This review sketches the significance of events in the intermediate stretch for distribution of organic materials over the plant body. Net leakage from the channels does not only serve maintenance and growth of tissues along the pathway, but also diurnal, short-term or seasonal storage of reserve materials, and balanced distribution of organic C- and N-compounds over axial and terminal sinks. Release and retrieval are controlled by plasma-membrane transporters at the vessel/parenchyma interface in the contact pits along xylem vessels and by plasma-membrane transporters at the interface between companion cells and phloem parenchyma along sieve tubes. The xylem-to-phloem pathway vice versa is a bifacial, radially oriented system comprising a symplasmic pathway, of which entrance and exit are controlled at specific membrane checkpoints, and a parallel apoplasmic pathway. A broad range of specific sucrose and amino-acid transporters are deployed at the checkpoint plasma membranes. SUCs, SUTs, STPs, SWEETs, and AAPs, LTHs, CATs are localized to the plasma membranes in question, both in monocots and eudicots. Presence of Umamits in monocots is uncertain. There is some evidence for endo- and exocytosis at the vessel/parenchyma interface supplementary to the transporter-mediated uptake and release. Actions of transporters at the checkpoints are equally decisive for storage and distribution of amino acids and sucrose in monocots and eudicots, but storage and distribution patterns may differ between both taxa. While the majority of reserves is sequestered in vascular parenchyma cells in dicots, lack of space in monocot vasculature urges "outsourcing" of storage in ground parenchyma around the translocation path. In perennial dicots, specialized radial pathways (rays) include the sites for seasonal alternation of storage and mobilization. In dicots, apoplasmic phloem loading and a correlated low rate of release along the path would favour supply with photoassimilates of terminal sinks, while symplasmic phloem loading and a correlated higher rate of release along the path favours supply of axial sinks and transfer to the xylem. The balance between the resource acquisition by terminal and axial sinks is an important determinant of relative growth rate and, hence, for the fitness of plants in various habitats. Body enlargement as the evolutionary drive for emergence of vascular systems and mass transport propelled by hydrostatic differentials.
Collapse
Affiliation(s)
- Aart J E van Bel
- Institute of Phythopathology, Centre for BioSystems, Land Use and Nutrition, Justus-Liebig University, Heinrich-Buff-Ring 26-32, D-35392, Giessen, Germany.
| |
Collapse
|
23
|
Babst BA, Karve A, Sementilli A, Dweikat I, Braun DM. Physiology and whole-plant carbon partitioning during stem sugar accumulation in sweet dwarf sorghum. PLANTA 2021; 254:80. [PMID: 34546416 DOI: 10.1007/s00425-021-03718-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
A greater rate of phloem unloading and storage in the stem, not a higher rate of sugar production by photosynthesis or sugar export from leaves, is the main factor that results in sugar accumulation in sweet dwarf sorghum compared to grain sorghum. At maturity, the stem internodes of sweet sorghum varieties accumulate high concentrations of fermentable sugars and represent an efficient feedstock for bioethanol production. Although stem sugar accumulation is a heritable trait, additional factors that drive sugar accumulation in sorghum have not been identified. To identify the constraints on stem sugar accumulation in sweet sorghum, we used a combination of carbon-11 (11C) radiotracer, physiological and biochemical approaches, and compared a grain sorghum and sweet dwarf sorghum line that have similar growth characteristics including height. Photosynthesis did not increase during development or differ between the sorghum lines. During the developmental transition to the reproductive stage, export of 11C from leaves approximately doubled in both sorghum lines, but 11C export in the sweet dwarf line did not exceed that of the grain sorghum. Defoliation to manipulate relative sink demand did not result in increased photosynthetic rates, indicating that the combined accumulation of C by all sink tissues was limited by the maximum photosynthetic capacity of source leaves. Nearly 3/4 of the 11C exported from leaves was transported to the lower stem in sweet sorghum within 2 h, whereas in grain sorghum nearly 3/4 of the 11C was in the panicle. Accordingly, the transcripts of several sucrose transporter (SUT) genes were more abundant in the stem internodes of the sweet dwarf line compared to the grain sorghum. Overall, these results indicate that sugar accumulation in sweet sorghum stems is influenced by the interplay of different sink tissues for the same sugars, but is likely driven by elevated sugar phloem unloading and uptake capacity in mature stem internodes.
Collapse
Affiliation(s)
- Benjamin A Babst
- Biological, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973-5000, USA.
- Arkansas Forest Resources Center, and College of Forestry, Ag. and Natural Resources, University of Arkansas at Monticello, Monticello, AR, 71656, USA.
| | - Abhijit Karve
- Biological, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973-5000, USA
- Purdue Research Foundation, West Lafayette, IN, 47906, USA
| | - Anthony Sementilli
- Biological, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973-5000, USA
- Department of Physical Sciences, St Joseph's College, Patchogue, NY, 11772, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ismail Dweikat
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583-0915, USA
| | - David M Braun
- Divisions of Plant and Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
24
|
Arabidopsis Restricts Sugar Loss to a Colonizing Trichoderma harzianum Strain by Downregulating SWEET11 and -12 and Upregulation of SUC1 and SWEET2 in the Roots. Microorganisms 2021; 9:microorganisms9061246. [PMID: 34201292 PMCID: PMC8227074 DOI: 10.3390/microorganisms9061246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022] Open
Abstract
Phosphate (Pi) availability has a strong influence on the symbiotic interaction between Arabidopsis and a recently described root-colonizing beneficial Trichoderma harzianum strain. When transferred to media with insoluble Ca3(PO4)2 as a sole Pi source, Arabidopsis seedlings died after 10 days. Trichoderma grew on the medium containing Ca3(PO4)2 and the fungus did colonize in roots, stems, and shoots of the host. The efficiency of the photosynthetic electron transport of the colonized seedlings grown on Ca3(PO4)2 medium was reduced and the seedlings died earlier, indicating that the fungus exerts an additional stress to the plant. Interestingly, the fungus initially alleviated the Pi starvation response and did not activate defense responses against the hyphal propagation. However, in colonized roots, the sucrose transporter genes SWEET11 and -12 were strongly down-regulated, restricting the unloading of sucrose from the phloem parenchyma cells to the apoplast. Simultaneously, up-regulation of SUC1 promoted sucrose uptake from the apoplast into the parenchyma cells and of SWEET2 sequestration of sucrose in the vacuole of the root cells. We propose that the fungus tries to escape from the Ca3(PO4)2 medium and colonizes the entire host. To prevent excessive sugar consumption by the propagating hyphae, the host restricts sugar availability in its apoplastic root space by downregulating sugar transporter genes for phloem unloading, and by upregulating transporter genes which maintain the sugar in the root cells.
Collapse
|
25
|
Aluko OO, Li C, Wang Q, Liu H. Sucrose Utilization for Improved Crop Yields: A Review Article. Int J Mol Sci 2021; 22:4704. [PMID: 33946791 PMCID: PMC8124652 DOI: 10.3390/ijms22094704] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
Photosynthetic carbon converted to sucrose is vital for plant growth. Sucrose acts as a signaling molecule and a primary energy source that coordinates the source and sink development. Alteration in source-sink balance halts the physiological and developmental processes of plants, since plant growth is mostly triggered when the primary assimilates in the source leaf balance with the metabolic needs of the heterotrophic sinks. To measure up with the sink organ's metabolic needs, the improvement of photosynthetic carbon to synthesis sucrose, its remobilization, and utilization at the sink level becomes imperative. However, environmental cues that influence sucrose balance within these plant organs, limiting positive yield prospects, have also been a rising issue over the past few decades. Thus, this review discusses strategies to improve photosynthetic carbon assimilation, the pathways actively involved in the transport of sucrose from source to sink organs, and their utilization at the sink organ. We further emphasize the impact of various environmental cues on sucrose transport and utilization, and the strategic yield improvement approaches under such conditions.
Collapse
Affiliation(s)
- Oluwaseun Olayemi Aluko
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuanzong Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qian Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
| | - Haobao Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
| |
Collapse
|
26
|
Fichtner F, Barbier FF, Annunziata MG, Feil R, Olas JJ, Mueller-Roeber B, Stitt M, Beveridge CA, Lunn JE. Regulation of shoot branching in arabidopsis by trehalose 6-phosphate. THE NEW PHYTOLOGIST 2021; 229:2135-2151. [PMID: 33068448 DOI: 10.1111/nph.17006] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/05/2020] [Indexed: 05/03/2023]
Abstract
Trehalose 6-phosphate (Tre6P) is a sucrose signalling metabolite that has been implicated in regulation of shoot branching, but its precise role is not understood. We expressed tagged forms of TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1) to determine where Tre6P is synthesized in arabidopsis (Arabidopsis thaliana), and investigated the impact of localized changes in Tre6P levels, in axillary buds or vascular tissues, on shoot branching in wild-type and branching mutant backgrounds. TPS1 is expressed in axillary buds and the subtending vasculature, as well as in the leaf and stem vasculature. Expression of a heterologous Tre6P phosphatase (TPP) to lower Tre6P in axillary buds strongly delayed bud outgrowth in long days and inhibited branching in short days. TPP expression in the vasculature also delayed lateral bud outgrowth and decreased branching. Increased Tre6P in the vasculature enhanced branching and was accompanied by higher expression of FLOWERING LOCUS T (FT) and upregulation of sucrose transporters. Increased vascular Tre6P levels enhanced branching in branched1 but not in ft mutant backgrounds. These results provide direct genetic evidence of a local role for Tre6P in regulation of axillary bud outgrowth within the buds themselves, and also connect Tre6P with systemic regulation of shoot branching via FT.
Collapse
Affiliation(s)
- Franziska Fichtner
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Francois F Barbier
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Maria G Annunziata
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Justyna J Olas
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, Potsdam, 14476, Germany
| | - Bernd Mueller-Roeber
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, Potsdam, 14476, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Christine A Beveridge
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| |
Collapse
|
27
|
Soares E, Shumbe L, Dauchot N, Notté C, Prouin C, Maudoux O, Vanderschuren H. Asparagine accumulation in chicory storage roots is controlled by translocation and feedback regulation of asparagine biosynthesis in leaves. THE NEW PHYTOLOGIST 2020; 228:922-931. [PMID: 32729968 DOI: 10.1111/nph.16764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
The presence of acrylamide (AA), a potentially carcinogenic and neurotoxic compound, in food has become a major concern for public health. AA in plant-derived food mainly arises from the reaction of the amino acid asparagine (Asn) and reducing sugars during processing of foodstuffs at high temperature. Using a selection of genotypes from the chicory (Cichorium intybus L.) germplasm, we performed Asn measurements in storage roots and leaves to identify genotypes contrasting for Asn accumulation. We combined molecular analysis and grafting experiments to show that leaf to root translocation controls Asn biosynthesis and accumulation in chicory storage roots. We could demonstrate that Asn accumulation in storage roots depends on Asn biosynthesis and transport from the leaf, and that a negative feedback loop by Asn on CiASN1 expression impacts Asn biosynthesis in leaves. Our results provide a new model for Asn biosynthesis in root crop species and highlight the importance of characterizing and manipulating Asn transport to reduce AA content in processed plant-based foodstuffs.
Collapse
Affiliation(s)
- Emanoella Soares
- Plant Genetics Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux, 5030, Belgium
| | - Leonard Shumbe
- Plant Genetics Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux, 5030, Belgium
| | - Nicolas Dauchot
- Research Unit in Plant Cellular and Molecular Biology, University of Namur, Namur, 5000, Belgium
| | - Christine Notté
- Chicoline, Breeding Division of Cosucra Groupe Warcoing SA, Warcoing, 7740, Belgium
| | - Claire Prouin
- Chicoline, Breeding Division of Cosucra Groupe Warcoing SA, Warcoing, 7740, Belgium
| | - Olivier Maudoux
- Chicoline, Breeding Division of Cosucra Groupe Warcoing SA, Warcoing, 7740, Belgium
| | - Hervé Vanderschuren
- Plant Genetics Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux, 5030, Belgium
- Tropical Crop Improvement Laboratory, Crop Biotechnics Division, Biosystems Department, KU Leuven, Leuven, 3001, Belgium
| |
Collapse
|
28
|
Ren Y, Sun H, Zong M, Guo S, Ren Z, Zhao J, Li M, Zhang J, Tian S, Wang J, Yu Y, Gong G, Zhang H, He H, Li L, Zhang X, Liu F, Fei Z, Xu Y. Localization shift of a sugar transporter contributes to phloem unloading in sweet watermelons. THE NEW PHYTOLOGIST 2020; 227:1858-1871. [PMID: 32453446 DOI: 10.1111/nph.16659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/26/2020] [Indexed: 05/15/2023]
Abstract
Unloading sugar from sink phloem by transporters is complex and much remains to be understood about this phenomenon in the watermelon fruit. Here, we report a novel vacuolar sugar transporter (ClVST1) identified through map-based cloning and association study, whose expression in fruit phloem is associated with accumulation of sucrose (Suc) in watermelon fruit. ClVST197 knockout lines show decreased sugar content and total biomass, whereas overexpression of ClVST197 increases Suc content. Population genomic and subcellular localization analyses strongly suggest a single-base change at the coding region of ClVST197 as a major molecular event during watermelon domestication, which results in the truncation of 45 amino acids and shifts the localization of ClVST197 to plasma membranes in sweet watermelons. Molecular, biochemical and phenotypic analyses indicate that ClVST197 is a novel sugar transporter for Suc and glucose efflux and unloading. Functional characterization of ClVST1 provides a novel strategy to increase sugar sink potency during watermelon domestication.
Collapse
Affiliation(s)
- Yi Ren
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Honghe Sun
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Mei Zong
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Shaogui Guo
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Zhijie Ren
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Jianyu Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Maoying Li
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Jie Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Shouwei Tian
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Jinfang Wang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yongtao Yu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Guoyi Gong
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Haiying Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Hongju He
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Legong Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xiaolan Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Fan Liu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
- US Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Yong Xu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| |
Collapse
|
29
|
Pommerrenig B, Müdsam C, Kischka D, Neuhaus HE. Treat and trick: common regulation and manipulation of sugar transporters during sink establishment by the plant and the pathogen. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3930-3940. [PMID: 32242225 DOI: 10.1093/jxb/eraa168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Sugar transport proteins are crucial for the coordinated allocation of sugars. In this Expert View we summarize recent key findings of the roles and regulation of sugar transporters in inter- and intracellular transport by focusing on applied approaches, demonstrating how sucrose transporter activity may alter source and sink dynamics and their identities. The plant itself alters its sugar transport activity in a developmentally dependent manner to either establish or load endogenous sinks, for example, during tuber formation and filling. Pathogens represent aberrant sinks that trigger the plant to induce the same processes, resulting in loss of carbon assimilates. We explore common mechanisms of intrinsic, developmentally dependent processes and aberrant, pathogen-induced manipulation of sugar transport. Transporter activity may also be targeted by breeding or genetic modification approaches in crop plants to alter source and sink metabolism upon the overexpression or heterologous expression of these proteins. In addition, we highlight recent progress in the use of sugar analogs to study these processes in vivo.
Collapse
Affiliation(s)
| | - Christina Müdsam
- Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Dominik Kischka
- Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
30
|
McKim SM. Moving on up - controlling internode growth. THE NEW PHYTOLOGIST 2020; 226:672-678. [PMID: 31955426 DOI: 10.1111/nph.16439] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/10/2019] [Indexed: 05/27/2023]
Abstract
Plant reproductive success depends on making fertile flowers but also upon developing appropriate shoot internodes that optimally arrange and support the flowering shoot. Compared to floral morphogenesis, we understand little about the networks directing internode growth during flowering. However, new studies reveal that long-range signals, local factors, and age-dependent micoRNA-networks are all important to harmonize internode morphogenesis with shoot development. Some of the same players modulate symplastic transport to seasonally regulate internode growth in perennial species. Exploring possible hierarchical control amongst symplastic continuity, age, systemic signals and local regulators during internode morphogenesis will help elucidate the mechanisms coordinating axial growth with the wider plant body.
Collapse
Affiliation(s)
- Sarah M McKim
- Division of Plant Sciences, School of Life Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| |
Collapse
|
31
|
Deng L, Li P, Chu C, Ding Y, Wang S. Symplasmic phloem unloading and post-phloem transport during bamboo internode elongation. TREE PHYSIOLOGY 2020; 40:391-412. [PMID: 31976532 DOI: 10.1093/treephys/tpz140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/04/2019] [Accepted: 12/18/2019] [Indexed: 05/16/2023]
Abstract
In traditional opinions, no radial transportation was considered to occur in the bamboo internodes but was usually considered to occur in the nodes. Few studies have involved the phloem unloading and post-phloem transport pathways in the rapid elongating bamboo shoots. Our observations indicated a symplastic pathway in phloem unloading and post-unloading pathways in the culms of Fargesiayunnanensis Hsueh et Yi, based on a 5,6-carboxyfluorescein diacetate tracing experiment. Significant lignification and suberinization in fiber and parenchyma cell walls in maturing internodes blocked the apoplastic transport. Assimilates were transported out of the vascular bundles in four directions in the inner zones but in two directions in the outer zones via the continuum of parenchyma cells. In transverse sections, assimilates were outward transported from the inner zones to the outer zones. Assimilates transport velocities varied with time, with the highest values at 0):00 h, which were affected by water transport. The assimilate transport from the adult culms to the young shoots also varied with the developmental degree of bamboo shoots, with the highest transport velocities in the rapidly elongating internodes. The localization of sucrose, glucose, starch grains and the related enzymes reconfirmed that the parenchyma cells in and around the vascular bundles constituted a symplastic pathway for the radial transport of sugars and were the main sites for sugar metabolism. The parenchyma cells functioned as the 'rays' for the radial transport in and between vascular bundles in bamboo internodes. These results systematically revealed the transport mechanism of assimilate and water in the elongating bamboo shoots.
Collapse
Affiliation(s)
- Lin Deng
- Key Laboratory for Sympodial Bamboo Research, Southwest Forestry University, Bailong Road, Panlong District, Kunming, Yunnan 650224, P. R. China
| | - Pengcheng Li
- Key Laboratory for Sympodial Bamboo Research, Southwest Forestry University, Bailong Road, Panlong District, Kunming, Yunnan 650224, P. R. China
| | - Caihua Chu
- Key Laboratory for Sympodial Bamboo Research, Southwest Forestry University, Bailong Road, Panlong District, Kunming, Yunnan 650224, P. R. China
| | - Yulong Ding
- Bamboo Research Institute, Nanjing Forestry University, Longpan Road, Xuanwu District, Nanjing, Jiangsu 210037, P.R. China
| | - Shuguang Wang
- Key Laboratory for Sympodial Bamboo Research, Southwest Forestry University, Bailong Road, Panlong District, Kunming, Yunnan 650224, P. R. China
| |
Collapse
|
32
|
Wang M, Zang L, Jiao F, Perez-Garcia MD, Ogé L, Hamama L, Le Gourrierec J, Sakr S, Chen J. Sugar Signaling and Post-transcriptional Regulation in Plants: An Overlooked or an Emerging Topic? FRONTIERS IN PLANT SCIENCE 2020; 11:578096. [PMID: 33224165 PMCID: PMC7674178 DOI: 10.3389/fpls.2020.578096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/02/2020] [Indexed: 05/21/2023]
Abstract
Plants are autotrophic organisms that self-produce sugars through photosynthesis. These sugars serve as an energy source, carbon skeletons, and signaling entities throughout plants' life. Post-transcriptional regulation of gene expression plays an important role in various sugar-related processes. In cells, it is regulated by many factors, such as RNA-binding proteins (RBPs), microRNAs, the spliceosome, etc. To date, most of the investigations into sugar-related gene expression have been focused on the transcriptional level in plants, while only a few studies have been conducted on post-transcriptional mechanisms. The present review provides an overview of the relationships between sugar and post-transcriptional regulation in plants. It addresses the relationships between sugar signaling and RBPs, microRNAs, and mRNA stability. These new items insights will help to reach a comprehensive understanding of the diversity of sugar signaling regulatory networks, and open onto new investigations into the relevance of these regulations for plant growth and development.
Collapse
Affiliation(s)
- Ming Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - Lili Zang
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - Fuchao Jiao
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | | | - Laurent Ogé
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - Latifa Hamama
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - José Le Gourrierec
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - Soulaiman Sakr
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
- Soulaiman Sakr,
| | - Jingtang Chen
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Jingtang Chen,
| |
Collapse
|
33
|
Long X, Li H, Yang J, Xin L, Fang Y, He B, Huang D, Tang C. Characterization of a vacuolar sucrose transporter, HbSUT5, from Hevea brasiliensis: involvement in latex production through regulation of intracellular sucrose transport in the bark and laticifers. BMC PLANT BIOLOGY 2019; 19:591. [PMID: 31881921 PMCID: PMC6935173 DOI: 10.1186/s12870-019-2209-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Sucrose (Suc), as the precursor molecule for rubber biosynthesis in Hevea brasiliensis, is transported via phloem-mediated long-distance transport from leaves to laticifers in trunk bark, where latex (cytoplasm of laticifers) is tapped for rubber. In our previous report, six Suc transporter (SUT) genes have been cloned in Hevea tree, among which HbSUT3 is verified to play an active role in Suc loading to the laticifers. In this study, another latex-abundant SUT isoform, HbSUT5, with expressions only inferior to HbSUT3 was characterized especially for its roles in latex production. RESULTS Both phylogenetic analysis and subcellular localization identify HbSUT5 as a tonoplast-localized SUT protein under the SUT4-clade (=type III). Suc uptake assay in baker's yeast reveals HbSUT5 to be a typical Suc-H+ symporter, but its high affinity for Suc (Km = 2.03 mM at pH 5.5) and the similar efficiency in transporting both Suc and maltose making it a peculiar SUT under the SUT4-clade. At the transcript level, HbSUT5 is abundantly and preferentially expressed in Hevea barks. The transcripts of HbSUT5 are conspicuously decreased both in Hevea latex and bark by two yield-stimulating treatments of tapping and ethephon, the patterns of which are contrary to HbSUT3. Under the ethephon treatment, the Suc level in latex cytosol decreases significantly, but that in latex lutoids (polydispersed vacuoles) changes little, suggesting a role of the decreased HbSUT5 expression in Suc compartmentalization in the lutoids and thus enhancing the Suc sink strength in laticifers. CONCLUSIONS Our findings provide insights into the roles of a vacuolar sucrose transporter, HbSUT5, in Suc exchange between lutoids and cytosol in rubber-producing laticifers.
Collapse
Affiliation(s)
- Xiangyu Long
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| | - Heping Li
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China
- Subtropical Agriculture Research Institute, Fujian Academy of Agricultural Sciences, Zhangzhou, 363005, Fujian, China
| | - Jianghua Yang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Lusheng Xin
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China
| | - Yongjun Fang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Bin He
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China
| | - Debao Huang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China
| | - Chaorong Tang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
- College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|
34
|
Mehdi R, Lamm CE, Bodampalli Anjanappa R, Müdsam C, Saeed M, Klima J, Kraner ME, Ludewig F, Knoblauch M, Gruissem W, Sonnewald U, Zierer W. Symplasmic phloem unloading and radial post-phloem transport via vascular rays in tuberous roots of Manihot esculenta. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5559-5573. [PMID: 31232453 PMCID: PMC6812707 DOI: 10.1093/jxb/erz297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/15/2019] [Indexed: 05/04/2023]
Abstract
Cassava (Manihot esculenta) is one of the most important staple food crops worldwide. Its starchy tuberous roots supply over 800 million people with carbohydrates. Yet, surprisingly little is known about the processes involved in filling of those vital storage organs. A better understanding of cassava carbohydrate allocation and starch storage is key to improving storage root yield. Here, we studied cassava morphology and phloem sap flow from source to sink using transgenic pAtSUC2::GFP plants, the phloem tracers esculin and 5(6)-carboxyfluorescein diacetate, as well as several staining techniques. We show that cassava performs apoplasmic phloem loading in source leaves and symplasmic unloading into phloem parenchyma cells of tuberous roots. We demonstrate that vascular rays play an important role in radial transport from the phloem to xylem parenchyma cells in tuberous roots. Furthermore, enzymatic and proteomic measurements of storage root tissues confirmed high abundance and activity of enzymes involved in the sucrose synthase-mediated pathway and indicated that starch is stored most efficiently in the outer xylem layers of tuberous roots. Our findings form the basis for biotechnological approaches aimed at improved phloem loading and enhanced carbohydrate allocation and storage in order to increase tuberous root yield of cassava.
Collapse
Affiliation(s)
- Rabih Mehdi
- Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Christian E Lamm
- Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Christina Müdsam
- Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Muhammad Saeed
- Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Janine Klima
- Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Max E Kraner
- Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Frank Ludewig
- Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Wilhelm Gruissem
- Plant Biotechnology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung City, Taiwan
| | - Uwe Sonnewald
- Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Wolfgang Zierer
- Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
35
|
Comparative proteomic analysis provides new insights into the specialization of shoots and stolons in bermudagrass (Cynodon dactylon L.). BMC Genomics 2019; 20:708. [PMID: 31510936 PMCID: PMC6740039 DOI: 10.1186/s12864-019-6077-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/04/2019] [Indexed: 12/26/2022] Open
Abstract
Background Bermudagrass (Cynodon dactylon L.) is an important turfgrass species with two types of stems, shoots and stolons. Despite their importance in determining the morphological variance and plasticity of bermudagrass, the intrinsic differences between stolons and shoots are poorly understood. Results In this study, we compared the proteomes of internode sections of shoots and stolons in the bermudagrass cultivar Yangjiang. The results indicated that 376 protein species were differentially accumulated in the two types of stems. Pathway enrichment analysis revealed that five and nine biochemical pathways were significantly enriched in stolons and shoots, respectively. Specifically, enzymes participating in starch synthesis all preferentially accumulated in stolons, whereas proteins involved in glycolysis and diverse transport processes showed relatively higher abundance in shoots. ADP-glucose pyrophosphorylase (AGPase) and pyruvate kinase (PK), which catalyze rate-limiting steps of starch synthesis and glycolysis, showed high expression levels and enzyme activity in stolons and shoots, respectively, in accordance with the different starch and soluble sugar contents of the two types of stems. Conclusions Our study revealed the differences between the shoots and stolons of bermudagrass at the proteome level. The results not only expand our understanding of the specialization of stolons and shoots but also provide clues for the breeding of bermudagrass and other turfgrasses with different plant architectures. Supplementary material Supplementary information accompanies this paper at 10.1186/s12864-019-6077-3.
Collapse
|
36
|
van Bel AJE, Musetti R. Sieve element biology provides leads for research on phytoplasma lifestyle in plant hosts. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3737-3755. [PMID: 30972422 DOI: 10.1093/jxb/erz172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Phytoplasmas reside exclusively in sieve tubes, tubular arrays of sieve element-companion cell complexes. Hence, the cell biology of sieve elements may reveal (ultra)structural and functional conditions that are of significance for survival, propagation, colonization, and effector spread of phytoplasmas. Electron microscopic images suggest that sieve elements offer facilities for mobile and stationary stages in phytoplasma movement. Stationary stages may enable phytoplasmas to interact closely with diverse sieve element compartments. The unique, reduced sieve element outfit requires permanent support by companion cells. This notion implies a future focus on the molecular biology of companion cells to understand the sieve element-phytoplasma inter-relationship. Supply of macromolecules by companion cells is channelled via specialized symplasmic connections. Ca2+-mediated gating of symplasmic corridors is decisive for the communication within and beyond the sieve element-companion cell complex and for the dissemination of phytoplasma effectors. Thus, Ca2+ homeostasis, which affects sieve element Ca2+ signatures and induces a range of modifications, is a key issue during phytoplasma infection. The exceptional physical and chemical environment in sieve elements seems an essential, though not the only factor for phytoplasma survival.
Collapse
Affiliation(s)
- Aart J E van Bel
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus-Liebig University, Giessen, Germany
| | - Rita Musetti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
37
|
Sevanto S. Methods for Assessing the Role of Phloem Transport in Plant Stress Responses. Methods Mol Biol 2019; 2014:311-336. [PMID: 31197806 DOI: 10.1007/978-1-4939-9562-2_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Delivery of carbohydrates to tissues that need them under stress is important for plant defenses and survival. Yet, little is known on how phloem function is altered under stress, and how that influences plant responses to stress. This is because phloem is a challenging tissue to study. It consists of cells of various types with soft cell walls, and the cells show strong wounding reactions to protect their integrity, making both imaging and functional studies challenging. This chapter summarizes theories on how phloem transport is affected by stress and presents methods that have been used to gain the current knowledge. These techniques range from tracer studies and imaging to carbon balance and anatomical analyses. Advances in these techniques in the recent years have considerably increased our ability to investigate phloem function, and application of the new methods on plant stress studies will help provide a more comprehensive picture of phloem function and its limitations under stress.
Collapse
Affiliation(s)
- Sanna Sevanto
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|
38
|
Abstract
Immunolocalization of proteins in differentiated phloem cells is a challenging task given their special anatomy, organellar infrastructure, and the phloem tissue's heterogeneity. Incorporation of specific wall components in the thickened cell walls of phloem cells is often the source of unspecific labeling, leading to erroneous localization. Therefore, special care is required regarding generation and purification of specific antibodies. In addition, tissue preservation of phloem cells, which contain a high osmotic pressure in their functional state, is a very challenging task prone to various pitfalls. This chapter provides practical advice for cautious tissue preparation and antibody purification. Furthermore, methods that can be used to verify immunohistochemical localization data, such as promoter-reporter studies or activity tests, are discussed. Such confirmation experiments are essential for unambiguous determination of protein location in cells of the phloem.
Collapse
|
39
|
Milani PA, Consonni JL, Labuto G, Carrilho ENVM. Agricultural solid waste for sorption of metal ions, part II: competitive assessment in multielemental solution and lake water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35906-35914. [PMID: 29558789 DOI: 10.1007/s11356-018-1726-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Sugarcane bagasse and hydroponic lettuce roots were used as biosorbents for the removal of Cu(II), Fe(II), Mn(II), and Zn(II) from multielemental solutions and lake water, in batch processes. These biomasses were studied in natura (lettuce roots, NLR, and sugarcane bagasse, NSB) and chemically modified with HNO3 (lettuce roots, MLR, and sugarcane bagasse, MSB). The results showed higher adsorption efficiency for MSB and either NLR or MLR. The maximum adsorption capacities (qmax) in multielemental solution for Cu(II), Fe(II), Mn(II), and Zn(II) were 35.86, 31.42, 3.33, and 24.07 mg/g for NLR; 25.36, 27.95, 14.06, and 6.43 mg/g for MLR; 0.92, 3.94, 0.03, and 0.18 mg/g for NSB; and 54.11, 6.52, 16.7, and 1.26 mg/g for MSB, respectively. The kinetic studies with chemically modified biomasses indicated that sorption was achieved in the first 5 min and reached equilibrium around 30 min. Sorption of Cu(II), Fe(II), Mn(II), and Zn(II) in lake water by chemically modified biomasses was 24.31, 14.50, 8.03, and 8.21 mg/g by MLR, and 13.15, 10.50, 6.10, and 5.14 mg/g by MSB, respectively. These biosorbents are promising and low costs agricultural residues, and as for lettuce roots, these showed great potential even with no chemical modification.
Collapse
Affiliation(s)
- Priscila Aparecida Milani
- Laboratório de Materiais Poliméricos e Biossorventes, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil
| | - João Luiz Consonni
- Departamento de Recursos Naturais e Proteção Ambiental, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil
| | - Geórgia Labuto
- Departamento de Química, Universidade Federal de São Paulo, Diadema, SP, 09913-030, Brazil
| | - Elma Neide Vasconcelos Martins Carrilho
- Laboratório de Materiais Poliméricos e Biossorventes, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil.
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil.
| |
Collapse
|
40
|
Zhang C, Bian Y, Hou S, Li X. Sugar transport played a more important role than sugar biosynthesis in fruit sugar accumulation during Chinese jujube domestication. PLANTA 2018; 248:1187-1199. [PMID: 30094488 DOI: 10.1007/s00425-018-2971-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/25/2018] [Indexed: 05/13/2023]
Abstract
Sugar transport, including the symplasmic pathway in plasmodesmata and apoplasmic pathway mediated by sugar transporters, accelerated sugar accumulation in cultivated jujube, while sugar metabolism-related genes played weak roles in jujube domestication. The fruit of Chinese jujube (Ziziphus jujuba Mill.) is high in sugar concentration. By contrast, wild type-sour jujube (Z. jujuba Mill. var. spinosa Hu) contains markedly less sugar. It is unknown whether sugar transport or sugar metabolism drove sugar accumulation during jujube domestication. Using a combination of ultrastructural observations, phylogenetic analysis, testing for soluble sugars, and transcriptional analysis, the sugar accumulation mechanism was studied in the developmental stages of cultivated jujube and sour jujube. Our results indicate that the symplasmic transport pathway in plasmodesmata is present in cultivated jujube, but not in sour jujube. Sugar transporter genes have higher frequencies of duplication than sugar metabolism-related genes. Gene expression patterns indicate that sugar transporter genes, especially ZjSUT2, ZjSWEET1, ZjSWEET7, ZjSWEET11, ZjSTP3, and ZjSTP13a, rather than sugar metabolism-related genes showed higher expression levels in cultivated jujube versus sour jujube during fruit sugar accumulation. These findings suggest that sugar transport, including apoplasmic and symplasmic transport, rather than sugar biosynthesis, is associated with the difference in sugar accumulation between jujube and sour jujube, and that it may drive jujube domestication. This study provides valuable genetic information for jujube improvement, and offers new insights into fruit tree domestication related to sugar accumulation.
Collapse
Affiliation(s)
- Chunmei Zhang
- Center for Jujube Engineering and Technology of State Forestry Administration, College of Forestry, Northwest A&F University, Yangling, 712100, China
- College of Forestry, Shandong Agricultural University, Taian, 271018, China
| | - Yuan Bian
- Center for Jujube Engineering and Technology of State Forestry Administration, College of Forestry, Northwest A&F University, Yangling, 712100, China
| | - Sihao Hou
- Center for Jujube Engineering and Technology of State Forestry Administration, College of Forestry, Northwest A&F University, Yangling, 712100, China
| | - Xingang Li
- Center for Jujube Engineering and Technology of State Forestry Administration, College of Forestry, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
41
|
Huang J, Huang Z, Zhou X, Xia C, Imran M, Wang S, Xu C, Zha M, Liu Y, Zhang C. Tissue-specific transcriptomic profiling of Plantago major provides insights for the involvement of vasculature in phosphate deficiency responses. Mol Genet Genomics 2018; 294:159-175. [PMID: 30267144 DOI: 10.1007/s00438-018-1496-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/24/2018] [Indexed: 01/26/2023]
Abstract
The vasculature of higher plants is important with transport of both nutrient and information molecules. To understand the correspondence of this tissue in molecular responses under phosphate (Pi) deficiency, Plantago major, a model plant for vasculature biology study, was chosen in our analysis. After RNA-Seq and de novo transcriptome assembly of 24 libraries prepared from the vasculature of P. major, 37,309 unigenes with a mean length of 1571 base pairs were obtained. Upon 24 h of Pi deficiency, 237 genes were shown to be differentially expressed in the vasculature of P. major. Among these genes, only 27 have been previously identified to be specifically expressed in the vasculature tissues in other plant species. Temporal expression of several marker genes associated with Pi deficiency showed that the time period of first 24 h is at the beginning stage of more dynamic expression patterns. In this study, we found several physiological processes, e.g., "phosphate metabolism and remobilization", "sucrose metabolism, loading and synthesis", "plant hormone metabolism and signal transduction", "transcription factors", and "metabolism of other minerals", were mainly involved in early responses to Pi deficiency in the vasculature. A number of vasculature genes with promising roles in Pi deficiency adaptation have been identified and deserve further functional characterization. This study clearly demonstrated that plant vasculature is actively involved in Pi deficiency responses and understanding of this process may help to create plants proficient to offset Pi deficiency.
Collapse
Affiliation(s)
- Jing Huang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Xiangjun Zhou
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Chao Xia
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Muhammad Imran
- Department of Soil and Environmental Sciences, University College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Shujuan Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Congshan Xu
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Manrong Zha
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Yan Liu
- The Institute of Sericulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Cankui Zhang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA. .,Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
42
|
McKinley BA, Casto AL, Rooney WL, Mullet JE. Developmental dynamics of stem starch accumulation in Sorghum bicolor. PLANT DIRECT 2018; 2:e00074. [PMID: 31245742 PMCID: PMC6508807 DOI: 10.1002/pld3.74] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 05/26/2023]
Abstract
Sweet sorghums were identified that accumulate up to ~9% of their total stem dry weight as starch. Starch accumulated preferentially in stem pith parenchyma in close proximity to vascular bundles. Stem starch accumulated slowly between floral initiation and anthesis and more rapidly between anthesis and 43 days post-anthesis before declining in parallel with tiller outgrowth. Genes involved in stem starch metabolism were identified through phylogenetic approaches and RNA-seq analysis of Della stem gene expression during the starch accumulation phase of development. Genes differentially expressed in stems were identified that are involved in starch biosynthesis (i.e., AGPase SS/LS, starch synthases, starch-branching enzymes), degradation (i.e., glucan-water dikinase, β-amylase, disproportionating enzyme, alpha-glucan phosphorylase) and amyloplast sugar transport (glucose-6-P translocator). Transcripts encoding AGPase SS and LS subunits with plastid localization were differentially induced during stem starch accumulation indicating that ADP-glucose for starch biosynthesis is primarily generated in stem plastids. Cytosolic heteroglucan metabolism may play a role in stem sucrose/starch accumulation because genes encoding cytosolic forms of the disproportionating enzyme and alpha-glucan phosphorylase were induced in parallel with stem sucrose/starch accumulation. Information on the stem starch pathway obtained in this study will be useful for engineering sorghum stems with elevated starch thereby improving forage quality and the efficiency of biomass conversion to biofuels and bio-products.
Collapse
Affiliation(s)
- Brian A. McKinley
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexas
| | - Anna L. Casto
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexas
| | - William L. Rooney
- Department of Soil and Crop SciencesTexas A&M UniversityCollege StationTexas
| | - John E. Mullet
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexas
| |
Collapse
|
43
|
Milne RJ, Grof CP, Patrick JW. Mechanisms of phloem unloading: shaped by cellular pathways, their conductances and sink function. CURRENT OPINION IN PLANT BIOLOGY 2018; 43:8-15. [PMID: 29248828 DOI: 10.1016/j.pbi.2017.11.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/24/2017] [Accepted: 11/30/2017] [Indexed: 05/03/2023]
Abstract
Phloem unloading represents a series of cell-to-cell transport steps transferring phloem-mobile constituents from phloem to sink tissues/organs to fuel their development or resource storage. Our analysis focuses on unloading of two major phloem-mobile constituents, sugars and water. Their unloading can occur across phloem plasma membranes (apoplasmic unloading), through plasmodesmata interconnecting phloem and sink cells (symplasmic unloading) or predominately symplasmically with an intervening post-phloem apoplasmic step. In planta studies of phloem unloading encounter substantial technical challenges in accessing phloem within a meshwork of vascular/ground tissues. Thus, current understanding of phloem-unloading mechanisms largely has been deduced from indirect experimental measures or modelling. Here we highlight recent advances in understanding phloem unloading mechanisms and identify where important knowledge gaps remain.
Collapse
Affiliation(s)
- Ricky J Milne
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory 2601, Australia
| | - Christopher Pl Grof
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - John W Patrick
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia.
| |
Collapse
|
44
|
Mizuno H, Kasuga S, Kawahigashi H. Root lodging is a physical stress that changes gene expression from sucrose accumulation to degradation in sorghum. BMC PLANT BIOLOGY 2018; 18:2. [PMID: 29298675 PMCID: PMC5751775 DOI: 10.1186/s12870-017-1218-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/19/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND Sorghum (Sorghum bicolor L.) is used as a raw material for biofuels because it accumulates sugars at high levels in the stem. Lodging of sorghum occurs when the soil is wet and very high winds blow across the field. In root lodging, the roots are pulled loose from the soil, causing the plant to fall over. Lodging reduces the yield of nonstructural carbohydrates. It is not yet clear which genes show changes in expression when sorghum falls over. We compared whole-gene expression in the mature stems of intact and lodged sorghum plants, with a focus on comparisons from the perspective of differences in sugar accumulation or degradation. RESULTS Lodging decreased sucrose content, starch content, and ratio of sucrose to total sugars in the stems of the sorghum cultivar SIL-05. Particular paralogs of SWEET and TMT family genes, which encode sucrose or hexose transporters, or both, were significantly highly expressed in intact or lodged sorghum stems. In intact stems, genes encoding the glucose-6-phosphate translocator, aquaporins, and enzymes involved in photosynthesis and starch synthesis were highly expressed. In lodged sorghum stems, expression of genes associated with sucrose or starch degradation or energy production was increased. Notably, expression of genes encoding enzymes catalyzing irreversible reactions and associated with the first steps of these metabolic pathways (e.g. INV, SUS, and hexokinase- and fructokinase-encoding genes) was significantly increased by lodging. Expression of SUT, SPS, and SPP was almost the same in intact and lodged sorghum. CONCLUSIONS Specific paralogs of sucrose-associated genes involved in metabolic pathways and in membrane transport were expressed in the stems of sorghum SIL-05 at the full-ripe stage. Root lodging drastically changed the expression of these genes from sucrose accumulation to degradation. The changes in gene expression resulted in decreases in sugar content and in the proportion of sucrose to hexoses in the stems of lodged plants.
Collapse
Affiliation(s)
- Hiroshi Mizuno
- Institute of Crop Science (NICS), National Agriculture and Food Research Organization, 2-1-2, Kannondai, Tsukuba, Ibaraki 305-8518 Japan
| | - Shigemitsu Kasuga
- Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Nagano, 399-4598 Japan
| | - Hiroyuki Kawahigashi
- Institute of Crop Science (NICS), National Agriculture and Food Research Organization, 2-1-2, Kannondai, Tsukuba, Ibaraki 305-8518 Japan
| |
Collapse
|
45
|
Abstract
The phloem plays a central role in transporting resources and signalling molecules from fully expanded leaves to provide precursors for, and to direct development of, heterotrophic organs located throughout the plant body. We review recent advances in understanding mechanisms regulating loading and unloading of resources into, and from, the phloem network; highlight unresolved questions regarding the physiological significance of the vast array of proteins and RNAs found in phloem saps; and evaluate proposed structure/function relationships considered to account for bulk flow of sap, sustained at high rates and over long distances, through the transport phloem.
Collapse
Affiliation(s)
- Johannes Liesche
- Biomass Energy Center for Arid and Semi-arid lands, Northwest A&F University, Yangling, China
- College of Life Science, Northwest A&F University, Yangling , China
| | - John Patrick
- Department of Biological Sciences, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, Australia
| |
Collapse
|
46
|
Julius BT, Leach KA, Tran TM, Mertz RA, Braun DM. Sugar Transporters in Plants: New Insights and Discoveries. PLANT & CELL PHYSIOLOGY 2017; 58:1442-1460. [PMID: 28922744 DOI: 10.1093/pcp/pcx090] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/19/2017] [Indexed: 05/24/2023]
Abstract
Carbohydrate partitioning is the process of carbon assimilation and distribution from source tissues, such as leaves, to sink tissues, such as stems, roots and seeds. Sucrose, the primary carbohydrate transported long distance in many plant species, is loaded into the phloem and unloaded into distal sink tissues. However, many factors, both genetic and environmental, influence sucrose metabolism and transport. Therefore, understanding the function and regulation of sugar transporters and sucrose metabolic enzymes is key to improving agriculture. In this review, we highlight recent findings that (i) address the path of phloem loading of sucrose in rice and maize leaves; (ii) discuss the phloem unloading pathways in stems and roots and the sugar transporters putatively involved; (iii) describe how heat and drought stress impact carbohydrate partitioning and phloem transport; (iv) shed light on how plant pathogens hijack sugar transporters to obtain carbohydrates for pathogen survival, and how the plant employs sugar transporters to defend against pathogens; and (v) discuss novel roles for sugar transporters in plant biology. These exciting discoveries and insights provide valuable knowledge that will ultimately help mitigate the impending societal challenges due to global climate change and a growing population by improving crop yield and enhancing renewable energy production.
Collapse
Affiliation(s)
- Benjamin T Julius
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 116 Tucker Hall, Columbia, MO 65211, USA
| | - Kristen A Leach
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 116 Tucker Hall, Columbia, MO 65211, USA
| | - Thu M Tran
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 116 Tucker Hall, Columbia, MO 65211, USA
- Plant Imaging Consortium, USA
| | - Rachel A Mertz
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 116 Tucker Hall, Columbia, MO 65211, USA
| | - David M Braun
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 116 Tucker Hall, Columbia, MO 65211, USA
- Plant Imaging Consortium, USA
| |
Collapse
|
47
|
Milne RJ, Reinders A, Ward JM, Offler CE, Patrick JW, Grof CPL. Contribution of sucrose transporters to phloem unloading within Sorghum bicolor stem internodes. PLANT SIGNALING & BEHAVIOR 2017; 12:e1319030. [PMID: 28426383 PMCID: PMC5501222 DOI: 10.1080/15592324.2017.1319030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/09/2017] [Indexed: 05/14/2023]
Abstract
Sucrose produced in source leaves is loaded into collection phloem, transported to sinks and unloaded for utilization or storage. In the context of long distance transport, sucrose transporters (SUTs) can function to load sucrose into collection phloem, retrieve leaked sucrose during long distance transport, and load sucrose into sink cells. SUTs have also been proposed to efflux sucrose under conditions of low proton motive force and low extracellular sucrose. The involvement of sucrose transporters in phloem unloading in a representative monocot stem, Sorghum bicolor, was evaluated during different stages of internode development. Transcript levels and functional properties of selected key transporters were measured, with both cellular and subcellular localization determined.
Collapse
Affiliation(s)
- Ricky J Milne
- a School of Environmental and Life Sciences , The University of Newcastle , NSW , Australia
- b CSIRO Agriculture and Food , Canberra , ACT , Australia
| | - Anke Reinders
- c Department of Plant and Microbial Biology , University of Minnesota , St. Paul , MN , USA
| | - John M Ward
- c Department of Plant and Microbial Biology , University of Minnesota , St. Paul , MN , USA
| | - Christina E Offler
- a School of Environmental and Life Sciences , The University of Newcastle , NSW , Australia
| | - John W Patrick
- a School of Environmental and Life Sciences , The University of Newcastle , NSW , Australia
| | - Christopher P L Grof
- a School of Environmental and Life Sciences , The University of Newcastle , NSW , Australia
| |
Collapse
|