1
|
Jia M, Wang Y, Jin H, Li J, Song T, Chen Y, Yuan Y, Hu H, Li R, Wu Z, Jiao P. Comparative Genomics Analysis of the Populus Epidermal Pattern Factor (EPF) Family Revealed Their Regulatory Effects in Populus euphratica Stomatal Development. Int J Mol Sci 2024; 25:10052. [PMID: 39337538 PMCID: PMC11432118 DOI: 10.3390/ijms251810052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Drought stress seriously threatens plant growth. The improvement of plant water use efficiency (WUE) and drought tolerance through stomatal regulation is an effective strategy for coping with water shortages. Epidermal patterning factor (EPF)/EPF-like (EPFL) family proteins regulate stomatal formation and development in plants and thus contribute to plant stress adaptation. Here, our analysis revealed the presence of 14 PeEPF members in the Populus euphratica genome, which exhibited a relatively conserved gene structure with 1-3 introns. Subcellular localisation prediction revealed that 9 PeEPF members were distributed in the chloroplasts of P. euphratica, and 5 were located extracellularly. Phylogenetic analysis indicated that PeEPFs can be divided into three clades, with genes within the same clade revealing a relatively conserved structure. Furthermore, we observed the evolutionary conservation of PeEPFs and AtEPF/EPFLs in certain domains, which suggests their conserved function. The analysis of cis-acting elements suggested the possible involvement of PeEPFs in plant response to multiple hormones. Transcriptomic analysis revealed considerable changes in the expression level of PeEPFs during treatment with polyethylene glycol and abscisic acid. The overexpression of PeEPF2 resulted in low stomatal density in transgenetic lines. These findings provide a basis for gaining insights into the function of PeEPFs in response to abiotic stress.
Collapse
Affiliation(s)
- Mingyu Jia
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
| | - Ying Wang
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
| | - Hongyan Jin
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
| | - Jing Li
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
| | - Tongrui Song
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
| | - Yongqiang Chen
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Yuan
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Honghong Hu
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruting Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhihua Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Peipei Jiao
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Bertran Garcia de Olalla E, Cerise M, Rodríguez-Maroto G, Casanova-Ferrer P, Vayssières A, Severing E, López Sampere Y, Wang K, Schäfer S, Formosa-Jordan P, Coupland G. Coordination of shoot apical meristem shape and identity by APETALA2 during floral transition in Arabidopsis. Nat Commun 2024; 15:6930. [PMID: 39138172 PMCID: PMC11322546 DOI: 10.1038/s41467-024-51341-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Plants flower in response to environmental signals. These signals change the shape and developmental identity of the shoot apical meristem (SAM), causing it to form flowers and inflorescences. We show that the increases in SAM width and height during floral transition correlate with changes in size of the central zone (CZ), defined by CLAVATA3 expression, and involve a transient increase in the height of the organizing center (OC), defined by WUSCHEL expression. The APETALA2 (AP2) transcription factor is required for the rapid increases in SAM height and width, by maintaining the width of the OC and increasing the height and width of the CZ. AP2 expression is repressed in the SAM at the end of floral transition, and extending the duration of its expression increases SAM width. Transcriptional repression by SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) represents one of the mechanisms reducing AP2 expression during floral transition. Moreover, AP2 represses SOC1 transcription, and we find that reciprocal repression of SOC1 and AP2 contributes to synchronizing precise changes in meristem shape with floral transition.
Collapse
Affiliation(s)
- Enric Bertran Garcia de Olalla
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, INRIA, Lyon, France
| | - Martina Cerise
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Gabriel Rodríguez-Maroto
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Pau Casanova-Ferrer
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Alice Vayssières
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Edouard Severing
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Department of Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 4, PB, Wageningen, The Netherlands
| | - Yaiza López Sampere
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Kang Wang
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sabine Schäfer
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Pau Formosa-Jordan
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - George Coupland
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| |
Collapse
|
3
|
Lu S, Xiao F. Small Peptides: Orchestrators of Plant Growth and Developmental Processes. Int J Mol Sci 2024; 25:7627. [PMID: 39062870 PMCID: PMC11276966 DOI: 10.3390/ijms25147627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Small peptides (SPs), ranging from 5 to 100 amino acids, play integral roles in plants due to their diverse functions. Despite their low abundance and small molecular weight, SPs intricately regulate critical aspects of plant life, including cell division, growth, differentiation, flowering, fruiting, maturation, and stress responses. As vital mediators of intercellular signaling, SPs have garnered significant attention in plant biology research. This comprehensive review delves into SPs' structure, classification, and identification, providing a detailed understanding of their significance. Additionally, we summarize recent findings on the biological functions and signaling pathways of prominent SPs that regulate plant growth and development. This review also offers a perspective on future research directions in peptide signaling pathways.
Collapse
Affiliation(s)
| | - Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
| |
Collapse
|
4
|
Ma X, Wu H, Liu B, Wang S, Zhang Y, Su M, Zheng B, Pan H, Du B, Wang J, He P, Chen Q, An H, Xu W, Luo X. Genomic diversity, population structure, and genome-wide association reveal genetic differentiation and trait improvements in mango. HORTICULTURE RESEARCH 2024; 11:uhae153. [PMID: 39006000 PMCID: PMC11246242 DOI: 10.1093/hr/uhae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024]
Abstract
Mango (Mangifera indica L.) has been widely cultivated as a culturally and economically significant fruit tree for roughly 4000 years. Despite its rich history, little is known about the crop's domestication, genomic variation, and the genetic loci underlying agronomic traits. This study employs the whole-genome re-sequencing of 224 mango accessions sourced from 22 countries, with an average sequencing depth of 16.37×, to explore their genomic variation and diversity. Through phylogenomic analysis, M. himalis J.Y. Liang, a species grown in China, was reclassified into the cultivated mango group known as M. indica. Moreover, our investigation of mango population structure and differentiation revealed that Chinese accessions could be divided into two distinct gene pools, indicating the presence of independent genetic diversity ecotypes. By coupling genome-wide association studies with analyses of genotype variation patterns and expression patterns, we identified several candidate loci and dominant genotypes associated with mango flowering capability, fruit weight, and volatile compound production. In conclusion, our study offers valuable insights into the genetic differentiation of mango populations, paving the way for future agronomic improvements through genomic-assisted breeding.
Collapse
Affiliation(s)
- Xiaowei Ma
- National Key Laboratory for Tropical Crop Breeding, Sanya 572024, China; Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture & Rural Affairs; Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524091, China
| | - Hongxia Wu
- National Key Laboratory for Tropical Crop Breeding, Sanya 572024, China; Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture & Rural Affairs; Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524091, China
| | - Bin Liu
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, Sichuan 617061, China
| | - Songbiao Wang
- National Key Laboratory for Tropical Crop Breeding, Sanya 572024, China; Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture & Rural Affairs; Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524091, China
| | - Yuehua Zhang
- National Key Laboratory for Tropical Crop Breeding, Sanya 572024, China; Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture & Rural Affairs; Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524091, China
| | - Muqing Su
- National Key Laboratory for Tropical Crop Breeding, Sanya 572024, China; Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture & Rural Affairs; Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524091, China
| | - Bin Zheng
- National Key Laboratory for Tropical Crop Breeding, Sanya 572024, China; Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture & Rural Affairs; Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524091, China
| | - Hongbing Pan
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, Sichuan 617061, China
| | - Bang Du
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, Sichuan 617061, China
| | - Jun Wang
- Liangshan Academy of Forest and Grassland, Xichang, Sichuan 615000, China
| | - Ping He
- Liangshan Academy of Forest and Grassland, Xichang, Sichuan 615000, China
| | - Qianfu Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571100, China
| | - Hong An
- Bioinformatics and Analytics Core, University of Missouri, Columbia, MO 65201, USA
| | - Wentian Xu
- National Key Laboratory for Tropical Crop Breeding, Sanya 572024, China; Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture & Rural Affairs; Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524091, China
| | - Xiang Luo
- College of Agriculture, Henan University, Zhengzhou, Henan 450046, China
| |
Collapse
|
5
|
Demesa-Arevalo E, Narasimhan M, Simon R. Intercellular Communication in Shoot Meristems. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:319-344. [PMID: 38424066 DOI: 10.1146/annurev-arplant-070523-035342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The shoot meristem of land plants maintains the capacity for organ generation throughout its lifespan due to a group of undifferentiated stem cells. Most meristems are shaped like a dome with a precise spatial arrangement of functional domains, and, within and between these domains, cells interact through a network of interconnected signaling pathways. Intercellular communication in meristems is mediated by mobile transcription factors, small RNAs, hormones, and secreted peptides that are perceived by membrane-localized receptors. In recent years, we have gained deeper insight into the underlying molecular processes of the shoot meristem, and we discuss here how plants integrate internal and external inputs to control shoot meristem activities.
Collapse
Affiliation(s)
- Edgar Demesa-Arevalo
- Institute for Developmental Genetics, Heinrich Heine University, Düsseldorf, Germany;
| | - Madhumitha Narasimhan
- Institute for Developmental Genetics, Heinrich Heine University, Düsseldorf, Germany;
| | - Rüdiger Simon
- Institute for Developmental Genetics, Heinrich Heine University, Düsseldorf, Germany;
| |
Collapse
|
6
|
Pečenková T, Potocký M, Stegmann M. More than meets the eye: knowns and unknowns of the trafficking of small secreted proteins in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3713-3730. [PMID: 38693754 DOI: 10.1093/jxb/erae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/01/2024] [Indexed: 05/03/2024]
Abstract
Small proteins represent a significant portion of the cargo transported through plant secretory pathways, playing crucial roles in developmental processes, fertilization, and responses to environmental stresses. Despite the importance of small secreted proteins, substantial knowledge gaps persist regarding the regulatory mechanisms governing their trafficking along the secretory pathway, and their ultimate localization or destination. To address these gaps, we conducted a comprehensive literature review, focusing particularly on trafficking and localization of Arabidopsis small secreted proteins with potential biochemical and/or signaling roles in the extracellular space, typically those within the size range of 101-200 amino acids. Our investigation reveals that while at least six members of the 21 mentioned families have a confirmed extracellular localization, eight exhibit intracellular localization, including cytoplasmic, nuclear, and chloroplastic locations, despite the presence of N-terminal signal peptides. Further investigation into the trafficking and secretion mechanisms of small protein cargo could not only deepen our understanding of plant cell biology and physiology but also provide a foundation for genetic manipulation strategies leading to more efficient plant cultivation.
Collapse
Affiliation(s)
- Tamara Pečenková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Martin Stegmann
- Technical University Munich, School of Life Sciences, Phytopathology, Emil-Ramann-Str. 2, 85354 Freising, Germany
| |
Collapse
|
7
|
Uzair M, Urquidi Camacho RA, Liu Z, Overholt AM, DeGennaro D, Zhang L, Herron BS, Hong T, Shpak ED. An updated model of shoot apical meristem regulation by ERECTA family and CLAVATA3 signaling pathways in Arabidopsis. Development 2024; 151:dev202870. [PMID: 38814747 PMCID: PMC11234387 DOI: 10.1242/dev.202870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
The shoot apical meristem (SAM) gives rise to the aboveground organs of plants. The size of the SAM is relatively constant due to the balance between stem cell replenishment and cell recruitment into new organs. In angiosperms, the transcription factor WUSCHEL (WUS) promotes stem cell proliferation in the central zone of the SAM. WUS forms a negative feedback loop with a signaling pathway activated by CLAVATA3 (CLV3). In the periphery of the SAM, the ERECTA family receptors (ERfs) constrain WUS and CLV3 expression. Here, we show that four ligands of ERfs redundantly inhibit the expression of these two genes. Transcriptome analysis confirmed that WUS and CLV3 are the main targets of ERf signaling and uncovered new ones. Analysis of promoter reporters indicated that the WUS expression domain mostly overlaps with the CLV3 domain and does not shift along the apical-basal axis in clv3 mutants. Our three-dimensional mathematical model captured gene expression distributions at the single-cell level under various perturbed conditions. Based on our findings, CLV3 regulates cellular levels of WUS mostly through autocrine signaling, and ERfs regulate the spatial expression of WUS, preventing its encroachment into the peripheral zone.
Collapse
Affiliation(s)
- Muhammad Uzair
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Ziyi Liu
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Alex M. Overholt
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Daniel DeGennaro
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Liang Zhang
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Brittani S. Herron
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Tian Hong
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Elena D. Shpak
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
8
|
Sun Y, Zhou K, Wang X, Li X, Zhang X, Han N, Zhang J, Chen S. Identification and characterization of CsERECTA, a major gene controlling stem elongation through regulating GA biosynthesis in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:151. [PMID: 38849610 DOI: 10.1007/s00122-024-04660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/25/2024] [Indexed: 06/09/2024]
Abstract
Dwarfing is an ideal agronomic trait in crop breeding, which can improve lodging resistance and increase crop productivity. In this study, we identified a dwarf mutant cp-3 from an EMS-mutagenized population, which had extremely short internodes, and the cell length and number of internodes were significantly reduced. Meanwhile, exogenous GA3 treatment partially rescued the plant height of the cp-3. Inheritance analysis showed that the cp-3 mutant was regulated via a recessive nuclear locus. A candidate gene, CsERECTA, encoding an LRR receptor-like serine/threonine-protein kinase, was cloned through a map-based cloning strategy. Sequence analysis showed that a nucleotide mutation (C ~ T) in exon 26 of CsERECTA led to premature termination of the protein. Subsequently, two transgenic lines were generated using the CRISPR/Cas9 system, and they showed plant dwarfing. Plant endogenous hormones quantitative and RNA-sequencing analysis revealed that GA3 content and the expression levels of genes related to GA biosynthesis were significantly reduced in Cser knockout mutants. Meanwhile, exogenous GA3 treatment partially rescued the dwarf phenotype of Cser knockout mutants. These findings revealed that CsERECTA controls stem elongation by regulating GA biosynthesis in cucumber.
Collapse
Affiliation(s)
- Yinhui Sun
- College of Horticulture, Northwest A&F University, Yangling, China
- Shaanxi Engineering Research Center for Vegetables, Yangling, 712100, China
| | - Keke Zhou
- College of Horticulture, Northwest A&F University, Yangling, China
- Shaanxi Engineering Research Center for Vegetables, Yangling, 712100, China
| | - Xin Wang
- College of Horticulture, Northwest A&F University, Yangling, China
- Shaanxi Engineering Research Center for Vegetables, Yangling, 712100, China
| | - Xuzhen Li
- College of Horticulture, Northwest A&F University, Yangling, China
- Shaanxi Engineering Research Center for Vegetables, Yangling, 712100, China
| | - Xiaojiang Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
- Shaanxi Engineering Research Center for Vegetables, Yangling, 712100, China
| | - Ni Han
- College of Horticulture, Northwest A&F University, Yangling, China
- Shaanxi Engineering Research Center for Vegetables, Yangling, 712100, China
| | - Jie Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
- Shaanxi Engineering Research Center for Vegetables, Yangling, 712100, China
| | - Shuxia Chen
- College of Horticulture, Northwest A&F University, Yangling, China.
- Shaanxi Engineering Research Center for Vegetables, Yangling, 712100, China.
| |
Collapse
|
9
|
Liu M, Li Z, Kang Y, Lv J, Jin Z, Mu S, Yue H, Li L, Chen P, Li Y. A mutation in CsGME encoding GDP-mannose 3,5-epimerase results in little and wrinkled leaf in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:114. [PMID: 38678513 DOI: 10.1007/s00122-024-04600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/13/2024] [Indexed: 05/01/2024]
Abstract
KEY MESSAGE Map-based cloning revealed that a mutation in a highly conserved amino acid of the CsGME gene encoding GDP-mannose 3,5-epimerase, causes the phenotype of little and wrinkled leaves in cucumbers. Leaf size is a critical determinant of plant architecture in cucumbers, yet only a few genes associated with this trait have been mapped or cloned. Here, we identified and characterized a mutant with little and wrinkled leaves, named lwl-1. Genetic analysis revealed that the phenotype of the lwl-1 was controlled by a single recessive gene. Through map-based cloning, the lwl-1 locus was narrowed down to a 12.22-kb region exclusively containing one fully annotated gene CsGME (CsaV3_2G004170). CsGME encodes GDP-mannose 3,5-epimerase, which is involved in the synthesis of ascorbic acid (ASA) and one of the components of pectin, RG-II. Whole-length sequencing of the 12.22 kb DNA fragment revealed the presence of only a non-synonymous mutation located in the sixth exon of CsGME in lwl-1, resulting in an amino acid alteration from Pro363 to Leu363. This mutation was unique among 118 inbred lines from cucumber natural populations. CsGME expression significantly reduced in various organs of lwl-1, accompanied by a significant decrease in ASA and pectin content in leaves. Both CsGME and Csgme proteins were localized to the cytoplasm. The mutant phenotype exhibited partial recovery after the application of exogenous boric acid. Silencing CsGME in cucumber through VIGS confirmed its role as the causal gene for lwl-1. Transcriptome profiling revealed that CsGME greatly affected the expression of genes related to the cell division process and cell plate formation. This study represents the first report to characterize and clone the CsGME in cucumber, indicating its crucial role in regulating leaf size and development.
Collapse
Affiliation(s)
- Mengying Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhaowei Li
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yunfeng Kang
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jinzhao Lv
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhuoshuai Jin
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Siyu Mu
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongzhong Yue
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China
| | - Lixia Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
10
|
Gong X, Chen J, Chen Y, He Y, Jiang D. Advancements in Rice Leaf Development Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:904. [PMID: 38592944 PMCID: PMC10976080 DOI: 10.3390/plants13060904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Rice leaf morphology is a pivotal component of the ideal plant architecture, significantly impacting rice yield. The process of leaf development unfolds through three distinct stages: the initiation of leaf primordia, the establishment and maintenance of polarity, and leaf expansion. Genes regulating leaf morphology encompass transcription factors, hormones, and miRNAs. An in-depth synthesis and categorization of genes associated with leaf development, particularly those successfully cloned, hold paramount importance in unraveling the complexity of rice leaf development. Furthermore, it provides valuable insights into the potential for molecular-level manipulation of rice leaf types. This comprehensive review consolidates the stages of rice leaf development, the genes involved, molecular regulatory pathways, and the influence of plant hormones. Its objective is to establish a foundational understanding of the creation of ideal rice leaf forms and their practical application in molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | - Dagang Jiang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (X.G.); (J.C.); (Y.C.); (Y.H.)
| |
Collapse
|
11
|
Lindsay P, Swentowsky KW, Jackson D. Cultivating potential: Harnessing plant stem cells for agricultural crop improvement. MOLECULAR PLANT 2024; 17:50-74. [PMID: 38130059 DOI: 10.1016/j.molp.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Meristems are stem cell-containing structures that produce all plant organs and are therefore important targets for crop improvement. Developmental regulators control the balance and rate of cell divisions within the meristem. Altering these regulators impacts meristem architecture and, as a consequence, plant form. In this review, we discuss genes involved in regulating the shoot apical meristem, inflorescence meristem, axillary meristem, root apical meristem, and vascular cambium in plants. We highlight several examples showing how crop breeders have manipulated developmental regulators to modify meristem growth and alter crop traits such as inflorescence size and branching patterns. Plant transformation techniques are another innovation related to plant meristem research because they make crop genome engineering possible. We discuss recent advances on plant transformation made possible by studying genes controlling meristem development. Finally, we conclude with discussions about how meristem research can contribute to crop improvement in the coming decades.
Collapse
Affiliation(s)
- Penelope Lindsay
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
12
|
Wang Y, Jiao Y. Cell signaling in the shoot apical meristem. PLANT PHYSIOLOGY 2023; 193:70-82. [PMID: 37224874 DOI: 10.1093/plphys/kiad309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
Distinct from animals, plants maintain organogenesis from specialized tissues termed meristems throughout life. In the shoot apex, the shoot apical meristem (SAM) produces all aerial organs, such as leaves, from its periphery. For this, the SAM needs to precisely balance stem cell renewal and differentiation, which is achieved through dynamic zonation of the SAM, and cell signaling within functional domains is key for SAM functions. The WUSCHEL-CLAVATA feedback loop plays a key role in SAM homeostasis, and recent studies have uncovered new components, expanding our understanding of the spatial expression and signaling mechanism. Advances in polar auxin transport and signaling have contributed to knowledge of the multifaceted roles of auxin in the SAM and organogenesis. Finally, single-cell techniques have expanded our understanding of the cellular functions within the shoot apex at single-cell resolution. In this review, we summarize the most up-to-date understanding of cell signaling in the SAM and focus on the multiple levels of regulation of SAM formation and maintenance.
Collapse
Affiliation(s)
- Ying Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuling Jiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| |
Collapse
|
13
|
Cai H, Huang Y, Liu L, Zhang M, Chai M, Xi X, Aslam M, Wang L, Ma S, Su H, Liu K, Tian Y, Zhu W, Qi J, Dresselhaus T, Qin Y. Signaling by the EPFL-ERECTA family coordinates female germline specification through the BZR1 family in Arabidopsis. THE PLANT CELL 2023; 35:1455-1473. [PMID: 36748257 PMCID: PMC10118260 DOI: 10.1093/plcell/koad032] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
In most flowering plants, the female germline is initiated in the subepidermal L2 layer of ovule primordia forming a single megaspore mother cell (MMC). How signaling from the L1 (epidermal) layer could contribute to the gene regulatory network (GRN) restricting MMC formation to a single cell is unclear. We show that EPIDERMAL PATTERNING FACTOR-like (EPFL) peptide ligands are expressed in the L1 layer, together with their ERECTA family (ERf) receptor kinases, to control female germline specification in Arabidopsis thaliana. EPFL-ERf dependent signaling restricts multiple subepidermal cells from acquiring MMC-like cell identity by activating the expression of the major brassinosteroid (BR) receptor kinase BRASSINOSTEROID INSENSITIVE 1 and the BR-responsive transcription factor BRASSINOZOLE RESISTANT 1 (BZR1). Additionally, BZR1 coordinates female germline specification by directly activating the expression of a nucleolar GTP-binding protein, NUCLEOSTEMIN-LIKE 1 (NSN1), which is expressed in early-stage ovules excluding the MMC. Mutants defective in this GRN form multiple MMCs resulting in a strong reduction of seed set. In conclusion, we uncovered a ligand/receptor-like kinase-mediated signaling pathway acting upstream and coordinating BR signaling via NSN1 to restrict MMC differentiation to a single subepidermal cell.
Collapse
Affiliation(s)
- Hanyang Cai
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youmei Huang
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liping Liu
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Man Zhang
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Dafeng Road 6, Tianhe District, Guangzhou 510640, China
| | - Mengnan Chai
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinpeng Xi
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mohammad Aslam
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lulu Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Suzhuo Ma
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Han Su
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kaichuang Liu
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaru Tian
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenhui Zhu
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingang Qi
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Yuan Qin
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
14
|
Li M, Lv M, Wang X, Cai Z, Yao H, Zhang D, Li H, Zhu M, Du W, Wang R, Wang Z, Kui H, Hou S, Li J, Yi J, Gou X. The EPFL-ERf-SERK signaling controls integument development in Arabidopsis. THE NEW PHYTOLOGIST 2023; 238:186-201. [PMID: 36564978 DOI: 10.1111/nph.18701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
As the seed precursor, the ovule produces the female gametophyte (or embryo sac), and the subsequent double fertilization occurs in it. The integuments emerge sequentially from the integument primordia at the early stages of ovule development and finally enwrap the embryo sac gradually during gametogenesis, protecting and nursing the embryo sac. However, the mechanisms regulating integument development are still obscure. In this study, we show that SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES (SERKs) play essential roles during integument development in Arabidopsis thaliana. The serk1/2/3 triple mutant shows arrested integuments and abnormal embryo sacs, similar defects also found in the triple loss-of-function mutants of ERECTA family (ERf) genes. Ovules of serk1/2/3 er erl1/2 show defects similar to er erl1/2 and serk1/2/3. Results of yeast two-hybrid analyses, bimolecular fluorescence complementation (BiFC) analyses, and co-immunoprecipitation assays demonstrated that SERKs interact with ERf, which depends on EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family small peptides. The sextuple mutant epfl1/2/3/4/5/6 shows integument defects similar to both of er erl1/2 and serk1/2/3. Our results demonstrate that ERf-SERK-mediated EPFL signaling orchestrates the development of the female gametophyte and the surrounding sporophytic integuments.
Collapse
Affiliation(s)
- Meizhen Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Minghui Lv
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Xiaojuan Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zeping Cai
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
- College of Forestry, Hainan University, Haikou, Hainan, 570228, China
| | - Hongrui Yao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Dongyang Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Huiqiang Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Mingsong Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Wenbin Du
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Ruoshi Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhe Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Hong Kui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Suiwen Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Jing Yi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| |
Collapse
|
15
|
Guo T, Lu ZQ, Xiong Y, Shan JX, Ye WW, Dong NQ, Kan Y, Yang YB, Zhao HY, Yu HX, Guo SQ, Lei JJ, Liao B, Chai J, Lin HX. Optimization of rice panicle architecture by specifically suppressing ligand-receptor pairs. Nat Commun 2023; 14:1640. [PMID: 36964129 PMCID: PMC10039049 DOI: 10.1038/s41467-023-37326-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/10/2023] [Indexed: 03/26/2023] Open
Abstract
Rice panicle architecture determines the grain number per panicle and therefore impacts grain yield. The OsER1-OsMKKK10-OsMKK4-OsMPK6 pathway shapes panicle architecture by regulating cytokinin metabolism. However, the specific upstream ligands perceived by the OsER1 receptor are unknown. Here, we report that the EPIDERMAL PATTERNING FACTOR (EPF)/EPF-LIKE (EPFL) small secreted peptide family members OsEPFL6, OsEPFL7, OsEPFL8, and OsEPFL9 synergistically contribute to rice panicle morphogenesis by recognizing the OsER1 receptor and activating the mitogen-activated protein kinase cascade. Notably, OsEPFL6, OsEPFL7, OsEPFL8, and OsEPFL9 negatively regulate spikelet number per panicle, but OsEPFL8 also controls rice spikelet fertility. A osepfl6 osepfl7 osepfl9 triple mutant had significantly enhanced grain yield without affecting spikelet fertility, suggesting that specifically suppressing the OsEPFL6-OsER1, OsEPFL7-OsER1, and OsEPFL9-OsER1 ligand-receptor pairs can optimize rice panicle architecture. These findings provide a framework for fundamental understanding of the role of ligand-receptor signaling in rice panicle development and demonstrate a potential method to overcome the trade-off between spikelet number and fertility.
Collapse
Affiliation(s)
- Tao Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zi-Qi Lu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yehui Xiong
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jun-Xiang Shan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Wang-Wei Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Nai-Qian Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yi Kan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yi-Bing Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Huai-Yu Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong-Xiao Yu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang-Qin Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie-Jie Lei
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ben Liao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jijie Chai
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Negoro S, Hirabayashi T, Iwasaki R, Torii KU, Uchida N. EPFL peptide signalling ensures robust self-pollination success under cool temperature stress by aligning the length of the stamen and pistil. PLANT, CELL & ENVIRONMENT 2023; 46:451-463. [PMID: 36419209 DOI: 10.1111/pce.14498] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Successful sexual reproduction of plants requires temperature-sensitive processes, and temperature stress sometimes causes developmental asynchrony between male and female reproductive tissues. In Arabidopsis thaliana, self-pollination occurs when the stamen and pistil lengths are aligned in a single flower so that pollens at the stamen tip are delivered to the stigma at the pistil tip. Although intercellular signalling acts in several reproduction steps, how signalling molecules, including secreted peptides, contribute to the synchronous growth of reproductive tissues remains limited. Here, we show that the mutant of the secreted peptide EPIDERMAL PATTERNING FACTOR LIKE 6 (EPFL6), which shows no phenotypes at a moderate temperature, fails in fruit production at a cool temperature due to insufficient elongation of stamens. EPFL6 is expressed in stamen filaments and promotes filament elongation to achieve the alignment of stamen and pistil lengths at a cool temperature. We also found that, at a moderate temperature, all EPFL6-subfamily genes are required for stamen elongation. Furthermore, we showed that ERECTA (ER), known as a common receptor for EPFL-family peptides, mediates the stamen-pistil growth coordination. Lastly, we provided evidence that modulation of ER activity rescues the reproduction failure caused by insufficient stamen elongation by realigning the stamen and pistil lengths.
Collapse
Affiliation(s)
- Satomi Negoro
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Tomo Hirabayashi
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Rie Iwasaki
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Keiko U Torii
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
- Department of Molecular Biosciences and Howard Hughes Medical Institute, The University of Texas at Austin, Austin, Texas, USA
| | - Naoyuki Uchida
- Center for Gene Research, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| |
Collapse
|
17
|
Navarro-Cartagena S, Micol JL. Is auxin enough? Cytokinins and margin patterning in simple leaves. TRENDS IN PLANT SCIENCE 2023; 28:54-73. [PMID: 36180378 DOI: 10.1016/j.tplants.2022.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
The interplay between auxin and cytokinins affects facets of plant development as different as ovule formation and lateral root initiation. Moreover, cytokinins favor complexity in the development of Solanum lycopersicum and Cardamine hirsuta compound leaves. Nevertheless, no role has been proposed for cytokinins in patterning the margins of the simple leaves of Arabidopsis thaliana, a process that is assumed to be sufficiently explained by auxin localization. Here, we discuss evidence supporting the hypothesis that cytokinins play a role in simple leaf margin morphogenesis via crosstalk with auxin, as occurs in other plant developmental events. Indeed, mutant or transgenic arabidopsis plants defective in cytokinin biosynthesis or signaling, or with increased cytokinin degradation have leaf margins less serrated than the wild type.
Collapse
Affiliation(s)
- Sergio Navarro-Cartagena
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain.
| |
Collapse
|
18
|
Jiang H, Chen Y, Liu Y, Shang J, Sun X, Du J. Multifaceted roles of the ERECTA family in plant organ morphogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7208-7218. [PMID: 36056777 DOI: 10.1093/jxb/erac353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Receptor-like kinases (RLKs) can participate in multiple signalling pathways and are considered one of the most critical components of the early events of intercellular signalling. As an RLK, the ERECTA family (ERf), which comprises ERECTA (ER), ERECTA-Like1 (ERL1), and ERECTA-Like2 (ERL2) in Arabidopsis, regulates multiple signalling pathways in plant growth and development. Despite its indispensability, detailed information on ERf-manipulated signalling pathways remains elusive. In this review, we attempt to summarize the essential roles of the ERf in plant organ morphogenesis, including shoot apical meristem, stem, and reproductive organ development.
Collapse
Affiliation(s)
- Hengke Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhui Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhan Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Shang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Sun
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Junbo Du
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
19
|
DeGennaro D, Urquidi Camacho RA, Zhang L, Shpak ED. Initiation of aboveground organ primordia depends on combined action of auxin, ERECTA family genes, and PINOID. PLANT PHYSIOLOGY 2022; 190:794-812. [PMID: 35703946 PMCID: PMC9434323 DOI: 10.1093/plphys/kiac288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Leaves and flowers are produced by the shoot apical meristem (SAM) at a certain distance from its center, a process that requires the hormone auxin. The amount of auxin and the pattern of its distribution in the initiation zone determine the size and spatial arrangement of organ primordia. Auxin gradients in the SAM are formed by PIN-FORMED (PIN) auxin efflux carriers whose polar localization in the plasma membrane depends on the protein kinase PINOID (PID). Previous work determined that ERECTA (ER) family genes (ERfs) control initiation of leaves. ERfs are plasma membrane receptors that enable cell-to-cell communication by sensing extracellular small proteins from the EPIDERMAL PATTERNING FACTOR/EPF-LIKE (EPF/EPFL) family. Here, we investigated whether ERfs regulate initiation of organs by altering auxin distribution or signaling in Arabidopsis (Arabidopsis thaliana). Genetic and pharmacological data suggested that ERfs do not regulate organogenesis through PINs while transcriptomics data showed that ERfs do not alter primary transcriptional responses to auxin. Our results indicated that in the absence of ERf signaling the peripheral zone cells inefficiently initiate leaves in response to auxin signals and that increased accumulation of auxin in the er erecta-like1 (erl1) erl2 SAM can partially rescue organ initiation defects. We propose that both auxin and ERfs are essential for leaf initiation and that they have common downstream targets. Genetic data also indicated that the role of PID in initiation of cotyledons and leaves cannot be attributed solely to regulation of PIN polarity and PID is likely to have other functions in addition to regulation of auxin distribution.
Collapse
Affiliation(s)
- Daniel DeGennaro
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | |
Collapse
|
20
|
Manggabarani AM, Hashiguchi T, Hashiguchi M, Hayashi A, Kikuchi M, Mustamin Y, Bamba M, Kodama K, Tanabata T, Isobe S, Tanaka H, Akashi R, Nakaya A, Sato S. Construction of prediction models for growth traits of soybean cultivars based on phenotyping in diverse genotype and environment combinations. DNA Res 2022; 29:6653298. [PMID: 35916715 PMCID: PMC9358015 DOI: 10.1093/dnares/dsac024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
As soybean cultivars are adapted to a relatively narrow range of latitude, the effects of climate changes are estimated to be severe. To address this issue, it is important to improve our understanding of the effects of climate change by applying the simulation model including both genetic and environmental factors with their interactions (G×E). To achieve this goal, we conducted the field experiments for soybean core collections using multiple sowing times in multi-latitudinal fields. Sowing time shifts altered the flowering time (FT) and growth phenotypes, and resulted in increasing the combinations of genotypes and environments. Genome-wide association studies for the obtained phenotypes revealed the effects of field and sowing time to the significance of detected alleles, indicating the presence of G×E. By using accumulated phenotypic and environmental data in 2018 and 2019, we constructed multiple regression models for FT and growth pattern. Applicability of the constructed models was evaluated by the field experiments in 2020 including a novel field, and high correlation between the predicted and measured values was observed, suggesting the robustness of the models. The models presented here would allow us to predict the phenotype of the core collections in a given environment.
Collapse
Affiliation(s)
| | - Takuyu Hashiguchi
- Faculty of Agriculture, University of Miyazaki , Miyazaki 889-2192, Japan
| | | | - Atsushi Hayashi
- Kazusa DNA Research Institute , Kisarazu, Chiba 292-0818, Japan
| | - Masataka Kikuchi
- Graduate School of Medicine, Osaka University , Suita, Osaka 565-0871, Japan
| | - Yusdar Mustamin
- Graduate School of Life Sciences, Tohoku University , Sendai, Miyagi 980-8577, Japan
| | - Masaru Bamba
- Graduate School of Life Sciences, Tohoku University , Sendai, Miyagi 980-8577, Japan
| | - Kunihiro Kodama
- Kazusa DNA Research Institute , Kisarazu, Chiba 292-0818, Japan
| | | | - Sachiko Isobe
- Kazusa DNA Research Institute , Kisarazu, Chiba 292-0818, Japan
| | - Hidenori Tanaka
- Faculty of Agriculture, University of Miyazaki , Miyazaki 889-2192, Japan
| | - Ryo Akashi
- Faculty of Agriculture, University of Miyazaki , Miyazaki 889-2192, Japan
| | - Akihiro Nakaya
- Graduate School of Medicine, Osaka University , Suita, Osaka 565-0871, Japan
- Graduate School of Frontier Sciences, The University of Tokyo , Kashiwa, Chiba 277-0882, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University , Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
21
|
Yang J, Weng Y, Li H, Kong Q, Wang W, Yan C, Wang L. Epidermal Patterning Factor 2-like ( McEPFL2): A Putative Candidate for the Continuous Ridge (cr) Fruit Skin Locus in Bitter Gourd ( Momordica charantia L.). Genes (Basel) 2022; 13:1148. [PMID: 35885929 PMCID: PMC9316824 DOI: 10.3390/genes13071148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Bitter gourd (Momordica charantia L.) is an economically important vegetable and medicinal crop in many Asian countries. Limited work has been conducted in understanding the genetic basis of horticulturally important traits in bitter gourd. Bitter gourd is consumed primarily for its young, immature fruit, and fruit appearance plays an important role in market acceptability. One such trait is the ridges on the fruit skin. In the present study, molecular mapping of a locus underlying fruit ridge continuity was conducted. Genetic analysis in segregating populations, derived from the crosses between two inbred lines Y1 with continuous ridges (CR) and Z-1-4 with discontinuous ridges (DCR), suggested that CR was controlled by a single recessive gene (cr). High-throughput genome sequencing of CR and DCR bulks combined with high-resolution genetic mapping in an F2 population delimited cr into a 108 kb region with 16 predicted genes. Sequence variation analysis and expression profiling supported the epidermal patterning factor 2-like (McEPFL2) gene as the best candidate of the cr locus. A 1 bp deletion in the first exon of McEPFL2 in Y1 which would result in a truncated McEPFL2 protein may be the causal polymorphism for the phenotypic difference between Y1 and Z-1-4. The association of this 1 bp deletion with CR was further supported by gDNA sequencing of McEPFL2 among 31 bitter gourd accessions. This work provides a foundation for understanding the genetic and molecular control of fruit epidermal pattering and development, which also facilitates marker-assisted selection in bitter melon breeding.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.Y.); (H.L.); (Q.K.); (W.W.)
| | - Yiqun Weng
- USDA-ARS Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Huihong Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.Y.); (H.L.); (Q.K.); (W.W.)
| | - Qiusheng Kong
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.Y.); (H.L.); (Q.K.); (W.W.)
| | - Weiluan Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.Y.); (H.L.); (Q.K.); (W.W.)
| | - Chenghuan Yan
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
| | - Liping Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.Y.); (H.L.); (Q.K.); (W.W.)
| |
Collapse
|
22
|
Bouré N, Peaucelle A, Goussot M, Adroher B, Soubigou-Taconnat L, Borrega N, Biot E, Tariq Z, Martin-Magniette ML, Pautot V, Laufs P, Arnaud N. A cell wall-associated gene network shapes leaf boundary domains. Development 2022; 149:275600. [DOI: 10.1242/dev.200359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/29/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Boundary domains delimit and organize organ growth throughout plant development almost relentlessly, building plant architecture and morphogenesis. Boundary domains display reduced growth and orchestrate development of adjacent tissues in a non-cell-autonomous manner. How these two functions are achieved remains elusive despite the identification of several boundary-specific genes. Here, we show using morphometrics at the organ and cellular levels that leaf boundary domain development requires SPINDLY (SPY), an O-fucosyltransferase, to act as cell growth repressor. Furthermore, we show that SPY acts redundantly with the CUP-SHAPED COTYLEDON transcription factors (CUC2 and CUC3), which are major determinants of boundaries development. Accordingly, at the molecular level CUC2 and SPY repress a common set of genes involved in cell wall loosening, providing a molecular framework for the growth repression associated with boundary domains. Atomic force microscopy confirmed that young leaf boundary domain cells have stiffer cell walls than marginal outgrowth. This differential cell wall stiffness was reduced in spy mutant plants. Taken together, our data reveal a concealed CUC2 cell wall-associated gene network linking tissue patterning with cell growth and mechanics.
Collapse
Affiliation(s)
- Nathalie Bouré
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB) 1 , 78000 Versailles , France
- Université Paris-Saclay 2 , 91405 Orsay , France
| | - Alexis Peaucelle
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB) 1 , 78000 Versailles , France
| | - Magali Goussot
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB) 1 , 78000 Versailles , France
| | - Bernard Adroher
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB) 1 , 78000 Versailles , France
| | - Ludivine Soubigou-Taconnat
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2) 3 , 91405 Orsay , France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2) 4 , 91405 Orsay , France
| | - Néro Borrega
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB) 1 , 78000 Versailles , France
| | - Eric Biot
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB) 1 , 78000 Versailles , France
| | - Zakia Tariq
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2) 3 , 91405 Orsay , France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2) 4 , 91405 Orsay , France
| | - Marie-Laure Martin-Magniette
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2) 3 , 91405 Orsay , France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2) 4 , 91405 Orsay , France
| | - Véronique Pautot
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB) 1 , 78000 Versailles , France
| | - Patrick Laufs
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB) 1 , 78000 Versailles , France
| | - Nicolas Arnaud
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB) 1 , 78000 Versailles , France
| |
Collapse
|
23
|
Wang L, Wang Y, Luan F, Zhang X, Zhao J, Yang Z, Liu S. Biparental genetic mapping reveals that CmCLAVATA3 (CmCLV3) is responsible for the variation in carpel number in melon (Cucumis melo L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1909-1921. [PMID: 35357526 DOI: 10.1007/s00122-022-04083-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Genetic analysis revealed that CmCLV3 is a candidate gene for the variation in melon carpel number. Carpel number (CN) is an important trait in melon. Three-CN melon fruit is oval, while 5-CN melon fruit has a round or flat shape. Herein, a genetic analysis of a population in which the CN locus was segregated indicated that 3-CN is controlled by a major dominant effective gene. Bulked segregant analysis and initial linkage mapping placed the CN locus in a 6.67 Mb region on chromosome 12, and it was narrowed to 882.19 kb with molecular markers and recombinant plants. Fine mapping with a large F2 population containing 1026 individuals further narrowed the locus to an 83.98 kb region harboring five annotated genes. Gene structure alignment between the parental lines revealed MELO3C035640.2 (annotated as CLAVATA3, CmCLV3) as the best candidate gene for the CN trait. CmCLV3 was more highly expressed in 3- than 5-CN lines and specifically expressed in terminal buds rather than in young leaves, hypocotyls, and roots. The CmCLV3 coding region was cloned from eight 3- or 5-CN melon accessions, and a nonsynonymous SNP site was highly correlated with CN variation. This SNP site was also related to CN variations among 40 melon lines according to their resequencing data, causing a helix alteration in the CmCLV3 protein. Promoter region sequence alignment and activity analysis showed that, unlike in cucumber and tomato, CmCLV3 promoter variation and activity were not the main reasons for CN alteration. Overall, this study provides a genetic resource for melon fruit development research and molecular breeding tools for melon CN improvement.
Collapse
Affiliation(s)
- Lihuan Wang
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China
| | - Yaping Wang
- College of Horticulture, Jilin University, Changchun, Jilin Province, China
| | - Feishi Luan
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang Province, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China.
| | - Xian Zhang
- College of Horticulture, Northwest of A&F University, Yangling, Shanxi Province, China
| | - Jingchao Zhao
- Qinggang Ruixue Agriculture Co., Ltd., Harbin, Heilongjiang Province, China
| | - Zhongzhou Yang
- Anhui Jianghuai Horticulture Seed Industry Co., Ltd., Hefei, Anhui Province, China
| | - Shi Liu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang Province, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China.
| |
Collapse
|
24
|
Cui Y, Lu X, Gou X. Receptor-like protein kinases in plant reproduction: Current understanding and future perspectives. PLANT COMMUNICATIONS 2022; 3:100273. [PMID: 35059634 PMCID: PMC8760141 DOI: 10.1016/j.xplc.2021.100273] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/09/2021] [Accepted: 12/28/2021] [Indexed: 05/30/2023]
Abstract
Reproduction is a crucial process in the life span of flowering plants, and directly affects human basic requirements in agriculture, such as grain yield and quality. Typical receptor-like protein kinases (RLKs) are a large family of membrane proteins sensing extracellular signals to regulate plant growth, development, and stress responses. In Arabidopsis thaliana and other plant species, RLK-mediated signaling pathways play essential roles in regulating the reproductive process by sensing different ligand signals. Molecular understanding of the reproductive process is vital from the perspective of controlling male and female fertility. Here, we summarize the roles of RLKs during plant reproduction at the genetic and molecular levels, including RLK-mediated floral organ development, ovule and anther development, and embryogenesis. In addition, the possible molecular regulatory patterns of those RLKs with unrevealed mechanisms during reproductive development are discussed. We also point out the thought-provoking questions raised by the research on these plant RLKs during reproduction for future investigation.
Collapse
|
25
|
Song XF, Hou XL, Liu CM. CLE peptides: critical regulators for stem cell maintenance in plants. PLANTA 2021; 255:5. [PMID: 34841457 DOI: 10.1007/s00425-021-03791-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Plant CLE peptides, which regulate stem cell maintenance in shoot and root meristems and in vascular bundles through LRR family receptor kinases, are novel, complex, and to some extent conserved. Over the past two decades, peptide ligands of the CLAVATA3 (CLV3) /Embryo Surrounding Region (CLE) family have been recognized as critical short- and long-distance communication signals in plants, especially for stem cell homeostasis, cell fate determination and physiological responses. Stem cells located at the shoot apical meristem (SAM), the root apical meristem (RAM) and the procambium divide and differentiate into specialized cells that form a variety of tissues such as epidermis, ground tissues, xylem and phloem. In the SAM of Arabidopsis (Arabidopsis thaliana), the CLV3 peptide restricts the number of stem cells via leucine-rich repeat (LRR)-type receptor kinases. In the RAM, root-active CLE peptides are critical negative regulators, while ROOT GROWTH FACTOR (RGF) peptides are positive regulators in stem cell maintenance. Among those root-active CLE peptides, CLE25 promotes, while CLE45 inhibits phloem differentiation. In vascular bundles, TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR (TDIF)/CLE41/CLE44 promotes procambium cell division, and prevents xylem differentiation. Orthologs of CLV3 have been identified in liverwort (Marchantia polymorpha), tomato (Solanum lycopersicum), rice (Oryza sativa), maize (Zea mays) and lotus (Lotus japonicas), suggesting that CLV3 is an evolutionarily conserved signal in stem cell maintenance. However, functional characterization of endogenous CLE peptides and corresponding receptor kinases, and the downstream signal transduction has been challenging due to their genome-wide redundancies and rapid evolution.
Collapse
Affiliation(s)
- Xiu-Fen Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiu-Li Hou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
26
|
Okuda S. Molecular mechanisms of plant peptide binding to receptors. Peptides 2021; 144:170614. [PMID: 34332962 DOI: 10.1016/j.peptides.2021.170614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/15/2021] [Accepted: 07/24/2021] [Indexed: 01/21/2023]
Abstract
Plants have evolved diverse peptide hormones and cognate receptors to orchestrate plant growth and development. Secreted peptide ligands are mainly sensed by membrane receptor kinases that mediate cell-cell communication. The secreted peptides are categorized into two groups: small linear post-translationally modified peptides and cysteine-rich peptides. The small linear peptides are recognized by the corresponding receptors and co-receptors in a conserved manner. By contrast, the cysteine-rich peptides are perceived by various types of receptor proteins using diverse binding modes. Recent studies have revealed the molecular and mechanistic origins of peptide recognition and receptor activation. This review summarizes plant-peptide binding modes and receptor-activation mechanisms that have been structurally characterized in recent studies.
Collapse
Affiliation(s)
- Satohiro Okuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| |
Collapse
|
27
|
Hou Z, Liu Y, Zhang M, Zhao L, Jin X, Liu L, Su Z, Cai H, Qin Y. High-throughput single-cell transcriptomics reveals the female germline differentiation trajectory in Arabidopsis thaliana. Commun Biol 2021; 4:1149. [PMID: 34599277 PMCID: PMC8486858 DOI: 10.1038/s42003-021-02676-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/15/2021] [Indexed: 12/20/2022] Open
Abstract
Female germline cells in flowering plants differentiate from somatic cells to produce specialized reproductive organs, called ovules, embedded deep inside the flowers. We investigated the molecular basis of this distinctive developmental program by performing single-cell RNA sequencing (scRNA-seq) of 16,872 single cells of Arabidopsis thaliana ovule primordia at three developmental time points during female germline differentiation. This allowed us to identify the characteristic expression patterns of the main cell types, including the female germline and its surrounding nucellus. We then reconstructed the continuous trajectory of female germline differentiation and observed dynamic waves of gene expression along the developmental trajectory. A focused analysis revealed transcriptional cascades and identified key transcriptional factors that showed distinct expression patterns along the germline differentiation trajectory. Our study provides a valuable reference dataset of the transcriptional process during female germline differentiation at single-cell resolution, shedding light on the mechanisms underlying germline cell fate determination. Zhimin Hou, Yanhui Liu et al. used single cell RNA-seq to analyze the model organism, Arabidopsis thaliana, at three stages during female germline differentiation. They reconstructed the continuous trajectory of female germline differentiation, providing a valuable reference for future investigation of germline cell fate determination in A. thaliana.
Collapse
Affiliation(s)
- Zhimin Hou
- College of Life Sciences, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Yanhui Liu
- College of Life Sciences, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Man Zhang
- College of Life Sciences, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Lihua Zhao
- College of Life Sciences, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Xingyue Jin
- College of Life Sciences, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Liping Liu
- College of Life Sciences, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Zhenxia Su
- College of Life Sciences, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Hanyang Cai
- College of Life Sciences, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Yuan Qin
- College of Life Sciences, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, 350002, Fuzhou, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, 530004, Nanning, China.
| |
Collapse
|
28
|
Fujihara R, Uchida N, Tameshige T, Kawamoto N, Hotokezaka Y, Higaki T, Simon R, Torii KU, Tasaka M, Aida M. The boundary-expressed EPIDERMAL PATTERNING FACTOR-LIKE2 gene encoding a signaling peptide promotes cotyledon growth during Arabidopsis thaliana embryogenesis. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:317-322. [PMID: 34782818 PMCID: PMC8562585 DOI: 10.5511/plantbiotechnology.21.0508a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/08/2021] [Indexed: 06/01/2023]
Abstract
The shoot organ boundaries have important roles in plant growth and morphogenesis. It has been reported that a gene encoding a cysteine-rich secreted peptide of the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family, EPFL2, is expressed in the boundary domain between the two cotyledon primordia of Arabidopsis thaliana embryo. However, its developmental functions remain unknown. This study aimed to analyze the role of EPFL2 during embryogenesis. We found that cotyledon growth was reduced in its loss-of-function mutants, and this phenotype was associated with the reduction of auxin response peaks at the tips of the primordia. The reduced cotyledon size of the mutant embryo recovered in germinating seedlings, indicating the presence of a factor that acted redundantly with EPFL2 to promote cotyledon growth in late embryogenesis. Our analysis suggests that the boundary domain between the cotyledon primordia acts as a signaling center that organizes auxin response peaks and promotes cotyledon growth.
Collapse
Affiliation(s)
- Rina Fujihara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Naoyuki Uchida
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Toshiaki Tameshige
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, Niigata 950-2181, Japan
| | - Nozomi Kawamoto
- Institute for Developmental Genetics, Heinrich-Heine University, University Street 1, D-40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), University Street 1, D-40225 Düsseldorf, Germany
| | - Yugo Hotokezaka
- Faculty of Science, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Rüdiger Simon
- Institute for Developmental Genetics, Heinrich-Heine University, University Street 1, D-40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), University Street 1, D-40225 Düsseldorf, Germany
| | - Keiko U Torii
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Howard Hughes Medical Institute and Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Masao Tasaka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Mitsuhiro Aida
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
29
|
Jangra R, Brunetti SC, Wang X, Kaushik P, Gulick PJ, Foroud NA, Wang S, Lee JS. Duplicated antagonistic EPF peptides optimize grass stomatal initiation. Development 2021; 148:271118. [PMID: 34328169 DOI: 10.1242/dev.199780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022]
Abstract
Peptide signaling has emerged as a key component of plant growth and development, including stomatal patterning, which is crucial for plant productivity and survival. Although exciting progress has been made in understanding EPIDERMAL PATTERNING FACTOR (EPF) signaling in Arabidopsis, the mechanisms by which EPF peptides control different stomatal patterns and morphologies in grasses are poorly understood. Here, by examining expression patterns, overexpression transgenics and cross-species complementation, the antagonistic stomatal ligands orthologous to Arabidopsis AtEPF2 and AtSTOMAGEN/AtEPFL9 peptides were identified in Triticum aestivum (wheat) and the grass model organism Brachypodium distachyon. Application of bioactive BdEPF2 peptides inhibited stomatal initiation, but not the progression or differentiation of stomatal precursors in Brachypodium. Additionally, the inhibitory roles of these EPF peptides during grass stomatal development were suppressed by the contrasting positive action of the BdSTOMAGEN peptide in a dose-dependent manner. These results not only demonstrate how conserved EPF peptides that control different stomatal patterns exist in nature, but also suggest new strategies to improve crop yield through the use of plant-derived antagonistic peptides that optimize stomatal density on the plant epidermis.
Collapse
Affiliation(s)
- Raman Jangra
- Department of Biology, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Sabrina C Brunetti
- Department of Biology, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Xutong Wang
- Department of Biology, Concordia University, Montreal, Quebec, H4B 1R6, Canada.,Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Pooja Kaushik
- Department of Biology, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Patrick J Gulick
- Department of Biology, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Nora A Foroud
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, T1J 4B1, Canada
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Jin Suk Lee
- Department of Biology, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| |
Collapse
|
30
|
Zhang L, DeGennaro D, Lin G, Chai J, Shpak ED. ERECTA family signaling constrains CLAVATA3 and WUSCHEL to the center of the shoot apical meristem. Development 2021; 148:dev.189753. [PMID: 33593817 DOI: 10.1242/dev.189753] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022]
Abstract
The shoot apical meristem (SAM) is a reservoir of stem cells that gives rise to all post-embryonic above-ground plant organs. The size of the SAM remains stable over time owing to a precise balance of stem cell replenishment versus cell incorporation into organ primordia. The WUSCHEL (WUS)/CLAVATA (CLV) negative feedback loop is central to SAM size regulation. Its correct function depends on accurate spatial expression of WUS and CLV3 A signaling pathway, consisting of ERECTA family (ERf) receptors and EPIDERMAL PATTERNING FACTOR LIKE (EPFL) ligands, restricts SAM width and promotes leaf initiation. Although ERf receptors are expressed throughout the SAM, EPFL ligands are expressed in its periphery. Our genetic analysis of Arabidopsis demonstrated that ERfs and CLV3 synergistically regulate the size of the SAM, and wus is epistatic to ERf genes. Furthermore, activation of ERf signaling with exogenous EPFLs resulted in a rapid decrease of CLV3 and WUS expression. ERf-EPFL signaling inhibits expression of WUS and CLV3 in the periphery of the SAM, confining them to the center. These findings establish the molecular mechanism for stem cell positioning along the radial axis.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Daniel DeGennaro
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Guangzhong Lin
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Jijie Chai
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China.,Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.,Institute of Biochemistry, University of Cologne, Zuelpicher Strasse 47, 50674 Cologne, Germany
| | - Elena D Shpak
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
31
|
Liu Z, Shpak ED, Hong T. A mathematical model for understanding synergistic regulations and paradoxical feedbacks in the shoot apical meristem. Comput Struct Biotechnol J 2020; 18:3877-3889. [PMID: 33335685 PMCID: PMC7720093 DOI: 10.1016/j.csbj.2020.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 01/22/2023] Open
Abstract
The shoot apical meristem (SAM) is the primary stem cell niche in plant shoots. Stem cells in the SAM are controlled by an intricate regulatory network, including negative feedback between WUSCHEL (WUS) and CLAVATA3 (CLV3). Recently, we identified a group of signals, Epidermal Patterning Factor-Like (EPFL) proteins, that are produced at the peripheral region and are important for SAM homeostasis. Here, we present a mathematical model for the SAM regulatory network. The model revealed that the SAM uses EPFL and signals such as HAIRY MERISTEM from the middle in a synergistic manner to constrain both WUS and CLV3. We found that interconnected negative and positive feedbacks between WUS and CLV3 ensure stable WUS expression in the SAM when facing perturbations, and the positive feedback loop also maintains distinct cell populations containing WUS on and CLV3 on cells in the apical-basal direction. Furthermore, systematic perturbations of the parameters revealed a tradeoff between optimizations of multiple patterning features. Our results provide a holistic view of the regulation of SAM patterning in multiple dimensions. They give insights into how Arabidopsis integrates signals from lateral and apical-basal axes to control the SAM patterning, and they shed light into design principles that may be widely useful for understanding regulatory networks of stem cell niche.
Collapse
Affiliation(s)
- Ziyi Liu
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN, United States
| | - Elena D. Shpak
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, United States
| | - Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, United States
- National Institute for Mathematical and Biological Synthesis, Knoxville, TN, United States
| |
Collapse
|
32
|
Min Y, Kramer EM. Transcriptome profiling and weighted gene co-expression network analysis of early floral development in Aquilegia coerulea. Sci Rep 2020; 10:19637. [PMID: 33184405 PMCID: PMC7665038 DOI: 10.1038/s41598-020-76750-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/29/2020] [Indexed: 11/08/2022] Open
Abstract
The earliest phases of floral development include a number of crucial processes that lay the foundation for the subsequent morphogenesis of floral organs and success in reproduction. Currently, key transcriptional changes during this developmental window have been characterized in the model species Arabidopsis thaliana, but little is known about how transcriptional dynamics change over the course of these developmental processes in other plant systems. Here, we have conducted the first in-depth transcriptome profiling of early floral development in Aquilegia at four finely dissected developmental stages, with eight biological replicates per stage. Using differential gene expression analysis and weighted gene co-expression network analysis, we identified both crucial genes whose expression changes mark the transitions between developmental stages and hub genes in co-expression modules. Our results support the potential functional conservation of key genes in early floral development that have been identified in other systems, but also reveal a number of previously unknown or overlooked loci that are worthy of further investigation. In addition, our results highlight not only the dynamics of transcriptional regulation during early floral development, but also the potential involvement of the complex, essential networks of small RNA and post-translational regulation to these developmental stages.
Collapse
Affiliation(s)
- Ya Min
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA, USA
| | - Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA, USA.
| |
Collapse
|
33
|
Kawamoto N, Del Carpio DP, Hofmann A, Mizuta Y, Kurihara D, Higashiyama T, Uchida N, Torii KU, Colombo L, Groth G, Simon R. A Peptide Pair Coordinates Regular Ovule Initiation Patterns with Seed Number and Fruit Size. Curr Biol 2020; 30:4352-4361.e4. [PMID: 32916111 DOI: 10.1016/j.cub.2020.08.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 08/01/2020] [Accepted: 08/13/2020] [Indexed: 01/11/2023]
Abstract
Ovule development in Arabidopsis thaliana involves pattern formation, which ensures that ovules are regularly arranged in the pistils to reduce competition for nutrients and space. Mechanisms underlying pattern formation in plants, such as phyllotaxis, flower morphogenesis, or lateral root initiation, have been extensively studied, and genes controlling the initiation of ovules have been identified. However, the fundamental patterning mechanism that determines the spacing of ovule anlagen within the placenta remained unexplored. Using natural variation analysis combined with quantitative trait locus analysis, we found that the spacing of ovules in the developing gynoecium and fruits is controlled by two secreted peptides, EPFL2 and EPFL9 (also known as Stomagen), and their receptors from the ERECTA (ER) family that act from the carpel wall and the placental tissue. We found that a signaling pathway controlled by EPFL9 acting from the carpel wall through the LRR-receptor kinases ER, ERL1, and ERL2 promotes fruit growth. Regular spacing of ovules depends on EPFL2 expression in the carpel wall and in the inter-ovule spaces, where it acts through ERL1 and ERL2. Loss of EPFL2 signaling results in shorter gynoecia and fruits and irregular spacing of ovules or even ovule twinning. We propose that the EPFL2 signaling module evolved to control the initiation and regular, equidistant spacing of ovule primordia, which may serve to minimize competition between seeds or facilitate equal resource allocation. Together, EPFL2 and EPFL9 help to coordinate ovule patterning and thereby seed number with gynoecium and fruit growth through a set of shared receptors.
Collapse
Affiliation(s)
- Nozomi Kawamoto
- Institute for Developmental Genetics, Heinrich-Heine University, University Street 1, D-40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), University Street 1, D-40225 Düsseldorf, Germany
| | - Dunia Pino Del Carpio
- Institute for Developmental Genetics, Heinrich-Heine University, University Street 1, D-40225 Düsseldorf, Germany; Agriculture Research Division, Agriculture Victoria, Level 43 Rialto South 525 Collins Street, Melbourne, VIC 3000, Australia
| | - Alexander Hofmann
- Institute of Biochemical Plant Physiology, Heinrich-Heine University, University Street 1, D-40225 Düsseldorf, Germany
| | - Yoko Mizuta
- Institute for Advanced Research (IAR), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan; Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan; JST, PRESTO, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Naoyuki Uchida
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Keiko U Torii
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan; Department of Biology, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute and Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Lucia Colombo
- Universita degli studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Georg Groth
- Cluster of Excellence on Plant Sciences (CEPLAS), University Street 1, D-40225 Düsseldorf, Germany; Agriculture Research Division, Agriculture Victoria, Level 43 Rialto South 525 Collins Street, Melbourne, VIC 3000, Australia
| | - Rüdiger Simon
- Institute for Developmental Genetics, Heinrich-Heine University, University Street 1, D-40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), University Street 1, D-40225 Düsseldorf, Germany.
| |
Collapse
|
34
|
Guo T, Lu ZQ, Shan JX, Ye WW, Dong NQ, Lin HX. ERECTA1 Acts Upstream of the OsMKKK10-OsMKK4-OsMPK6 Cascade to Control Spikelet Number by Regulating Cytokinin Metabolism in Rice. THE PLANT CELL 2020; 32:2763-2779. [PMID: 32616661 PMCID: PMC7474279 DOI: 10.1105/tpc.20.00351] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/11/2020] [Accepted: 07/01/2020] [Indexed: 05/20/2023]
Abstract
Grain number is a flexible trait that strongly contributes to grain yield. In rice (Oryza sativa), the OsMKKK10-OsMKK4-OsMPK6 cascade, which is negatively regulated by the dual-specificity phosphatase GSN1, coordinates the trade-off between grain number and grain size. However, the specific components upstream and downstream of the GSN1-MAPK module that regulate spikelet number per panicle remain obscure. Here, we report that ERECTA1 (OsER1), a negative regulator of spikelet number per panicle, acts upstream of the OsMKKK10-OsMKK4-OsMPK6 cascade and that the OsER1-OsMKKK10-OsMKK4-OsMPK6 pathway is required to maintain cytokinin homeostasis. OsMPK6 directly interacts with and phosphorylates the zinc finger transcription factor DST to enhance its transcriptional activation of CYTOKININ OXIDASE2 (OsCKX2), indicating that the OsER1-OsMKKK10-OsMKK4-OsMPK6 pathway shapes panicle morphology by regulating cytokinin metabolism. Furthermore, overexpression of either DST or OsCKX2 rescued the spikelet number phenotype of the oser1, osmkkk10, osmkk4, and osmpk6 mutants, suggesting that the DST-OsCKX2 module genetically functions downstream of the OsER1-OsMKKK10-OsMKK4-OsMPK6 pathway. These findings reveal specific crosstalk between a MAPK signaling pathway and cytokinin metabolism, shedding light on how developmental signals modulate phytohormone homeostasis to shape the inflorescence.
Collapse
Affiliation(s)
- Tao Guo
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zi-Qi Lu
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jun-Xiang Shan
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wang-Wei Ye
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Nai-Qian Dong
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Klawe FZ, Stiehl T, Bastian P, Gaillochet C, Lohmann JU, Marciniak-Czochra A. Mathematical modeling of plant cell fate transitions controlled by hormonal signals. PLoS Comput Biol 2020; 16:e1007523. [PMID: 32687508 PMCID: PMC7392350 DOI: 10.1371/journal.pcbi.1007523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 07/30/2020] [Accepted: 06/12/2020] [Indexed: 02/08/2023] Open
Abstract
Coordination of fate transition and cell division is crucial to maintain the plant architecture and to achieve efficient production of plant organs. In this paper, we analysed the stem cell dynamics at the shoot apical meristem (SAM) that is one of the plant stem cells locations. We designed a mathematical model to elucidate the impact of hormonal signaling on the fate transition rates between different zones corresponding to slowly dividing stem cells and fast dividing transit amplifying cells. The model is based on a simplified two-dimensional disc geometry of the SAM and accounts for a continuous displacement towards the periphery of cells produced in the central zone. Coupling growth and hormonal signaling results in a nonlinear system of reaction-diffusion equations on a growing domain with the growth rate depending on the model components. The model is tested by simulating perturbations in the level of key transcription factors that maintain SAM homeostasis. The model provides new insights on how the transcription factor HECATE is integrated in the regulatory network that governs stem cell differentiation.
Collapse
Affiliation(s)
- Filip Z. Klawe
- Institute of Applied Mathematics, Heidelberg University, Heidelberg, Germany
| | - Thomas Stiehl
- Institute of Applied Mathematics, Heidelberg University, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
- Bioquant Center, Heidelberg University, Heidelberg, Germany
| | - Peter Bastian
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | | | - Jan U. Lohmann
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Anna Marciniak-Czochra
- Institute of Applied Mathematics, Heidelberg University, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
- Bioquant Center, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
36
|
Li FW, Nishiyama T, Waller M, Frangedakis E, Keller J, Li Z, Fernandez-Pozo N, Barker MS, Bennett T, Blázquez MA, Cheng S, Cuming AC, de Vries J, de Vries S, Delaux PM, Diop IS, Harrison CJ, Hauser D, Hernández-García J, Kirbis A, Meeks JC, Monte I, Mutte SK, Neubauer A, Quandt D, Robison T, Shimamura M, Rensing SA, Villarreal JC, Weijers D, Wicke S, Wong GKS, Sakakibara K, Szövényi P. Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. NATURE PLANTS 2020; 6:259-272. [PMID: 32170292 PMCID: PMC8075897 DOI: 10.1038/s41477-020-0618-2] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/11/2020] [Indexed: 05/12/2023]
Abstract
Hornworts comprise a bryophyte lineage that diverged from other extant land plants >400 million years ago and bears unique biological features, including a distinct sporophyte architecture, cyanobacterial symbiosis and a pyrenoid-based carbon-concentrating mechanism (CCM). Here, we provide three high-quality genomes of Anthoceros hornworts. Phylogenomic analyses place hornworts as a sister clade to liverworts plus mosses with high support. The Anthoceros genomes lack repeat-dense centromeres as well as whole-genome duplication, and contain a limited transcription factor repertoire. Several genes involved in angiosperm meristem and stomatal function are conserved in Anthoceros and upregulated during sporophyte development, suggesting possible homologies at the genetic level. We identified candidate genes involved in cyanobacterial symbiosis and found that LCIB, a Chlamydomonas CCM gene, is present in hornworts but absent in other plant lineages, implying a possible conserved role in CCM function. We anticipate that these hornwort genomes will serve as essential references for future hornwort research and comparative studies across land plants.
Collapse
Affiliation(s)
- Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA.
- Plant Biology Section, Cornell University, Ithaca, NY, USA.
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, Ishikawa, Japan
| | - Manuel Waller
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | | | - Jean Keller
- LRSV, Université de Toulouse, CNRS, UPS Castanet-Tolosan, Toulouse, France
| | - Zheng Li
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | | | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Tom Bennett
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, Valencia, Spain
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Andrew C Cuming
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Jan de Vries
- Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Georg-August University Göttingen, Göttingen, Germany
| | - Sophie de Vries
- Institute of Population Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Pierre-Marc Delaux
- LRSV, Université de Toulouse, CNRS, UPS Castanet-Tolosan, Toulouse, France
| | - Issa S Diop
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - C Jill Harrison
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | | - Jorge Hernández-García
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, Valencia, Spain
| | - Alexander Kirbis
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - John C Meeks
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Isabel Monte
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Sumanth K Mutte
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Anna Neubauer
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Dietmar Quandt
- Nees Institute for Biodiversity of Plants, University of Bonn, Bonn, Germany
| | - Tanner Robison
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Masaki Shimamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Stefan A Rensing
- Faculty of Biology, Philipps University of Marburg, Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Marburg, Germany
| | - Juan Carlos Villarreal
- Department of Biology, Laval University, Quebec City, Quebec, Canada
- Smithsonian Tropical Research Institute, Balboa, Panamá
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Susann Wicke
- Institute for Evolution and Biodiversity, University of Muenster, Münster, Germany
| | - Gane K-S Wong
- Department of Biological Sciences, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
- BGI-Shenzhen, Shenzhen, China
| | | | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland.
- Zurich-Basel Plant Science Center, Zurich, Switzerland.
| |
Collapse
|
37
|
Han H, Liu X, Zhou Y. Transcriptional circuits in control of shoot stem cell homeostasis. CURRENT OPINION IN PLANT BIOLOGY 2020; 53:50-56. [PMID: 31766002 DOI: 10.1016/j.pbi.2019.10.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 05/02/2023]
Abstract
Plant shoot apical meristems (SAMs) play essential roles in plant growth and development. Located at the growing tip of a plant stem, these dome-like structures contain stem cells, which serve to perpetuate themselves in an undifferentiated state while continually adding new cells that differentiate and eventually form all above-ground tissues. In a SAM, the pool of stem cells is dynamically maintained through a balance between cell division (self-renewal) and differentiation (loss of stem-cell identity). In the model plant Arabidopsis thaliana, a negative feedback loop between WUSCHEL (WUS) and the CLAVATA3 (CLV3) plays important roles in maintaining the stem cell population. In this review, we highlight recent findings mainly from studies in Arabidopsis, and summarize the research progress on understanding how multiple transcriptional circuits integrate and function at different cell layers to control the WUS-CLV3 loop and stem cell homeostasis.
Collapse
Affiliation(s)
- Han Han
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, United States
| | - Xing Liu
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, United States; Department of Biochemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Yun Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
38
|
Sun Q, Qu J, Yu Y, Yang Z, Wei S, Wu Y, Yang J, Peng Z. TaEPFL1, an EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) secreted peptide gene, is required for stamen development in wheat. Genetica 2019; 147:121-130. [PMID: 30911860 DOI: 10.1007/s10709-019-00061-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/20/2019] [Indexed: 11/26/2022]
Abstract
Members of the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family play diverse roles in plant growth and development, including the guidance of inflorescence architecture and pedicel length. In this work, we identified and characterized the EFPL gene TaEPFL1 from the wheat pistillody mutant HTS-1. Sequence alignment and phylogenetic analysis indicated that TaEPFL1 belongs to the EPFL1 gene. Quantitative real-time RT-PCR analysis showed that the TaEPFL1 gene is expressed at an abnormally high level in pistillody stamens compared with that in pistils and stamens. Heterologous expression of the TaEPFL1 gene in Arabidopsis caused shortened filaments and pedicels and might reduce the level of AtACO2 gene expression. These results suggest that TaEPFL1 plays an important role in the development of stamen and that overexpression of TaEPFL1 results in abnormal stamens. We deduced that the overexpression of the TaEPFL1 gene may contribute to the homeotic transformation of stamens into pistils or pistil-like structures in wheat. These data offer insights into the molecular mechanism of pistillody mutation in wheat.
Collapse
Affiliation(s)
- Qingxu Sun
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, Sichuan, People's Republic of China
| | - Jipeng Qu
- School of Agricultural Science, Xichang University, Xichang, 615000, Sichuan, People's Republic of China
| | - Yan Yu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, Sichuan, People's Republic of China
| | - Zaijun Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, Sichuan, People's Republic of China.
| | - Shuhong Wei
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, Sichuan, People's Republic of China
| | - Yilei Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, Sichuan, People's Republic of China
| | - Jun Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, Sichuan, People's Republic of China
| | - Zhengsong Peng
- School of Agricultural Science, Xichang University, Xichang, 615000, Sichuan, People's Republic of China
| |
Collapse
|