1
|
Kang Y, Jiang Z, Meng C, Ning X, Pan G, Yang X, Zhong M. A multifaceted crosstalk between brassinosteroid and gibberellin regulates the resistance of cucumber to Phytophthora melonis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38829920 DOI: 10.1111/tpj.16855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024]
Abstract
Cucumber plants are highly susceptible to the hemibiotroph oomycete Phytophthora melonis. However, the mechanism of resistance to cucumber blight remains poorly understood. Here, we demonstrated that cucumber plants with impairment in the biosynthesis of brassinosteroids (BRs) or gibberellins (GAs) were more susceptible to P. melonis. By contrast, increasing levels of endogenous BRs or exogenously application of 24-epibrassinolide enhanced the resistance of cucumber plants against P. melonis. Furthermore, we found that both knockout and overexpression of the BR biosynthesis gene CYP85A1 reduced the endogenous GA3 content compared with that of wild-type plants under the condition of inoculation with P. melonis, and the enhancement of disease resistance conferred by BR was inhibited in plants with silencing of the GA biosynthetic gene GA20ox1 or KAO. Together, these findings suggest that GA homeostasis is an essential factor mediating BRs-induced disease resistance. Moreover, BZR6, a key regulator of BR signaling, was found to physically interact with GA20ox1, thereby suppressing its transcription. Silencing of BZR6 promoted endogenous GA biosynthesis and compromised GA-mediated resistance. These findings reveal multifaceted crosstalk between BR and GA in response to pathogen infection, which can provide a new approach for genetically controlling P. melonis damage in cucumber production.
Collapse
Affiliation(s)
- Yunyan Kang
- College of Horticulture, South China Agricultural University, Guangzhou, P. R. China
| | - Zhongli Jiang
- College of Horticulture, South China Agricultural University, Guangzhou, P. R. China
| | - Chen Meng
- College of Horticulture, South China Agricultural University, Guangzhou, P. R. China
| | - Xianpeng Ning
- College of Horticulture, South China Agricultural University, Guangzhou, P. R. China
| | - Gengzheng Pan
- College of Horticulture, South China Agricultural University, Guangzhou, P. R. China
| | - Xian Yang
- College of Horticulture, South China Agricultural University, Guangzhou, P. R. China
| | - Min Zhong
- College of Horticulture, South China Agricultural University, Guangzhou, P. R. China
| |
Collapse
|
2
|
Mittelberger C, Moser M, Hause B, Janik K. 'Candidatus Phytoplasma mali' SAP11-Like protein modulates expression of genes involved in energy production, photosynthesis, and defense in Nicotiana occidentalis leaves. BMC PLANT BIOLOGY 2024; 24:393. [PMID: 38741080 PMCID: PMC11089699 DOI: 10.1186/s12870-024-05087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND 'Candidatus Phytoplasma mali', the causal agent of apple proliferation disease, exerts influence on its host plant through various effector proteins, including SAP11CaPm which interacts with different TEOSINTE BRANCHED1/ CYCLOIDEA/ PROLIFERATING CELL FACTOR 1 and 2 (TCP) transcription factors. This study examines the transcriptional response of the plant upon early expression of SAP11CaPm. For that purpose, leaves of Nicotiana occidentalis H.-M. Wheeler were Agrobacterium-infiltrated to induce transient expression of SAP11CaPm and changes in the transcriptome were recorded until 5 days post infiltration. RESULTS The RNA-seq analysis revealed that presence of SAP11CaPm in leaves leads to downregulation of genes involved in defense response and related to photosynthetic processes, while expression of genes involved in energy production was enhanced. CONCLUSIONS The results indicate that early SAP11CaPm expression might be important for the colonization of the host plant since phytoplasmas lack many metabolic genes and are thus dependent on metabolites from their host plant.
Collapse
Affiliation(s)
- Cecilia Mittelberger
- Molecular Biology and Microbiology, Group of Functional Genomics, Laimburg Research Centre, Pfatten (Vadena), South Tyrol, 39051, Italy
| | - Mirko Moser
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Trentino, 39098, Italy
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Saxony-Anhalt, Germany
| | - Katrin Janik
- Molecular Biology and Microbiology, Group of Functional Genomics, Laimburg Research Centre, Pfatten (Vadena), South Tyrol, 39051, Italy.
| |
Collapse
|
3
|
King FJ, Yuen ELH, Bozkurt TO. Border Control: Manipulation of the Host-Pathogen Interface by Perihaustorial Oomycete Effectors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:220-226. [PMID: 37999635 DOI: 10.1094/mpmi-09-23-0122-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Filamentous plant pathogens, including fungi and oomycetes, cause some of the most devastating plant diseases. These organisms serve as ideal models for understanding the intricate molecular interplay between plants and the invading pathogens. Filamentous pathogens secrete effector proteins via haustoria, specialized structures for infection and nutrient uptake, to suppress the plant immune response and to reprogram plant metabolism. Recent advances in cell biology have provided crucial insights into the biogenesis of the extrahaustorial membrane and the redirection of host endomembrane trafficking toward this interface. Functional studies have shown that an increasing number of oomycete effectors accumulate at the perihaustorial interface to subvert plant focal immune responses, with a particular convergence on targets involved in host endomembrane trafficking. In this review, we summarize the diverse mechanisms of perihaustorial effectors from oomycetes and pinpoint pressing questions regarding their role in manipulating host defense and metabolism at the haustorial interface. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Freddie J King
- Department of Life Sciences, Imperial College, London, SW7 2AZ, U.K
| | | | - Tolga O Bozkurt
- Department of Life Sciences, Imperial College, London, SW7 2AZ, U.K
| |
Collapse
|
4
|
Bi W, Liu J, Li Y, He Z, Chen Y, Zhao T, Liang X, Wang X, Meng X, Dou D, Xu G. CRISPR/Cas9-guided editing of a novel susceptibility gene in potato improves Phytophthora resistance without growth penalty. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:4-6. [PMID: 37769010 PMCID: PMC10754006 DOI: 10.1111/pbi.14175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023]
Affiliation(s)
- Weishuai Bi
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant PathologyCollege of Plant Protection, China Agricultural UniversityBeijingChina
| | - Jing Liu
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant PathologyCollege of Plant Protection, China Agricultural UniversityBeijingChina
| | - Yuanyuan Li
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant PathologyCollege of Plant Protection, China Agricultural UniversityBeijingChina
| | - Ziwei He
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant PathologyCollege of Plant Protection, China Agricultural UniversityBeijingChina
| | - Yongming Chen
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant PathologyCollege of Plant Protection, China Agricultural UniversityBeijingChina
| | - Tingting Zhao
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant PathologyCollege of Plant Protection, China Agricultural UniversityBeijingChina
| | - Xiangxiu Liang
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Xiaodan Wang
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant PathologyCollege of Plant Protection, China Agricultural UniversityBeijingChina
| | - Xiangzong Meng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Daolong Dou
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant PathologyCollege of Plant Protection, China Agricultural UniversityBeijingChina
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Guangyuan Xu
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant PathologyCollege of Plant Protection, China Agricultural UniversityBeijingChina
| |
Collapse
|
5
|
Wang S, McLellan H, Boevink PC, Birch PRJ. RxLR Effectors: Master Modulators, Modifiers and Manipulators. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:754-763. [PMID: 37750829 DOI: 10.1094/mpmi-05-23-0054-cr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Cytoplasmic effectors with an Arg-any amino acid-Arg-Leu (RxLR) motif are encoded by hundreds of genes within the genomes of oomycete Phytophthora spp. and downy mildew pathogens. There has been a dramatic increase in our understanding of the evolution, function, and recognition of these effectors. Host proteins with a wide range of subcellular localizations and functions are targeted by RxLR effectors. Many processes are manipulated, including transcription, post-translational modifications, such as phosphorylation and ubiquitination, secretion, and intracellular trafficking. This involves an array of RxLR effector modes-of-action, including stabilization or destabilization of protein targets, altering or disrupting protein complexes, inhibition or utility of target enzyme activities, and changing the location of protein targets. Interestingly, approximately 50% of identified host proteins targeted by RxLR effectors are negative regulators of immunity. Avirulence RxLR effectors may be directly or indirectly detected by nucleotide-binding leucine-rich repeat resistance (NLR) proteins. Direct recognition by a single NLR of RxLR effector orthologues conserved across multiple Phytophthora pathogens may provide wide protection of diverse crops. Failure of RxLR effectors to interact with or appropriately manipulate target proteins in nonhost plants has been shown to restrict host range. This knowledge can potentially be exploited to alter host targets to prevent effector interaction, providing a barrier to host infection. Finally, recent evidence suggests that RxLR effectors, like cytoplasmic effectors from fungal pathogen Magnaporthe oryzae, may enter host cells via clathrin-mediated endocytosis. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Shumei Wang
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, U.S.A
| | - Hazel McLellan
- Division of Plant Sciences, School of Life Sciences, University of Dundee, at James Hutton Institute, Invergowrie, Dundee DD2 5DA, U.K
| | - Petra C Boevink
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, U.K
| | - Paul R J Birch
- Division of Plant Sciences, School of Life Sciences, University of Dundee, at James Hutton Institute, Invergowrie, Dundee DD2 5DA, U.K
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, U.K
| |
Collapse
|
6
|
Breen S, McLellan H, Birch PRJ, Gilroy EM. Tuning the Wavelength: Manipulation of Light Signaling to Control Plant Defense. Int J Mol Sci 2023; 24:ijms24043803. [PMID: 36835216 PMCID: PMC9958957 DOI: 10.3390/ijms24043803] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The growth-defense trade-off in plants is a phenomenon whereby plants must balance the allocation of their resources between developmental growth and defense against attack by pests and pathogens. Consequently, there are a series of points where growth signaling can negatively regulate defenses and where defense signaling can inhibit growth. Light perception by various photoreceptors has a major role in the control of growth and thus many points where it can influence defense. Plant pathogens secrete effector proteins to manipulate defense signaling in their hosts. Evidence is emerging that some of these effectors target light signaling pathways. Several effectors from different kingdoms of life have converged on key chloroplast processes to take advantage of regulatory crosstalk. Moreover, plant pathogens also perceive and react to light in complex ways to regulate their own growth, development, and virulence. Recent work has shown that varying light wavelengths may provide a novel way of controlling or preventing disease outbreaks in plants.
Collapse
Affiliation(s)
- Susan Breen
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Hazel McLellan
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Paul R. J. Birch
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Eleanor M. Gilroy
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
- Correspondence: ; Tel.: +44-1382568827
| |
Collapse
|
7
|
Fu KK, Liang J, Wan W, Jing X, Feng H, Cai Y, Zhou S. Overexpression of SQUALENE SYNTHASE Reduces Nicotiana benthamiana Resistance against Phytophthora infestans. Metabolites 2023; 13:metabo13020261. [PMID: 36837880 PMCID: PMC9960828 DOI: 10.3390/metabo13020261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Plant triterpenoids play a critical role in plant resistance against Phytophthora infestans de Bary, the causal pathogen of potato and tomato late blight. However, different triterpenoids could have contrasting functions on plant resistance against P. infestans. In this study, we targeted the key biosynthetic gene of all plant triterpenoids, SQUALENE SYNTHASE (SQS), to examine the function of this gene in plant-P. infestans interactions. A post-inoculation, time-course gene expression analysis revealed that SQS expression was induced in Nicotiana benthamiana but was transiently suppressed in Solanum lycopersicum. Consistent with the host-specific changes in SQS expression, concentrations of major triterpenoid compounds were only induced in S. lycopersicum. A stable overexpression of SQS in N. benthamiana reduced plant resistance against P. infestans and induced the hyperaccumulation of stigmasterol. A comparative transcriptomics analysis of the transgenic lines showed that diverse plant physiological processes were influenced by SQS overexpression, suggesting that phytosterol content regulation may not be the sole mechanism through which SQS promotes plant susceptibility towards P. infestans. This study provides experimental evidence for the host-specific transcriptional regulation and function of SQS in plant interactions with P. infestans, offering a novel perspective in examining the quantitative disease resistance against late blight.
Collapse
Affiliation(s)
- Ke-Ke Fu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Junhao Liang
- Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, China
| | - Wei Wan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Xiangfeng Jing
- Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, China
| | - Hongjie Feng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yanling Cai
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Correspondence: (Y.C.); (S.Z.)
| | - Shaoqun Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Correspondence: (Y.C.); (S.Z.)
| |
Collapse
|
8
|
Li Z, Liu J, Ma W, Li X. Characteristics, Roles and Applications of Proteinaceous Elicitors from Pathogens in Plant Immunity. Life (Basel) 2023; 13:life13020268. [PMID: 36836624 PMCID: PMC9960299 DOI: 10.3390/life13020268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
In interactions between pathogens and plants, pathogens secrete many molecules that facilitate plant infection, and some of these compounds are recognized by plant pattern recognition receptors (PRRs), which induce immune responses. Molecules in both pathogens and plants that trigger immune responses in plants are termed elicitors. On the basis of their chemical content, elicitors can be classified into carbohydrates, lipopeptides, proteinaceous compounds and other types. Although many studies have focused on the involvement of elicitors in plants, especially on pathophysiological changes induced by elicitors in plants and the mechanisms mediating these changes, there is a lack of up-to-date reviews on the characteristics and functions of proteinaceous elicitors. In this mini-review, we provide an overview of the up-to-date knowledge on several important families of pathogenic proteinaceous elicitors (i.e., harpins, necrosis- and ethylene-inducing peptide 1 (nep1)-like proteins (NLPs) and elicitins), focusing mainly on their structures, characteristics and effects on plants, specifically on their roles in plant immune responses. A solid understanding of elicitors may be helpful to decrease the use of agrochemicals in agriculture and gardening, generate more resistant germplasms and increase crop yields.
Collapse
Affiliation(s)
- Zhangqun Li
- School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China
- Institute of Biopharmaceuticals, Taizhou University, Taizhou 318000, China
- Correspondence:
| | - Junnan Liu
- School of Life Science, Taizhou University, Taizhou 318000, China
| | - Wenting Ma
- School of Life Science, Taizhou University, Taizhou 318000, China
| | - Xiaofang Li
- School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China
- Institute of Biopharmaceuticals, Taizhou University, Taizhou 318000, China
| |
Collapse
|
9
|
Todd JNA, Carreón-Anguiano KG, Islas-Flores I, Canto-Canché B. Microbial Effectors: Key Determinants in Plant Health and Disease. Microorganisms 2022; 10:1980. [PMID: 36296254 PMCID: PMC9610748 DOI: 10.3390/microorganisms10101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Effectors are small, secreted molecules that alter host cell structure and function, thereby facilitating infection or triggering a defense response. Effectoromics studies have focused on effectors in plant-pathogen interactions, where their contributions to virulence are determined in the plant host, i.e., whether the effector induces resistance or susceptibility to plant disease. Effector molecules from plant pathogenic microorganisms such as fungi, oomycetes and bacteria are major disease determinants. Interestingly, the effectors of non-pathogenic plant organisms such as endophytes display similar functions but have different outcomes for plant health. Endophyte effectors commonly aid in the establishment of mutualistic interactions with the plant and contribute to plant health through the induction of systemic resistance against pathogens, while pathogenic effectors mainly debilitate the plant's immune response, resulting in the establishment of disease. Effectors of plant pathogens as well as plant endophytes are tools to be considered in effectoromics for the development of novel strategies for disease management. This review aims to present effectors in their roles as promotors of health or disease for the plant host.
Collapse
Affiliation(s)
- Jewel Nicole Anna Todd
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Karla Gisel Carreón-Anguiano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| |
Collapse
|
10
|
McLellan H, Harvey SE, Steinbrenner J, Armstrong MR, He Q, Clewes R, Pritchard L, Wang W, Wang S, Nussbaumer T, Dohai B, Luo Q, Kumari P, Duan H, Roberts A, Boevink PC, Neumann C, Champouret N, Hein I, Falter-Braun P, Beynon J, Denby K, Birch PRJ. Exploiting breakdown in nonhost effector-target interactions to boost host disease resistance. Proc Natl Acad Sci U S A 2022; 119:e2114064119. [PMID: 35994659 PMCID: PMC9436328 DOI: 10.1073/pnas.2114064119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Plants are resistant to most microbial species due to nonhost resistance (NHR), providing broad-spectrum and durable immunity. However, the molecular components contributing to NHR are poorly characterised. We address the question of whether failure of pathogen effectors to manipulate nonhost plants plays a critical role in NHR. RxLR (Arg-any amino acid-Leu-Arg) effectors from two oomycete pathogens, Phytophthora infestans and Hyaloperonospora arabidopsidis, enhanced pathogen infection when expressed in host plants (Nicotiana benthamiana and Arabidopsis, respectively) but the same effectors performed poorly in distantly related nonhost pathosystems. Putative target proteins in the host plant potato were identified for 64 P. infestans RxLR effectors using yeast 2-hybrid (Y2H) screens. Candidate orthologues of these target proteins in the distantly related non-host plant Arabidopsis were identified and screened using matrix Y2H for interaction with RxLR effectors from both P. infestans and H. arabidopsidis. Few P. infestans effector-target protein interactions were conserved from potato to candidate Arabidopsis target orthologues (cAtOrths). However, there was an enrichment of H. arabidopsidis RxLR effectors interacting with cAtOrths. We expressed the cAtOrth AtPUB33, which unlike its potato orthologue did not interact with P. infestans effector PiSFI3, in potato and Nicotiana benthamiana. Expression of AtPUB33 significantly reduced P. infestans colonization in both host plants. Our results provide evidence that failure of pathogen effectors to interact with and/or correctly manipulate target proteins in distantly related non-host plants contributes to NHR. Moreover, exploiting this breakdown in effector-nonhost target interaction, transferring effector target orthologues from non-host to host plants is a strategy to reduce disease.
Collapse
Affiliation(s)
- Hazel McLellan
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Sarah E. Harvey
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
- Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jens Steinbrenner
- Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
- Justus Liebig Universität Giessen, JLU Institute of Phytopathology, Giessen, Hesse, Germany
| | - Miles R. Armstrong
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Qin He
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
- Department of Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Rachel Clewes
- Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Leighton Pritchard
- Information and Computational Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Wei Wang
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Shumei Wang
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521
| | - Thomas Nussbaumer
- Institute of Network Biology, Helmholtz Zentrum Munchen, German Research Centre for Environmental Health, Munich, Germany
| | - Bushra Dohai
- Institute of Network Biology, Helmholtz Zentrum Munchen, German Research Centre for Environmental Health, Munich, Germany
| | - Qingquan Luo
- Justus Liebig Universität Giessen, JLU Institute of Phytopathology, Giessen, Hesse, Germany
| | - Priyanka Kumari
- Justus Liebig Universität Giessen, JLU Institute of Phytopathology, Giessen, Hesse, Germany
| | - Hui Duan
- Simplot Plant Sciences, J. R. Simplot Company, Boise, ID 83707
| | - Ana Roberts
- Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Petra C. Boevink
- Department of Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Christina Neumann
- Justus Liebig Universität Giessen, JLU Institute of Phytopathology, Giessen, Hesse, Germany
| | | | - Ingo Hein
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
- Department of Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Pascal Falter-Braun
- Institute of Network Biology, Helmholtz Zentrum Munchen, German Research Centre for Environmental Health, Munich, Germany
| | - Jim Beynon
- Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Katherine Denby
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
- Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Paul R. J. Birch
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
- Department of Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| |
Collapse
|
11
|
Park CH, Bi Y, Youn JH, Kim SH, Kim JG, Xu NY, Shrestha R, Burlingame AL, Xu SL, Mudgett MB, Kim SK, Kim TW, Wang ZY. Deconvoluting signals downstream of growth and immune receptor kinases by phosphocodes of the BSU1 family phosphatases. NATURE PLANTS 2022; 8:646-655. [PMID: 35697730 PMCID: PMC9663168 DOI: 10.1038/s41477-022-01167-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/05/2022] [Indexed: 05/29/2023]
Abstract
Hundreds of leucine-rich repeat receptor kinases (LRR-RKs) have evolved to control diverse processes of growth, development and immunity in plants, but the mechanisms that link LRR-RKs to distinct cellular responses are not understood. Here we show that two LRR-RKs, the brassinosteroid hormone receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) and the flagellin receptor FLAGELLIN SENSING 2 (FLS2), regulate downstream glycogen synthase kinase 3 (GSK3) and mitogen-activated protein (MAP) kinases, respectively, through phosphocoding of the BRI1-SUPPRESSOR1 (BSU1) phosphatase. BSU1 was previously identified as a component that inactivates GSK3s in the BRI1 pathway. We surprisingly found that the loss of the BSU1 family phosphatases activates effector-triggered immunity and impairs flagellin-triggered MAP kinase activation and immunity. The flagellin-activated BOTRYTIS-INDUCED KINASE 1 (BIK1) phosphorylates BSU1 at serine 251. Mutation of serine 251 reduces BSU1's ability to mediate flagellin-induced MAP kinase activation and immunity, but not its abilities to suppress effector-triggered immunity and interact with GSK3, which is enhanced through the phosphorylation of BSU1 at serine 764 upon brassinosteroid signalling. These results demonstrate that BSU1 plays an essential role in immunity and transduces brassinosteroid-BRI1 and flagellin-FLS2 signals using different phosphorylation sites. Our study illustrates that phosphocoding in shared downstream components provides signalling specificities for diverse plant receptor kinases.
Collapse
Affiliation(s)
- Chan Ho Park
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Yang Bi
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Ji-Hyun Youn
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - So-Hee Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Jung-Gun Kim
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Nicole Y Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Ruben Shrestha
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA
| | - Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | | | - Seong-Ki Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea.
| | - Tae-Wuk Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea.
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, South Korea.
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA.
| |
Collapse
|
12
|
Paluchowska P, Śliwka J, Yin Z. Late blight resistance genes in potato breeding. PLANTA 2022; 255:127. [PMID: 35576021 PMCID: PMC9110483 DOI: 10.1007/s00425-022-03910-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Using late blight resistance genes targeting conservative effectors of Phytophthora infestans and the constructing gene pyramids may lead to durable, broad-spectrum resistance, which could be accelerated through genetic engineering. Potato (Solanum tuberosum L.) is one of the most important food crops worldwide. In 2020, potato production was estimated to be more than 359 million tons according to the Food and Agriculture Organization (FAO). Potato is affected by many pathogens, among which Phytophthora infestans, causing late blight, is of the most economic importance. Crop protection against late blight requires intensive use of fungicides, which has an impact on the environment and humans. Therefore, new potato cultivars have been bred using resistance genes against P. infestans (Rpi genes) that originate from wild relatives of potato. Such programmes were initiated 100 years ago, but the process is complex and long. The development of genetic engineering techniques has enabled the direct transfer of resistance genes from potato wild species to cultivars and easier pyramiding of multiple Rpi genes, which potentially increases the durability and spectrum of potato resistance to rapidly evolving P. infestans strains. In this review, we summarize the current knowledge concerning Rpi genes. We also discuss the use of Rpi genes in breeding as well as their detection in existing potato cultivars. Last, we review new sources of Rpi genes and new methods used to identify them and discuss interactions between P. infestans and host.
Collapse
Affiliation(s)
- Paulina Paluchowska
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland.
| | - Jadwiga Śliwka
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland
| | - Zhimin Yin
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland
| |
Collapse
|
13
|
Wang H, Trusch F, Turnbull D, Aguilera-Galvez C, Breen S, Naqvi S, Jones JDG, Hein I, Tian Z, Vleeshouwers V, Gilroy E, Birch PRJ. Evolutionarily distinct resistance proteins detect a pathogen effector through its association with different host targets. THE NEW PHYTOLOGIST 2021; 232:1368-1381. [PMID: 34339518 DOI: 10.1111/nph.17660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Knowledge of the evolutionary processes which govern pathogen recognition is critical to understanding durable disease resistance. We determined how Phytophthora infestans effector PiAVR2 is recognised by evolutionarily distinct resistance proteins R2 and Rpi-mcq1. We employed yeast two-hybrid, co-immunoprecipitation, virus-induced gene silencing, transient overexpression, and phosphatase activity assays to investigate the contributions of BSL phosphatases to R2- and Rpi-mcq1-mediated hypersensitive response (R2 HR and Rpi-mcq1 HR, respectively). Silencing PiAVR2 target BSL1 compromises R2 HR. Rpi-mcq1 HR is compromised only when BSL2 and BSL3 are silenced. BSL1 overexpression increases R2 HR and compromises Rpi-mcq1. However, overexpression of BSL2 or BSL3 enhances Rpi-mcq1 and compromises R2 HR. Okadaic acid, which inhibits BSL phosphatase activity, suppresses both recognition events. Moreover, expression of a BSL1 phosphatase-dead (PD) mutant suppresses R2 HR, whereas BSL2-PD and BSL3-PD mutants suppress Rpi-mcq1 HR. R2 interacts with BSL1 in the presence of PiAVR2, but not with BSL2 and BSL3, whereas no interactions were detected between Rpi-mcq1 and BSLs. Thus, BSL1 activity and association with R2 determine recognition of PiAVR2 by R2, whereas BSL2 and BSL3 mediate Rpi-mcq1 perception of PiAVR2. R2 and Rpi-mcq1 utilise distinct mechanisms to detect PiAVR2 based on association with different BSLs, highlighting central roles of these effector targets for both disease and disease resistance.
Collapse
Affiliation(s)
- Haixia Wang
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Rd, Invergowrie, Dundee, DD2 5DA, UK
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Franziska Trusch
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Rd, Invergowrie, Dundee, DD2 5DA, UK
| | - Dionne Turnbull
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Rd, Invergowrie, Dundee, DD2 5DA, UK
| | - Carolina Aguilera-Galvez
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands
| | - Susan Breen
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 DA, UK
- School of Life Sciences, The University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK
| | - Shaista Naqvi
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Rd, Invergowrie, Dundee, DD2 5DA, UK
| | | | - Ingo Hein
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Rd, Invergowrie, Dundee, DD2 5DA, UK
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 DA, UK
| | - Zhendong Tian
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Vivianne Vleeshouwers
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands
| | - Eleanor Gilroy
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 DA, UK
| | - Paul R J Birch
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Rd, Invergowrie, Dundee, DD2 5DA, UK
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 DA, UK
| |
Collapse
|
14
|
Schreiber KJ, Lewis JD. Identification of a Putative DNA-Binding Protein in Arabidopsis That Acts as a Susceptibility Hub and Interacts With Multiple Pseudomonas syringae Effectors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:410-425. [PMID: 33373263 DOI: 10.1094/mpmi-10-20-0291-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phytopathogens use secreted effector proteins to suppress host immunity and promote pathogen virulence, and there is increasing evidence that the host-pathogen interactome comprises a complex network. To identify novel interactors of the Pseudomonas syringae effector HopZ1a, we performed a yeast two-hybrid screen that identified a previously uncharacterized Arabidopsis protein that we designate HopZ1a interactor 1 (ZIN1). Additional analyses in yeast and in planta revealed that ZIN1 also interacts with several other P. syringae effectors. We show that an Arabidopsis loss-of-function zin1 mutant is less susceptible to infection by certain strains of P. syringae, while overexpression of ZIN1 results in enhanced susceptibility. Functionally, ZIN1 exhibits topoisomerase-like activity in vitro. Transcriptional profiling of wild-type and zin1 Arabidopsis plants inoculated with P. syringae indicated that while ZIN1 regulates a wide range of pathogen-responsive biological processes, the list of genes more highly expressed in zin1 versus wild-type plants is particularly enriched for ribosomal protein genes. Altogether, these data illuminate ZIN1 as a potential susceptibility hub that interacts with multiple effectors to influence the outcome of plant-microbe interactions.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Karl J Schreiber
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720-3102, U.S.A
| | - Jennifer D Lewis
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720-3102, U.S.A
- Plant Gene Expression Center, United States Department of Agriculture, Albany, CA 94710-1105, U.S.A
| |
Collapse
|
15
|
Gruner K, Leissing F, Sinitski D, Thieron H, Axstmann C, Baumgarten K, Reinstädler A, Winkler P, Altmann M, Flatley A, Jaouannet M, Zienkiewicz K, Feussner I, Keller H, Coustau C, Falter-Braun P, Feederle R, Bernhagen J, Panstruga R. Chemokine-like MDL proteins modulate flowering time and innate immunity in plants. J Biol Chem 2021; 296:100611. [PMID: 33798552 PMCID: PMC8122116 DOI: 10.1016/j.jbc.2021.100611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Human macrophage migration inhibitory factor (MIF) is an atypical chemokine implicated in intercellular signaling and innate immunity. MIF orthologs (MIF/D-DT-like proteins, MDLs) are present throughout the plant kingdom, but remain experimentally unexplored in these organisms. Here, we provide an in planta characterization and functional analysis of the three-member gene/protein MDL family in Arabidopsis thaliana. Subcellular localization experiments indicated a nucleo-cytoplasmic distribution of MDL1 and MDL2, while MDL3 is localized to peroxisomes. Protein–protein interaction assays revealed the in vivo formation of MDL1, MDL2, and MDL3 homo-oligomers, as well as the formation of MDL1-MDL2 hetero-oligomers. Functionally, Arabidopsismdl mutants exhibited a delayed transition from vegetative to reproductive growth (flowering) under long-day conditions, but not in a short-day environment. In addition, mdl mutants were more resistant to colonization by the bacterial pathogen Pseudomonas syringae pv. maculicola. The latter phenotype was compromised by the additional mutation of SALICYLIC ACID INDUCTION DEFICIENT 2 (SID2), a gene implicated in the defense-induced biosynthesis of the key signaling molecule salicylic acid. However, the enhanced antibacterial immunity was not associated with any constitutive or pathogen-induced alterations in the levels of characteristic phytohormones or defense-associated metabolites. Interestingly, bacterial infection triggered relocalization and accumulation of MDL1 and MDL2 at the peripheral lobes of leaf epidermal cells. Collectively, our data indicate redundant functionality and a complex interplay between the three chemokine-like Arabidopsis MDL proteins in the regulation of both developmental and immune-related processes. These insights expand the comparative cross-kingdom analysis of MIF/MDL signaling in human and plant systems.
Collapse
Affiliation(s)
- Katrin Gruner
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Franz Leissing
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Dzmitry Sinitski
- Ludwig-Maximilians-University (LMU), LMU University Hospital, Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Munich, Germany
| | - Hannah Thieron
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Christian Axstmann
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Kira Baumgarten
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Anja Reinstädler
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Pascal Winkler
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Melina Altmann
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Network Biology (INET), Munich-Neuherberg, Germany
| | - Andrew Flatley
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Munich-Neuherberg, Germany
| | - Maëlle Jaouannet
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE, CNRS, Sophia Antipolis, France
| | - Krzysztof Zienkiewicz
- University of Goettingen, Albrecht von Haller Institute and Goettingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, Goettingen, Germany
| | - Ivo Feussner
- University of Goettingen, Albrecht von Haller Institute and Goettingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, Goettingen, Germany
| | - Harald Keller
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE, CNRS, Sophia Antipolis, France
| | - Christine Coustau
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE, CNRS, Sophia Antipolis, France
| | - Pascal Falter-Braun
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Network Biology (INET), Munich-Neuherberg, Germany; Ludwig-Maximilians-Universität (LMU), Faculty of Biology, Chair of Microbe-Host Interactions, Planegg-Martinsried, Germany
| | - Regina Feederle
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Munich-Neuherberg, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jürgen Bernhagen
- Ludwig-Maximilians-University (LMU), LMU University Hospital, Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Ralph Panstruga
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany.
| |
Collapse
|
16
|
Schreiber KJ, Hassan JA, Lewis JD. Arabidopsis Abscisic Acid Repressor 1 is a susceptibility hub that interacts with multiple Pseudomonas syringae effectors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1274-1292. [PMID: 33289145 DOI: 10.1111/tpj.15110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Pathogens secrete effector proteins into host cells to suppress host immunity and promote pathogen virulence, although many features at the molecular interface of host-pathogen interactions remain to be characterized. In a yeast two-hybrid assay, we found that the Pseudomonas syringae effector HopZ1a interacts with the Arabidopsis transcriptional regulator Abscisic Acid Repressor 1 (ABR1). Further analysis revealed that ABR1 interacts with multiple P. syringae effectors, suggesting that it may be targeted as a susceptibility hub. Indeed, loss-of-function abr1 mutants exhibit reduced susceptibility to a number of P. syringae strains. The ABR1 protein comprises a conserved APETALA2 (AP2) domain flanked by long regions of predicted structural disorder. We verified the DNA-binding activity of the AP2 domain and demonstrated that the disordered domains act redundantly to enhance DNA binding and to facilitate transcriptional activation by ABR1. Finally, we compared gene expression profiles from wild-type and abr1 plants following inoculation with P. syringae, which suggested that the reduced susceptibility of abr1 mutants is due to the loss of a virulence target rather than an enhanced immune response. These data highlight ABR1 as a functionally important component at the host-pathogen interface.
Collapse
Affiliation(s)
- Karl J Schreiber
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Jana A Hassan
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Jennifer D Lewis
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
- United States Department of Agriculture, Plant Gene Expression Center, Albany, CA, USA
| |
Collapse
|
17
|
Kieu NP, Lenman M, Wang ES, Petersen BL, Andreasson E. Mutations introduced in susceptibility genes through CRISPR/Cas9 genome editing confer increased late blight resistance in potatoes. Sci Rep 2021; 11:4487. [PMID: 33627728 PMCID: PMC7904907 DOI: 10.1038/s41598-021-83972-w] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/10/2021] [Indexed: 01/31/2023] Open
Abstract
The use of pathogen-resistant cultivars is expected to increase yield and decrease fungicide use in agriculture. However, in potato breeding, increased resistance obtained via resistance genes (R-genes) is hampered because R-gene(s) are often specific for a pathogen race and can be quickly overcome by the evolution of the pathogen. In parallel, susceptibility genes (S-genes) are important for pathogenesis, and loss of S-gene function confers increased resistance in several plants, such as rice, wheat, citrus and tomatoes. In this article, we present the mutation and screening of seven putative S-genes in potatoes, including two DMR6 potato homologues. Using a CRISPR/Cas9 system, which conferred co-expression of two guide RNAs, tetra-allelic deletion mutants were generated and resistance against late blight was assayed in the plants. Functional knockouts of StDND1, StCHL1, and DMG400000582 (StDMR6-1) generated potatoes with increased resistance against late blight. Plants mutated in StDND1 showed pleiotropic effects, whereas StDMR6-1 and StCHL1 mutated plants did not exhibit any growth phenotype, making them good candidates for further agricultural studies. Additionally, we showed that DMG401026923 (here denoted StDMR6-2) knockout mutants did not demonstrate any increased late blight resistance, but exhibited a growth phenotype, indicating that StDMR6-1 and StDMR6-2 have different functions. To the best of our knowledge, this is the first report on the mutation and screening of putative S-genes in potatoes, including two DMR6 potato homologues.
Collapse
Affiliation(s)
- Nam Phuong Kieu
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Marit Lenman
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Eu Sheng Wang
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Bent Larsen Petersen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsen's vej 40, 1871, Frederiksberg C, Denmark
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| |
Collapse
|
18
|
Ma T, Chen S, Liu J, Fu P, Wu W, Song S, Gao Y, Ye W, Lu J. Plasmopara viticola effector PvRXLR111 stabilizes VvWRKY40 to promote virulence. MOLECULAR PLANT PATHOLOGY 2021; 22:231-242. [PMID: 33253483 PMCID: PMC7814959 DOI: 10.1111/mpp.13020] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/17/2020] [Accepted: 10/25/2020] [Indexed: 05/06/2023]
Abstract
Plasmopara viticola, the causal organism of grapevine downy mildew, secretes a vast array of effectors to manipulate host immunity. Previously, several cell death-inducing PvRXLR effectors have been identified, but their functions and host targets are poorly understood. Here, we investigated the role of PvRXLR111, a cell death-inducing RXLR effector, in manipulating plant immunity. When coexpressed with other PvRXLR effectors, PvRXLR111-induced cell death was prevented. Transient expression of PvRXLR111 in Nicotiana benthamiana suppressed bacterial flagellin peptide flg22-elicited immune responses and enhanced Phytophthora capsici infection. PvRXLR111 induction in Arabidopsis increased susceptibility to Hyaloperonospora arabidopsidis. PvRXLR111 expression in Pseudomonas syringae promoted bacterial colonization. By immunoprecipitation-mass spectrometry analysis, yeast two-hybrid, pull-down, and bimolecular fluorescence complementation assays, it was shown that PvRXLR111 interacted with Vitis vinifera putative WRKY transcription factor 40 (VvWRKY40), which increased VvWRKY40 stability. Transient expression of VvWRKY40 in N. benthamiana inhibited flg22-induced reactive oxygen species burst and enhanced P. capsici infection and silencing NbWRKY40 attenuated P. capsici colonization. These results suggest VvWRKY40 functions as a negative regulator in plant immunity and that PvRXLR111 suppresses host immunity by stabilizing VvWRKY40.
Collapse
Affiliation(s)
- Tao Ma
- Center for Viticulture and EnologySchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Shuyun Chen
- Center for Viticulture and EnologySchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Jiaqi Liu
- Center for Viticulture and EnologySchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Peining Fu
- Center for Viticulture and EnologySchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Wei Wu
- Center for Viticulture and EnologySchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Shiren Song
- Center for Viticulture and EnologySchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yu Gao
- Center for Viticulture and EnologySchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Wenxiu Ye
- Center for Viticulture and EnologySchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Jiang Lu
- Center for Viticulture and EnologySchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
19
|
Zhang F, Chen H, Zhang X, Gao C, Huang J, Lü L, Shen D, Wang L, Huang C, Ye W, Zheng X, Wang Y, Vossen JH, Dong S. Genome Analysis of Two Newly Emerged Potato Late Blight Isolates Sheds Light on Pathogen Adaptation and Provides Tools for Disease Management. PHYTOPATHOLOGY 2021; 111:96-107. [PMID: 33026300 DOI: 10.1094/phyto-05-20-0208-fi] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phytophthora infestans, the causal agent of the Irish Potato Famine in the 1840s, is one of the most destructive crop pathogens that threaten global food security. Host resistance (R) genes may help to control the disease, but recognition by through the gene products can be evaded by newly emerging isolates. Such isolates are dangerous as they may cause disease outbreaks under favorable conditions. However, our lack of knowledge about adaptation in these isolates jeopardizes an apt response to resistance breakdown. Here we performed genome and transcriptome sequencing of HB1501 and HN1602, two field isolates from distinct Chinese geographic regions. We found extensive polymorphisms in these isolates, including gene copy number variations, nucleotide polymorphisms, and gene expression changes. Effector encoding genes, which contribute to virulence, show distinct expression landscapes in P. infestans isolates HB1501 and HN1602. In particular, polymorphisms at multiple effectors required for recognition (Avr loci) enabled these isolates to overcome corresponding R gene based resistance. Although the isolates evolved multiple strategies to evade recognition, we experimentally verified that several R genes such as R8, RB, and Rpi-vnt1.1 remain effective against these isolates and are valuable to potato breeding in the future. In summary, rapid characterization of the adaptation in emerging field isolates through genomic tools inform rational agricultural management to prevent potential future epidemics.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Han Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xinjie Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chuyun Gao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Li Lü
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Luyao Wang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen, 518120, China
| | - Chong Huang
- National Agro-Tech Extension and Service Center, Maizidian Street, No. 20, Beijing, 100125, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jack H Vossen
- Plant Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
20
|
He Q, McLellan H, Boevink PC, Birch PR. All Roads Lead to Susceptibility: The Many Modes of Action of Fungal and Oomycete Intracellular Effectors. PLANT COMMUNICATIONS 2020; 1:100050. [PMID: 33367246 PMCID: PMC7748000 DOI: 10.1016/j.xplc.2020.100050] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 05/06/2023]
Abstract
The ability to secrete effector proteins that can enter plant cells and manipulate host processes is a key determinant of what makes a successful plant pathogen. Here, we review intracellular effectors from filamentous (fungal and oomycete) phytopathogens and the host proteins and processes that are targeted to promote disease. We cover contrasting virulence strategies and effector modes of action. Filamentous pathogen effectors alter the fates of host proteins that they target, changing their stability, their activity, their location, and the protein partners with which they interact. Some effectors inhibit target activity, whereas others enhance or utilize it, and some target multiple host proteins. We discuss the emerging topic of effectors that target negative regulators of immunity or other plant proteins with activities that support susceptibility. We also highlight the commonly targeted host proteins that are manipulated by effectors from multiple pathogens, including those representing different kingdoms of life.
Collapse
Affiliation(s)
- Qin He
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Division of Plant Sciences, School of Life Sciences, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK
| | - Hazel McLellan
- Division of Plant Sciences, School of Life Sciences, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK
| | - Petra C. Boevink
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Paul R.J. Birch
- Division of Plant Sciences, School of Life Sciences, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Corresponding author
| |
Collapse
|
21
|
Naveed ZA, Wei X, Chen J, Mubeen H, Ali GS. The PTI to ETI Continuum in Phytophthora-Plant Interactions. FRONTIERS IN PLANT SCIENCE 2020; 11:593905. [PMID: 33391306 PMCID: PMC7773600 DOI: 10.3389/fpls.2020.593905] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/24/2020] [Indexed: 05/15/2023]
Abstract
Phytophthora species are notorious pathogens of several economically important crop plants. Several general elicitors, commonly referred to as Pathogen-Associated Molecular Patterns (PAMPs), from Phytophthora spp. have been identified that are recognized by the plant receptors to trigger induced defense responses in a process termed PAMP-triggered Immunity (PTI). Adapted Phytophthora pathogens have evolved multiple strategies to evade PTI. They can either modify or suppress their elicitors to avoid recognition by host and modulate host defense responses by deploying hundreds of effectors, which suppress host defense and physiological processes by modulating components involved in calcium and MAPK signaling, alternative splicing, RNA interference, vesicle trafficking, cell-to-cell trafficking, proteolysis and phytohormone signaling pathways. In incompatible interactions, resistant host plants perceive effector-induced modulations through resistance proteins and activate downstream components of defense responses in a quicker and more robust manner called effector-triggered-immunity (ETI). When pathogens overcome PTI-usually through effectors in the absence of R proteins-effectors-triggered susceptibility (ETS) ensues. Qualitatively, many of the downstream defense responses overlap between PTI and ETI. In general, these multiple phases of Phytophthora-plant interactions follow the PTI-ETS-ETI paradigm, initially proposed in the zigzag model of plant immunity. However, based on several examples, in Phytophthora-plant interactions, boundaries between these phases are not distinct but are rather blended pointing to a PTI-ETI continuum.
Collapse
Affiliation(s)
- Zunaira Afzal Naveed
- Department of Plant Pathology, Institute of Food and Agriculture Sciences, University of Florida, Gainesville, FL, United States
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
| | - Xiangying Wei
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
- Institute of Oceanography, Minjiang University, Fuzhou, China
- Xiangying Wei
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
| | - Hira Mubeen
- Departement of Biotechnology, University of Central Punjab, Lahore, Pakistan
| | - Gul Shad Ali
- Department of Plant Pathology, Institute of Food and Agriculture Sciences, University of Florida, Gainesville, FL, United States
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
- EukaryoTech LLC, Apopka, FL, United States
- *Correspondence: Gul Shad Ali
| |
Collapse
|