1
|
Peng FC, Yuan M, Zhou L, Zheng BQ, Wang Y. Identification and Analysis of Aluminum-Activated Malate Transporter Gene Family Reveals Functional Diversification in Orchidaceae and the Expression Patterns of Dendrobium catenatum Aluminum-Activated Malate Transporters. Int J Mol Sci 2024; 25:9662. [PMID: 39273609 PMCID: PMC11394931 DOI: 10.3390/ijms25179662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Aluminum-activated malate transporter (ALMT) genes play an important role in aluminum ion (Al3+) tolerance, fruit acidity, and stomatal movement. Although decades of research have been carried out in many plants, there is little knowledge about the roles of ALMT in Orchidaceae. In this study, 34 ALMT genes were identified in the genomes of four orchid species. Specifically, ten ALMT genes were found in Dendrobium chrysotoxum and D. catenatum, and seven were found in Apostasia shenzhenica and Phalaenopsis equestris. These ALMT genes were further categorized into four clades (clades 1-4) based on phylogenetic relationships. Sequence alignment and conserved motif analysis revealed that most orchid ALMT proteins contain conserved regions (TM1, GABA binding motif, and WEP motif). We also discovered a unique motif (19) belonging to clade 1, which can serve as a specifically identified characteristic. Comparison with the gene structure of AtALMT genes (Arabidopsis thaliana) showed that the gene structure of ALMT was conserved across species, but the introns were longer in orchids. The promoters of orchid ALMT genes contain many light-responsive and hormone-responsive elements, suggesting that their expression may be regulated by light and phytohormones. Chromosomal localization and collinear analysis of D. chrysotoxum indicated that tandem duplication (TD) is the main reason for the difference in the number of ALMT genes in these orchids. D. catenatum was chosen for the RT-qPCR experiment, and the results showed that the DcaALMT gene expression pattern varied in different tissues. The expression of DcaALMT1-9 was significantly changed after ABA treatment. Combining the circadian CO2 uptake rate, titratable total acid, and RT-qPCR data analysis, most DcaALMT genes were highly expressed at night and around dawn. The result revealed that DcaALMT genes might be involved in photosynthate accumulation. The above study provides more comprehensive information for the ALMT gene family in Orchidaceae and a basis for subsequent functional analysis.
Collapse
Affiliation(s)
| | | | | | | | - Yan Wang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (F.-C.P.); (M.Y.); (L.Z.); (B.-Q.Z.)
| |
Collapse
|
2
|
Chen G, Qin Y, Wang J, Li S, Zeng F, Deng F, Chater C, Xu S, Chen ZH. Stomatal evolution and plant adaptation to future climate. PLANT, CELL & ENVIRONMENT 2024; 47:3299-3315. [PMID: 38757448 DOI: 10.1111/pce.14953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/18/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Global climate change is affecting plant photosynthesis and transpiration processes, as well as increasing weather extremes impacting socio-political and environmental events and decisions for decades to come. One major research challenge in plant biology and ecology is the interaction of photosynthesis with the environment. Stomata control plant gas exchange and their evolution was a crucial innovation that facilitated the earliest land plants to colonize terrestrial environments. Stomata couple homoiohydry, together with cuticles, intercellular gas space, with the endohydric water-conducting system, enabling plants to adapt and diversify across the planet. Plants control stomatal movement in response to environmental change through regulating guard cell turgor mediated by membrane transporters and signaling transduction. However, the origin, evolution, and active control of stomata remain controversial topics. We first review stomatal evolution and diversity, providing fossil and phylogenetic evidence of their origins. We summarize functional evolution of guard cell membrane transporters in the context of climate changes and environmental stresses. Our analyses show that the core signaling elements of stomatal movement are more ancient than stomata, while genes involved in stomatal development co-evolved de novo with the earliest stomata. These results suggest that novel stomatal development-specific genes were acquired during plant evolution, whereas genes regulating stomatal movement, especially cell signaling pathways, were inherited ancestrally and co-opted by dynamic functional differentiation. These two processes reflect the different adaptation strategies during land plant evolution.
Collapse
Affiliation(s)
- Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuan Qin
- College of Agriculture, Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, China
| | - Jian Wang
- Central Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Sujuan Li
- Central Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fanrong Zeng
- College of Agriculture, Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, China
| | - Fenglin Deng
- College of Agriculture, Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, China
| | - Caspar Chater
- Royal Botanic Gardens, Kew, Richmond, UK
- Plants, Photosynthesis, and Soil, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Shengchun Xu
- Central Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Xianghu Laboratory, Hangzhou, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| |
Collapse
|
3
|
Lemonnier P, Lawson T. Calvin cycle and guard cell metabolism impact stomatal function. Semin Cell Dev Biol 2024; 155:59-70. [PMID: 36894379 DOI: 10.1016/j.semcdb.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
Stomatal conductance (gs) determines CO2 uptake for photosynthesis (A) and water loss through transpiration, which is essential for evaporative cooling and maintenance of optimal leaf temperature as well as nutrient uptake. Stomata adjust their aperture to maintain an appropriate balance between CO2 uptake and water loss and are therefore critical to overall plant water status and productivity. Although there is considerable knowledge regarding guard cell (GC) osmoregulation (which drives differences in GC volume and therefore stomatal opening and closing), as well as the various signal transduction pathways that enable GCs to sense and respond to different environmental stimuli, little is known about the signals that coordinate mesophyll demands for CO2. Furthermore, chloroplasts are a key feature in GCs of many species, however, their role in stomatal function is unclear and a subject of debate. In this review we explore the current evidence regarding the role of these organelles in stomatal behaviour, including GC electron transport and Calvin-Benson-Bassham (CBB) cycle activity as well as their possible involvement correlating gs and A along with other potential mesophyll signals. We also examine the roles of other GC metabolic processes in stomatal function.
Collapse
Affiliation(s)
- P Lemonnier
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - T Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| |
Collapse
|
4
|
Zhang J, Chen X, Song Y, Gong Z. Integrative regulatory mechanisms of stomatal movements under changing climate. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:368-393. [PMID: 38319001 DOI: 10.1111/jipb.13611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
Global climate change-caused drought stress, high temperatures and other extreme weather profoundly impact plant growth and development, restricting sustainable crop production. To cope with various environmental stimuli, plants can optimize the opening and closing of stomata to balance CO2 uptake for photosynthesis and water loss from leaves. Guard cells perceive and integrate various signals to adjust stomatal pores through turgor pressure regulation. Molecular mechanisms and signaling networks underlying the stomatal movements in response to environmental stresses have been extensively studied and elucidated. This review focuses on the molecular mechanisms of stomatal movements mediated by abscisic acid, light, CO2 , reactive oxygen species, pathogens, temperature, and other phytohormones. We discussed the significance of elucidating the integrative mechanisms that regulate stomatal movements in helping design smart crops with enhanced water use efficiency and resilience in a climate-changing world.
Collapse
Affiliation(s)
- Jingbo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Xuexue Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yajing Song
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Institute of Life Science and Green Development, School of Life Sciences, Hebei University, Baoding, 071001, China
| |
Collapse
|
5
|
Li K, Grauschopf C, Hedrich R, Dreyer I, Konrad KR. K + and pH homeostasis in plant cells is controlled by a synchronized K + /H + antiport at the plasma and vacuolar membrane. THE NEW PHYTOLOGIST 2024; 241:1525-1542. [PMID: 38017688 DOI: 10.1111/nph.19436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
Stomatal movement involves ion transport across the plasma membrane (PM) and vacuolar membrane (VM) of guard cells. However, the coupling mechanisms of ion transporters in both membranes and their interplay with Ca2+ and pH changes are largely unclear. Here, we investigated transporter networks in tobacco guard cells and mesophyll cells using multiparametric live-cell ion imaging and computational simulations. K+ and anion fluxes at both, PM and VM, affected H+ and Ca2+ , as changes in extracellular KCl or KNO3 concentrations were accompanied by cytosolic and vacuolar pH shifts and changes in [Ca2+ ]cyt and the membrane potential. At both membranes, the K+ transporter networks mediated an antiport of K+ and H+ . By contrast, net transport of anions was accompanied by parallel H+ transport, with differences in transport capacity for chloride and nitrate. Guard and mesophyll cells exhibited similarities in K+ /H+ transport but cell type-specific differences in [H+ ]cyt and pH-dependent [Ca2+ ]cyt signals. Computational cell biology models explained mechanistically the properties of transporter networks and the coupling of transport across the PM and VM. Our integrated approach indicates fundamental principles of coupled ion transport at membrane sandwiches to control H+ /K+ homeostasis and points to transceptor-like Ca2+ /H+ -based ion signaling in plant cells.
Collapse
Affiliation(s)
- Kunkun Li
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Christina Grauschopf
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Rainer Hedrich
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Ingo Dreyer
- Faculty of Engineering, Center of Bioinformatics, Simulation and Modeling (CBSM), University of Talca, 3460000, Talca, Chile
| | - Kai R Konrad
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| |
Collapse
|
6
|
Hou S, Rodrigues O, Liu Z, Shan L, He P. Small holes, big impact: Stomata in plant-pathogen-climate epic trifecta. MOLECULAR PLANT 2024; 17:26-49. [PMID: 38041402 PMCID: PMC10872522 DOI: 10.1016/j.molp.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
The regulation of stomatal aperture opening and closure represents an evolutionary battle between plants and pathogens, characterized by adaptive strategies that influence both plant resistance and pathogen virulence. The ongoing climate change introduces further complexity, affecting pathogen invasion and host immunity. This review delves into recent advances on our understanding of the mechanisms governing immunity-related stomatal movement and patterning with an emphasis on the regulation of stomatal opening and closure dynamics by pathogen patterns and host phytocytokines. In addition, the review explores how climate changes impact plant-pathogen interactions by modulating stomatal behavior. In light of the pressing challenges associated with food security and the unpredictable nature of climate changes, future research in this field, which includes the investigation of spatiotemporal regulation and engineering of stomatal immunity, emerges as a promising avenue for enhancing crop resilience and contributing to climate control strategies.
Collapse
Affiliation(s)
- Shuguo Hou
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China; School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong 250101, China.
| | - Olivier Rodrigues
- Unité de Recherche Physiologie, Pathologie et Génétique Végétales, Université de Toulouse Midi-Pyrénées, INP-PURPAN, 31076 Toulouse, France
| | - Zunyong Liu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
7
|
Dabravolski SA, Isayenkov SV. Recent Updates on ALMT Transporters' Physiology, Regulation, and Molecular Evolution in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3167. [PMID: 37687416 PMCID: PMC10490231 DOI: 10.3390/plants12173167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Aluminium toxicity and phosphorus deficiency in soils are the main interconnected problems of modern agriculture. The aluminium-activated malate transporters (ALMTs) comprise a membrane protein family that demonstrates various physiological functions in plants, such as tolerance to environmental Al3+ and the regulation of stomatal movement. Over the past few decades, the regulation of ALMT family proteins has been intensively studied. In this review, we summarise the current knowledge about this transporter family and assess their involvement in diverse physiological processes and comprehensive regulatory mechanisms. Furthermore, we have conducted a thorough bioinformatic analysis to decipher the functional importance of conserved residues, structural components, and domains. Our phylogenetic analysis has also provided new insights into the molecular evolution of ALMT family proteins, expanding their scope beyond the plant kingdom. Lastly, we have formulated several outstanding questions and research directions to further enhance our understanding of the fundamental role of ALMT proteins and to assess their physiological functions.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel 2161002, Israel;
| | - Stanislav V. Isayenkov
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse 3, 06120 Halle, Germany
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, The National Academy of Sciences of Ukraine, Osipovskogo Str. 2a, 04123 Kyiv, Ukraine
| |
Collapse
|
8
|
Mirasole FM, Nastasi SP, Cubero-Font P, De Angeli A. Vacuolar control of stomatal opening revealed by 3D imaging of the guard cells. Sci Rep 2023; 13:7647. [PMID: 37169939 PMCID: PMC10175559 DOI: 10.1038/s41598-023-34273-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
Land plants regulate their photosynthesis and water transpiration by exchanging gases (CO2 and H2Ovapour) with the atmosphere. These exchanges take place through microscopic valves, called stomata, on the leaf surface. The opening of the stomata is regulated by two guard cells that actively and reversibly modify their turgor pressure to modulate the opening of the stomatal pores. Stomatal function depends on the regulation of the ion transport capacities of cell membranes as well as on the modification of the subcellular organisation of guard cells. Here we report how the vacuolar and cytosolic compartments of guard cells quantitatively participate in stomatal opening. We used a genetically encoded biosensor to visualise changes in ionic concentration during stomatal opening. The 3D reconstruction of living guard cells shows that the vacuole is the responsible for the change in guard cell volume required for stomatal opening.
Collapse
Affiliation(s)
- Filippo Maria Mirasole
- IPSiM, CNRS, INRAE, Institut Agro, Université Montpellier, Montpellier, France
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH-8008, Zürich, Switzerland
| | - Sara Paola Nastasi
- IPSiM, CNRS, INRAE, Institut Agro, Université Montpellier, Montpellier, France
- Department of Biosciences, University of Milan, Via G. Celoria 26, 20133, Milano, Italy
| | - Paloma Cubero-Font
- IPSiM, CNRS, INRAE, Institut Agro, Université Montpellier, Montpellier, France
| | - Alexis De Angeli
- IPSiM, CNRS, INRAE, Institut Agro, Université Montpellier, Montpellier, France.
| |
Collapse
|
9
|
Structural and Functional Diversity of Two ATP-Driven Plant Proton Pumps. Int J Mol Sci 2023; 24:ijms24054512. [PMID: 36901943 PMCID: PMC10003446 DOI: 10.3390/ijms24054512] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Two ATP-dependent proton pumps function in plant cells. Plasma membrane H+-ATPase (PM H+-ATPase) transfers protons from the cytoplasm to the apoplast, while vacuolar H+-ATPase (V-ATPase), located in tonoplasts and other endomembranes, is responsible for proton pumping into the organelle lumen. Both enzymes belong to two different families of proteins and, therefore, differ significantly in their structure and mechanism of action. The plasma membrane H+-ATPase is a member of the P-ATPases that undergo conformational changes, associated with two distinct E1 and E2 states, and autophosphorylation during the catalytic cycle. The vacuolar H+-ATPase represents rotary enzymes functioning as a molecular motor. The plant V-ATPase consists of thirteen different subunits organized into two subcomplexes, the peripheral V1 and the membrane-embedded V0, in which the stator and rotor parts have been distinguished. In contrast, the plant plasma membrane proton pump is a functional single polypeptide chain. However, when the enzyme is active, it transforms into a large twelve-protein complex of six H+-ATPase molecules and six 14-3-3 proteins. Despite these differences, both proton pumps can be regulated by the same mechanisms (such as reversible phosphorylation) and, in some processes, such as cytosolic pH regulation, may act in a coordinated way.
Collapse
|
10
|
Li W, Sun Y, Li K, Tian H, Jia J, Zhang H, Wang Y, Wang H, Bi B, Guo J, Tran LSP, Miao Y. Sinapate Esters Mediate UV-B-Induced Stomatal Closure by Regulating Nitric Oxide, Hydrogen Peroxide, and Malate Accumulation in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2023; 63:1890-1899. [PMID: 35475535 DOI: 10.1093/pcp/pcac059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/11/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Sinapate esters, which are induced in plants under ultraviolet-B (UV-B) irradiation, have important roles not only in the protection against UV-B irradiation but also in the regulation of stomatal closure. Here, we speculated that sinapate esters would function in the stomatal closure of Arabidopsis thaliana in response to UV-B. We measured the stomatal aperture size of the wild-type (WT) and bright trichomes 1 (brt1) and sinapoylglucose accumulator 1 (sng1) mutants under UV-B irradiation; the latter two mutants are deficient in the conversion of sinapic acid to sinapoylglucose (SG) and SG to sinapoylmalate (SM), respectively. Both the brt1 and sng1 plants showed smaller stomatal apertures than the WT under normal light and UV-B irradiation conditions. The accumulation of SM and malate were induced by UV-B irradiation in WT and brt1 plants but not in sng1 plants. Consistently, exogenous malate application reduced UV-B-induced stomatal closure in WT, brt1 and sng1 plants. Nonetheless, levels of reactive oxygen species (ROS), nitric oxide (NO) and cytosolic Ca2+ were higher in guard cells of the sng1 mutant than in those of the WT under normal white light and UV-B irradiation, suggesting that disturbance of sinapate metabolism induced the accumulation of these signaling molecules that promote stomatal closure. Unexpectedly, exogenous sinapic acid application prevented stomatal closure of WT, brt1 and sng1 plants. In summary, we hypothesize that SG or other sinapate esters may promote the UV-B-induced malate accumulation and stomatal closure, whereas sinapic acid inhibits the ROS-NO pathway that regulates UV-B-induced cytosolic Ca2+ accumulation and stomatal closure.
Collapse
Affiliation(s)
- Weiqiang Li
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| | - Yaru Sun
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| | - Kun Li
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| | - Hongtao Tian
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| | - Jiangtao Jia
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| | - Hongyu Zhang
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| | - Yaping Wang
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| | - Hong Wang
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| | - Baodi Bi
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| | - Jinggong Guo
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, 1006 Canton Ave, Lubbock, TX 79409, USA
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| |
Collapse
|
11
|
Li L, Jin Z, Huang R, Zhou J, Song F, Yao L, Li P, Lu W, Xiao L, Quan M, Zhang D, Du Q. Leaf physiology variations are modulated by natural variations that underlie stomatal morphology in Populus. PLANT, CELL & ENVIRONMENT 2023; 46:150-170. [PMID: 36285358 DOI: 10.1111/pce.14471] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/16/2023]
Abstract
Stomata are essential for photosynthesis and abiotic stress tolerance. Here, we used multiomics approaches to dissect the genetic architecture and adaptive mechanisms that underlie stomatal morphology in Populus tomentosa juvenile natural population (303 accessions). We detected 46 candidate genes and 15 epistatic gene-pairs, associated with 5 stomatal morphologies and 18 leaf development and photosynthesis traits, through genome-wide association studies. Expression quantitative trait locus mapping revealed that stomata-associated gene loci were significantly associated with the expression of leaf-related genes; selective sweep analysis uncovered significant differentiation in the allele frequencies of genes that underlie stomatal variations. An allelic regulatory network operating under drought stress and adequate precipitation conditions, with three key regulators (DUF538, TRA2 and AbFH2) and eight interacting genes, was identified that might regulate leaf physiology via modulation of stomatal shape and density. Validation of candidate gene variations in drought-tolerant and F1 hybrid populations of P. tomentosa showed that the DUF538, TRA2 and AbFH2 loci cause functional stabilisation of spatiotemporal regulatory, whose favourable alleles can be faithfully transmitted to offspring. This study provides insights concerning leaf physiology and stress tolerance via the regulation of stomatal determination in perennial plants.
Collapse
Affiliation(s)
- Lianzheng Li
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Zhuoying Jin
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Rui Huang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Jiaxuan Zhou
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Fangyuan Song
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Liangchen Yao
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Peng Li
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Wenjie Lu
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Liang Xiao
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Mingyang Quan
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Deqiang Zhang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Qingzhang Du
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| |
Collapse
|
12
|
Jiang W, Tong T, Chen X, Deng F, Zeng F, Pan R, Zhang W, Chen G, Chen ZH. Molecular response and evolution of plant anion transport systems to abiotic stress. PLANT MOLECULAR BIOLOGY 2022; 110:397-412. [PMID: 34846607 DOI: 10.1007/s11103-021-01216-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
We propose that anion channels are essential players for green plants to respond and adapt to the abiotic stresses associated changing climate via reviewing the literature and analyzing the molecular evolution, comparative genetic analysis, and bioinformatics analysis of the key anion channel gene families. Climate change-induced abiotic stresses including heatwave, elevated CO2, drought, and flooding, had a major impact on plant growth in the last few decades. This scenario could lead to the exposure of plants to various stresses. Anion channels are confirmed as the key factors in plant stress responses, which exist in the green lineage plants. Numerous studies on anion channels have shed light on their protein structure, ion selectivity and permeability, gating characteristics, and regulatory mechanisms, but a great quantity of questions remain poorly understand. Here, we review function of plant anion channels in cell signaling to improve plant response to environmental stresses, focusing on climate change related abiotic stresses. We investigate the molecular response and evolution of plant slow anion channel, aluminum-activated malate transporter, chloride channel, voltage-dependent anion channel, and mechanosensitive-like anion channel in green plant. Furthermore, comparative genetic and bioinformatic analysis reveal the conservation of these anion channel gene families. We also discuss the tissue and stress specific expression, molecular regulation, and signaling transduction of those anion channels. We propose that anion channels are essential players for green plants to adapt in a diverse environment, calling for more fundamental and practical studies on those anion channels towards sustainable food production and ecosystem health in the future.
Collapse
Affiliation(s)
- Wei Jiang
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Tao Tong
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xuan Chen
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Fenglin Deng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Fanrong Zeng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Rui Pan
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou, China.
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia.
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.
| |
Collapse
|
13
|
Inoue S, Hayashi M, Huang S, Yokosho K, Gotoh E, Ikematsu S, Okumura M, Suzuki T, Kamura T, Kinoshita T, Ma JF. A tonoplast-localized magnesium transporter is crucial for stomatal opening in Arabidopsis under high Mg 2+ conditions. THE NEW PHYTOLOGIST 2022; 236:864-877. [PMID: 35976788 PMCID: PMC9804957 DOI: 10.1111/nph.18410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Plant stomata play an important role in CO2 uptake for photosynthesis and transpiration, but the mechanisms underlying stomatal opening and closing under changing environmental conditions are still not completely understood. Through large-scale genetic screening, we isolated an Arabidopsis mutant (closed stomata2 (cst2)) that is defective in stomatal opening. We cloned the causal gene (MGR1/CST2) and functionally characterized this gene. The mutant phenotype was caused by a mutation in a gene encoding an unknown protein with similarities to the human magnesium (Mg2+ ) efflux transporter ACDP/CNNM. MGR1/CST2 was localized to the tonoplast and showed transport activity for Mg2+ . This protein was constitutively and highly expressed in guard cells. Knockout of this gene resulted in stomatal closing, decreased photosynthesis and growth retardation, especially under high Mg2+ conditions, while overexpression of this gene increased stomatal opening and tolerance to high Mg2+ concentrations. Furthermore, guard cell-specific expression of MGR1/CST2 in the mutant partially restored its stomatal opening. Our results indicate that MGR1/CST2 expression in the leaf guard cells plays an important role in maintaining cytosolic Mg2+ concentrations through sequestering Mg2+ into vacuoles, which is required for stomatal opening, especially under high Mg2+ conditions.
Collapse
Affiliation(s)
- Shin‐ichiro Inoue
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoyaAichi464‐8602Japan
| | - Maki Hayashi
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoyaAichi464‐8602Japan
| | - Sheng Huang
- Institute of Plant Science and ResourcesOkayama UniversityChuo 2‐20‐1Kurashiki710‐0046Japan
| | - Kengo Yokosho
- Institute of Plant Science and ResourcesOkayama UniversityChuo 2‐20‐1Kurashiki710‐0046Japan
| | - Eiji Gotoh
- Department of Forest Environmental Sciences, Faculty of AgricultureKyushu University744 MotookaFukuoka819‐0395Japan
| | - Shuka Ikematsu
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityFuro‐cho, ChikusaNagoya464‐8602Japan
| | - Masaki Okumura
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoyaAichi464‐8602Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and BiotechnologyChubu UniversityKasugai‐shiAichi487‐8501Japan
| | - Takumi Kamura
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoyaAichi464‐8602Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoyaAichi464‐8602Japan
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityFuro‐cho, ChikusaNagoya464‐8602Japan
| | - Jian Feng Ma
- Institute of Plant Science and ResourcesOkayama UniversityChuo 2‐20‐1Kurashiki710‐0046Japan
| |
Collapse
|
14
|
Peng P, Li R, Chen ZH, Wang Y. Stomata at the crossroad of molecular interaction between biotic and abiotic stress responses in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1031891. [PMID: 36311113 PMCID: PMC9614343 DOI: 10.3389/fpls.2022.1031891] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Increasing global food production is threatened by harsh environmental conditions along with biotic stresses, requiring massive new research into integrated stress resistance in plants. Stomata play a pivotal role in response to many biotic and abiotic stresses, but their orchestrated interactions at the molecular, physiological, and biochemical levels were less investigated. Here, we reviewed the influence of drought, pathogen, and insect herbivory on stomata to provide a comprehensive overview in the context of stomatal regulation. We also summarized the molecular mechanisms of stomatal response triggered by these stresses. To further investigate the effect of stomata-herbivore interaction at a transcriptional level, integrated transcriptome studies from different plant species attacked by different pests revealed evidence of the crosstalk between abiotic and biotic stress. Comprehensive understanding of the involvement of stomata in some plant-herbivore interactions may be an essential step towards herbivores' manipulation of plants, which provides insights for the development of integrated pest management strategies. Moreover, we proposed that stomata can function as important modulators of plant response to stress combination, representing an exciting frontier of plant science with a broad and precise view of plant biotic interactions.
Collapse
Affiliation(s)
- Pengshuai Peng
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rui Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Yuanyuan Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Rui M, Jing Y, Jiang H, Wang Y. Quantitative System Modeling Bridges the Gap between Macro- and Microscopic Stomatal Model. Adv Biol (Weinh) 2022; 6:e2200131. [PMID: 35957522 DOI: 10.1002/adbi.202200131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/21/2022] [Indexed: 01/28/2023]
Abstract
An understanding of stomatal function is vital for the carbon and water cycle in nature. In the past decades, various stomatal models with different functions have been established to investigate and predict stomatal behavior and its association with plants' responses to the changing climate, but with limited biological information provided. On the other hand, many stomatal models at the molecular level focus on simulating and predicting molecular practices and ignore the dynamic quantitative information. As a result, stomatal models are often divided between the microscopic and macroscopic scales. Quantitative systems analysis offers an effective in silico approach to explore the link between microscopic gene function and macroscopic physiological traits. As a first step, a systems model, OnGuard, is developed for the investigation of guard cell ion homeostasis and its relevance to the dynamic stomatal movements. The system model has already yielded a series of important predictions to guide molecular physiological studies in stomata. It also exhibits great potential in breeding practice, which represents a key step toward "Breeding by design" of improving plant carbon-water use efficiency. Here, the development of stomatal models is reviewed, and the future perspectives on stomatal modeling for agricultural and ecological applications are discussed.
Collapse
Affiliation(s)
- Mengmeng Rui
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yi Jing
- BGI-Sanya, Sanya, 572025, P. R. China
| | - Hangjin Jiang
- Center for Data Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yizhou Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, P. R. China.,Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, P. R. China.,Zhejiang Provincial Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
16
|
Abstract
Plant hormones are signalling compounds that regulate crucial aspects of growth, development and environmental stress responses. Abiotic stresses, such as drought, salinity, heat, cold and flooding, have profound effects on plant growth and survival. Adaptation and tolerance to such stresses require sophisticated sensing, signalling and stress response mechanisms. In this Review, we discuss recent advances in understanding how diverse plant hormones control abiotic stress responses in plants and highlight points of hormonal crosstalk during abiotic stress signalling. Control mechanisms and stress responses mediated by plant hormones including abscisic acid, auxin, brassinosteroids, cytokinins, ethylene and gibberellins are discussed. We discuss new insights into osmotic stress sensing and signalling mechanisms, hormonal control of gene regulation and plant development during stress, hormone-regulated submergence tolerance and stomatal movements. We further explore how innovative imaging approaches are providing insights into single-cell and tissue hormone dynamics. Understanding stress tolerance mechanisms opens new opportunities for agricultural applications.
Collapse
|
17
|
Kang BH, Anderson CT, Arimura SI, Bayer E, Bezanilla M, Botella MA, Brandizzi F, Burch-Smith TM, Chapman KD, Dünser K, Gu Y, Jaillais Y, Kirchhoff H, Otegui MS, Rosado A, Tang Y, Kleine-Vehn J, Wang P, Zolman BK. A glossary of plant cell structures: Current insights and future questions. THE PLANT CELL 2022; 34:10-52. [PMID: 34633455 PMCID: PMC8846186 DOI: 10.1093/plcell/koab247] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 05/03/2023]
Abstract
In this glossary of plant cell structures, we asked experts to summarize a present-day view of plant organelles and structures, including a discussion of outstanding questions. In the following short reviews, the authors discuss the complexities of the plant cell endomembrane system, exciting connections between organelles, novel insights into peroxisome structure and function, dynamics of mitochondria, and the mysteries that need to be unlocked from the plant cell wall. These discussions are focused through a lens of new microscopy techniques. Advanced imaging has uncovered unexpected shapes, dynamics, and intricate membrane formations. With a continued focus in the next decade, these imaging modalities coupled with functional studies are sure to begin to unravel mysteries of the plant cell.
Collapse
Affiliation(s)
- Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | - Shin-ichi Arimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Emmanuelle Bayer
- Université de Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, Villenave d'Ornon F-33140, France
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga 29071, Spain
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | - Kai Dünser
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Yangnan Gu
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Abel Rosado
- Department of Botany, University of British Columbia, Vancouver V6T1Z4, Canada
| | - Yu Tang
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Jürgen Kleine-Vehn
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bethany Karlin Zolman
- Department of Biology, University of Missouri, St. Louis, St. Louis, Missouri 63121, USA
| |
Collapse
|
18
|
Codjoe JM, Miller K, Haswell ES. Plant cell mechanobiology: Greater than the sum of its parts. THE PLANT CELL 2022; 34:129-145. [PMID: 34524447 PMCID: PMC8773992 DOI: 10.1093/plcell/koab230] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/09/2021] [Indexed: 05/04/2023]
Abstract
The ability to sense and respond to physical forces is critical for the proper function of cells, tissues, and organisms across the evolutionary tree. Plants sense gravity, osmotic conditions, pathogen invasion, wind, and the presence of barriers in the soil, and dynamically integrate internal and external stimuli during every stage of growth and development. While the field of plant mechanobiology is growing, much is still poorly understood-including the interplay between mechanical and biochemical information at the single-cell level. In this review, we provide an overview of the mechanical properties of three main components of the plant cell and the mechanoperceptive pathways that link them, with an emphasis on areas of complexity and interaction. We discuss the concept of mechanical homeostasis, or "mechanostasis," and examine the ways in which cellular structures and pathways serve to maintain it. We argue that viewing mechanics and mechanotransduction as emergent properties of the plant cell can be a useful conceptual framework for synthesizing current knowledge and driving future research.
Collapse
Affiliation(s)
- Jennette M Codjoe
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St Louis, St Louis, Missouri, 63130, USA
| | - Kari Miller
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St Louis, St Louis, Missouri, 63130, USA
| | | |
Collapse
|
19
|
Reis ADP, Carvalho RF, Costa IB, Girio RJS, Gualberto R, Spers RC, Gaion LA. Hydrogen peroxide is involved in drought stress long-distance signaling controlling early stomatal closure in tomato plants. BRAZ J BIOL 2022; 82:e267343. [DOI: 10.1590/1519-6984.267343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract It has long been hypothesized that hydrogen peroxide (H2O2) may play an essential role in root-to-shoot long-distance signaling during drought conditions. Thus, to better understand the involvement of H2O2 in drought signaling, two experiments were carried out using tomato plants. In the first experiment, a split-root scheme was used, while in the second experiment, the tomato plants were grown in a single pot and subjected to drought stress. In both experiments, H2O2 and catalase were applied together with irrigation. Control plants continued to be irrigated according to the water loss. In the split-root experiment, it was verified that the application of H2O2 to roots induced a clear reduction in plant transpiration compared to untreated or catalase-treated plants. In the second experiment, we observed that H2O2-treated plants exhibited similar transpiration when compared to untreated and catalase-treated plants under drought stress. Similarly, no difference in water use efficiency was observed. Thus, we conclude that the increase in H2O2 in the root system can act as a long-distance signal leading to reduced transpiration even when there is no water limitation in the shoot. But it has little effect when there is a reduction in the shoot water potential.
Collapse
|
20
|
Kashtoh H, Baek KH. Structural and Functional Insights into the Role of Guard Cell Ion Channels in Abiotic Stress-Induced Stomatal Closure. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122774. [PMID: 34961246 PMCID: PMC8707303 DOI: 10.3390/plants10122774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
A stomatal pore is formed by a pair of specialized guard cells and serves as a major gateway for water transpiration and atmospheric CO2 influx for photosynthesis in plants. These pores must be tightly controlled, as inadequate CO2 intake and excessive water loss are devastating for plants. When the plants are exposed to extreme weather conditions such as high CO2 levels, O3, low air humidity, and drought, the turgor pressure of the guard cells exhibits an appropriate response against these stresses, which leads to stomatal closure. This phenomenon involves a complex network of ion channels and their regulation. It is well-established that the turgor pressure of guard cells is regulated by ions transportation across the membrane, such as anions and potassium ions. In this review, the guard cell ion channels are discussed, highlighting the structure and functions of key ion channels; the SLAC1 anion channel and KAT1 potassium channel, and their regulatory components, emphasizing their significance in guard cell response to various stimuli.
Collapse
|
21
|
Abhilasha A, Roy Choudhury S. Molecular and Physiological Perspectives of Abscisic Acid Mediated Drought Adjustment Strategies. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122769. [PMID: 34961239 PMCID: PMC8708728 DOI: 10.3390/plants10122769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/11/2021] [Indexed: 05/15/2023]
Abstract
Drought is the most prevalent unfavorable condition that impairs plant growth and development by altering morphological, physiological, and biochemical functions, thereby impeding plant biomass production. To survive the adverse effects, water limiting condition triggers a sophisticated adjustment mechanism orchestrated mainly by hormones that directly protect plants via the stimulation of several signaling cascades. Predominantly, water deficit signals cause the increase in the level of endogenous ABA, which elicits signaling pathways involving transcription factors that enhance resistance mechanisms to combat drought-stimulated damage in plants. These responses mainly include stomatal closure, seed dormancy, cuticular wax deposition, leaf senescence, and alteration of the shoot and root growth. Unraveling how plants adjust to drought could provide valuable information, and a comprehensive understanding of the resistance mechanisms will help researchers design ways to improve crop performance under water limiting conditions. This review deals with the past and recent updates of ABA-mediated molecular mechanisms that plants can implement to cope with the challenges of drought stress.
Collapse
|
22
|
Medeiros DB, Aarabi F, Martinez Rivas FJ, Fernie AR. The knowns and unknowns of intracellular partitioning of carbon and nitrogen, with focus on the organic acid-mediated interplay between mitochondrion and chloroplast. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153521. [PMID: 34537467 DOI: 10.1016/j.jplph.2021.153521] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The presence of specialized cellular compartments in higher plants express an extraordinary degree of intracellular organization, which provides efficient mechanisms to avoid misbalancing of the metabolism. This offers the flexibility by which plants can quickly acclimate to fluctuating environmental conditions. For that, a fine temporal and spatial regulation of metabolic pathways is required and involves several players e.g. organic acids. In this review we discuss different facets of the organic acid metabolism within plant cells with special focus to those related to the interactions between organic acids compartmentalization and the partitioning of carbon and nitrogen. The connections between organic acids and CO2 assimilation, tricarboxylic acid (TCA) cycle, amino acids metabolism, and redox status are highlighted. Moreover, the key enzymes and transporters as well as their function on the coordination of interorganellar metabolic exchanges are discussed.
Collapse
Affiliation(s)
- David B Medeiros
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany.
| | - Fayezeh Aarabi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|
23
|
Gong L, Liu XD, Zeng YY, Tian XQ, Li YL, Turner NC, Fang XW. Stomatal morphology and physiology explain varied sensitivity to abscisic acid across vascular plant lineages. PLANT PHYSIOLOGY 2021; 186:782-797. [PMID: 33620497 PMCID: PMC8154066 DOI: 10.1093/plphys/kiab090] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/28/2021] [Indexed: 05/10/2023]
Abstract
Abscisic acid (ABA) can induce rapid stomatal closure in seed plants, but the action of this hormone on the stomata of fern and lycophyte species remains equivocal. Here, ABA-induced stomatal closure, signaling components, guard cell K+ and Ca2+ fluxes, vacuolar and actin cytoskeleton dynamics, and the permeability coefficient of guard cell protoplasts (Pf) were analyzed in species spanning the diversity of vascular land plants including 11 seed plants, 6 ferns, and 1 lycophyte. We found that all 11 seed plants exhibited ABA-induced stomatal closure, but the fern and lycophyte species did not. ABA-induced hydrogen peroxide elevation was observed in all species, but the signaling pathway downstream of nitric oxide production, including ion channel activation, was only observed in seed plants. In the angiosperm faba bean (Vicia faba), ABA application caused large vacuolar compartments to disaggregate, actin filaments to disintegrate into short fragments and Pf to increase. None of these changes was observed in the guard cells of the fern Matteuccia struthiopteris and lycophyte Selaginella moellendorffii treated with ABA, but a hypertonic osmotic solution did induce stomatal closure in fern and the lycophyte. Our results suggest that there is a major difference in the regulation of stomata between the fern and lycophyte plants and the seed plants. Importantly, these findings have uncovered the physiological and biophysical mechanisms that may have been responsible for the evolution of a stomatal response to ABA in the earliest seed plants.
Collapse
Affiliation(s)
- Lei Gong
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xu-Dong Liu
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuan-Yuan Zeng
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xue-Qian Tian
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yan-Lu Li
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Neil C Turner
- The UWA Institute of Agriculture and UWA School of Agriculture and Environment, The University of Western Australia, M082, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Xiang-Wen Fang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- Author for communication: (X.W.F.)
| |
Collapse
|
24
|
Polyamine Metabolism in Scots Pine Embryogenic Cells under Potassium Deficiency. Cells 2021; 10:cells10051244. [PMID: 34070116 PMCID: PMC8158353 DOI: 10.3390/cells10051244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
Polyamines (PA) have a protective role in maintaining growth and development in Scots pine during abiotic stresses. In the present study, a controlled liquid Scots pine embryogenic cell culture was used for studying the responses of PA metabolism related to potassium deficiency. The transcription level regulation of PA metabolism led to the accumulation of putrescine (Put). Arginine decarboxylase (ADC) had an increased expression trend under potassium deficiency, whereas spermidine synthase (SPDS) expression decreased. Generally, free spermidine (Spd) and spermine (Spm)/ thermospermine (t-Spm) contents were kept relatively stable, mostly by the downregulation of polyamine oxidase (PAO) expression. The low potassium contents in the culture medium decreased the potassium content of the cells, which inhibited cell mass growth, but did not affect cell viability. The reduced growth was probably caused by repressed metabolic activity and cell division, whereas there were no signs of H2O2-induced oxidative stress or increased cell death. The low intracellular content of K+ decreased the content of Na+. The decrease in the pH of the culture medium indicated that H+ ions were pumped out of the cells. Altogether, our findings emphasize the specific role(s) of Put under potassium deficiency and strict developmental regulation of PA metabolism in Scots pine.
Collapse
|
25
|
Cubero-Font P, De Angeli A. Connecting vacuolar and plasma membrane transport networks. THE NEW PHYTOLOGIST 2021; 229:755-762. [PMID: 33007120 DOI: 10.1111/nph.16983] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/01/2020] [Indexed: 05/12/2023]
Abstract
The coordinated control of ion transport across the two major membranes of differentiated plant cells, the plasma and the vacuolar membranes, is fundamental in cell physiology. The stomata responses to the fluctuating environmental conditions are an illustrative example. Indeed, they rely on the coordination of ion fluxes between the different cell compartments. The cytosolic environment, which is an interface between intracellular compartments, and the activity of the ion transporters localised in the different membranes influence one each other. Here we analyse the molecular mechanisms connecting and modulating the transport processes at both the plasma and the vacuolar membranes of guard cells.
Collapse
Affiliation(s)
- Paloma Cubero-Font
- BPMP, Université de Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, 34060, France
| | - Alexis De Angeli
- BPMP, Université de Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, 34060, France
| |
Collapse
|
26
|
Dynamics of Chlorine Content in Leaves of Woody Plants of Protection Forest Bands in the City of Zaporizhzhya. EKOLÓGIA (BRATISLAVA) 2020. [DOI: 10.2478/eko-2020-0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
As a result of the activity of industrial enterprises, atmospheric air is being contaminated by gaseous pollutants. Such substances as chlorine and hydrogen chloride are considered to be harmful for both humans and plants. Vegetation is a universal filter that is able to combat the environmental pollution by industrial emissions with the help of appropriate technical facilities. The aim of this study is to analyze the level of accumulation of chlorine in the leaves of woody plants that grow in the area of forest plantations of sanitary protection zones of industrial enterprises. The objects of the study were the species of woody plants in the area of protective plantations of a number of enterprises in Zaporizhzhya: ZTMC, ZALК, ZABR, Zaporizhstal, Zaporizhzhya Ferroalloy Plant, Zaporizhvohnetryv, Ukrgrafit and Zaporizhtransformator. We established that during the vegetation period, a gradual accumulation of the element was the most intense in mature leaves, whose growth had already ceased. The maximum amount of chlorine was found at the end of the vegetation period. The concentration of the pollutant in leaves of woody plants in the area of sanitary protection zones of industrial enterprises is linearly proportional to the level of emissions of the pollutant into the atmosphere by a given enterprise. The largest coefficient of relative accumulation of chlorine in the leaves of such plants as Catalpa bignonioides, Acer negundo, Robinia pseudoacacia, Juglans regia, Populus alba, which can be used as information sites for the purpose of bioindication of atmospheric air pollution with chlorides, was established.
Collapse
|
27
|
Waadt R, Köster P, Andrés Z, Waadt C, Bradamante G, Lampou K, Kudla J, Schumacher K. Dual-Reporting Transcriptionally Linked Genetically Encoded Fluorescent Indicators Resolve the Spatiotemporal Coordination of Cytosolic Abscisic Acid and Second Messenger Dynamics in Arabidopsis. THE PLANT CELL 2020; 32:2582-2601. [PMID: 32471862 PMCID: PMC7401017 DOI: 10.1105/tpc.19.00892] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/29/2020] [Accepted: 05/25/2020] [Indexed: 05/16/2023]
Abstract
Deciphering signal transduction processes is crucial for understanding how plants sense and respond to environmental changes. Various chemical compounds function as central messengers within deeply intertwined signaling networks. How such compounds act in concert remains to be elucidated. We have developed dual-reporting transcriptionally linked genetically encoded fluorescent indicators (2-in-1-GEFIs) for multiparametric in vivo analyses of the phytohormone abscisic acid (ABA), Ca2+, protons (H+), chloride (anions), the glutathione redox potential, and H2O2 Simultaneous analyses of two signaling compounds in Arabidopsis (Arabidopsis thaliana) roots revealed that ABA treatment and uptake did not trigger rapid cytosolic Ca2+ or H+ dynamics. Glutamate, ATP, Arabidopsis PLANT ELICITOR PEPTIDE, and glutathione disulfide (GSSG) treatments induced rapid spatiotemporally overlapping cytosolic Ca2+, H+, and anion dynamics, but except for GSSG, only weakly affected the cytosolic redox state. Overall, 2-in-1-GEFIs enable complementary, high-resolution in vivo analyses of signaling compound dynamics and facilitate an advanced understanding of the spatiotemporal coordination of signal transduction processes in Arabidopsis.
Collapse
Affiliation(s)
- Rainer Waadt
- Entwicklungsbiologie der Pflanzen, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Philipp Köster
- Molekulare Genetik und Zellbiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Zaida Andrés
- Entwicklungsbiologie der Pflanzen, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | | | - Gabriele Bradamante
- Entwicklungsbiologie der Pflanzen, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Konstantinos Lampou
- Entwicklungsbiologie der Pflanzen, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Jörg Kudla
- Molekulare Genetik und Zellbiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Karin Schumacher
- Entwicklungsbiologie der Pflanzen, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
28
|
Hagihara T, Toyota M. Mechanical Signaling in the Sensitive Plant Mimosa pudica L. PLANTS (BASEL, SWITZERLAND) 2020; 9:E587. [PMID: 32375332 PMCID: PMC7284940 DOI: 10.3390/plants9050587] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 01/10/2023]
Abstract
As sessile organisms, plants do not possess the nerves and muscles that facilitate movement in most animals. However, several plant species can move quickly in response to various stimuli (e.g., touch). One such plant species, Mimosa pudica L., possesses the motor organ pulvinus at the junction of the leaflet-rachilla, rachilla-petiole, and petiole-stem, and upon mechanical stimulation, this organ immediately closes the leaflets and moves the petiole. Previous electrophysiological studies have demonstrated that a long-distance and rapid electrical signal propagates through M. pudica in response to mechanical stimulation. Furthermore, the spatial and temporal patterns of the action potential in the pulvinar motor cells were found to be closely correlated with rapid movements. In this review, we summarize findings from past research and discuss the mechanisms underlying long-distance signal transduction in M. pudica. We also propose a model in which the action potential, followed by water flux (i.e., a loss of turgor pressure) in the pulvinar motor cells is a critical step to enable rapid movement.
Collapse
Affiliation(s)
- Takuma Hagihara
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama 338-8570, Japan;
| | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama 338-8570, Japan;
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
29
|
Matthews JSA, Vialet-Chabrand S, Lawson T. Role of blue and red light in stomatal dynamic behaviour. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2253-2269. [PMID: 31872212 PMCID: PMC7134916 DOI: 10.1093/jxb/erz563] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/19/2019] [Indexed: 05/20/2023]
Abstract
Plants experience changes in light intensity and quality due to variations in solar angle and shading from clouds and overlapping leaves. Stomatal opening to increasing irradiance is often an order of magnitude slower than photosynthetic responses, which can result in CO2 diffusional limitations on leaf photosynthesis, as well as unnecessary water loss when stomata continue to open after photosynthesis has reached saturation. Stomatal opening to light is driven by two distinct pathways; the 'red' or photosynthetic response that occurs at high fluence rates and saturates with photosynthesis, and is thought to be the main mechanism that coordinates stomatal behaviour with photosynthesis; and the guard cell-specific 'blue' light response that saturates at low fluence rates, and is often considered independent of photosynthesis, and important for early morning stomatal opening. Here we review the literature on these complicated signal transduction pathways and osmoregulatory processes in guard cells that are influenced by the light environment. We discuss the possibility of tuning the sensitivity and magnitude of stomatal response to blue light which potentially represents a novel target to develop ideotypes with the 'ideal' balance between carbon gain, evaporative cooling, and maintenance of hydraulic status that is crucial for maximizing crop performance and productivity.
Collapse
Affiliation(s)
- Jack S A Matthews
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | | | - Tracy Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| |
Collapse
|
30
|
Raddatz N, Morales de los Ríos L, Lindahl M, Quintero FJ, Pardo JM. Coordinated Transport of Nitrate, Potassium, and Sodium. FRONTIERS IN PLANT SCIENCE 2020; 11:247. [PMID: 32211003 PMCID: PMC7067972 DOI: 10.3389/fpls.2020.00247] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/18/2020] [Indexed: 05/19/2023]
Abstract
Potassium (K+) and nitrogen (N) are essential nutrients, and their absorption and distribution within the plant must be coordinated for optimal growth and development. Potassium is involved in charge balance of inorganic and organic anions and macromolecules, control of membrane electrical potential, pH homeostasis and the regulation of cell osmotic pressure, whereas nitrogen is an essential component of amino acids, proteins, and nucleic acids. Nitrate (NO3 -) is often the primary nitrogen source, but it also serves as a signaling molecule to the plant. Nitrate regulates root architecture, stimulates shoot growth, delays flowering, regulates abscisic acid-independent stomata opening, and relieves seed dormancy. Plants can sense K+/NO3 - levels in soils and adjust accordingly the uptake and root-to-shoot transport to balance the distribution of these ions between organs. On the other hand, in small amounts sodium (Na+) is categorized as a "beneficial element" for plants, mainly as a "cheap" osmolyte. However, at high concentrations in the soil, Na+ can inhibit various physiological processes impairing plant growth. Hence, plants have developed specific mechanisms to transport, sense, and respond to a variety of Na+ conditions. Sodium is taken up by many K+ transporters, and a large proportion of Na+ ions accumulated in shoots appear to be loaded into the xylem by systems that show nitrate dependence. Thus, an adequate supply of mineral nutrients is paramount to reduce the noxious effects of salts and to sustain crop productivity under salt stress. In this review, we will focus on recent research unraveling the mechanisms that coordinate the K+-NO3 -; Na+-NO3 -, and K+-Na+ transports, and the regulators controlling their uptake and allocation.
Collapse
Affiliation(s)
| | | | | | | | - José M. Pardo
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| |
Collapse
|
31
|
Shafaque S, Ma Y, Rui M, He B, Zhu Z, Cao F, Wu F, Wang Y. Optimized Protocol for OnGuard2 Software in Studying Guard Cell Membrane Transport and Stomatal Physiology. FRONTIERS IN PLANT SCIENCE 2020; 11:131. [PMID: 32153622 PMCID: PMC7047851 DOI: 10.3389/fpls.2020.00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Stomata are key innovation in plants that drives the global carbon and water cycle. In the past few decades, many stomatal models have been developed for studying gas exchange, photosynthesis, and transpirational characteristics of plants, but they provide limited information on stomatal mechanisms at the molecular and cellular levels. Quantitative mathematical modeling offers an effective in silico approach to explore the link between microscopic transporter functioning and the macroscopic stomatal characteristics. As a first step, a dynamic system model based on the guard cell membrane transport system was developed and encoded in the OnGuard software. This software has already generated a wealth of testable predictions and outcomes sufficient to guide phenotypic and mutational studies. It has a user-friendly interface, which can be easily accessed by researchers to manipulate the key elements and parameters in the system for guard cell simulation in plants. To promote the adoption of this OnGuard application, here we outline a standard protocol that will enable users with experience in basic plant physiology, cell biology, and membrane transport to advance quickly in learning to use it.
Collapse
Affiliation(s)
- Sehar Shafaque
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Yue Ma
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Mengmeng Rui
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Bingqing He
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Ziyi Zhu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Fangbing Cao
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Feibo Wu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yizhou Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Gray A, Liu L, Facette M. Flanking Support: How Subsidiary Cells Contribute to Stomatal Form and Function. FRONTIERS IN PLANT SCIENCE 2020; 11:881. [PMID: 32714346 PMCID: PMC7343895 DOI: 10.3389/fpls.2020.00881] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/29/2020] [Indexed: 05/18/2023]
Abstract
Few evolutionary adaptations in plants were so critical as the stomatal complex. This structure allows transpiration and efficient gas exchange with the atmosphere. Plants have evolved numerous distinct stomatal architectures to facilitate gas exchange, while balancing water loss and protection from pathogens that can egress via the stomatal pore. Some plants have simple stomata composed of two kidney-shaped guard cells; however, the stomatal apparatus of many plants includes subsidiary cells. Guard cells and subsidiary cells may originate from a single cell lineage, or subsidiary cells may be recruited from cells adjacent to the guard mother cell. The number and morphology of subsidiary cells varies dramatically, and subsidiary cell function is also varied. Subsidiary cells may support guard cell function by offering a mechanical advantage that facilitates guard cell movements, and/or by acting as a reservoir for water and ions. In other cases, subsidiary cells introduce or enhance certain morphologies (such as sunken stomata) that affect gas exchange. Here we review the diversity of stomatal morphology with an emphasis on multi-cellular stomata that include subsidiary cells. We will discuss how subsidiary cells arise and the divisions that produce them; and provide examples of anatomical, mechanical and biochemical consequences of subsidiary cells on stomatal function.
Collapse
|
33
|
Saito S, Uozumi N. Calcium-Regulated Phosphorylation Systems Controlling Uptake and Balance of Plant Nutrients. FRONTIERS IN PLANT SCIENCE 2020; 11:44. [PMID: 32117382 PMCID: PMC7026023 DOI: 10.3389/fpls.2020.00044] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/14/2020] [Indexed: 05/18/2023]
Abstract
Essential elements taken up from the soil and distributed throughout the whole plant play diverse roles in different tissues. Cations and anions contribute to maintenance of intracellular osmolarity and the formation of membrane potential, while nitrate, ammonium, and sulfate are incorporated into amino acids and other organic compounds. In contrast to these ion species, calcium concentrations are usually kept low in the cytosol and calcium displays unique behavior as a cytosolic signaling molecule. Various environmental stresses stimulate increases in the cytosolic calcium concentration, leading to activation of calcium-regulated protein kinases and downstream signaling pathways. In this review, we summarize the stress responsive regulation of nutrient uptake and balancing by two types of calcium-regulated phosphorylation systems: CPK and CBL-CIPK. CPK is a family of protein kinases activated by calcium. CBL is a group of calcium sensor proteins that interact with CIPK kinases, which phosphorylate their downstream targets. In Arabidopsis, quite a few ion transport systems are regulated by CPKs or CBL-CIPK complexes, including channels/transporters that mediate transport of potassium (KAT1, KAT2, GORK, AKT1, AKT2, HAK5, SPIK), sodium (SOS1), ammonium (AMT1;1, AMT1;2), nitrate and chloride (SLAC1, SLAH2, SLAH3, NRT1.1, NRT2.4, NRT2.5), and proton (AHA2, V-ATPase). CPKs and CBL-CIPKs also play a role in C/N nutrient response and in acquisition of magnesium and iron. This functional regulation by calcium-dependent phosphorylation systems ensures the growth of plants and enables them to acquire tolerance against various environmental stresses. Calcium serves as the key factor for the regulation of membrane transport systems.
Collapse
Affiliation(s)
- Shunya Saito
- *Correspondence: Shunya Saito, ; Nobuyuki Uozumi,
| | | |
Collapse
|
34
|
Asaoka M, Inoue SI, Gunji S, Kinoshita T, Maeshima M, Tsukaya H, Ferjani A. Excess Pyrophosphate within Guard Cells Delays Stomatal Closure. PLANT & CELL PHYSIOLOGY 2019; 60:875-887. [PMID: 30649470 DOI: 10.1093/pcp/pcz002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/28/2018] [Indexed: 05/08/2023]
Abstract
A variety of cellular metabolic reactions generate inorganic pyrophosphate (PPi) as an ATP hydrolysis byproduct. The vacuolar H+-translocating pyrophosphatase (H+-PPase) loss-of-function fugu5 mutant is susceptible to drought and displays pleotropic postgerminative growth defects due to excess PPi. It was recently reported that stomatal closure after abscisic acid (ABA) treatment is delayed in vhp1-1, a fugu5 allele. In contrast, we found that specific removal of PPi rescued all of the above fugu5 developmental and growth defects. Hence, we speculated that excess PPi itself, rather than vacuolar acidification, might delay stomatal closure. To test this hypothesis, we constructed transgenic plants expressing the yeast IPP1 gene (encoding a cytosolic pyrophosphatase) driven by a guard cell-specific promoter (pGC1::IPP1) in the fugu5 background. Our measurements confirmed stomatal closure defects in fugu5, further supporting a role for H+-PPase in stomatal functioning. Importantly, while pGC1::IPP1 transgenics morphologically mimicked fugu5, stomatal closure was restored in response to ABA and darkness. Quantification of water loss revealed that fugu5 stomata were almost completely insensitive to ABA. In addition, growth of pGC1::IPP1 plants was promoted compared to fugu5 throughout their life; however, it did not reach the wild type level. fugu5 also displayed an increased stomatal index, in violation of the one-cell-spacing rule, and phenotypes recovered upon removal of PPi by pAVP1::IPP1 (FUGU5, VHP1 and AVP1 are the same gene encoding H+-PPase), but not in the pGC1::IPP1 line. Taken together, these results clearly support our hypothesis that dysfunction in stomata is triggered by excess PPi within guard cells, probably via perturbed guard cell metabolism.
Collapse
Affiliation(s)
- Mariko Asaoka
- Department of Biology, Tokyo Gakugei University, Koganei-shi, Tokyo, Japan
| | - Shin-Ichiro Inoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Shizuka Gunji
- United Graduated School of Education, Tokyo Gakugei University, Tokyo, Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Aichi, Japan
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Koganei-shi, Tokyo, Japan
- United Graduated School of Education, Tokyo Gakugei University, Tokyo, Japan
| |
Collapse
|
35
|
Ragel P, Raddatz N, Leidi EO, Quintero FJ, Pardo JM. Regulation of K + Nutrition in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:281. [PMID: 30949187 PMCID: PMC6435592 DOI: 10.3389/fpls.2019.00281] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/20/2019] [Indexed: 05/17/2023]
Abstract
Modern agriculture relies on mineral fertilization. Unlike other major macronutrients, potassium (K+) is not incorporated into organic matter but remains as soluble ion in the cell sap contributing up to 10% of the dry organic matter. Consequently, K+ constitutes a chief osmoticum to drive cellular expansion and organ movements, such as stomata aperture. Moreover, K+ transport is critical for the control of cytoplasmic and luminal pH in endosomes, regulation of membrane potential, and enzyme activity. Not surprisingly, plants have evolved a large ensemble of K+ transporters with defined functions in nutrient uptake by roots, storage in vacuoles, and ion translocation between tissues and organs. This review describes critical transport proteins governing K+ nutrition, their regulation, and coordinated activity, and summarizes our current understanding of signaling pathways activated by K+ starvation.
Collapse
Affiliation(s)
- Paula Ragel
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
- Centre for Organismal Studies, Universität Heidelberg, Heidelberg, Germany
| | - Natalia Raddatz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
| | - Eduardo O. Leidi
- Instituto de Recursos Naturales y Agrobiologia de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain
| | - Francisco J. Quintero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
| | - José M. Pardo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
| |
Collapse
|
36
|
Phytohormone-Mediated Stomatal Response, Escape and Quiescence Strategies in Plants under Flooding Stress. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9020043] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Generally, flooding causes waterlogging or submergence stress which is considered as one of the most important abiotic factors that severely hinders plant growth and development. Plants might not complete their life cycle even in short duration of flooding. As biologically intelligent organisms, plants always try to resist or survive under such adverse circumstances by adapting a wide array of mechanisms including hormonal homeostasis. Under this mechanism, plants try to adapt through diverse morphological, physiological and molecular changes, including the closing of stomata, elongating of petioles, hollow stems or internodes, or maintaining minimum physiological activity to store energy to combat post-flooding stress and to continue normal growth and development. Mainly, ethylene, gibberellins (GA) and abscisic acid (ABA) are directly and/or indirectly involved in hormonal homeostasis mechanisms. Responses of specific genes or transcription factors or reactive oxygen species (ROS) maintain the equilibrium between stomatal opening and closing, which is one of the fastest responses in plants when encountering flooding stress conditions. In this review paper, the sequential steps of some of the hormone-dependent survival mechanisms of plants under flooding stress conditions have been critically discussed.
Collapse
|
37
|
Saito S, Uozumi N. Guard Cell Membrane Anion Transport Systems and Their Regulatory Components: An Elaborate Mechanism Controlling Stress-Induced Stomatal Closure. PLANTS 2019; 8:plants8010009. [PMID: 30609843 PMCID: PMC6359458 DOI: 10.3390/plants8010009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/19/2018] [Accepted: 12/16/2018] [Indexed: 02/07/2023]
Abstract
When plants are exposed to drastic environmental changes such as drought, salt or bacterial invasion, rapid stomatal movement confers tolerance to these stresses. This process involves a variety of guard cell expressed ion channels and their complex regulation network. Inward K+ channels mainly function in stomatal opening. On the other hand, guard cell anion channels play a crucial role in the closing of stomata, which is vital in terms of preventing water loss and bacterial entrance. Massive progress has been made on the research of these anion channels in the last decade. In this review, we focus on the function and regulation of Arabidopsis guard cell anion channels. Starting from SLAC1, a main contributor of stomatal closure, members of SLAHs (SLAC1 homologues), AtNRTs (Nitrate transporters), AtALMTs (Aluminum-activated malate transporters), ABC transporters, AtCLCs (Chloride channels), DTXs (Detoxification efflux carriers), SULTRs (Sulfate transporters), and their regulator components are reviewed. These membrane transport systems are the keys to maintaining cellular ion homeostasis against fluctuating external circumstances.
Collapse
Affiliation(s)
- Shunya Saito
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan.
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan.
| |
Collapse
|
38
|
Ragel P, Raddatz N, Leidi EO, Quintero FJ, Pardo JM. Regulation of K + Nutrition in Plants. FRONTIERS IN PLANT SCIENCE 2019. [PMID: 30949187 DOI: 10.3389/fpls.2019.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Modern agriculture relies on mineral fertilization. Unlike other major macronutrients, potassium (K+) is not incorporated into organic matter but remains as soluble ion in the cell sap contributing up to 10% of the dry organic matter. Consequently, K+ constitutes a chief osmoticum to drive cellular expansion and organ movements, such as stomata aperture. Moreover, K+ transport is critical for the control of cytoplasmic and luminal pH in endosomes, regulation of membrane potential, and enzyme activity. Not surprisingly, plants have evolved a large ensemble of K+ transporters with defined functions in nutrient uptake by roots, storage in vacuoles, and ion translocation between tissues and organs. This review describes critical transport proteins governing K+ nutrition, their regulation, and coordinated activity, and summarizes our current understanding of signaling pathways activated by K+ starvation.
Collapse
Affiliation(s)
- Paula Ragel
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
- Centre for Organismal Studies, Universität Heidelberg, Heidelberg, Germany
| | - Natalia Raddatz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
| | - Eduardo O Leidi
- Instituto de Recursos Naturales y Agrobiologia de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain
| | - Francisco J Quintero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
| | - José M Pardo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
| |
Collapse
|
39
|
Geilfus CM. Chloride: from Nutrient to Toxicant. PLANT & CELL PHYSIOLOGY 2018; 59:877-886. [PMID: 29660029 DOI: 10.1093/pcp/pcy071] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/05/2018] [Indexed: 05/25/2023]
Abstract
In salinized soils in which chloride (Cl-) is the dominant salt anion, growth of plants that tolerate only low concentrations of salt (glycophytes) is disturbed by Cl- toxicity. Chlorotic discolorations precede necrotic lesions, causing yield reductions. Little is known about the effects of Cl- toxicity on these dysfunctions. A lack of understanding exists regarding (i) the molecular and physiological mechanisms that lead to Cl--induced damage and (ii) the adaptive aspects of induced tolerance to Cl- salinity. Here, mechanistic explanations for the Cl--induced stress responses are proposed and novel ideas and strategies by which glycophytic plants avoid the excessive accumulation of Cl- are reviewed. New experiments are suggested to test the proposed hypotheses. Cl- salinity constrains global food security and thus we urgently need more research into the causes and consequences of Cl- salinity.
Collapse
Affiliation(s)
- Christoph-Martin Geilfus
- Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Albrecht-Thaer-Weg 1, D-14195 Berlin, Germany
| |
Collapse
|
40
|
Zhao C, Haigh AM, Holford P, Chen ZH. Roles of Chloroplast Retrograde Signals and Ion Transport in Plant Drought Tolerance. Int J Mol Sci 2018; 19:E963. [PMID: 29570668 PMCID: PMC5979362 DOI: 10.3390/ijms19040963] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 01/09/2023] Open
Abstract
Worldwide, drought affects crop yields; therefore, understanding plants' strategies to adapt to drought is critical. Chloroplasts are key regulators of plant responses, and signals from chloroplasts also regulate nuclear gene expression during drought. However, the interactions between chloroplast-initiated retrograde signals and ion channels under stress are still not clear. In this review, we summarise the retrograde signals that participate in regulating plant stress tolerance. We compare chloroplastic transporters that modulate retrograde signalling through retrograde biosynthesis or as critical components in retrograde signalling. We also discuss the roles of important plasma membrane and tonoplast ion transporters that are involved in regulating stomatal movement. We propose how retrograde signals interact with ion transporters under stress.
Collapse
Affiliation(s)
- Chenchen Zhao
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Anthony M Haigh
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Paul Holford
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Zhong-Hua Chen
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia.
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia.
| |
Collapse
|
41
|
Aung K, Jiang Y, He SY. The role of water in plant-microbe interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:771-780. [PMID: 29205604 PMCID: PMC5849256 DOI: 10.1111/tpj.13795] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 05/20/2023]
Abstract
Throughout their life plants are associated with various microorganisms, including commensal, symbiotic and pathogenic microorganisms. Pathogens are genetically adapted to aggressively colonize and proliferate in host plants to cause disease. However, disease outbreaks occur only under permissive environmental conditions. The interplay between host, pathogen and environment is famously known as the 'disease triangle'. Among the environmental factors, rainfall events, which often create a period of high atmospheric humidity, have repeatedly been shown to promote disease outbreaks in plants, suggesting that the availability of water is crucial for pathogenesis. During pathogen infection, water-soaking spots are frequently observed on infected leaves as an early symptom of disease. Recent studies have shown that pathogenic bacteria dedicate specialized virulence proteins to create an aqueous habitat inside the leaf apoplast under high humidity. Water availability in the apoplastic environment, and probably other associated changes, can determine the success of potentially pathogenic microbes. These new findings reinforce the notion that the fight over water may be a major battleground between plants and pathogens. In this article, we will discuss the role of water availability in host-microbe interactions, with a focus on plant-bacterial interactions.
Collapse
Affiliation(s)
- Kyaw Aung
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
- For correspondence (; )
| | - Yanjuan Jiang
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Sheng Yang He
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
- Howard Hughes Medical Institute, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, USA
- For correspondence (; )
| |
Collapse
|
42
|
Martinoia E. Vacuolar Transporters - Companions on a Longtime Journey. PLANT PHYSIOLOGY 2018; 176:1384-1407. [PMID: 29295940 PMCID: PMC5813537 DOI: 10.1104/pp.17.01481] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/15/2017] [Indexed: 05/15/2023]
Abstract
Biochemical and electrophysiological studies on plant vacuolar transporters became feasible in the late 1970s and early 1980s, when methods to isolate large quantities of intact vacuoles and purified vacuolar membrane vesicles were established. However, with the exception of the H+-ATPase and H+-PPase, which could be followed due to their hydrolytic activities, attempts to purify tonoplast transporters were for a long time not successful. Heterologous complementation, T-DNA insertion mutants, and later proteomic studies allowed the next steps, starting from the 1990s. Nowadays, our knowledge about vacuolar transporters has increased greatly. Nevertheless, there are several transporters of central importance that have still to be identified at the molecular level or have even not been characterized biochemically. Furthermore, our knowledge about regulation of the vacuolar transporters is very limited, and much work is needed to get a holistic view about the interplay of the vacuolar transportome. The huge amount of information generated during the last 35 years cannot be summarized in such a review. Therefore, I decided to concentrate on some aspects where we were involved during my research on vacuolar transporters, for some our laboratories contributed more, while others contributed less.
Collapse
Affiliation(s)
- Enrico Martinoia
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| |
Collapse
|
43
|
Daloso DM, Medeiros DB, Dos Anjos L, Yoshida T, Araújo WL, Fernie AR. Metabolism within the specialized guard cells of plants. THE NEW PHYTOLOGIST 2017; 216:1018-1033. [PMID: 28984366 DOI: 10.1111/nph.14823] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/21/2017] [Indexed: 05/21/2023]
Abstract
Contents 1018 I. 1018 II. 1019 III. 1022 IV. 1025 V. 1026 VI. 1029 1030 References 1030 SUMMARY: Stomata are leaf epidermal structures consisting of two guard cells surrounding a pore. Changes in the aperture of this pore regulate plant water-use efficiency, defined as gain of C by photosynthesis per leaf water transpired. Stomatal aperture is actively regulated by reversible changes in guard cell osmolyte content. Despite the fact that guard cells can photosynthesize on their own, the accumulation of mesophyll-derived metabolites can seemingly act as signals which contribute to the regulation of stomatal movement. It has been shown that malate can act as a signalling molecule and a counter-ion of potassium, a well-established osmolyte that accumulates in the vacuole of guard cells during stomatal opening. By contrast, their efflux from guard cells is an important mechanism during stomatal closure. It has been hypothesized that the breakdown of starch, sucrose and lipids is an important mechanism during stomatal opening, which may be related to ATP production through glycolysis and mitochondrial metabolism, and/or accumulation of osmolytes such as sugars and malate. However, experimental evidence supporting this theory is lacking. Here we highlight the particularities of guard cell metabolism and discuss this in the context of the guard cells themselves and their interaction with the mesophyll cells.
Collapse
Affiliation(s)
- Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, 60451-970, Brasil
| | - David B Medeiros
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brasil
| | - Letícia Dos Anjos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, 60451-970, Brasil
| | - Takuya Yoshida
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Wagner L Araújo
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brasil
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| |
Collapse
|
44
|
Scholz-Starke J. How may PI(3,5)P 2 impact on vacuolar acidification? Channels (Austin) 2017; 11:497-498. [PMID: 28699817 PMCID: PMC5786259 DOI: 10.1080/19336950.2017.1354584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/08/2017] [Indexed: 10/19/2022] Open
|
45
|
Eisenach C, Baetz U, Huck NV, Zhang J, De Angeli A, Beckers GJM, Martinoia E. ABA-Induced Stomatal Closure Involves ALMT4, a Phosphorylation-Dependent Vacuolar Anion Channel of Arabidopsis. THE PLANT CELL 2017; 29:2552-2569. [PMID: 28874508 DOI: 10.1105/tpc.1117.00452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/09/2017] [Accepted: 08/31/2017] [Indexed: 05/24/2023]
Abstract
Stomatal pores are formed between a pair of guard cells and allow plant uptake of CO2 and water evaporation. Their aperture depends on changes in osmolyte concentration of guard cell vacuoles, specifically of K+ and Mal2- Efflux of Mal2- from the vacuole is required for stomatal closure; however, it is not clear how the anion is released. Here, we report the identification of ALMT4 (ALUMINUM ACTIVATED MALATE TRANSPORTER4) as an Arabidopsis thaliana ion channel that can mediate Mal2- release from the vacuole and is required for stomatal closure in response to abscisic acid (ABA). Knockout mutants showed impaired stomatal closure in response to the drought stress hormone ABA and increased whole-plant wilting in response to drought and ABA. Electrophysiological data show that ALMT4 can mediate Mal2- efflux and that the channel activity is dependent on a phosphorylatable C-terminal serine. Dephosphomimetic mutants of ALMT4 S382 showed increased channel activity and Mal2- efflux. Reconstituting the active channel in almt4 mutants impaired growth and stomatal opening. Phosphomimetic mutants were electrically inactive and phenocopied the almt4 mutants. Surprisingly, S382 can be phosphorylated by mitogen-activated protein kinases in vitro. In brief, ALMT4 likely mediates Mal2- efflux during ABA-induced stomatal closure and its activity depends on phosphorylation.
Collapse
Affiliation(s)
- Cornelia Eisenach
- Department of Plant and Microbial Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Ulrike Baetz
- Department of Plant and Microbial Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Nicola V Huck
- Department of Plant Physiology, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen 52056, Germany
| | - Jingbo Zhang
- Department of Plant and Microbial Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Alexis De Angeli
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Gerold J M Beckers
- Department of Plant Physiology, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen 52056, Germany
| | - Enrico Martinoia
- Department of Plant and Microbial Biology, University of Zurich, CH-8008 Zurich, Switzerland
| |
Collapse
|
46
|
Eisenach C, Baetz U, Huck NV, Zhang J, De Angeli A, Beckers GJM, Martinoia E. ABA-Induced Stomatal Closure Involves ALMT4, a Phosphorylation-Dependent Vacuolar Anion Channel of Arabidopsis. THE PLANT CELL 2017; 29:2552-2569. [PMID: 28874508 PMCID: PMC5774580 DOI: 10.1105/tpc.17.00452] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/09/2017] [Accepted: 08/31/2017] [Indexed: 05/18/2023]
Abstract
Stomatal pores are formed between a pair of guard cells and allow plant uptake of CO2 and water evaporation. Their aperture depends on changes in osmolyte concentration of guard cell vacuoles, specifically of K+ and Mal2- Efflux of Mal2- from the vacuole is required for stomatal closure; however, it is not clear how the anion is released. Here, we report the identification of ALMT4 (ALUMINUM ACTIVATED MALATE TRANSPORTER4) as an Arabidopsis thaliana ion channel that can mediate Mal2- release from the vacuole and is required for stomatal closure in response to abscisic acid (ABA). Knockout mutants showed impaired stomatal closure in response to the drought stress hormone ABA and increased whole-plant wilting in response to drought and ABA. Electrophysiological data show that ALMT4 can mediate Mal2- efflux and that the channel activity is dependent on a phosphorylatable C-terminal serine. Dephosphomimetic mutants of ALMT4 S382 showed increased channel activity and Mal2- efflux. Reconstituting the active channel in almt4 mutants impaired growth and stomatal opening. Phosphomimetic mutants were electrically inactive and phenocopied the almt4 mutants. Surprisingly, S382 can be phosphorylated by mitogen-activated protein kinases in vitro. In brief, ALMT4 likely mediates Mal2- efflux during ABA-induced stomatal closure and its activity depends on phosphorylation.
Collapse
Affiliation(s)
- Cornelia Eisenach
- Department of Plant and Microbial Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Ulrike Baetz
- Department of Plant and Microbial Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Nicola V Huck
- Department of Plant Physiology, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen 52056, Germany
| | - Jingbo Zhang
- Department of Plant and Microbial Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Alexis De Angeli
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Gerold J M Beckers
- Department of Plant Physiology, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen 52056, Germany
| | - Enrico Martinoia
- Department of Plant and Microbial Biology, University of Zurich, CH-8008 Zurich, Switzerland
| |
Collapse
|
47
|
|
48
|
Buckley TN. Modeling Stomatal Conductance. PLANT PHYSIOLOGY 2017; 174:572-582. [PMID: 28062836 PMCID: PMC5462010 DOI: 10.1104/pp.16.01772] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/03/2017] [Indexed: 05/12/2023]
Abstract
Recent advances have improved our ability to model stomatal conductance using process- or optimality-based models, and continuing research should focus on how stomata sense leaf turgor and on how to quantify the direct carbon costs of low leaf water potential.
Collapse
Affiliation(s)
- Thomas N Buckley
- Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Narrabri NSW 2390, Australia
| |
Collapse
|
49
|
Inoue SI, Kinoshita T. Blue Light Regulation of Stomatal Opening and the Plasma Membrane H +-ATPase. PLANT PHYSIOLOGY 2017; 174:531-538. [PMID: 28465463 PMCID: PMC5462062 DOI: 10.1104/pp.17.00166] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/01/2017] [Indexed: 05/18/2023]
Abstract
Recent progress of the blue light signaling pathway in guard cells highlights its regulation of H+-ATPase activity.
Collapse
Affiliation(s)
- Shin-Ichiro Inoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan (S.I., T.K.); and
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan (T.K.)
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan (S.I., T.K.); and
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan (T.K.)
| |
Collapse
|
50
|
Males J, Griffiths H. Stomatal Biology of CAM Plants. PLANT PHYSIOLOGY 2017; 174:550-560. [PMID: 28242656 PMCID: PMC5462028 DOI: 10.1104/pp.17.00114] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/24/2017] [Indexed: 05/19/2023]
Abstract
Recent advances in the stomatal biology of CAM plants are reviewed, and key opportunities for future progress are identified.
Collapse
Affiliation(s)
- Jamie Males
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|