1
|
Borhan A, Bagherlou A, Ghayour MB. Evaluating the anticancer effects of carnosic acid against breast cancer: An In Vitro investigation. Tissue Cell 2025; 93:102718. [PMID: 39787938 DOI: 10.1016/j.tice.2024.102718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/29/2024] [Accepted: 12/29/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Carnosic acid (CA) has potential anti-cancer properties, but its effectiveness can be improved by combining it with Folic acid (FA). This research aimed to evaluate the impact of CA and CA-FA conjugate on breast cancer cell lines (MCF-7, MDA-MB-231, and MCA10). MATERIALS AND METHODS The viability of the cell lines was measured using the MTT assay, and the IC₅₀ was determined to compare the cytotoxicity of CA and CA-FA. The process of programmed cell death was investigated by utilizing Annexin V/PI staining, measuring caspase-3/7 activity, and real-time PCR for apoptotic gene expression. Reactive oxygen species (ROS) were also assessed to determine the extent of oxidative stress. RESULTS CA significantly decreased the viability of MCF-7 and MDA-MB-231 cells depending on the dosage, with CA-FA exhibiting enhanced cytotoxicity, particularly in MDA-MB-231 cells. The evaluation of IC₅₀ confirmed that conjugation with FA reduced the IC₅₀ of CA. Apoptosis analysis demonstrated increased apoptosis rates in MCF-7 and MDA-MB-231 cells exposed to treatment with CA and CA-FA, while MCA10 cells showed minimal effects. Caspase-3/7 activity was notably higher in CA-FA-treated cells. Gene expression analysis revealed elevated pro-apoptotic gene activity and reduced anti-apoptotic gene activity, with CA-FA having a more pronounced effect. Cells subjected to CA-FA treatment exhibited a significant increase in ROS levels. CONCLUSION These findings suggest that CA conjugation with FA enhances its cytotoxic effects and promotes apoptosis through increased apoptosis and ROS production. The research emphasizes the promise of CA-FA as a focused treatment approach for aggressive forms of breast cancer, underscoring the need for additional exploration of its practical uses in clinical settings.
Collapse
Affiliation(s)
- Aylar Borhan
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ali Bagherlou
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mohammad B Ghayour
- Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran.
| |
Collapse
|
2
|
Revuru B, Thashanamoorthi G, Demiwal P, Sircar D, Ramalingam S. SmERF6 promotes the expression of terpenoid pathway in Salvia officinalis and improves the production of high-value abietane diterpenes, carnosol and carnosic acid. PLANT & CELL PHYSIOLOGY 2025; 66:411-425. [PMID: 39820705 DOI: 10.1093/pcp/pcaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 12/08/2024] [Accepted: 01/10/2025] [Indexed: 01/19/2025]
Abstract
Carnosol (CO) and carnosic acid (CA) are pharmaceutically important diterpenes predominantly produced in members of Lamiaceae, Salvia officinalis (garden sage), Salvia fruticosa, and Rosmarinus officinalis. Nevertheless, the availability of these compounds in plant systems is very low. In an effort to improve the in planta content of these diterpenes in garden sage, SmERF6 (Salvia miltiorrhiza Ethylene Responsive Factor 6) transcription factor was expressed heterologously. Bai et al. (The ethylene response factor SmERF6 co-regulates the transcription of SmCPS1 and SmKSL1 and is involved in tanshinone biosynthesis in Salvia miltiorrhiza hairy roots. Planta 2018; 248:243-55.) proved that SmERF6 binds to the promoter regions of Copalyl pyrophosphate synthase and Kaurene synthase-like genes and improves transcription, thereby augmenting ferruginol levels, a common precursor for abietane diterpenes in Salvia genus; moreover, transgenic hairy roots of S. miltiorrhiza displayed 4-fold improved tanshinone content. In our study, heterologous transient expression of SmERF6 in S. officinalis exhibited inter-specific activity in promoting differential accumulation of diterpenes. Overexpression studies showed elevation in the levels of CO (2-fold) and CA (5-fold). Furthermore, in infiltrated leaves levels of ferruginol (50%) and CA derivatives (rosmanol, epirosmanol, and methyl CA) were significantly upregulated along with the other signature terpenes. Finally, stable transgenic lines of S. officinalis developed through Agrobacterium-mediated in planta genetic transformation accumulated significant amounts of CO (4-folds) and CA (3-folds), as compared to wild plants. Overall, the present study is the first report on improving the content of pharmaceutically important diterpenes in S. officinalis by overexpressing pathway-specific transcription factors. The current findings showed convincing evidence for the concept of improving specialized metabolite(s) content in medicinal plants by manipulating the expression of transcriptional regulators.
Collapse
Affiliation(s)
- Bharadwaj Revuru
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Gayathri Thashanamoorthi
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Prathiba Demiwal
- Plant Molecular Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Debabrata Sircar
- Plant Molecular Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Sathishkumar Ramalingam
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| |
Collapse
|
3
|
Jung YP, Lim S, An S, Kim H, Shin JH. A 13-week repeated oral dose toxicity evaluation and a 4-week recovery evaluation of rosemary concentrate containing 50% ursolic acid in male and female rats. Food Chem Toxicol 2025; 197:115308. [PMID: 39909298 DOI: 10.1016/j.fct.2025.115308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/17/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
This study was performed to evaluate the safety of rosemary concentrate containing 50% ursolic acid (RCUA50), the ethanolic extract of rosemary. RCUA50 was administered orally for 13 weeks at 1000, 2000, and 4000 mg/kg/day, and then the rats were maintained for 4 weeks without RCUA50 administration for recovery evaluation. We observed clinical signs, body weights, food consumption, functional observations, ophthalmological examination, urinalysis, estrus cycle, hematology, clinical chemistry, sperm analysis, organ weights, gross examination, and histopathological examinations. During the dosing and recovery period, there were no test substance-related deaths, clinical signs, changes in body weights, and food consumption in all treated groups. In the main group, there were no test substance-related effects in functional observations and ophthalmological examination. In the main and recovery groups, there were no test substance-related effects in hematology, clinical chemistry, sperm analysis, organ weights, necropsy and histopathological examination. In conclusion, the repeated oral administration of RCUA50 for 13 weeks resulted in no test substance-related adverse effect at all dose levels. Therefore, the NOAEL was considered to be greater than 4000 mg/kg/day in both sexes under the conditions of this study.
Collapse
Affiliation(s)
| | - Suyoung Lim
- Bio Research Institutes, CJ CheilJedang, 55, Gwanggyo-ro 42 beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16495, Republic of Korea
| | - Seulgi An
- Bio Research Institutes, CJ CheilJedang, 55, Gwanggyo-ro 42 beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16495, Republic of Korea
| | - Hyunji Kim
- CJ CheilJedang, 330, Dongho-ro, Jung-gu, Seoul, 04560, Republic of Korea
| | - Jae-Ho Shin
- Department of Biomedical Laboratory Science, Eulji University, 553, Sanseongdae-ro, Sujung-gu, Seongnam-si, Gyeonggi-do, 13156, Republic of Korea.
| |
Collapse
|
4
|
Sofianovich O, Willis-Urena K, Dong Y, Ignea C. Bioengineered yeast for preventing age-related diseases. Trends Biotechnol 2025; 43:586-600. [PMID: 39358048 DOI: 10.1016/j.tibtech.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024]
Abstract
The aging process entails a multifaceted decline in the capacity to restore homeostasis in response to stress. A prevalent characteristic of many age-related diseases is the presence of low-grade chronic inflammation, a risk factor contributing significantly to morbidity and mortality in the elderly population. Specific lifestyle interventions, such as regular physical activity, targeted diet, and supplementation, can delay the accumulation of chronic age-associated conditions by mitigating inflammation processes. Bioengineered yeast-producing compounds with distinctive bioactivities, including anti-inflammatory properties, have the potential to provide rich dietary alternatives for the prevention of age-related diseases. This review highlights recent achievements in engineering effective yeast platforms, namely Saccharomyces cerevisiae and Yarrowia lipolytica, that hold promise in retarding the onset of aging and age-related ailments.
Collapse
Affiliation(s)
- Olga Sofianovich
- Department of Bioengineering, McGill University, Montreal, QC, Canada, H3A 0C3
| | - Kate Willis-Urena
- Department of Bioengineering, McGill University, Montreal, QC, Canada, H3A 0C3
| | - Yueming Dong
- Department of Bioengineering, McGill University, Montreal, QC, Canada, H3A 0C3
| | - Codruta Ignea
- Department of Bioengineering, McGill University, Montreal, QC, Canada, H3A 0C3.
| |
Collapse
|
5
|
Makwarela TG, Seoraj-Pillai N, Nangammbi TC. Tick Control Strategies: Critical Insights into Chemical, Biological, Physical, and Integrated Approaches for Effective Hard Tick Management. Vet Sci 2025; 12:114. [PMID: 40005873 PMCID: PMC11860501 DOI: 10.3390/vetsci12020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Ticks and tick-borne diseases significantly impact animal health, public health, and economic productivity globally, particularly in areas where the wildlife-livestock interface complicates management. This review critically examines the current control strategies, focusing on chemical, biological, physical, and integrated pest management (IPM) approaches. Chemical acaricides, while effective, are increasingly challenged by resistance development and environmental concerns. Biological approaches, including natural predators and entomopathogenic fungi, and physical interventions, such as habitat modification, provide sustainable alternatives but require further optimization. IPM stands out as the most promising long-term solution, integrating multiple approaches to enhance efficacy while reducing environmental risks. Emerging innovations, such as nanotechnology-enhanced acaricides and next-generation vaccines, offer promising avenues for improved tick control. Addressing the complex challenges of tick management requires tailored strategies, interdisciplinary collaboration, and sustained research investment in both veterinary and public health contexts.
Collapse
Affiliation(s)
- Tsireledzo Goodwill Makwarela
- Department of Nature Conservation, Faculty of Science, Tshwane University of Technology, Staatsartillerie Rd, Pretoria West, Pretoria 0183, South Africa; (N.S.-P.); (T.C.N.)
| | | | | |
Collapse
|
6
|
Wu A, Wang Y, Mao R, Tan Z, Xu S, Long J, Wang Q, Zhao Z, Xie H, Deng Z, Li J, Chen M. Naturally-occurring carnosic acid as a promising therapeutic agent for skin inflammation via targeting STAT1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156442. [PMID: 39919329 DOI: 10.1016/j.phymed.2025.156442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/30/2024] [Accepted: 01/28/2025] [Indexed: 02/09/2025]
Abstract
BACKGROUND Psoriasis and rosacea are prevalent chronic inflammatory skin disorders driven by aberrant interactions between skin-resident keratinocytes and immune cells. Natural products represent a largely untapped source of novel therapeutic agents for various diseases. This study aimed to identify an effective natural product for treating psoriasis and rosacea and to elucidate its underlying mechanism of action. METHODS Bioinformatics and network pharmacology approaches were employed to identify potential drug candidates for these conditions. Psoriasis-like and rosacea-like inflammation models were established in mice to assess the in vivo therapeutic effects of carnosic acid. In vitro experiments were performed to investigate the molecular mechanisms underlying carnosic acid's anti-inflammatory activity. RESULTS Through bioinformatics and network pharmacology, carnosic acid, a plant-derived phenolic diterpene, was identified as a promising candidate for these skin disorders. Functional assays demonstrated that carnosic acid effectively inhibited skin inflammation in both imiquimod-induced psoriasis and LL37-induced rosacea mouse models. Mechanistically, carnosic acid bound directly to STAT1, inhibiting its phosphorylation and subsequent transcriptional activation, which led to a reduction in the production of STAT1-mediated inflammatory factors in keratinocytes. Topical application of carnosic acid significantly alleviated clinical symptoms in both psoriasis and rosacea models. CONCLUSION These findings suggest that carnosic acid holds potential as a therapeutic agent for STAT1-mediated skin inflammation.
Collapse
Affiliation(s)
- Aike Wu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yunying Wang
- Department of Dermatology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Rui Mao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zixin Tan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - San Xu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Long
- Department of Dermatology, Hunan Children's Hospital, Changsha, China
| | - Qian Wang
- Hunan Binsis Biotechnology Co., Ltd, Changsha, China
| | - Zhixiang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
7
|
Han D, Lin C, Xia S, Zheng X, Zhu C, Shen Y, Chen Y, Peng C, Wang C, He J, Lai J, Yang C. The Role of Carnosic Acid in the UV-B Stress Resistance Signalling Pathway in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2025; 48:1232-1241. [PMID: 39440524 DOI: 10.1111/pce.15226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/23/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Carnosic acid (CA) is recognized as an antioxidant that confers protection to plants against various forms of oxidative stress, including UV-B stress. However, limited research has been conducted to elucidate the molecular mechanisms underlying its defence against UV-B stress. In this study, we demonstrated that CA exhibits more efficacy compared to other antioxidants in UV-B resistance. Moreover, CA was found to enhance the accumulation of secondary metabolites in Arabidopsis leaves. Through the analysis of differentially expressed genes in response to UV-B stress with or without CA treatment, we uncovered that the exogenous application of CA effectively activates the flavonoid biosynthesis pathway in Arabidopsis to improve resistance of Arabidopsis to UV-B stress.
Collapse
Affiliation(s)
- Danlu Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Chufang Lin
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Simin Xia
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Xiaoting Zheng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Chengluo Zhu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Yue Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Yue Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Changlian Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Caijuan Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Jinming He
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| |
Collapse
|
8
|
D’Alessandro AG, Di Luca A, Desantis S, Martemucci G. Antioxidant Synergy in a Mixture of Powder Plant Leaves and Effects on Metabolic Profile, Oxidative Status and Intestinal Morpho-Histochemical Features of Laying Hens. Animals (Basel) 2025; 15:308. [PMID: 39943078 PMCID: PMC11816074 DOI: 10.3390/ani15030308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/11/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Phenolic antioxidant intake is encouraged to prevent oxidative damage, and antioxidant synergy is considered an advantage in adding polyphenols from varied plants. This study investigated the antioxidant and synergistic interactions among olive leaf (OL), bay laurel (BL), and rosemary (RL) leaf powder mixture (LPM: OL + BL + RL), using in vitro chemical tests [TPC, ORAC, TEAC-ABTS, FRAP; combination index (CI)], and in vivo validation on blood oxidative status, metabolic profile, and intestinal histomorphology in laying hens. The in vitro study indicated a whole higher antioxidant capacity for the LPM than respective single/double-leave combinations. The LPM CI value (IC50, 0.60) indicated a synergistic effect compared to the binary combinations. Thus, the LPM was validated in vivo through dietary supplementation on sixty Lohmann Brown hens (30 weeks old), reared in an indoor-outdoor rearing system divided. The hens were allocated into two experimental groups (n. 30): basal control diet group; and diet supplemented group with 6 g/kg feed of LPM) containing OL, BL, and RL (respectively, at 65.7%:18.9%:15.4%), for 60 days. The LPM improved (p < 0.05) the oxidative status (TAS, FRAP; ROMs, TBARs) and vitamin E level, metabolic and immunological profiles, and it induced region-specific changes in the morphology and carbohydrate composition of mucins along intestinal tracts of the animals. These findings could provide a valuable strategy for identifying synergistic combinations in functional feed formulations for laying hens.
Collapse
Affiliation(s)
- Angela Gabriella D’Alessandro
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy; (A.G.D.); (A.D.L.); (G.M.)
| | - Alessio Di Luca
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy; (A.G.D.); (A.D.L.); (G.M.)
| | - Salvatore Desantis
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giovanni Martemucci
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy; (A.G.D.); (A.D.L.); (G.M.)
| |
Collapse
|
9
|
Bodnár K, Papp B, Sinka D, Fehér P, Ujhelyi Z, Lekli I, Kajtár R, Nacsa F, Bácskay I, Józsa L. Development of Salvia officinalis-Based Self-Emulsifying Systems for Dermal Application: Antioxidant, Anti-Inflammatory, and Skin Penetration Enhancement. Pharmaceutics 2025; 17:140. [PMID: 40006508 PMCID: PMC11858885 DOI: 10.3390/pharmaceutics17020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES The present study focused on the formulation and evaluation of novel topical systems containing Salvia officinalis (sage), emphasizing their antioxidant and anti-inflammatory properties. Sage, rich in carnosol, offers considerable therapeutic potential, yet its low water solubility limits its effectiveness in traditional formulations. The aim of our experimental work was to improve the solubility and thus bioavailability of the active ingredient by developing self-nano/microemulsifying drug delivery systems (SN/MEDDSs) with the help of Labrasol and Labrafil M as the nonionic surfactants, Transcutol HP as the co-surfactant, and isopropyl myristate as the oily phase. METHODS The formulations were characterized for droplet size, zeta potential, polydispersity index (PDI), encapsulation efficacy, and stability. The composition exhibiting the most favorable characteristics, with particle sizes falling within the nanoscale range, was incorporated into a cream and a gel, which were compared for their textural properties, carnosol penetration, biocompatibility and efficacy. RESULTS Release studies conducted using Franz diffusion cells demonstrated that the SNEDDS-based cream achieved up to 80% carnosol release, outperforming gels. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) test and enzyme-linked immunosorbent assays (ELISA) showed strong efficacy, with an in vivo carrageenan-induced rat paw edema model revealing that the SNEDDS-based cream significantly reduced inflammation. CONCLUSIONS These findings highlight the potential of SNEDDS-enhanced topical formulations in improving therapeutic outcomes. Further research is warranted to confirm their long-term safety and efficacy.
Collapse
Affiliation(s)
- Krisztina Bodnár
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.B.); (B.P.); (D.S.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
| | - Boglárka Papp
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.B.); (B.P.); (D.S.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
| | - Dávid Sinka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.B.); (B.P.); (D.S.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.B.); (B.P.); (D.S.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.B.); (B.P.); (D.S.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
| | - István Lekli
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Richárd Kajtár
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Fruzsina Nacsa
- MEDITOP Pharmaceutical Ltd., Pilisborosjeno Ady Endre Street 1, 2097 Pilisborosjeno, Hungary;
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.B.); (B.P.); (D.S.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
| | - Liza Józsa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.B.); (B.P.); (D.S.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
| |
Collapse
|
10
|
Nasiry D, Khalatbary AR. Anti-ferroptotic effects of natural polyphenols in nervous system injury: a narrative literature review. Nutr Neurosci 2025:1-16. [PMID: 39825479 DOI: 10.1080/1028415x.2024.2448924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
BACKGROUND Recent studies have shown that ferroptosis, a newly identified regulated cell death characterized by increased lipid peroxidation and accumulation of toxic lipid peroxides, is closely related to the pathophysiological processes of nervous system diseases which can be inhibited with iron chelators, lipophilic antioxidants, and lipid peroxidation inhibitors. OBJECTIVE To review the current evidence on the efficacy of various natural polyphenols in nervous system injury. METHODS The data selected for this review were collected by searching the MEDLINE/PubMed, Web of Science, Scopus, and Google Scholar database for articles published in English between 2000 and 2024 using the following terms: cell death, regulated cell death, ferroptosis, lipid peroxides, iron, and glutathione peroxidase. RESULTS Natural polyphenols have been found to have some protective effects against nervous system disorders, which are attributed to a variety of biological properties, particularly antioxidant, immunomodulatory, and anti-inflammatory effects. The preclinical studies conducted on the use of the most common dietary polyphenols, including resveratrol, EGCG, curcumin, quercetin, gastrodin, baicalein & baicalin, carthamin, galangin, puerarin, morachalcone, and carnosic acid with the molecular mechanisms have been discussed. On the other hand, the results of a few clinical studies emphasize the primary role of iron in neuronal degeneration following some of nervous system injury. CONCLUSION Some of the findings indicated that natural polyphenols as antioxidant supplements have anti-ferroptotic effects in nervous system disorders.
Collapse
Affiliation(s)
- Davood Nasiry
- Amol Faculty of Paramedicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Reza Khalatbary
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
11
|
Hernandez-Fuentes GA, Delgado-Enciso OG, Larios-Cedeño EG, Sánchez-Galindo JM, Ceballos-Magaña SG, Pineda-Urbina K, Alcalá-Pérez MA, Magaña-Vergara NE, Delgado-Enciso J, Díaz-Llerenas U, Diaz-Martinez J, Garza-Veloz I, Martinez-Fierro ML, Rodriguez-Sanchez IP, Delgado-Enciso I. Comparative Analysis of Infusions and Ethanolic Extracts of Annona muricata Leaves from Colima, Mexico: Phytochemical Profile and Antioxidant Activity. Life (Basel) 2024; 14:1702. [PMID: 39768408 PMCID: PMC11677062 DOI: 10.3390/life14121702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Annona muricata L. (guanabana) leaves are rich in bioactive compounds with potential antioxidant properties. In the state of Colima, both ethanolic extracts and infusions are traditionally used in folk medicine to address various ailments. This study aimed to evaluate and compare the phytochemical composition and antioxidant activities of ethanolic extracts and infusions of A. muricata leaves from three geographic regions in Colima, Mexico, with a focus on how geographic origin affects their bioactive properties. METHODS Ethanolic extracts and infusions were prepared from A. muricata leaves and analyzed using phytochemical screening; DPPH, total antioxidant capacity (TAC), and total phenolic content (TPC) measurements; and HPLC. TLC was also conducted to examine the presence of specific compounds, such as flavonoids and phenols. RESULTS Both the ethanolic extracts and infusions contained significant levels of alkaloids, flavonoids, tannins, and phenolic compounds. The infusions demonstrated superior antioxidant capacity, with DPPH inhibition values of 72.5%, 68.3%, and 65.1% in the northern, central, and southern regions, respectively, compared to the ethanolic extracts' values of 50.3%, 48.9%, and 45.0%. HPLC identified quercetin as a major compound across all samples. Geographically, the northern region exhibited higher concentrations of bioactive compounds, particularly total flavonoid content (TFC) and iron-reducing power (FRPA). CONCLUSIONS Both the ethanolic extracts and infusions of A. muricata leaves exhibited significant antioxidant properties, with the infusions showing superior performance. The results suggest that A. muricata infusions may have potential applications in managing oxidative stress-related diseases such as cancer and diabetes. Exploring their use in traditional medicine and employing this type of approach can help discern the metabolite profile responsible for these bioactivities. Geographic factors influence the bioactive profile of the plant, and further research is needed to isolate specific bioactive compounds and elucidate their therapeutic mechanisms.
Collapse
Affiliation(s)
- Gustavo A. Hernandez-Fuentes
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico;
- State Cancerology Institute of Colima, Health Services of the Mexican Social Security Institute for Welfare (IMSS-BIENESTAR), Colima 28085, Mexico; (E.G.L.-C.); (J.M.S.-G.)
- Faculty of Chemical Sciences, University of Colima, Coquimatlan 28400, Mexico; (K.P.-U.); (N.E.M.-V.)
| | - Osiris G. Delgado-Enciso
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico;
| | - Edgar G. Larios-Cedeño
- State Cancerology Institute of Colima, Health Services of the Mexican Social Security Institute for Welfare (IMSS-BIENESTAR), Colima 28085, Mexico; (E.G.L.-C.); (J.M.S.-G.)
| | - Juan M. Sánchez-Galindo
- State Cancerology Institute of Colima, Health Services of the Mexican Social Security Institute for Welfare (IMSS-BIENESTAR), Colima 28085, Mexico; (E.G.L.-C.); (J.M.S.-G.)
| | | | - Kayim Pineda-Urbina
- Faculty of Chemical Sciences, University of Colima, Coquimatlan 28400, Mexico; (K.P.-U.); (N.E.M.-V.)
| | - Mario A. Alcalá-Pérez
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (M.A.A.-P.); (U.D.-L.); (I.G.-V.); (M.L.M.-F.)
| | - Nancy E. Magaña-Vergara
- Faculty of Chemical Sciences, University of Colima, Coquimatlan 28400, Mexico; (K.P.-U.); (N.E.M.-V.)
| | - Josuel Delgado-Enciso
- Foundation for Ethics, Education, and Cancer Research of the State Cancer Institute of Colima AC, Colima 28085, Mexico;
| | - Uriel Díaz-Llerenas
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (M.A.A.-P.); (U.D.-L.); (I.G.-V.); (M.L.M.-F.)
| | - Janet Diaz-Martinez
- Research Center in Minority Institutions, Robert Stempel College of Public Health, Florida International University (FIU-RCMI), Miami, FL 33199, USA;
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (M.A.A.-P.); (U.D.-L.); (I.G.-V.); (M.L.M.-F.)
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (M.A.A.-P.); (U.D.-L.); (I.G.-V.); (M.L.M.-F.)
| | - Iram P. Rodriguez-Sanchez
- Molecular and Structural Physiology Laboratory, School of Biological Sciences, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66455, Mexico;
| | - Ivan Delgado-Enciso
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico;
- State Cancerology Institute of Colima, Health Services of the Mexican Social Security Institute for Welfare (IMSS-BIENESTAR), Colima 28085, Mexico; (E.G.L.-C.); (J.M.S.-G.)
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
12
|
Sasikumar J, P P K, Naik B, Das SP. A greener side of health care: Revisiting phytomedicine against the human fungal pathogen Malassezia. Fitoterapia 2024; 179:106243. [PMID: 39389474 DOI: 10.1016/j.fitote.2024.106243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Malassezia species are commensal fungi residing on the skin and in the gut of humans and animals. Yet, under certain conditions, they become opportunistic pathogens leading to various clinical conditions including dermatological disorders. The emergence of drug resistance and adverse effects associated with conventional antifungal agents has propelled the search for alternative treatments, among which phytomedicine stands out prominently. Phytochemicals, including phenolic acids, flavonoids, and terpenoids, demonstrate potential antifungal activity against Malassezia by inhibiting its growth, adhesion, and biofilm formation. Furthermore, the multifaceted therapeutic properties of phytomedicine (including anti-fungal and, antioxidant properties) contribute to its efficacy in alleviating symptoms associated with Malassezia infections. Despite these promising prospects, several challenges hinder the widespread adoption of phytomedicine in clinical practice mostly since the mechanistic studies and controlled experiments to prove efficacy have not been done. Issues include standardization of herbal extracts, variable bioavailability, and limited clinical evidence. Hence, proper regulatory constraints necessitate comprehensive research endeavors and regulatory frameworks to harness the full therapeutic potential of phytomedicine. In conclusion, while phytomedicine holds immense promise as an alternative or adjunctive therapy against Malassezia, addressing these challenges is imperative to optimize its efficacy and ensure its integration into mainstream medical care. In this review we provide an update on the potential phytomedicines in combating Malassezia-related ailments, emphasizing its diverse chemical constituents and mechanisms of action.
Collapse
Affiliation(s)
- Jayaprakash Sasikumar
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Keerthana P P
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Bharati Naik
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Shankar Prasad Das
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| |
Collapse
|
13
|
Barletta R, Trezza A, Geminiani M, Frusciante L, Olmastroni T, Sannio F, Docquier JD, Santucci A. Chaetomorpha linum Extract as a Source of Antimicrobial Compounds: A Circular Bioeconomy Approach. Mar Drugs 2024; 22:511. [PMID: 39590791 PMCID: PMC11595338 DOI: 10.3390/md22110511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The circular bioeconomy is currently a promising model for repurposing natural sources; these sources include plants due to their abundance of bioactive compounds. This study evaluated the antimicrobial properties of a Chaetomorpha linum extract. Chaetomorpha linum is an invasive macroalga from the Orbetello Lagoon (Tuscany, Italy), which grows in nutrient-rich environments and has been forming extended mats since 2005. The biomass is mechanically harvested and treated as waste, consuming considerable manpower and financial resources. As a potential way to increase the value of such waste, this study found that C. linum extract (CLE) is a source of antimicrobial compounds. The phytochemical characterization of the extract revealed the predominant presence of palmitic acid, a fatty acid with known antimicrobial activity. Based on such findings, four bacterial species of high clinical relevance (Enterococcus faecalis, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli) were tested, revealing a notable antibacterial activity of the extract on Enterococcus faecalis (MIC, 32 μg/mL). Computational analyses identified a potential Enterococcus faecalis molecular target for palmitic acid, offering molecular insights on the interaction. This study presents a comprehensive in vitro and in silico approach for drug and target discovery studies by repurposing C. linum as a source of antimicrobial bioactive compounds.
Collapse
Affiliation(s)
- Roberta Barletta
- Department of Biotechnology, Chemistry & Pharmacy, University of Siena, Via A. Moro, 53100 Siena, Italy; (R.B.); (M.G.); (L.F.); (T.O.); (A.S.)
| | - Alfonso Trezza
- Department of Biotechnology, Chemistry & Pharmacy, University of Siena, Via A. Moro, 53100 Siena, Italy; (R.B.); (M.G.); (L.F.); (T.O.); (A.S.)
| | - Michela Geminiani
- Department of Biotechnology, Chemistry & Pharmacy, University of Siena, Via A. Moro, 53100 Siena, Italy; (R.B.); (M.G.); (L.F.); (T.O.); (A.S.)
- SienabioACTIVE, University of Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Luisa Frusciante
- Department of Biotechnology, Chemistry & Pharmacy, University of Siena, Via A. Moro, 53100 Siena, Italy; (R.B.); (M.G.); (L.F.); (T.O.); (A.S.)
| | - Tommaso Olmastroni
- Department of Biotechnology, Chemistry & Pharmacy, University of Siena, Via A. Moro, 53100 Siena, Italy; (R.B.); (M.G.); (L.F.); (T.O.); (A.S.)
| | - Filomena Sannio
- Department of Medical Biotechnologies, University of Siena, Viale Bracci 16, 53100 Siena, Italy; (F.S.); (J.-D.D.)
| | - Jean-Denis Docquier
- Department of Medical Biotechnologies, University of Siena, Viale Bracci 16, 53100 Siena, Italy; (F.S.); (J.-D.D.)
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry & Pharmacy, University of Siena, Via A. Moro, 53100 Siena, Italy; (R.B.); (M.G.); (L.F.); (T.O.); (A.S.)
- SienabioACTIVE, University of Siena, Via Aldo Moro, 53100 Siena, Italy
- ARTES 4.0, Viale Rinaldo Piaggio, 34, 56025 Pontedera, Italy
| |
Collapse
|
14
|
Vidaković V, Vujić B, Jadranin M, Novaković I, Trifunović S, Tešević V, Mandić B. Qualitative Profiling, Antioxidant and Antimicrobial Activities of Polar and Nonpolar Basil Extracts. Foods 2024; 13:2993. [PMID: 39335921 PMCID: PMC11431458 DOI: 10.3390/foods13182993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Basil (Ocimum basilicum L.) is a widely used culinary herb. In this study, ethanol, dichloromethane, and sunflower oil were used separately as solvents with distinct polarities for the extraction of basil aerial parts to simulate the different polarity conditions in domestic food processing. The oil extract (OE) was re-extracted with acetonitrile, and the chemical composition, antioxidant potential, and antimicrobial activities of the ethanol (EE), dichloromethane (DCME), and acetonitrile (ACNE) extracts were determined. A total of 109 compounds were tentatively identified in EE, DCME, and ACNE by HPLC-DAD/ESI-ToF-MS. Fatty acids were present in all extracts. Phenolic acids and flavonoids dominated in EE. DCME was characterised by triterpenoid acids, while diterpenoids were mainly found in ACNE. The extracts were analysed for their antioxidant capacity using the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) assay. EE and DCME showed significant radical scavenging potential. Antimicrobial activity was explored in eight bacterial, two yeast, and one fungal species. All extracts exhibited high antifungal activity, comparable to or better than that of the commercial drug nistatin. Antibacterial activities were notable for EE and ACNE, while DCME showed no activity against bacteria in the applied concentration ranges. The different polarities of the solvents led to distinctive phytochemical compositions and bioactivities in the extracts.
Collapse
Affiliation(s)
- Vera Vidaković
- Department of Ecology, University of Belgrade—Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, Bulevar despota Stefana 142, 11108 Belgrade, Serbia;
| | - Bojan Vujić
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (B.V.); (S.T.); (V.T.)
| | - Milka Jadranin
- University of Belgrade—Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia; (M.J.); (I.N.)
| | - Irena Novaković
- University of Belgrade—Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia; (M.J.); (I.N.)
| | - Snežana Trifunović
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (B.V.); (S.T.); (V.T.)
| | - Vele Tešević
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (B.V.); (S.T.); (V.T.)
| | - Boris Mandić
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (B.V.); (S.T.); (V.T.)
| |
Collapse
|
15
|
Mardani-Korrani F, Amooaghaie R, Ahadi A, Ghanadian M. RBOH-dependent signaling is involved in He-Ne laser-induced salt tolerance and production of rosmarinic acid and carnosol in Salvia officinalis. BMC PLANT BIOLOGY 2024; 24:798. [PMID: 39179969 PMCID: PMC11344448 DOI: 10.1186/s12870-024-05502-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND In the past two decades, the impacts of Helium-Neon (He-Ne) laser on stress resistance and secondary metabolism in plants have been studied, but the signaling pathway which by laser regulates this process remains unclear. Therefore, the current study sought to explore the role of RBOH-dependent signaling in He-Ne laser-induced salt tolerance and elicitation of secondary metabolism in Salvia officinalis. Seeds were primed with He-Ne laser (6 J cm- 2) and peroxide hydrogen (H2O2, 5 mM) and 15-old-day plants were exposed to two salinity levels (0, 75 mM NaCl). RESULTS Salt stress reduced growth parameters, chlorophyll content and relative water content (RWC) and increased malodialdehyde (MDA) and H2O2 contents in leaves of 45-old-day plants. After 48 h of salt exposure, higher transcription levels of RBOH (encoding NADPH oxidase), PAL (phenylalanine ammonia-lyase), and RAS (rosmarinic acid synthase) were recorded in leaves of plants grown from seeds primed with He-Ne laser and/or H2O2. Despite laser up-regulated RBOH gene in the early hours of exposing to salinity, H2O2 and MDA contents were lower in leaves of these plants after 30 days. Seed pretreatment with He-Ne laser and/or H2O2 augmented the accumulation of anthocyanins, total phenol, carnasol, and rosmarinic acid and increased total antioxidant capacity under non-saline and more extensively at saline conditions. Indeed, these treatments improved RWC, and K+/Na+ ratio, enhanced the activities of superoxide dismutase and ascorbate peroxidase and proline accumulation, and significantly decreased membrane injury and H2O2 content in leaves of 45-old-day plants under salt stress. However, applying diphenylene iodonium (DPI as an inhibitor of NADPH oxidase) and N, N-dimethyl thiourea (DMTU as a H2O2 scavenger) after laser priming reversed the aforementioned effects which in turn resulted in the loss of laser-induced salt tolerance and secondary metabolism. CONCLUSIONS These findings for the first time deciphered that laser can induce a transient RBOH-dependent H2O2 burst, which might act as a downstream signal to promote secondary metabolism and salt stress alleviation in S. officinalis plants.
Collapse
Affiliation(s)
| | - Rayhaneh Amooaghaie
- Plant Science Department, Science Faculty, Shahrekord University, Shahrekord, Iran.
- Biotechnology Research Institute, Shahrekord University, Shahrekord, Iran.
| | - Alimohammad Ahadi
- Genetic Department, Science Faculty, Shahrekord University, Shahrekord, Iran
| | - Mustafa Ghanadian
- Pharmacognosy Department, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
Hernández-Rangel AE, Cabrera-Licona A, Hernandez-Fuentes GA, Beas-Guzmán OF, Martínez-Martínez FJ, Alcalá-Pérez MA, Montes-Galindo DA, Rodriguez-Sanchez IP, Martinez-Fierro ML, Casarez-Price JC, De-Leon-Zaragoza L, Garza-Veloz I, Delgado-Enciso I. Ethanolic Extract of Salvia officinalis Leaves Affects Viability, Survival, Migration, and the Formation and Growth of 3D Cultures of the Tumourigenic Murine HPV-16+-Related Cancer Cell Line. Biomedicines 2024; 12:1804. [PMID: 39200268 PMCID: PMC11351782 DOI: 10.3390/biomedicines12081804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/28/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Salvia officinalis (SO) is one of the most widely used plants in traditional medicine worldwide. In the present study, the effect of an ethanolic extract of S. officinalis leaves on hallmarks of cancer of HPV-16-positive cancer tumorigenic cells, TC-1, was analyzed in vitro. Phytochemical and spectroscopic analysis were performed. Additionally, the extract's flavonoid content, reducing iron, and antioxidant capacity were determined. In regard to the in vitro tests, the cytotoxic activity and its effect on the replicative capacity and on the cell migration of TC-1 cells were analyzed by viability and clonogenic, survival, and wound healing assays. The effect of a pre-treatment or treatment on 3D culture formation, growth, and reversion capacity was also examined. The results of the phytochemical analysis allowed the detection of tannins, saponins, steroids, and flavonoids. The flavonoids content was found to be 153.40 ± 10.68 µg/mg of extract. Additionally, the extract exhibited an antioxidant capacity and a ferric-reducing capacity of around 40% compared to the ascorbic acid. Thin layer chromatographic (TLC) analysis and spectroscopic tests showed the presence of compounds similar to quercetin and catechin flavonoids in the extract. In the in vitro assays, the SO extract induced in a concentration-dependent way changes in cell morphology, the decrease of cell viability, survival, and migration. At a concentration of 125 µg/mL, the extract inhibited spheroid formation, reduced their growth, and affected their reversion to 2D. Ethanolic extract of S. officinalis leaves had inhibitory effects on hallmarks of the cancer line HPV-16+. This suggests that the phytochemicals present in it may be a source of chemotherapeutics against cervical cancer.
Collapse
Affiliation(s)
| | - Ariana Cabrera-Licona
- Cancerology State Institute, Colima State Health Services, Colima 28085, Mexico; (A.C.-L.); (M.A.A.-P.); (D.A.M.-G.); (J.C.C.-P.); (L.D.-L.-Z.)
| | | | - Oscar F. Beas-Guzmán
- School of Medicine, University of Colima, Colima 28040, Mexico; (A.E.H.-R.); (G.A.H.-F.); (O.F.B.-G.)
| | | | - Mario A. Alcalá-Pérez
- Cancerology State Institute, Colima State Health Services, Colima 28085, Mexico; (A.C.-L.); (M.A.A.-P.); (D.A.M.-G.); (J.C.C.-P.); (L.D.-L.-Z.)
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (M.L.M.-F.); (I.G.-V.)
| | - Daniel A. Montes-Galindo
- Cancerology State Institute, Colima State Health Services, Colima 28085, Mexico; (A.C.-L.); (M.A.A.-P.); (D.A.M.-G.); (J.C.C.-P.); (L.D.-L.-Z.)
- Faculty of Chemical Sciences, University of Colima, Coquimatlan 28400, Mexico;
| | - Iram P. Rodriguez-Sanchez
- Molecular and Structural Physiology Laboratory, School of Biological Sciences, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66455, Mexico;
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (M.L.M.-F.); (I.G.-V.)
| | - Juan C. Casarez-Price
- Cancerology State Institute, Colima State Health Services, Colima 28085, Mexico; (A.C.-L.); (M.A.A.-P.); (D.A.M.-G.); (J.C.C.-P.); (L.D.-L.-Z.)
| | - Luis De-Leon-Zaragoza
- Cancerology State Institute, Colima State Health Services, Colima 28085, Mexico; (A.C.-L.); (M.A.A.-P.); (D.A.M.-G.); (J.C.C.-P.); (L.D.-L.-Z.)
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (M.L.M.-F.); (I.G.-V.)
| | - Iván Delgado-Enciso
- School of Medicine, University of Colima, Colima 28040, Mexico; (A.E.H.-R.); (G.A.H.-F.); (O.F.B.-G.)
- Cancerology State Institute, Colima State Health Services, Colima 28085, Mexico; (A.C.-L.); (M.A.A.-P.); (D.A.M.-G.); (J.C.C.-P.); (L.D.-L.-Z.)
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
17
|
Chen X, Wei C, Zhao J, Zhou D, Wang Y, Zhang S, Zuo H, Dong J, Zhao Z, Hao M, He X, Bian Y. Carnosic acid: an effective phenolic diterpenoid for prevention and management of cancers via targeting multiple signaling pathways. Pharmacol Res 2024; 206:107288. [PMID: 38977208 DOI: 10.1016/j.phrs.2024.107288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Cancer is a serious global public health issue, and a great deal of research has been made to treat cancer. Of these, discovery of promising compounds that effectively fight cancer always has been the main point of interest in pharmaceutical research. Carnosic acid (CA) is a phenolic diterpenoid compound widely present in Lamiaceae plants such as Rosemary (Rosmarinus officinalis L.). In recent years, there has been increasing evidence that CA has significant anti-cancer activity, such as leukaemia, colorectal cancer, breast cancer, lung cancer, liver cancer, pancreatic cancer, stomach cancer, lymphoma, prostate cancer, oral cancer, etc. The potential mechanisms involved by CA, including inhibiting cell proliferation, inhibiting metastasis, inducing cell apoptosis, stimulating autophagy, regulating the immune system, reducing inflammation, regulating the gut microbiota, and enhancing the effects of other anti-cancer drugs. This article reviews the biosynthesis, pharmacokinetics and metabolism, safety and toxicity, as well as the molecular mechanisms and signaling pathways of the anticancer activity of CA. This will contribute to the development of CA or CA-containing functional foods for the prevention and treatment of cancer, providing important advances in the advancement of cancer treatment strategies.
Collapse
Affiliation(s)
- Xufei Chen
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Cuntao Wei
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Juanjuan Zhao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Dandan Zhou
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yue Wang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Shengxiang Zhang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Haiyue Zuo
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jianhui Dong
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Zeyuan Zhao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Man Hao
- Clinical Medical College of Acuupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Department of Ortho and MSK Science, University College London, London WC1E 6BT, UK.
| | - Xirui He
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, Guangdong 519041, China; UCL School of Pharmacy, Pharmacognosy & Phytotherapy, University College London, London WC1E 6BT, UK.
| | - Yangyang Bian
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
18
|
Tsitlakidou P, Kamplioni D, Kyriakoudi A, Irakli M, Biliaderis CG, Mourtzinos I. Antioxidant-Enhanced Alginate Beads for Stabilizing Rapeseed Oil: Utilizing Extracts from Post-Distillation Waste Residues of Rosemary. Foods 2024; 13:2142. [PMID: 38998647 PMCID: PMC11241467 DOI: 10.3390/foods13132142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
An eco-friendly extraction process of polyphenols from conventional dried rosemary tissues and post-distillation waste residues was applied using β-cyclodextrin as a co-solvent. The aqueous extracts were characterized by measuring the total phenolic content, and their phenolic compounds were identified and quantified by LC-MS. Sodium alginate solutions (2% w/w) with/without incorporation of rosemary aqueous extracts were prepared and used for the preparation of O/W emulsions containing 20% rapeseed oil and an 80% water phase. Hydrogel beads were then stored at 20 °C for 28 days. The quality of encapsulated oil during storage was evaluated by measurements of the peroxide value, p-anisidine value, free fatty acids, total oxidation value, and fatty acid composition, whilst the aqueous phase of the beads was analyzed for its total extractable phenolic content (TEPC). The experimental findings indicate that the incorporation of aqueous extracts from post-distillation rosemary residues in emulsion-filled hydrogel beads resulted in the lowest level of oxidation products in the encapsulated rapeseed oil (PV = 10.61 ± 0.02 meq/Kg oil, p-AnV = 4.41 ± 0.09, and FFA = 0.14 ± 0.00, expressed as % oleic acid content), indicating an acceptable oil quality until the end of the storage period.
Collapse
Affiliation(s)
- Petroula Tsitlakidou
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece; (P.T.); (D.K.); (A.K.); (C.G.B.)
| | - Despina Kamplioni
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece; (P.T.); (D.K.); (A.K.); (C.G.B.)
| | - Anastasia Kyriakoudi
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece; (P.T.); (D.K.); (A.K.); (C.G.B.)
| | - Maria Irakli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization—Demeter, P.O. Box 60458, Thermi, 57001 Thessaloniki, Greece;
| | - Costas G. Biliaderis
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece; (P.T.); (D.K.); (A.K.); (C.G.B.)
| | - Ioannis Mourtzinos
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece; (P.T.); (D.K.); (A.K.); (C.G.B.)
| |
Collapse
|
19
|
Lai Y, Ma J, Zhang X, Xuan X, Zhu F, Ding S, Shang F, Chen Y, Zhao B, Lan C, Unver T, Huo G, Li X, Wang Y, Liu Y, Lu M, Pan X, Yang D, Li M, Zhang B, Zhang D. High-quality chromosome-level genome assembly and multi-omics analysis of rosemary (Salvia rosmarinus) reveals new insights into the environmental and genome adaptation. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1833-1847. [PMID: 38363812 PMCID: PMC11182591 DOI: 10.1111/pbi.14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024]
Abstract
High-quality genome of rosemary (Salvia rosmarinus) represents a valuable resource and tool for understanding genome evolution and environmental adaptation as well as its genetic improvement. However, the existing rosemary genome did not provide insights into the relationship between antioxidant components and environmental adaptability. In this study, by employing Nanopore sequencing and Hi-C technologies, a total of 1.17 Gb (97.96%) genome sequences were mapped to 12 chromosomes with 46 121 protein-coding genes and 1265 non-coding RNA genes. Comparative genome analysis reveals that rosemary had a closely genetic relationship with Salvia splendens and Salvia miltiorrhiza, and it diverged from them approximately 33.7 million years ago (MYA), and one whole-genome duplication occurred around 28.3 MYA in rosemary genome. Among all identified rosemary genes, 1918 gene families were expanded, 35 of which are involved in the biosynthesis of antioxidant components. These expanded gene families enhance the ability of rosemary adaptation to adverse environments. Multi-omics (integrated transcriptome and metabolome) analysis showed the tissue-specific distribution of antioxidant components related to environmental adaptation. During the drought, heat and salt stress treatments, 36 genes in the biosynthesis pathways of carnosic acid, rosmarinic acid and flavonoids were up-regulated, illustrating the important role of these antioxidant components in responding to abiotic stresses by adjusting ROS homeostasis. Moreover, cooperating with the photosynthesis, substance and energy metabolism, protein and ion balance, the collaborative system maintained cell stability and improved the ability of rosemary against harsh environment. This study provides a genomic data platform for gene discovery and precision breeding in rosemary. Our results also provide new insights into the adaptive evolution of rosemary and the contribution of antioxidant components in resistance to harsh environments.
Collapse
Affiliation(s)
- Yong Lai
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Jinghua Ma
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi‐Omics Research, School of Life SciencesHenan UniversityKaifengHenanChina
| | - Xiaobo Xuan
- Key Laboratory of Water Management and Water Security for Yellow River BasinMinistry of Water ResourcesZhengzhouHenanChina
| | - Fengyun Zhu
- School of Biological and Food Processing EngineeringHuanghuai UniversityZhumadianHenanChina
| | - Shen Ding
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Fude Shang
- College of Life ScienceHenan Agricultural UniversityZhengzhouHenanChina
| | - Yuanyuan Chen
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi‐Omics Research, School of Life SciencesHenan UniversityKaifengHenanChina
| | - Chen Lan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi‐Omics Research, School of Life SciencesHenan UniversityKaifengHenanChina
| | | | - George Huo
- Department of BiologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Ximei Li
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Yihan Wang
- College of Life ScienceHenan Agricultural UniversityZhengzhouHenanChina
| | - Yufang Liu
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Mengfei Lu
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Xiaoping Pan
- Department of BiologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Deshuang Yang
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Mingwan Li
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Baohong Zhang
- Department of BiologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Dangquan Zhang
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| |
Collapse
|
20
|
D'Alessandro AG, Desantis S, Fracchiolla G, Porrelli R, Dibenedetto RS, Di Luca A, Martemucci G. Response of laying hens fed diet supplemented with a mixture of olive, laurel, and rosemary leaf powders: Metabolic profile, oxidative status, intestinal histomorphology, and egg quality. Res Vet Sci 2024; 174:105294. [PMID: 38744020 DOI: 10.1016/j.rvsc.2024.105294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
This study aimed to evaluate the effects of a mixture of olive, laurel, and rosemary leaf powders, on the oxidative state, biochemical, immune, intestinal morphophysiological parameters, and egg quality of laying hens. One hundred Lohmann Brown hens (28 weeks old) were equally assigned to two groups (n. 50) corresponding to a basal control diet (CON) or the diet supplemented with 6 g/kg feed of leaf powder mixture (LPM) containing olive, laurel, and rosemary leaves (1:1:1), for 60 days. Oxidative status, biochemical indices, immune response, cecal short chain fatty acids (SCFAs), intestinal morphological characteristics, and some egg traits were evaluated at the end of the experiment. The results indicated that LPM improved (P < 0.05) the oxidative status (TOS, ROMs), the immune system (IL-6, IL-1β, and TNF-α), the total protein and HDL cholesterol content, whereas it decreased (P < 0.05) total cholesterol and LDL cholesterol. Aspartate aminotransferase (AST), alkaline phosphatase (ALP), and alanine aminotransferase were significantly (P < 0.05) lower in the LPM than in the CON group. A significant increase (P < 0.05) in SCFA content in the caecum, as well as in villi height and crypt depth in both duodenum and ileum of LPM-treated hens, was observed. Egg quality parameters were not influenced (P > 0.05) by LPM. These findings indicate that LPM can be considered a candidate as an antioxidant ingredient for functional food in laying hens.
Collapse
Affiliation(s)
| | - Salvatore Desantis
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, S.P. 62 per Casamassima Km 3, 70010 Valenzano (Bari), Italy.
| | - Giuseppe Fracchiolla
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy.
| | | | | | - Alessio Di Luca
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | | |
Collapse
|
21
|
Mihai RA, Terán-Maza VA, Portilla-Benalcazar KA, Ramos-Guaytarilla LE, Vizuete-Cabezas MJ, Melo-Heras EJ, Cubi-Insuaste NS, Catana RD. Secondary Metabolites and Antioxidant Activity against Moko Disease as a Defense Mechanism of Musa spp. from the Ecuadorian Coast Area. Metabolites 2024; 14:307. [PMID: 38921442 PMCID: PMC11206157 DOI: 10.3390/metabo14060307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
The Musa spp. represents the most commonly produced, transitioned, and consumed fruit around the globe, with several important applications in the biotechnology, pharmaceutical, and food industries. Moko disease is produced by Ralstonia solanacearum-a factor with a high impact on all crops in Ecuador, representing one of the biggest phytosanitary problems. Four of the most common varieties of Musa spp. were tested to identify the metabolic reaction of plants facing Moko disease. The phenolic and flavonoid content has been evaluated as a defense system, and the α-diphenyl-α-picrylhydrazyl free-radical-scavenging method (DPPH), free-radical-scavenging activity (ABTS), ferric-reducing antioxidant power (FRAP) assays, and liquid chromatography and mass spectrometry (LC-MS) have been adapted to analyze the active compounds with the antioxidant capacity necessary to counteract the pathogenic attack. Our results indicate that all the studied varieties of Musa spp. react in the same way, such that the diseased samples showed a higher accumulation of secondary metabolites with antioxidant capacity compared with the healthy ones, with high active compound synthesis identified during the appearance of Moko disease symptoms. More than 40 compounds and their derivatives (from kaempferol and quercetin glycosides) with protective roles demonstrate the implication of the Musa spp. defense system against R. solanacearum infection.
Collapse
Affiliation(s)
- Raluca A. Mihai
- Army Scientific and Technological Research Center—CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y, Sangolqui 171103, Ecuador; (V.A.T.-M.); (K.A.P.-B.); (L.E.R.-G.); (M.J.V.-C.); (E.J.M.-H.); (N.S.C.-I.)
| | - Vanessa A. Terán-Maza
- Army Scientific and Technological Research Center—CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y, Sangolqui 171103, Ecuador; (V.A.T.-M.); (K.A.P.-B.); (L.E.R.-G.); (M.J.V.-C.); (E.J.M.-H.); (N.S.C.-I.)
| | - Karen A. Portilla-Benalcazar
- Army Scientific and Technological Research Center—CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y, Sangolqui 171103, Ecuador; (V.A.T.-M.); (K.A.P.-B.); (L.E.R.-G.); (M.J.V.-C.); (E.J.M.-H.); (N.S.C.-I.)
| | - Lissette E. Ramos-Guaytarilla
- Army Scientific and Technological Research Center—CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y, Sangolqui 171103, Ecuador; (V.A.T.-M.); (K.A.P.-B.); (L.E.R.-G.); (M.J.V.-C.); (E.J.M.-H.); (N.S.C.-I.)
| | - María J. Vizuete-Cabezas
- Army Scientific and Technological Research Center—CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y, Sangolqui 171103, Ecuador; (V.A.T.-M.); (K.A.P.-B.); (L.E.R.-G.); (M.J.V.-C.); (E.J.M.-H.); (N.S.C.-I.)
| | - Erly J. Melo-Heras
- Army Scientific and Technological Research Center—CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y, Sangolqui 171103, Ecuador; (V.A.T.-M.); (K.A.P.-B.); (L.E.R.-G.); (M.J.V.-C.); (E.J.M.-H.); (N.S.C.-I.)
| | - Nelson S. Cubi-Insuaste
- Army Scientific and Technological Research Center—CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y, Sangolqui 171103, Ecuador; (V.A.T.-M.); (K.A.P.-B.); (L.E.R.-G.); (M.J.V.-C.); (E.J.M.-H.); (N.S.C.-I.)
| | - Rodica D. Catana
- Developmental Biology Department, Institute of Biology Bucharest of Romanian Academy, 296 Splaiul Independenţei, 060031 Bucharest, Romania;
| |
Collapse
|
22
|
Bai X, Wang S, Zhang Q, Hu Y, Zhou J, Men L, Li D, Ma J, Wei Q, Xu M, Yin X, Hu T. Reprogramming the Metabolism of Yeast for High-Level Production of Miltiradiene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8704-8714. [PMID: 38572931 DOI: 10.1021/acs.jafc.4c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Miltiradiene serves as a crucial precursor in the synthesis of various high-value abietane-type diterpenes, exhibiting diverse pharmacological activities. Previous efforts to enhance miltiradiene production have primarily focused on the mevalonate acetate (MVA) pathway. However, limited emphasis has been placed on optimizing the supply of acetyl-CoA and NADPH. In this study, we constructed a platform yeast strain for miltiradiene production by reinforcing the biosynthetic pathway of geranylgeranyl diphosphate (GGPP) and acetyl-CoA, and addressing the imbalance between the supply and demand of the redox cofactor NADPH within the cytoplasm, resulting in an increase in miltiradiene yield to 1.31 g/L. Furthermore, we conducted modifications to the miltiradiene synthase fusion protein tSmKSL1-CfTPS1. Finally, the comprehensive engineering strategies and protein modification strategies culminated in 1.43 g/L miltiradiene in the engineered yeast under shake flask culture conditions. Overall, our work established efficient yeast cell factories for miltiradiene production, providing a foothold for heterologous biosynthesis of abietane-type diterpenes.
Collapse
Affiliation(s)
- Xue Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Shuling Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Qin Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuhan Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiawei Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lianhui Men
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Dengyu Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Jing Ma
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Qiuhui Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Mengdie Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaopu Yin
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Tianyuan Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
23
|
Zhang Y, Xie J. Induction of ferroptosis by natural phenols: A promising strategy for cancer therapy. Phytother Res 2024; 38:2041-2076. [PMID: 38391022 DOI: 10.1002/ptr.8149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
In recent years, heightened interest surrounds the exploration of natural phenols as potential agents for cancer therapy, specifically by inducing ferroptosis, a unique form of regulated cell death characterized by iron-dependent lipid peroxidation. This review delves into the roles of key natural phenols, flavonoids, phenolic acids, curcumin, and stilbenes, in modulating ferroptosis and their underlying mechanisms. Emphasizing the significance of amino acid, lipid, and iron metabolism, the study elucidates the diverse pathways through which these phenols regulate ferroptosis. Notably, curcumin, a well-known polyphenol, exhibits multifaceted interactions with cellular components involved in ferroptosis regulation, providing a distinctive therapeutic avenue. Stilbenes, another phenolic class, demonstrate promising potential in influencing lipid metabolism and iron-dependent processes, contributing to ferroptotic cell death. Understanding the intricate interplay between these natural phenols and ferroptosis not only illuminates complex cellular regulatory networks but also unveils potential avenues for novel cancer therapies. Exploring these compounds as inducers of ferroptosis presents a promising strategy for targeted cancer treatment, capitalizing on the delicate balance between cellular metabolism and regulated cell death mechanisms. This article synthesizes current knowledge, aiming to stimulate further research into the therapeutic potential of natural phenols in the context of ferroptosis-mediated cancer therapy.
Collapse
Affiliation(s)
- Yiping Zhang
- School of Life Sciences, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai, China
| | - Jun Xie
- School of Life Sciences, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai, China
| |
Collapse
|
24
|
Peno-Mazzarino L, Radionov N, Merino M, González S, Mullor JL, Jones J, Caturla N. Protective Potential of a Botanical-Based Supplement Ingredient against the Impact of Environmental Pollution on Cutaneous and Cardiopulmonary Systems: Preclinical Study. Curr Issues Mol Biol 2024; 46:1530-1555. [PMID: 38392217 PMCID: PMC10887869 DOI: 10.3390/cimb46020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Air pollution is a growing threat to human health. Airborne pollution effects on respiratory, cardiovascular and skin health are well-established. The main mechanisms of air-pollution-induced health effects involve oxidative stress and inflammation. The present study evaluates the potential of a polyphenol-enriched food supplement ingredient comprising Lippia citriodora, Olea europaea, Rosmarinus officinalis, and Sophora japonica extracts in mitigating the adverse effects of environmental pollution on skin and cardiopulmonary systems. Both in vitro and ex vivo studies were used to assess the blend's effects against pollution-induced damage. In these studies, the botanical blend was found to reduce lipid peroxidation, inflammation (by reducing IL-1α), and metabolic alterations (by regulating MT-1H, AhR, and Nrf2 expression) in human skin explants exposed to a mixture of pollutants. Similar results were also observed in keratinocytes exposed to urban dust. Moreover, the ingredient significantly reduced pollutant-induced ROS production in human endothelial cells and lung fibroblasts, while downregulating the expression of apoptotic genes (bcl-2 and bax) in lung fibroblasts. Additionally, the blend counteracted the effect of urban dust on the heart rate in zebrafish embryos. These results support the potential use of this supplement as an adjuvant method to reduce the impact of environmental pollution on the skin, lungs, and cardiovascular tissues.
Collapse
Affiliation(s)
| | - Nikita Radionov
- Laboratoire BIO-EC, Chemin de Saulxier 1, 91160 Longjumeau, France
| | - Marián Merino
- Bionos Biotech, S.L. Biopolo La Fe, Av. Fernando Abril Martorell, 106, 46026 Valencia, Spain
| | - Sonia González
- Bionos Biotech, S.L. Biopolo La Fe, Av. Fernando Abril Martorell, 106, 46026 Valencia, Spain
| | - José L Mullor
- Bionos Biotech, S.L. Biopolo La Fe, Av. Fernando Abril Martorell, 106, 46026 Valencia, Spain
| | | | - Nuria Caturla
- Monteloeder SA, Miguel Servet 16, 03203 Elche, Spain
| |
Collapse
|
25
|
Bielecka M, Stafiniak M, Pencakowski B, Ślusarczyk S, Jastrzębski JP, Paukszto Ł, Łaczmański Ł, Gharibi S, Matkowski A. Comparative transcriptomics of two Salvia subg. Perovskia species contribute towards molecular background of abietane-type diterpenoid biosynthesis. Sci Rep 2024; 14:3046. [PMID: 38321199 PMCID: PMC10847172 DOI: 10.1038/s41598-024-53510-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/01/2024] [Indexed: 02/08/2024] Open
Abstract
Tanshinones, are a group of diterpenoid red pigments present in Danshen - an important herbal drug of Traditional Chinese Medicine which is a dried root of Salvia miltiorrhiza Bunge. Some of the tanshinones are sought after as pharmacologically active natural products. To date, the biosynthetic pathway of tanshinones has been only partially elucidated. These compounds are also present in some of the other Salvia species, i.a. from subgenus Perovskia, such as S. abrotanoides (Kar.) Sytsma and S. yangii B.T. Drew. Despite of the close genetic relationship between these species, significant qualitative differences in their diterpenoid profile have been discovered. In this work, we have used the Liquid Chromatography-Mass Spectrometry analysis to follow the content of diterpenoids during the vegetation season, which confirmed our previous observations of a diverse diterpenoid profile. As metabolic differences are reflected in different transcript profile of a species or tissues, we used metabolomics-guided transcriptomic approach to select candidate genes, which expression possibly led to observed chemical differences. Using an RNA-sequencing technology we have sequenced and de novo assembled transcriptomes of leaves and roots of S. abrotanoides and S. yangii. As a result, 134,443 transcripts were annotated by UniProt and 56,693 of them were assigned as Viridiplantae. In order to seek for differences, the differential expression analysis was performed, which revealed that 463, 362, 922 and 835 genes indicated changes in expression in four comparisons. GO enrichment analysis and KEGG functional analysis of selected DEGs were performed. The homology and expression of two gene families, associated with downstream steps of tanshinone and carnosic acid biosynthesis were studied, namely: cytochromes P-450 and 2-oxoglutarate-dependend dioxygenases. Additionally, BLAST analysis revealed existence of 39 different transcripts related to abietane diterpenoid biosynthesis in transcriptomes of S. abrotanoides and S. yangii. We have used quantitative real-time RT-PCR analysis of selected candidate genes, to follow their expression levels over the vegetative season. A hypothesis of an existence of a multifunctional CYP76AH89 in transcriptomes of S. abrotanoides and S. yangii is discussed and potential roles of other CYP450 homologs are speculated. By using the comparative transcriptomic approach, we have generated a dataset of candidate genes which provides a valuable resource for further elucidation of tanshinone biosynthesis. In a long run, our investigation may lead to optimization of diterpenoid profile in S. abrotanoides and S. yangii, which may become an alternative source of tanshinones for further research on their bioactivity and pharmacological therapy.
Collapse
Affiliation(s)
- Monika Bielecka
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556, Wrocław, Poland.
| | - Marta Stafiniak
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556, Wrocław, Poland
| | - Bartosz Pencakowski
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556, Wrocław, Poland
| | - Sylwester Ślusarczyk
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556, Wrocław, Poland
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A/113, 10-719, Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720, Olsztyn, Poland
| | - Łukasz Łaczmański
- Laboratory of Genomics & Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy PAS, Rudolfa Weigla 12, Wrocław, Poland
| | - Shima Gharibi
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556, Wrocław, Poland
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556, Wrocław, Poland
- Botanical Garden of Medicinal Plants, Wroclaw Medical University, Jana Kochanowskiego 14, Wrocław, Poland
| |
Collapse
|
26
|
Sirajudeen F, Malhab LJB, Bustanji Y, Shahwan M, Alzoubi KH, Semreen MH, Taneera J, El-Huneidi W, Abu-Gharbieh E. Exploring the Potential of Rosemary Derived Compounds (Rosmarinic and Carnosic Acids) as Cancer Therapeutics: Current Knowledge and Future Perspectives. Biomol Ther (Seoul) 2024; 32:38-55. [PMID: 38148552 PMCID: PMC10762267 DOI: 10.4062/biomolther.2023.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 12/28/2023] Open
Abstract
Cancer is a global health challenge with high morbidity and mortality rates. However, conventional cancer treatment methods often have severe side effects and limited success rates. In the last decade, extensive research has been conducted to develop safe, and efficient alternative treatments that do not have the limitations of existing anticancer medicines. Plant-derived compounds have shown promise in cancer treatment for their anti-carcinogenic and anti-proliferative properties. Rosmarinic acid (RA) and carnosic acid (CA) are potent polyphenolic compounds found in rosemary (Rosmarinus officinalis) extract. They have been extensively studied for their biological properties, which include anti-diabetic, anti-inflammatory, antioxidant, and anticancer activities. In addition, RA and CA have demonstrated effective anti-proliferative properties against various cancers, making them promising targets for extensive research to develop candidate or leading compounds for cancer treatment. This review discusses and summarizes the anti-tumor effect of RA and CA against various cancers and highlights the involved biochemical and mechanistic pathways.
Collapse
Affiliation(s)
- Fazila Sirajudeen
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Lara J. Bou Malhab
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Yasser Bustanji
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Karem H. Alzoubi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad H. Semreen
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Jalal Taneera
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Waseem El-Huneidi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Eman Abu-Gharbieh
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
27
|
Eslami Farsani M, Razavi S, Rasoolijazi H, Esfandiari E, Seyedebrahimi R, Ababzadeh S. Neuroprotective effects of rosemary extract on white matter of prefrontal cortex in old rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:518-523. [PMID: 38419891 PMCID: PMC10897559 DOI: 10.22038/ijbms.2023.74168.16117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/19/2023] [Indexed: 03/02/2024]
Abstract
Objectives During aging, cerebral structures undergo changes due to oxidative stress. The consumption of some plants seems to improve neurological health. For example, rosemary extract (RE) which is widely used as a flavoring food has anti-inflammatory and anti-oxidant activities. Therefore, we aimed to study the effect of RE on the changes related to the aging process in the prefrontal cortex (PFC). Materials and Methods Twenty-four male Wistar rats including young and old were purchased. Each group was divided into two subgroups: vehicle and rosemary (old vehicle (OV), old rosemary (OR), young vehicle (YV), and young rosemary (YR) groups). Then, we examined the number of intact neurons, myelin base protein (MBP), white matter (WM), levels of malondialdehyde (MDA), and glutathione peroxidase (GPx) in the PFC. Results The results showed that in the old vehicle rats compared to the young group without treatment, except for the MDA level (which increased), other variables significantly decreased (P≤0.05). Additionally, RE consumption demonstrated a significant elevation of WMA, MBP intensity, number of intact neurons, and GPx activity level, while MDA levels significantly reduced in the treated old rats compared to the old vehicle group (P≤0.05). However, there was no significant difference between the OR and YV groups (P≥0.05). Conclusion Overall, it seems that RE can protect and improve aging damages in the PFC due to its anti-oxidant properties. So, the use of RE can be a suitable strategy to prevent aging complications in the brain.
Collapse
Affiliation(s)
- Mohsen Eslami Farsani
- Anatomy Department, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Shahnaz Razavi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Homa Rasoolijazi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Esfandiari
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reihaneh Seyedebrahimi
- Anatomy Department, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Shima Ababzadeh
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Tissue Engineering and Applied Cell Sciences Department, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
28
|
Gupta P, Geniza M, Elser J, Al-Bader N, Baschieri R, Phillips JL, Haq E, Preece J, Naithani S, Jaiswal P. Reference genome of the nutrition-rich orphan crop chia ( Salvia hispanica) and its implications for future breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1272966. [PMID: 38162307 PMCID: PMC10757625 DOI: 10.3389/fpls.2023.1272966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024]
Abstract
Chia (Salvia hispanica L.) is one of the most popular nutrition-rich foods and pseudocereal crops of the family Lamiaceae. Chia seeds are a rich source of proteins, polyunsaturated fatty acids (PUFAs), dietary fibers, and antioxidants. In this study, we present the assembly of the chia reference genome, which spans 303.6 Mb and encodes 48,090 annotated protein-coding genes. Our analysis revealed that ~42% of the chia genome harbors repetitive content, and identified ~3 million single nucleotide polymorphisms (SNPs) and 15,380 simple sequence repeat (SSR) marker sites. By investigating the chia transcriptome, we discovered that ~44% of the genes undergo alternative splicing with a higher frequency of intron retention events. Additionally, we identified chia genes associated with important nutrient content and quality traits, such as the biosynthesis of PUFAs and seed mucilage fiber (dietary fiber) polysaccharides. Notably, this is the first report of in-silico annotation of a plant genome for protein-derived small bioactive peptides (biopeptides) associated with improving human health. To facilitate further research and translational applications of this valuable orphan crop, we have developed the Salvia genomics database (SalviaGDB), accessible at https://salviagdb.org.
Collapse
Affiliation(s)
- Parul Gupta
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Matthew Geniza
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- Molecular and Cellular Biology Graduate Program, Oregon State University, Corvallis, OR, United States
| | - Justin Elser
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Noor Al-Bader
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- Molecular and Cellular Biology Graduate Program, Oregon State University, Corvallis, OR, United States
| | - Rachel Baschieri
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Jeremy Levi Phillips
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Ebaad Haq
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Justin Preece
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
29
|
Tanwar N, Arya SS, Rookes JE, Cahill DM, Lenka SK, Bansal KC. Prospects of chloroplast metabolic engineering for developing nutrient-dense food crops. Crit Rev Biotechnol 2023; 43:1001-1018. [PMID: 35815847 DOI: 10.1080/07388551.2022.2092717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/29/2022] [Indexed: 11/03/2022]
Abstract
Addressing nutritional deficiencies in food crops through biofortification is a sustainable approach to tackling malnutrition. Biofortification is continuously being attempted through conventional breeding as well as through various plant biotechnological interventions, ranging from molecular breeding to genetic engineering and genome editing for enriching crops with various health-promoting metabolites. Genetic engineering is used for the rational incorporation of desired nutritional traits in food crops and predominantly operates through nuclear and chloroplast genome engineering. In the recent past, chloroplast engineering has been deployed as a strategic tool to develop model plants with enhanced nutritional traits due to the various advantages it offers over nuclear genome engineering. However, this approach needs to be extended for the nutritional enhancement of major food crops. Further, this platform could be combined with strategies, such as synthetic biology, chloroplast editing, nanoparticle-mediated rapid chloroplast transformation, and horizontal gene transfer through grafting for targeting endogenous metabolic pathways for overproducing native nutraceuticals, production of biopharmaceuticals, and biosynthesis of designer nutritional compounds. This review focuses on exploring various features of chloroplast genome engineering for nutritional enhancement of food crops by enhancing the levels of existing metabolites, restoring the metabolites lost during crop domestication, and introducing novel metabolites and phytonutrients needed for a healthy daily diet.
Collapse
Affiliation(s)
- Neha Tanwar
- TERI-Deakin Nano-Biotechnology Centre, The Energy Resources Institute (TERI), New Delhi, India
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, Australia
| | - Sagar S Arya
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, Australia
| | - James E Rookes
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, Australia
| | - David M Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, Australia
| | - Sangram K Lenka
- TERI-Deakin Nano-Biotechnology Centre, The Energy Resources Institute (TERI), New Delhi, India
- Gujarat Biotechnology University, Gujarat, India
| | | |
Collapse
|
30
|
Vagkidis N, Marsh J, Chechik V. The Role of Polyphenolic Antioxidants from Tea and Rosemary in the Hydroxyl Radical Oxidation of N-Acetyl Alanine. Molecules 2023; 28:7514. [PMID: 38005236 PMCID: PMC10673243 DOI: 10.3390/molecules28227514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/04/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
In dead biological tissues such as human hair, the ability of antioxidants to minimise autoxidation is determined by their chemical reactions with reactive oxygen species. In order to improve our understanding of factors determining such antioxidant properties, the mechanistic chemistry of four phenolic antioxidants found in tea and rosemary extracts (epicatechin, epigallocatechin gallate, rosmarinic and carnosic acids) has been investigated. The degradation of N-acetyl alanine by photochemically generated hydroxyl radicals was used as a model system. A relatively high concentration of the antioxidants (0.1 equivalent with respect to the substrate) tested the ability of the antioxidants to intercept both initiating hydroxyl radicals (preventive action) and propagating peroxyl radicals (chain-breaking action). LC-MS data showed the formation of hydroxylated derivatives, quinones and hydroperoxides of the antioxidants. The structure of the assignment was aided by deuterium exchange experiments. Tea polyphenolics (epicatechin and epigallocatechin gallate) outperformed the rosemary compounds in preventing substrate degradation and were particularly effective in capturing the initiating radicals. Carnosic acid was suggested to act mostly as a chain-breaking antioxidant. All of the antioxidants except for rosmarinic acid generated hydroperoxides which was tentatively ascribed to the insufficient lability of the benzylic C-H bond of rosmarinic acid.
Collapse
Affiliation(s)
- Nikolaos Vagkidis
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK;
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Jennifer Marsh
- The Procter & Gamble Company, Mason Business Center, 8700 Mason-Montgomery Road, Mason, OH 45040, USA;
| | - Victor Chechik
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK;
| |
Collapse
|
31
|
Iobbi V, Parisi V, Bernabè G, De Tommasi N, Bisio A, Brun P. Anti-Biofilm Activity of Carnosic Acid from Salvia rosmarinus against Methicillin-Resistant Staphylococcus aureus. PLANTS (BASEL, SWITZERLAND) 2023; 12:3679. [PMID: 37960038 PMCID: PMC10647425 DOI: 10.3390/plants12213679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
The Salvia rosmarinus "Eretto Liguria" ecotype was studied as a source of valuable bioactive compounds. LC-MS analysis of the methanolic extract underlined the presence of diterpenoids, triterpenoids, polyphenolic acids, and flavonoids. The anti-virulence activity of carnosic acid along with the other most abundant compounds against methicillin-resistant Staphylococcus aureus (MRSA) was evaluated. Only carnosic acid induced a significant reduction in the expression of agrA and rnaIII genes, which encode the key components of quorum sensing (QS), an intracellular signaling mechanism controlling the virulence of MRSA. At a concentration of 0.05 mg/mL, carnosic acid inhibited biofilm formation by MRSA and the expression of genes involved in toxin production and made MRSA more susceptible to intracellular killing, with no toxic effects on eukaryotic cells. Carnosic acid did not affect biofilm formation by Pseudomonas aeruginosa, a human pathogen that often coexists with MRSA in complex infections. The selected ecotype showed a carnosic acid content of 94.3 ± 4.3 mg/g. In silico analysis highlighted that carnosic acid potentially interacts with the S. aureus AgrA response regulator. Our findings suggest that carnosic acid could be an anti-virulence agent against MRSA infections endowed with a species-specific activity useful in multi-microbial infections.
Collapse
Affiliation(s)
- Valeria Iobbi
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy;
| | - Valentina Parisi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (V.P.); (N.D.T.)
| | - Giulia Bernabè
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy; (G.B.); (P.B.)
| | - Nunziatina De Tommasi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (V.P.); (N.D.T.)
| | - Angela Bisio
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy;
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy; (G.B.); (P.B.)
| |
Collapse
|
32
|
Solano-Cueva N, Figueroa JG, Loja C, Armijos C, Vidari G, Ramírez J. A Validated HPLC-UV-ESI-IT-MS Method for the Quantification of Carnosol in Lepechinia mutica, a Medicinal Plant Endemic to Ecuador. Molecules 2023; 28:6701. [PMID: 37764477 PMCID: PMC10536308 DOI: 10.3390/molecules28186701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
The diphenolic diterpene carnosol was isolated from several species of the family Lamiaceae, including Lepechinia mutica, a medicinal plant endemic to Ecuador. The compound has exhibited high antioxidant, anti-inflammatory, antimicrobial, neuroprotective, and antifungal properties, as well as promising cytotoxicity against prostate, breast, skin, leukemia, and human colon cancer cell lines. In this paper, we developed and validated a simple, accurate, and reliable analytical HPLC-UV-ESI-IT-MS method, carried out on a C18 column, which is potentially suitable to quantify carnosol in plant extracts. The procedure complied with the established ICH validation parameters of analytical range (linearity in the range of 0.19-5.64 μg/g dried leaves; REAVERGE = 4.9%; R2 = 0.99907), analysis repeatability (RSD = 2.8-3.6%), intermediate precision (RSD = 1.9-3.6%), accuracy (estimated as % carnosol recovery in the range of 81 to 108%), and robustness. Finally, the LOD (0.04 µg/mg) and LOQ (0.19 μg/mg) values of carnosol/dried leaves were determined. Using this validated method, the content of carnosol in L. mutica was estimated to be 0.81 ± 0.04 mg/g of dried leaves (0.081%).
Collapse
Affiliation(s)
- Natalí Solano-Cueva
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (N.S.-C.); (J.G.F.); (C.L.); (C.A.)
| | - Jorge G. Figueroa
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (N.S.-C.); (J.G.F.); (C.L.); (C.A.)
| | - Corina Loja
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (N.S.-C.); (J.G.F.); (C.L.); (C.A.)
| | - Chabaco Armijos
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (N.S.-C.); (J.G.F.); (C.L.); (C.A.)
| | - Giovanni Vidari
- Medical Analysis Department, Faculty of Science, Tishk International University, Erbil 44001, Iraq;
| | - Jorge Ramírez
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (N.S.-C.); (J.G.F.); (C.L.); (C.A.)
| |
Collapse
|
33
|
Irakli M, Skendi A, Bouloumpasi E, Christaki S, Biliaderis CG, Chatzopoulou P. Sustainable Recovery of Phenolic Compounds from Distilled Rosemary By-Product Using Green Extraction Methods: Optimization, Comparison, and Antioxidant Activity. Molecules 2023; 28:6669. [PMID: 37764444 PMCID: PMC10537096 DOI: 10.3390/molecules28186669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Rosemary solid distillation waste (SWR), a by-product of the essential oil industry, represents an important source of phenolic antioxidants. Green technologies such as ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), and accelerated solvent extraction (ASE) of phenolic compounds from SWR were optimized as valorization routes to maximize yield, rosmarinic acid (RMA), carnosol (CARO) and carnosic acid (CARA) contents. Response surface methodology was used in this context, with ethanol concentration (X1), extraction temperature (X2), and time (X3) being the independent variables. A second-order polynomial model was fitted to the data, and multiple regression analysis and analysis of variance were used to determine model fitness and optimal conditions. Ethanol concentration was the most influential extraction parameter, affecting phenolic compounds, while the influence of other parameters was moderate. The optimized conditions were as follows: X1: 67.4, 80.0, and 59.0%, X2: 70, 51, and 125 °C, and X3: 15, 10, and 7 min for MAE, UAE, and ASE, respectively. A comparison of optimized MAE, UAE, and ASE with conventional Soxhlet extraction techniques indicated that ASE provided a higher extraction yield and content of phenolic compounds. However, UAE represented the best process from an environmental point of view, allowing an improved extraction of phenolics from SWR with high energy efficiency and low energy costs.
Collapse
Affiliation(s)
- Maria Irakli
- Hellenic Agricultural Organization—Dimitra, Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece; (A.S.); (E.B.); (S.C.)
| | - Adriana Skendi
- Hellenic Agricultural Organization—Dimitra, Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece; (A.S.); (E.B.); (S.C.)
| | - Elisavet Bouloumpasi
- Hellenic Agricultural Organization—Dimitra, Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece; (A.S.); (E.B.); (S.C.)
| | - Stamatia Christaki
- Hellenic Agricultural Organization—Dimitra, Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece; (A.S.); (E.B.); (S.C.)
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Costas G. Biliaderis
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Paschalina Chatzopoulou
- Hellenic Agricultural Organization—Dimitra, Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece; (A.S.); (E.B.); (S.C.)
| |
Collapse
|
34
|
Ververis A, Kyriakou S, Ioannou K, Chatzopoulou PS, Panayiotidis MI, Plioukas M, Christodoulou K. Chemical Profiling and Antioxidant and Anti-Amyloid Capacities of Salvia fruticosa Extracts from Greece. PLANTS (BASEL, SWITZERLAND) 2023; 12:3191. [PMID: 37765357 PMCID: PMC10535607 DOI: 10.3390/plants12183191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
An increasingly common ailment in elderly persons is Alzheimer's disease (AD), a neurodegenerative illness. Present treatment is restricted to alleviating symptoms; hence, there is a requirement to develop an effective approach to AD treatment. Salvia fruticosa (SF) is a medicinal plant with a documented neuroprotective potential. To identify extracts of increased neuroprotectivity, we partitioned the methanolic extract of SF aerial parts from Greece into several fractions, by employing solvents of different polarities. The fractions were chemically identified and evaluated for their antioxidancy and anti-neurotoxic potential against amyloid beta peptides 25-35 (Aβ25-35). Carnosol and carnosic acid were among the prominent compounds, while all partitions showed significant antioxidant capacity, with the diethyl ether and ethyl acetate partitions being the most potent. These, along with the aqueous and the butanolic fractions, demonstrated statistically significant anti-neurotoxic potential. Thus, our findings further validate the neuroprotective potential of SF and support its ethnopharmacological usage as an antioxidant. The particular properties found define SF as a promising source for obtaining extracts or bioactive compounds, possibly beneficial for generating AD-related functional foods or medications. Finally, our results encourage plant extract partitioning for acquiring fractions of enhanced biological properties.
Collapse
Affiliation(s)
- Antonis Ververis
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (A.V.); (K.I.)
| | - Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (S.K.); (M.I.P.)
| | - Kristia Ioannou
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (A.V.); (K.I.)
| | - Paschalina S. Chatzopoulou
- Hellenic Agricultural Organization-DIMITRA, Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece;
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (S.K.); (M.I.P.)
| | - Michael Plioukas
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, Nicosia 2417, Cyprus;
| | - Kyproula Christodoulou
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (A.V.); (K.I.)
| |
Collapse
|
35
|
Abedi E, Tavakoli A, Zamanizadeh S, Maleki S, Jassbi AR. The correlation among residual nitrites, biogenic amines, N-nitrosamine formation, and degradation occurrence of punicalagin α/β, rosmarinic acid, carnosol, and carnosic acid in extract-treated sausage during storage. Food Sci Nutr 2023; 11:5409-5426. [PMID: 37701211 PMCID: PMC10494630 DOI: 10.1002/fsn3.3498] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 09/14/2023] Open
Abstract
The aim of this study was to investigate the relation between residual α- and β-punicalagin in Punica granatum L.; PPE and rosmarinic acid, carnosol, and carnosic acid in Salvia eremophila (SE) with residual nitrites, biogenic amines (cadaverine, putrescine, and histamine), N-nitrosodimethylamine (NDMA), microbial counts, lipid oxidation indices, and color values in extract-treated sausage over 14 days of storage. Sausage containing SE + nitrite 60 ppm (SSN) showed minimum levels of the residual nitrites (13.14 mg/kg), NDMA (0.74 ± 0.05 μg/kg), and biogenic amine (histamine, 1.8 mg/kg; cadaverine, 3.7 mg/kg; and putrescine, 4.3 mg/kg) due to retarded degradation rate of 285.84-216.44 mg/kg; rosmarinic acid, 41.62-33.16 mg/kg; carnosol, and 88.70-76.73 mg/kg; carnosic acid over storage time. The first-order kinetic model fitted well for the degradation of rosmarinic acid and carnosol acid in SSN sample. TBA value remained below the threshold limit (0.32 mg kg-1) through 14 days for SSN. Second-order and zero-order reaction models had the best agreement with sausages' PV and TBA values, respectively. After 2 weeks of storage, E. coli and Cl. perfringens counts in the SN120 (sausage containing 120 ppm nitrite) and SSN were significantly lower than the other samples (p < .05), with the values 2.1 and 1.5 log cfu/g for SN120 and 2.2 and 1.6 log cfu/g for SSN formulation. Conversely, oxidation indices, residual nitrites, NDMA, and biogenic amine increased in sausage samples containing PPE extracts (SPN) owing to total degradation of α- and β-punicalagin during storage. The results indicated that SE can be used as potential co-preservative by reducing the levels of required nitrite in food industry.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, Faculty of AgricultureFasa UniversityFasaIran
| | - Atefeh Tavakoli
- Medicinal and Natural Products Chemistry Research CenterShiraz University of Medical SciencesShirazIran
| | - Simin Zamanizadeh
- Medicinal and Natural Products Chemistry Research CenterShiraz University of Medical SciencesShirazIran
| | - Shahrzad Maleki
- Department of Civil Engineering, Faculty of EngineeringFasa UniversityFasaIran
| | - Amir Reza Jassbi
- Medicinal and Natural Products Chemistry Research CenterShiraz University of Medical SciencesShirazIran
| |
Collapse
|
36
|
Hrebień-Filisińska AM, Tokarczyk G. The Use of Ultrasound-Assisted Maceration for the Extraction of Carnosic Acid and Carnosol from Sage ( Salvia officinalis L.) Directly into Fish Oil. Molecules 2023; 28:6094. [PMID: 37630345 PMCID: PMC10459298 DOI: 10.3390/molecules28166094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The aim of the study was to examine the effect of ultrasonic maceration (U) on the extraction of carnosic acid (CA) and its derivative-carnosol (C)-directly from sage into fish oil, compared to homogenization-assisted maceration (H). It was shown that the ultrasonic maceration process (U) allowed for obtaining a macerate enriched in carnosic acid (CA) and carnosol (C), also containing rosmarinic acid (RA), total polyphenols, and plant pigments, and showing antioxidant properties (DPPH test). There was no unequivocal difference in the efficiency of extracting ingredients from sage into the oil macerate between U and H, with the use of ultrasound in most cases resulting in a greater extraction of C and less extraction of pigments from sage into the macerate than in H. The highest simultaneous contents of CA (147.5 mg/100 g) and C (42.7 mg/100 g) in the macerate were obtained after 60 min of maceration U when using a higher power (320 W). The amount of determined compounds also depended on the concentration of methanol (methanol; 70% methanol) used for the analysis. The maceration U is a simple, safe, "green method" of obtaining active substances, with a reduced number of steps, enabling an interesting application form of CA and C, e.g., for food or cosmetics.
Collapse
Affiliation(s)
- Agnieszka M. Hrebień-Filisińska
- Department of Fish, Plant and Gastronomy Technology, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, 71-459 Szczecin, Poland;
| | | |
Collapse
|
37
|
Dai Y, Ye Z, Liu H, Zhu R, Sun L, Li S, Xie G, Zhu Y, Zhao Y, Qin M. The chemical profiling of Salvia plebeia during different growth periods and the biosynthesis of its main flavonoids ingredients. FRONTIERS IN PLANT SCIENCE 2023; 14:1228356. [PMID: 37645462 PMCID: PMC10461478 DOI: 10.3389/fpls.2023.1228356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023]
Abstract
Salvia plebeia (Lamiaceae) is a valuable medicinal plant widely distributed across Asia and Oceania. However, the composition and accumulation patterns of its active ingredients in different organs during the growth and their biosynthetic mechanism remain unknown. Therefore, we conducted metabolite profiling, transcriptomic analysis, and biological functional verification to explore the distribution, accumulation, and biosynthesis mechanisms of flavonoids in S. plebeia. We identified 70 metabolites including 46 flavonoids, 16 phenolic acids, seven terpenoids, and one organic acid, of which 21 were previously unreported in S. plebeia. Combining metabolomic-transcriptomic analysis and biological functional verification, we identified the key genes involved in biosynthesis of its main active ingredients, hispidulin and homoplantaginin, including SpPAL, SpC4H, Sp4CL2, Sp4CL5, SpCHS1, SpCHI, SpFNS, SpF6H1, SpF6OMT1, SpF6OMT2, SpUGT1, SpUGT2, and SpUGT3. Using the identified genes, we reconstructed the hispidulin and homoplantaginin biosynthesis pathways in Escherichia coli, and obtained a yield of 5.33 and 3.86 mg/L for hispidulin and homoplantaginin, respectively. Our findings provide valuable insights into the changes in chemical components in different organs of S. plebeia during different growth and harvest stages and establishes a foundation for identifying and synthesizing its active components.
Collapse
Affiliation(s)
- Yiqun Dai
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Ziyu Ye
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hui Liu
- Yangzhou Center for Food and Drug Control, Yangzhou, China
| | - Ruirui Zhu
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lanlan Sun
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuai Li
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guoyong Xie
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yan Zhu
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yucheng Zhao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Minjian Qin
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
38
|
Hu J, Qiu S, Wang F, Li Q, Xiang CL, Di P, Wu Z, Jiang R, Li J, Zeng Z, Wang J, Wang X, Zhang Y, Fang S, Qiao Y, Ding J, Jiang Y, Xu Z, Chen J, Chen W. Functional divergence of CYP76AKs shapes the chemodiversity of abietane-type diterpenoids in genus Salvia. Nat Commun 2023; 14:4696. [PMID: 37542034 PMCID: PMC10403556 DOI: 10.1038/s41467-023-40401-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
The genus Salvia L. (Lamiaceae) comprises myriad distinct medicinal herbs, with terpenoids as one of their major active chemical groups. Abietane-type diterpenoids (ATDs), such as tanshinones and carnosic acids, are specific to Salvia and exhibit taxonomic chemical diversity among lineages. To elucidate how ATD chemical diversity evolved, we carried out large-scale metabolic and phylogenetic analyses of 71 Salvia species, combined with enzyme function, ancestral sequence and chemical trait reconstruction, and comparative genomics experiments. This integrated approach showed that the lineage-wide ATD diversities in Salvia were induced by differences in the oxidation of the terpenoid skeleton at C-20, which was caused by the functional divergence of the cytochrome P450 subfamily CYP76AK. These findings present a unique pattern of chemical diversity in plants that was shaped by the loss of enzyme activity and associated catalytic pathways.
Collapse
Affiliation(s)
- Jiadong Hu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai, 200003, China
| | - Shi Qiu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Feiyan Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qing Li
- Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai, 200003, China
| | - Chun-Lei Xiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Peng Di
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Ziding Wu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rui Jiang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jinxing Li
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhen Zeng
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xingxing Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuchen Zhang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shiyuan Fang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuqi Qiao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jie Ding
- Urban Horticulture Research and Extension Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yun Jiang
- Urban Horticulture Research and Extension Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Zhichao Xu
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Junfeng Chen
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wansheng Chen
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai, 200003, China.
| |
Collapse
|
39
|
Chun J, Mah SY, Kim YS. Anti-Inflammatory Effect of Ebractenoid F, a Major Active Compound of Euphorbia ebracteolata Hayata, through Inhibition of Nuclear Factor-κB Activation. PLANTS (BASEL, SWITZERLAND) 2023; 12:2845. [PMID: 37570999 PMCID: PMC10421244 DOI: 10.3390/plants12152845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Euphorbia ebracteolata Hayata (Euphorbiaceae family) is a perennial plant that is widely distributed in Korea, Japan, and China. Its roots contain bioactive diterpenes that have anti-inflammatory properties. However, the anti-inflammatory mechanisms are not yet fully understood. This study aimed to identify the most active anti-inflammatory compound from the roots of E. ebracteolata Hayata, using bioassay-guided fractionation and a combinative method of high-speed countercurrent chromatography (HSCCC) and preparative high-performance liquid chromatography (HPLC). Then, we investigated its anti-inflammatory mechanism in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Ebractenoid F was identified as the most potent bioactive compound of E. ebracteolata Hayata. Ebractenoid F significantly decreased nitric oxide (NO) production and nuclear factor-κB (NF-κB) activation induced by LPS in RAW 264.7 macrophages. Moreover, ebractenoid F decreased the degradation of inhibitory κB-α, the nuclear translocation of the p65 and p50 subunits of NF-κB, and the expression of NF-κB downstream genes. Furthermore, ebractenoid F inhibited the phosphorylation of Akt and mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK) and c-Jun NH2 terminal kinase (JNK), in LPS-stimulated RAW 264.7 cells. In conclusion, ebractenoid F exerts the most potent anti-inflammatory effect by suppressing NF-κB-mediated NO production in LPS-stimulated RAW 264.7 cells. Ebractenoid F may be a useful therapeutic compound for the prevention or treatment of inflammation-associated diseases.
Collapse
Affiliation(s)
- Jaemoo Chun
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Sang Yeon Mah
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeong Shik Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
40
|
Yehya M, Boulghobra D, Grillet PE, Fleitas-Paniagua PR, Bideaux P, Gayrard S, Sicard P, Thireau J, Reboul C, Cazorla O. Natural Extracts Mitigate the Deleterious Effects of Prolonged Intense Physical Exercise on the Cardiovascular and Muscular Systems. Antioxidants (Basel) 2023; 12:1474. [PMID: 37508012 PMCID: PMC10376415 DOI: 10.3390/antiox12071474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Muscle fatigue is a common symptom induced by exercise. A reversible loss of muscle force is observed with variable rates of recovery depending on the causes or underlying mechanisms. It can not only affect locomotion muscles, but can also affect the heart, in particular after intense prolonged exercise such as marathons and ultra-triathlons. The goal of our study was to explore the effect of four different natural extracts with recognized antioxidant properties on the contractile function of skeletal (locomotion) and cardiac muscles after a prolonged exhausting exercise. Male Wistar rats performed a bout of exhausting exercise on a treadmill for about 2.5 h and were compared to sedentary animals. Some rats received oral treatment of a natural extract (rosemary, buckwheat, Powergrape®, or rapeseed) or the placebo 24 h and 1 h before exercise. Experiments were performed 30 min after the race and after 7 days of recovery. All natural extracts had protective effects both in cardiac and skeletal muscles. The extent of protection was different depending on muscle type and the duration post-exercise (just after and after one-week recovery), including antiarrhythmic effect and anti-diastolic dysfunction for the heart, and faster recovery of contractility for the skeletal muscles. Moreover, the muscular protective effect varied between natural extracts. Our study shows that an acute antioxidant supplementation can protect against acute abnormal endogenous ROS toxicity, induced here by prolonged exhausting exercise.
Collapse
Affiliation(s)
- Marc Yehya
- PhyMedExp, INSERM, CNRS, CHU Montpellier, University of Montpellier, 34295 Montpellier, France
- UPR-4278, Laboratoire de Physiologie Expérimentale Cardiovasculaire, Avignon University, 84029 Avignon, France
| | - Doria Boulghobra
- UPR-4278, Laboratoire de Physiologie Expérimentale Cardiovasculaire, Avignon University, 84029 Avignon, France
| | - Pierre-Edouard Grillet
- PhyMedExp, INSERM, CNRS, CHU Montpellier, University of Montpellier, 34295 Montpellier, France
- Département de Biochimie et d'Hormonologie, CHU Montpellier, 34295 Montpellier, France
| | | | - Patrice Bideaux
- PhyMedExp, INSERM, CNRS, CHU Montpellier, University of Montpellier, 34295 Montpellier, France
| | - Sandrine Gayrard
- UPR-4278, Laboratoire de Physiologie Expérimentale Cardiovasculaire, Avignon University, 84029 Avignon, France
| | - Pierre Sicard
- PhyMedExp, INSERM, CNRS, CHU Montpellier, University of Montpellier, 34295 Montpellier, France
| | - Jérome Thireau
- PhyMedExp, INSERM, CNRS, CHU Montpellier, University of Montpellier, 34295 Montpellier, France
| | - Cyril Reboul
- UPR-4278, Laboratoire de Physiologie Expérimentale Cardiovasculaire, Avignon University, 84029 Avignon, France
| | - Olivier Cazorla
- PhyMedExp, INSERM, CNRS, CHU Montpellier, University of Montpellier, 34295 Montpellier, France
| |
Collapse
|
41
|
Abdelrazik E, Hassan HM, Hamza E, Ezz Elregal FM, Elnagdy MH, Abdulhai EA. Beneficial role of rosemary extract on oxidative stress-mediated neuronal apoptosis in rotenone-induced attention deficit hyperactivity disease in juvenile rat model. ACTA BIO-MEDICA : ATENEI PARMENSIS 2023; 94:e2023104. [PMID: 37326266 PMCID: PMC10308472 DOI: 10.23750/abm.v94i3.14260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIM Attention deficit hyperactivity disorder (ADHD) is heterogeneous neurobehavioral disorders that co-exist with cognitive and learning deficits affecting 3-7% of children. We study the role of rosemary in the protection of the prefrontal cortical neurons against rotenone-induced ADHD in juvenile rats. METHODS Twenty-four juvenile rats were divided into four groups (n=6): control group, received olive oil 0.5 ml/kg/day/ I.P. for 4 weeks, rosemary group received rosemary 75 mg/kg/day/ I.P. for 4 weeks, rotenone group received rotenone 1 mg/kg/day/ I.P. dissolved in olive oil for 4 days and combined group received rotenone 1 mg/kg/day/ I.P. for 4 days and rosemary 75 mg/kg/day/ I.P. for 4 weeks. RESULTS Rotenone group showed higher impulsivity with reduction in the recognition index and total locomotor activity. However, combined group showed significant improvement in the recognition index and the total locomotor activity. Neurochemical analysis disclosed that rotenone decreased levels of GSH and significantly increased lipid peroxidation and oxidative stress. The administration of rosemary amended these neurochemical changes. Rotenone caused a significant increase in serum amyloid protein A and C-reactive protein levels indicating a marked state of inflammation. Rosemary ameliorated these biochemical changes. The immunohistochemical expression of tyrosine hydroxylase was decreased in the rotenone group. On the other hand, caspase-3 was increased in the rotenone group. PCR confirmed immunohistochemical results for gene expression. CONCLUSIONS The findings of the behavioral, neurochemical, biochemical, immunohistochemical and molecular outcomes suggested that rosemary could fight oxidative stress, inflammation and apoptosis in the prefrontal cortex of rotenone-induced ADHD in juvenile rats.
Collapse
Affiliation(s)
- Eman Abdelrazik
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt. .
| | - Hend M Hassan
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt. .
| | - Eman Hamza
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt/ Department of Biochemistry and Molecular Biology, Horus University, Damietta, Egypt..
| | - Farah M Ezz Elregal
- Medical Student, Faculty of Medicine, Mansoura University, Mansoura, Egypt. .
| | - Marwa H Elnagdy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt..
| | - Eman A Abdulhai
- Department of Pediatrics (pediatric neurology), Faculty of Medicine, Mansoura University, Mansoura, Egypt. .
| |
Collapse
|
42
|
Lanier ER, Andersen TB, Hamberger B. Plant terpene specialized metabolism: complex networks or simple linear pathways? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1178-1201. [PMID: 36891828 PMCID: PMC11166267 DOI: 10.1111/tpj.16177] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 05/31/2023]
Abstract
From the perspectives of pathway evolution, discovery and engineering of plant specialized metabolism, the nature of the biosynthetic routes represents a critical aspect. Classical models depict biosynthesis typically from an end-point angle and as linear, for example, connecting central and specialized metabolism. As the number of functionally elucidated routes increased, the enzymatic foundation of complex plant chemistries became increasingly well understood. The perception of linear pathway models has been severely challenged. With a focus on plant terpenoid specialized metabolism, we review here illustrative examples supporting that plants have evolved complex networks driving chemical diversification. The completion of several diterpene, sesquiterpene and monoterpene routes shows complex formation of scaffolds and their subsequent functionalization. These networks show that branch points, including multiple sub-routes, mean that metabolic grids are the rule rather than the exception. This concept presents significant implications for biotechnological production.
Collapse
Affiliation(s)
| | | | - Björn Hamberger
- Department of Biochemistry and Molecular Biology, Michigan State University, Molecular Plant Sciences Building, 1066 Bogue Street, East Lansing, Michigan, 48824, USA
| |
Collapse
|
43
|
Wu H, Axelsson J, Kuhlin M, Fristedt R, Undeland I. Pilot-Scale Antioxidant Dipping of Herring ( Clupea harengus) Co-products to Allow Their Upgrading to a High-Quality Mince for Food Production. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:4727-4737. [PMID: 37013165 PMCID: PMC10064803 DOI: 10.1021/acssuschemeng.2c07164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/13/2023] [Indexed: 06/19/2023]
Abstract
To enable production of high-quality mince from herring backbones, a scalable antioxidant strategy is needed due to the high susceptibility of herring muscle to lipid oxidation. We here measured the stabilizing effect of lab-/pilot-scale predipping of herring backbones (30-500 kg) in antioxidant solutions prior to production of mechanically separated mince (MSM). The antioxidants were (i) Duralox MANC, a mixture of rosemary extract, ascorbic acid, α-tocopherol, and citric acid, and (ii) rosemary extract with or without isoascorbic acid. Delivery of the key rosemary-derived antioxidant components carnosol and carnosic acid was monitored during the dipping process and ice/frozen storage. Predipping in 2% Duralox MANC gave MSM with 26.7-31.7 mg/kg carnosol + carnosic acid and extended the oxidation lag phase from <1 to 12 days during ice storage and from <1 to 6 months during frozen storage compared to control. Dipping in 0.2% rosemary extract with or without 0.5% isoascorbic acid solution gave MSM with 20.6-28.2 mg/kg carnosol + carnosic acid and extended the lag phase to 6 days and 9 months during ice and frozen storage, respectively. Our results confirmed, in pilot scale, that predipping herring coproducts in antioxidant solutions is a promising strategy to utilize these raw materials for, e.g., mince and burger production rather than for low value products as fish meal.
Collapse
Affiliation(s)
- Haizhou Wu
- Department
of Biology and Biological Engineering−Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - John Axelsson
- Department
of Biology and Biological Engineering−Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Martin Kuhlin
- Sweden
Pelagic AB, Hallgrens
väg 1, SE 47431 Ellös, Sweden
| | - Rikard Fristedt
- Department
of Biology and Biological Engineering−Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Ingrid Undeland
- Department
of Biology and Biological Engineering−Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| |
Collapse
|
44
|
Raffo A, Baiamonte I, De Benedetti L, Lupotto E, Marchioni I, Nardo N, Cervelli C. Exploring volatile aroma and non-volatile bioactive compounds diversity in wild populations of rosemary (Salvia rosmarinus Schleid.). Food Chem 2023; 404:134532. [DOI: 10.1016/j.foodchem.2022.134532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
|
45
|
Villa-Ruano N, Hernández-Silva N, Varela-Caselis JL, Alberto-Ramirez-Garcia S, Mosso-González C. Controlled Production of Carnosic Acid and Carnosol in Cell Suspensions of Lepechinia meyenii Treated with Different Elicitors and Biosynthetic Precursors. Chem Biodivers 2023; 20:e202200733. [PMID: 36562957 DOI: 10.1002/cbdv.202200733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/09/2022] [Accepted: 12/23/2022] [Indexed: 12/24/2022]
Abstract
Lepechinia meyenii is a medicinal plant specialized in the biosynthesis of different types of antioxidants including the diterpenes carnosic (CA) acid and carnosol (CS). Herein we present the results of plant tissue culture approaches performed in this medicinal plant with particular emphasis on the generation and evaluation of a cell suspension system for CA and CS production. The effect of sucrose concentration, temperature, pH, and UV-light exposure was explored. In addition, diverse concentrations of microbial elicitors (salicylic acid, pyocyanin, Glucanex, and chitin), simulators of abiotic elicitors (polyethylene glycol and NaCl), and biosynthetic precursors (mevalonolactone, geranylgeraniol, and miltiradiene/abietatriene) were evaluated on batch cultures for 20 days. Miltiradiene/abietatriene obtainment was achieved through a metabolic engineering approach using a recombinant strain of Saccharomyces cerevisiae. Our results suggested that the maximum accumulation (Accmax ) of CA and CS was mainly conferred to stimuli associated with oxidative stress such as UV-light exposure (Accmax , 6.2 mg L-1 ) polyethylene glycol (Accmax , 6.5 mg L-1 ) NaCl (Accmax , 5.9 mg L-1 ) which simulated drought and saline stress, respectively. Nevertheless the bacterial elicitor pyocyanin was also effective to increase the production of both diterpenes (Accmax , 6.4 mg L-1 ). Outstandingly, the incorporation of upstream biosynthetic precursors such as geranylgeraniol and miltiradiene/abietatriene, generated the best results with Accmax of 8.6 and 16.7 mg L-1 , respectively. Optimized batch cultures containing 100 mg L-1 geranylgeraniol, 50 mg L-1 miltiradiene/abietatriene (95 : 5 %) and 5 g L-1 polyethylene glycol treated with 6 min UV light pulse during 30 days resulted in Accmax of 26.7 mg L-1 for CA and 17.3 mg L-1 for CS on days 18-24. This strategy allowed to increase seven folds the amounts of CA and CS in comparison with batch cultures without elicitation (Accmax , 4.3 mg L-1 ).
Collapse
Affiliation(s)
- Nemesio Villa-Ruano
- CONACyT-Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla. Prolongación de la 24 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, CP 72570, Puebla, México
| | - Néstor Hernández-Silva
- Universidad del Istmo Campus Tehuantepec. Ciudad Universitaria S/N, Barrio Santa Cruz, 4a. Sección Sto. Domingo Tehuantepec, CP 70760, Oaxaca, México
| | - Jenaro Leocadio Varela-Caselis
- Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla. Prolongación de la 24 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, CP 72570, Puebla, México
| | - Sergio Alberto-Ramirez-Garcia
- Universidad de la Sierra Sur, Guillermo Rojas Mijangos, Col. Ciudad Universitaria, CP 70800, Miahuatlán de Porfirio Díaz, Oaxaca, México
| | - Clemente Mosso-González
- CONACyT-Centro Regional de Investigación en Salud Pública (CRISP), 4a. Av. Nte. esquina 19, Norte, Centro, CP 30700, Tapachula, Chiapas, México
| |
Collapse
|
46
|
Moufakkir C, Kharbach Y, Tanghort M, Dassouli A, Remmal A. Preserving Soybean Oil for the Frying of Breaded Butterfly Shrimp Using Natural Rosemary Antioxidant. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:5984636. [PMID: 37007843 PMCID: PMC10065861 DOI: 10.1155/2023/5984636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/25/2023] [Accepted: 03/11/2023] [Indexed: 04/04/2023]
Abstract
Fried foods and frying oil are subjects that warrant the attention of researchers because of their high consumption. Indeed, frying conditions make these oils very sensitive to lipid oxidation which deteriorates the quality and nutritional properties of the food. In this study, we examined the effect of rosemary extract (ROE), known for its high antioxidant activity, in soybean oil used to fry breaded butterfly shrimp, by measuring the induction period with OXIPRES, total polar material (TPM), peroxide index (PI), and free fatty acids (FFA). This evaluation was performed in comparison with control oils without antioxidants. The results showed a significant difference between the oils according to the analyzed parameters, especially in the final hours of frying. The treatment of the oil with rosemary extract effectively delayed its oxidation, having lower levels in all the oxidation markers that were analyzed. It was also found that rosemary extract is able to reduce oil consumption by fried foods. Therefore, ROE ensures soybean oil a high stability against oxidation and a longer shelf life, making it a good natural alternative to synthetic antioxidants.
Collapse
Affiliation(s)
- Chaimae Moufakkir
- Biotechnology Laboratory, Faculty of Science Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Fez 30050, Morocco
| | - Yassine Kharbach
- Laboratory of Applied Chemistry, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Fez M-30050, Morocco
| | - Mariam Tanghort
- Biotechnology Laboratory, Faculty of Science Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Fez 30050, Morocco
| | - Abdelilah Dassouli
- Biotechnology Laboratory, Faculty of Science Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Fez 30050, Morocco
| | - Adnane Remmal
- Biotechnology Laboratory, Faculty of Science Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Fez 30050, Morocco
| |
Collapse
|
47
|
Paloukopoulou C, Karioti A. A Validated Method for the Determination of Carnosic Acid and Carnosol in the Fresh Foliage of Salvia rosmarinus and Salvia officinalis from Greece. PLANTS (BASEL, SWITZERLAND) 2022; 11:3106. [PMID: 36432835 PMCID: PMC9697906 DOI: 10.3390/plants11223106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/05/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
In the framework of a project aiming at identifying genotypes of Greek rosemary and sage producing high amounts of carnosic acid, an HPLC-PDA method was developed for the determination of the main antioxidant in the fresh leaves. To this end, an effective and repeatable extraction process of the labile diterpene was developed to ensure a good extraction yield. A fast RP-HPLC protocol was developed and optimized to allow for a short and reliable analysis of the unstable target constituent. The HPLC-PDA method was validated for precision and accuracy according to ICH guidelines. Finally, the overall method was validated for precision and accuracy at three concentration levels. The precision was acceptable with % RSD values ranging between 1.42 and 4.35. The recovery ranged between 85.1% and 104.6% with RSD values < 5%, within the acceptable limits. The developed assay was fast and simple and allowed for the fast and accurate determination of carnosic acid and carnosol in the fresh herbs. The methodology was applied to the quantitative analysis of several cultivated samples of S. rosmarinus and S. officinalis, and some of them were revealed to be promising starting materials for the development of Greek genotypes rich in carnosic acid.
Collapse
|
48
|
Paradoxical Radiosensitizing Effect of Carnosic Acid on B16F10 Metastatic Melanoma Cells: A New Treatment Strategy. Antioxidants (Basel) 2022; 11:antiox11112166. [PMID: 36358539 PMCID: PMC9686564 DOI: 10.3390/antiox11112166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Carnosic acid (CA) is a phenolic diterpene characterized by its high antioxidant activity; it is used in industrial, cosmetic, and nutritional applications. We evaluated the radioprotective capacity of CA on cells directly exposed to X-rays and non-irradiated cells that received signals from X-ray treated cells (radiation induced bystander effect, RIBE). The genoprotective capacity was studied by in vivo and in vitro micronucleus assays. Radioprotective capacity was evaluated by clonogenic cell survival, MTT, apoptosis and intracellular glutathione assays comparing radiosensitive cells (human prostate epithelium, PNT2) with radioresistant cells (murine metastatic melanoma, B16F10). CA was found to exhibit a genoprotective capacity in cells exposed to radiation (p < 0.001) and in RIBE (p < 0.01). In PNT2 cells, considered as normal cells in our study, CA achieved 97% cell survival after exposure to 20 Gy of X-rays, eliminating 67% of radiation-induced cell death (p < 0.001), decreasing apoptosis (p < 0.001), and increasing the GSH/GSSH ratio (p < 0.01). However, the administration of CA to B16F10 cells decreased cell survival by 32%, increased cell death by 200% (p < 0.001) compared to irradiated cells, and increased cell death by 100% (p < 0.001) in RIBE bystander cells (p < 0.01). Furthermore, it increased apoptosis (p < 0.001) and decreased the GSH/GSSG ratio (p < 0.01), expressing a paradoxical radiosensitizing effect in these cells. Knowing the potential mechanisms of action of substances such as CA could help to create new applications that would protect healthy cells and exclusively damage neoplastic cells, thus presenting a new desirable strategy for cancer patients in need of radiotherapy.
Collapse
|
49
|
Wu L, Qi K, Liu C, Hu Y, Xu M, Pan Y. Enhanced Coverage and Sensitivity of Imprint DESI Mass Spectrometry Imaging for Plant Leaf Metabolites by Post-photoionization. Anal Chem 2022; 94:15108-15116. [PMID: 36201321 DOI: 10.1021/acs.analchem.2c03329] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plant metabolites exhibit a variety of different chemical properties, physiological activities, and biological functions. However, untargeted imaging of highly diverse metabolic profiles is still a great challenge. Here, metabolites in plant leaves were imaged via imprint, followed by desorption electrospray ionization/post-photoionization (imprint DESI/PI) mass spectrometry imaging. In contrast to the traditional imprint DESI method, quite a few metabolites, such as terpenoids, flavonoids, glycosides, alkylphenols, amino acids, phenolic acids, tannins, and lipids, in fresh sage leaves, ginkgo leaves, and tea leaves were well detected and imaged by imprint DESI/PI. More than 80 metabolites were additionally identified, and more than 1 order of magnitude higher signal intensities were obtained for most metabolites in the negative ion mode. By virtue of the significant improvement of coverage and sensitivity of PI, the catechin biosynthesis network in fresh tea leaves could be clearly illustrated, indicating the potential applicability of imprint DESI/PI in exploring the sites and pathways of plant metabolic conversion.
Collapse
Affiliation(s)
- Liutian Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Keke Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Chengyuan Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Yonghua Hu
- Center of Technology, China Tobacco Anhui Industrial Co, Ltd., Hefei 230088, Anhui, P. R. China
| | - Minggao Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| |
Collapse
|
50
|
Cytotoxic Effect of Rosmarinus officinalis Extract on Glioblastoma and Rhabdomyosarcoma Cell Lines. Molecules 2022; 27:molecules27196348. [PMID: 36234882 PMCID: PMC9573533 DOI: 10.3390/molecules27196348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Rosmarinus officinalis is a well-studied plant, known for its therapeutic properties. However, its biological activity against several diseases is not known in detail. The aim of this study is to present new data regarding the cytotoxic activity of a hydroethanolic extract of Rosmarinus officinalis on glioblastoma (A172) and rhabdomyosarcoma (TE671) cancer cell lines. The chemical composition of the extract is evaluated using liquid chromatography combined with time-of-flight mass spectrometry, alongside its total phenolic content and antioxidant activity. The extract showed a promising time- and dose-dependent cytotoxic activity against both cell lines. The lowest IC50 values for both cell lines were calculated at 72 h after treatment and correspond to 0.249 ± 1.09 mg/mL for TE671 cell line and 0.577 ± 0.98 mg/mL for A172 cell line. The extract presented high phenolic content, equal to 35.65 ± 0.03 mg GAE/g of dry material as well as a strong antioxidant activity. The IC50 values for the antioxidant assays were estimated at 12.8 ± 2.7 μg/mL (DPPH assay) and 6.98 ± 1.9 μg/mL (ABTS assay). The compound detected in abundance was carnosol, a phenolic diterpene, followed by the polyphenol rosmarinic acid, while the presence of phenolic compounds such as rhamnetin glucoside, hesperidin, cirsimaritin was notable. These preliminary results suggest that R. officinalis is a potential, alternative source of bioactive compounds to further examine for abilities against glioblastoma and rhabdomyosarcoma.
Collapse
|