1
|
Ting MKY, Gao Y, Barahimipour R, Ghandour R, Liu J, Martinez-Seidel F, Smirnova J, Gotsmann VL, Fischer A, Haydon MJ, Willmund F, Zoschke R. Optimization of ribosome profiling in plants including structural analysis of rRNA fragments. PLANT METHODS 2024; 20:143. [PMID: 39285473 PMCID: PMC11406806 DOI: 10.1186/s13007-024-01267-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Ribosome profiling (or Ribo-seq) is a technique that provides genome-wide information on the translational landscape (translatome). Across different plant studies, variable methodological setups have been described which raises questions about the general comparability of data that were generated from diverging methodologies. Furthermore, a common problem when performing Ribo-seq are abundant rRNA fragments that are wastefully incorporated into the libraries and dramatically reduce sequencing depth. To remove these rRNA contaminants, it is common to perform preliminary trials to identify these fragments because they are thought to vary depending on nuclease treatment, tissue source, and plant species. RESULTS Here, we compile valuable insights gathered over years of generating Ribo-seq datasets from different species and experimental setups. We highlight which technical steps are important for maintaining cross experiment comparability and describe a highly efficient approach for rRNA removal. Furthermore, we provide evidence that many rRNA fragments are structurally preserved over diverse nuclease regimes, as well as across plant species. Using a recently published cryo-electron microscopy (cryo-EM) structure of the tobacco 80S ribosome, we show that the most abundant rRNA fragments are spatially derived from the solvent-exposed surface of the ribosome. CONCLUSION The guidelines presented here shall aid newcomers in establishing ribosome profiling in new plant species and provide insights that will help in customizing the methodology for individual research goals.
Collapse
Affiliation(s)
- Michael K Y Ting
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
- School of BioSciences, University of Melbourne, VIC, Melbourne, 3010, Australia.
| | - Yang Gao
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Rouhollah Barahimipour
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Rabea Ghandour
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jinghan Liu
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Federico Martinez-Seidel
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Julia Smirnova
- Charité Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany
| | - Vincent Leon Gotsmann
- Technical University Kaiserslautern, Paul-Ehrlich-Str. 23, 67663, Kaiserslautern, Germany
| | - Axel Fischer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Michael J Haydon
- School of BioSciences, University of Melbourne, VIC, Melbourne, 3010, Australia
| | - Felix Willmund
- Technical University Kaiserslautern, Paul-Ehrlich-Str. 23, 67663, Kaiserslautern, Germany
- Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
2
|
Yu X, Huang Z, Cheng Y, Hu K, Zhou Y, Yao H, Shen J, Huang Y, Zhuang X, Cai Y. Comparative Genomics Screens Identify a Novel Small Secretory Peptide, SlSolP12, which Activates Both Local and Systemic Immune Response in Tomatoes and Exhibits Broad-Spectrum Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18507-18519. [PMID: 39113497 DOI: 10.1021/acs.jafc.4c03633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Small secreted peptides (SSPs) are essential for defense mechanisms in plant-microbe interactions, acting as danger-associated molecular patterns (DAMPs). Despite the first discovery of SSPs over three decades ago, only a limited number of SSP families, particularly within Solanaceae plants, have been identified due to inefficient approaches. This study employed comparative genomics screens with Solanaceae proteomes (tomato, tobacco, and pepper) to discover a novel SSP family, SolP. Bioinformatics analysis suggests that SolP may serve as an endogenous signal initiating the plant PTI response. Interestingly, SolP family members from tomato, tobacco, and pepper share an identical sequence (VTSNALALVNRFAD), named SlSolP12 (also referred to as NtSolP15 or CaSolP1). Biochemical and phenotypic analyses revealed that synthetic SlSolP12 peptide triggers multiple defense responses: ROS burst, MAPK activation, callose deposition, stomatal closure, and expression of immune defense genes. Furthermore, SlSolP12 enhances systemic resistance against Botrytis cinerea infection in tomato plants and interferes with classical peptides, flg22 and Systemin, which modulate the immune response. Remarkably, SolP12 activates ROS in diverse plant species, such as Arabidopsis thaliana, soybean, and rice, showing a broad spectrum of biological activities. This study provides valuable approaches for identifying endogenous SSPs and highlights SlSolP12 as a novel DAMP that could serve as a useful target for crop protection.
Collapse
Affiliation(s)
- Xiaosong Yu
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Zhongchao Huang
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Yuanyuan Cheng
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Keyi Hu
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Yan Zhou
- Chengdu Lusyno Biotechnology Co., Ltd., Chengdu 610000, Sichuan, China
| | - Huipeng Yao
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 310000, Zhejiang, China
| | - Yan Huang
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Xiaohong Zhuang
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yi Cai
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| |
Collapse
|
3
|
Wu HYL, Jen J, Hsu PY. What, where, and how: Regulation of translation and the translational landscape in plants. THE PLANT CELL 2024; 36:1540-1564. [PMID: 37437121 PMCID: PMC11062462 DOI: 10.1093/plcell/koad197] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
Translation is a crucial step in gene expression and plays a vital role in regulating various aspects of plant development and environmental responses. It is a dynamic and complex program that involves interactions between mRNAs, transfer RNAs, and the ribosome machinery through both cis- and trans-regulation while integrating internal and external signals. Translational control can act in a global (transcriptome-wide) or mRNA-specific manner. Recent advances in genome-wide techniques, particularly ribosome profiling and proteomics, have led to numerous exciting discoveries in both global and mRNA-specific translation. In this review, we aim to provide a "primer" that introduces readers to this fascinating yet complex cellular process and provide a big picture of how essential components connect within the network. We begin with an overview of mRNA translation, followed by a discussion of the experimental approaches and recent findings in the field, focusing on unannotated translation events and translational control through cis-regulatory elements on mRNAs and trans-acting factors, as well as signaling networks through 3 conserved translational regulators TOR, SnRK1, and GCN2. Finally, we briefly touch on the spatial regulation of mRNAs in translational control. Here, we focus on cytosolic mRNAs; translation in organelles and viruses is not covered in this review.
Collapse
Affiliation(s)
- Hsin-Yen Larry Wu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Joey Jen
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Polly Yingshan Hsu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Qanmber G, You Q, Yang Z, Fan L, Zhang Z, Chai M, Gao B, Li F, Yang Z. Transcriptional and translational landscape fine-tune genome annotation and explores translation control in cotton. J Adv Res 2024; 58:13-30. [PMID: 37207930 PMCID: PMC10982868 DOI: 10.1016/j.jare.2023.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023] Open
Abstract
INTRODUCTION The unavailability of intergenic region annotation in whole genome sequencing and pan-genomics hinders efforts to enhance crop improvement. OBJECTIVES Despite advances in research, the impact of post-transcriptional regulation on fiber development and translatome profiling at different stages of fiber growth in cotton (G. hirsutum) remains unexplored. METHODS We utilized a combination of reference-guided de novo transcriptome assembly and ribosome profiling techniques to uncover the hidden mechanisms of translational control in eight distinct tissues of upland cotton. RESULTS Our study identified P-site distribution at three-nucleotide periodicity and dominant ribosome footprint at 27 nucleotides. Specifically, we have detected 1,589 small open reading frames (sORFs), including 1,376 upstream ORFs (uORFs) and 213 downstream ORFs (dORFs), as well as 552 long non-coding RNAs (lncRNAs) with potential coding functions, which fine-tune the annotation of the cotton genome. Further, we have identified novel genes and lncRNAs with strong translation efficiency (TE), while sORFs were found to affect mRNA transcription levels during fiber elongation. The reliability of these findings was confirmed by the high consistency in correlation and synergetic fold change between RNA-sequencing (RNA-seq) and Ribosome-sequencing (Ribo-seq) analyses. Additionally, integrated omics analysis of the normal fiber ZM24 and short fiber pag1 cotton mutant revealed several differentially expressed genes (DEGs), and fiber-specific expressed (high/low) genes associated with sORFs (uORFs and dORFs). These findings were further supported by the overexpression and knockdown of GhKCS6, a gene associated with sORFs in cotton, and demonstrated the potential regulation of the mechanism governing fiber elongation on both the transcriptional and post-transcriptional levels. CONCLUSION Reference-guided transcriptome assembly and the identification of novel transcripts fine-tune the annotation of the cotton genome and predicted the landscape of fiber development. Our approach provided a high-throughput method, based on multi-omics, for discovering unannotated ORFs, hidden translational control, and complex regulatory mechanisms in crop plants.
Collapse
Affiliation(s)
- Ghulam Qanmber
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Qi You
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Zhaoen Yang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Liqiang Fan
- National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Zhibin Zhang
- National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Mao Chai
- National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Baibai Gao
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Fuguang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
| | - Zuoren Yang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; National Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
| |
Collapse
|
5
|
Wu TY, Li YR, Chang KJ, Fang JC, Urano D, Liu MJ. Modeling alternative translation initiation sites in plants reveals evolutionarily conserved cis-regulatory codes in eukaryotes. Genome Res 2024; 34:272-285. [PMID: 38479836 PMCID: PMC10984385 DOI: 10.1101/gr.278100.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
mRNA translation relies on identifying translation initiation sites (TISs) in mRNAs. Alternative TISs are prevalent across plant transcriptomes, but the mechanisms for their recognition are unclear. Using ribosome profiling and machine learning, we developed models for predicting alternative TISs in the tomato (Solanum lycopersicum). Distinct feature sets were predictive of AUG and nonAUG TISs in 5' untranslated regions and coding sequences, including a novel CU-rich sequence that promoted plant TIS activity, a translational enhancer found across dicots and monocots, and humans and viruses. Our results elucidate the mechanistic and evolutionary basis of TIS recognition, whereby cis-regulatory RNA signatures affect start site selection. The TIS prediction model provides global estimates of TISs to discover neglected protein-coding genes across plant genomes. The prevalence of cis-regulatory signatures across plant species, humans, and viruses suggests their broad and critical roles in reprogramming the translational landscape.
Collapse
Affiliation(s)
- Ting-Ying Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan;
| | - Ya-Ru Li
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Kai-Jyun Chang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Jhen-Cheng Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Ming-Jung Liu
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan;
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
6
|
Gotsmann VL, Ting MKY, Haase N, Rudorf S, Zoschke R, Willmund F. Utilizing high-resolution ribosome profiling for the global investigation of gene expression in Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1614-1634. [PMID: 38047591 DOI: 10.1111/tpj.16577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
Ribosome profiling (Ribo-seq) is a powerful method for the deep analysis of translation mechanisms and regulatory circuits during gene expression. Extraction and sequencing of ribosome-protected fragments (RPFs) and parallel RNA-seq yields genome-wide insight into translational dynamics and post-transcriptional control of gene expression. Here, we provide details on the Ribo-seq method and the subsequent analysis with the unicellular model alga Chlamydomonas reinhardtii (Chlamydomonas) for generating high-resolution data covering more than 10 000 different transcripts. Detailed analysis of the ribosomal offsets on transcripts uncovers presumable transition states during translocation of elongating ribosomes within the 5' and 3' sections of transcripts and characteristics of eukaryotic translation termination, which are fundamentally distinct for chloroplast translation. In chloroplasts, a heterogeneous RPF size distribution along the coding sequence indicates specific regulatory phases during protein synthesis. For example, local accumulation of small RPFs correlates with local slowdown of psbA translation, possibly uncovering an uncharacterized regulatory step during PsbA/D1 synthesis. Further analyses of RPF distribution along specific cytosolic transcripts revealed characteristic patterns of translation elongation exemplified for the major light-harvesting complex proteins, LHCs. By providing high-quality datasets for all subcellular genomes and attaching our data to the Chlamydomonas reference genome, we aim to make ribosome profiles easily accessible for the broad research community. The data can be browsed without advanced bioinformatic background knowledge for translation output levels of specific genes and their splice variants and for monitoring genome annotation.
Collapse
Affiliation(s)
- Vincent Leon Gotsmann
- Molecular Genetics of Eukaryotes, RPTU Kaiserslautern-Landau, Paul-Ehrlich-Str. 23, 67663, Kaiserslautern, Germany
| | - Michael Kien Yin Ting
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Nadin Haase
- Institute of Cell Biology and Biophysics, Leibniz University Hanover, Herrenhäuser-Str. 2, 30419, Hanover, Germany
| | - Sophia Rudorf
- Institute of Cell Biology and Biophysics, Leibniz University Hanover, Herrenhäuser-Str. 2, 30419, Hanover, Germany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, RPTU Kaiserslautern-Landau, Paul-Ehrlich-Str. 23, 67663, Kaiserslautern, Germany
| |
Collapse
|
7
|
Dawane A, Deshpande S, Vijayaraghavreddy P, Vemanna RS. Polysome-bound mRNAs and translational mechanisms regulate drought tolerance in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108513. [PMID: 38513519 DOI: 10.1016/j.plaphy.2024.108513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
Plants evolved several acquired tolerance traits for drought stress adaptation to maintain the cellular homeostasis. Drought stress at the anthesis stage in rice affects productivity due to the inefficiency of protein synthesis machinery. The effect of translational mechanisms on different pathways involved in cellular tolerance plays an important role. We report differential responses of translation-associated mechanisms in rice using polysome bound mRNA sequencing at anthesis stage drought stress in resistant Apo and sensitive IR64 genotypes. Apo maintained higher polysomes with 60 S-to-40 S and polysome-to-monosome ratios which directly correlate with protein levels under stress. IR64 has less protein levels under stress due to defective translation machinery and reduced water potential. Many polysome-bound long non-coding RNAs (lncRNA) were identified in both genotypes under drought, influencing translation. Apo had higher levels of N6-Methyladenosine (m6A) mRNA modifications that contributed for sustained translation. Translation machinery in Apo could maintain higher levels of photosynthetic machinery-associated proteins in drought stress, which maintain gas exchange, photosynthesis and yield under stress. The protein stability and ribosome biogenesis mechanisms favoured improved translation in Apo. The phytohormone signalling and transcriptional responses were severely affected in IR64. Our results demonstrate that, the higher translation ability of Apo favours maintenance of photosynthesis and physiological responses that are required for drought stress adaptation.
Collapse
Affiliation(s)
- Akashata Dawane
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, 121 001, India
| | - Sanjay Deshpande
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, 121 001, India
| | | | - Ramu S Vemanna
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, 121 001, India.
| |
Collapse
|
8
|
Wang J, Li Y, Li M, Zhang W, Lu Y, Hua K, Ling X, Chen T, Guo D, Yang Y, Zheng Z, Liu Q, Zhang B. Translatome and Transcriptome Analyses Reveal the Mechanism that Underlies the Enhancement of Salt Stress by the Small Peptide Ospep5 in Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4277-4291. [PMID: 38288993 DOI: 10.1021/acs.jafc.3c08528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Salt stress significantly impedes plant growth and the crop yield. This study utilized de novo transcriptome assembly and ribosome profiling to explore mRNA translation's role in rice salt tolerance. We identified unrecognized translated open reading frames (ORFs), including 42 upstream transcripts and 86 unannotated transcripts. A noteworthy discovery was the role of a small ORF, Ospep5, in conferring salt tolerance. Overexpression of Ospep5 in plants increased salt tolerance, while its absence led to heightened sensitivity. This hypothesis was corroborated by the findings that exogenous application of the synthetic small peptide Ospep5 bolstered salt tolerance in both rice and Arabidopsis. We found that the mechanism underpinning the Ospep5-mediated salt tolerance involves the maintenance of intracellular Na+/K+ homeostasis, facilitated by upregulation of high-affinity potassium transporters (HKT) and Na+/H+ exchangers (SOS1). Furthermore, a comprehensive multiomics approach, particularly ribosome profiling, is instrumental in uncovering unannotated ORFs and elucidating their functions in plant stress responses.
Collapse
Affiliation(s)
- Jinyan Wang
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| | - Yang Li
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Mingyue Li
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Wenting Zhang
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yaping Lu
- Experimental center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Hua
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Xitie Ling
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Tianzi Chen
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| | - Dongshu Guo
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| | - Yuwen Yang
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| | - Zhongbing Zheng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Qing Liu
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
- College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Baolong Zhang
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| |
Collapse
|
9
|
Wu HYL, Ai Q, Teixeira RT, Nguyen PHT, Song G, Montes C, Elmore JM, Walley JW, Hsu PY. Improved super-resolution ribosome profiling reveals prevalent translation of upstream ORFs and small ORFs in Arabidopsis. THE PLANT CELL 2024; 36:510-539. [PMID: 38000896 PMCID: PMC10896292 DOI: 10.1093/plcell/koad290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023]
Abstract
A crucial step in functional genomics is identifying actively translated ORFs and linking them to biological functions. The challenge lies in identifying short ORFs, as their identification is greatly influenced by data quality and depth. Here, we improved the coverage of super-resolution Ribo-seq in Arabidopsis (Arabidopsis thaliana), revealing uncharacterized translation events for nuclear, chloroplastic, and mitochondrial genes. Assisted by a transcriptome assembly, we identified 7,751 unconventional translation events, comprising 6,996 upstream ORFs (uORFs) and 209 downstream ORFs on annotated protein-coding genes, as well as 546 ORFs in presumed noncoding RNAs. Proteomic data confirmed the production of stable proteins from some of these unannotated translation events. We present evidence of active translation from primary transcripts of trans-acting small interfering RNAs (TAS1-4) and microRNAs (pri-MIR163 and pri-MIR169) and periodic ribosome stalling supporting cotranslational decay. Additionally, we developed a method for identifying extremely short uORFs, including 370 minimum uORFs (AUG-stop), and 2,921 tiny uORFs (2 to 10 amino acids) and 681 uORFs that overlap with each other. Remarkably, these short uORFs exhibit strong translational repression as do longer uORFs. We also systematically discovered 594 uORFs regulated by alternative splicing, suggesting widespread isoform-specific translational control. Finally, these prevalent uORFs are associated with numerous important pathways. In summary, our improved Arabidopsis translational landscape provides valuable resources to study gene expression regulation.
Collapse
Affiliation(s)
- Hsin-Yen Larry Wu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Qiaoyun Ai
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Rita Teresa Teixeira
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Phong H T Nguyen
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Gaoyuan Song
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Christian Montes
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - J Mitch Elmore
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Justin W Walley
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Polly Yingshan Hsu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
10
|
An Y, Wang Z, Liu B, Cao Y, Chen L. Translational Landscape of Medicago truncatula Seedlings under Salt Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16657-16668. [PMID: 37880959 DOI: 10.1021/acs.jafc.3c03922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The expression of plant genes under salt stress at the transcriptional level has been extensively studied. However, less attention has been paid to gene translation regulation under salt stress. In this study, Ribo-seq and RNA-seq analyses were conducted in Medicago truncatula seedlings grown under normal and salt stress conditions. The results showed that salt stress significantly altered the gene expression at the transcriptional and translational levels, with 2755 genes showing significant changes only at the translational level. Salt stress significantly inhibited the gene translation efficiency. Small ORFs (including uORFs in the 5'UTR, dORFs in 3'UTRs, and sORFs in lncRNAs) were identified throughout the genome of M. truncatula. The efficiency of gene translation was simultaneously regulated by the uORFs, dORFs, and miRNAs. In summary, our results provide valuable information about translatomic resources and new insights into plant responses to salt stress.
Collapse
Affiliation(s)
- Yixin An
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Ziqi Wang
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Baijian Liu
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Yuwei Cao
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Lin Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
11
|
Suhorukova AV, Sobolev DS, Milovskaya IG, Fadeev VS, Goldenkova-Pavlova IV, Tyurin AA. A Molecular Orchestration of Plant Translation under Abiotic Stress. Cells 2023; 12:2445. [PMID: 37887289 PMCID: PMC10605726 DOI: 10.3390/cells12202445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
The complexities of translational strategies make this stage of implementing genetic information one of the most challenging to comprehend and, simultaneously, perhaps the most engaging. It is evident that this diverse range of strategies results not only from a long evolutionary history, but is also of paramount importance for refining gene expression and metabolic modulation. This notion is particularly accurate for organisms that predominantly exhibit biochemical and physiological reactions with a lack of behavioural ones. Plants are a group of organisms that exhibit such features. Addressing unfavourable environmental conditions plays a pivotal role in plant physiology. This is particularly evident with the changing conditions of global warming and the irrevocable loss or depletion of natural ecosystems. In conceptual terms, the plant response to abiotic stress comprises a set of elaborate and intricate strategies. This is influenced by a range of abiotic factors that cause stressful conditions, and molecular genetic mechanisms that fine-tune metabolic pathways allowing the plant organism to overcome non-standard and non-optimal conditions. This review aims to focus on the current state of the art in the field of translational regulation in plants under abiotic stress conditions. Different regulatory elements and patterns are being assessed chronologically. We deem it important to focus on significant high-performance techniques for studying the genetic information dynamics during the translation phase.
Collapse
|
12
|
Fang JC, Liu MJ. Translation initiation at AUG and non-AUG triplets in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111822. [PMID: 37574140 DOI: 10.1016/j.plantsci.2023.111822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/22/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
In plants and other eukaryotes, precise selection of translation initiation site (TIS) on mRNAs shapes the proteome in response to cellular events or environmental cues. The canonical translation of mRNAs initiates at a 5' proximal AUG codon in a favorable context. However, the coding and non-coding regions of plant genomes contain numerous unannotated alternative AUG and non-AUG TISs. Determining how and why these unexpected and prevalent TISs are activated in plants has emerged as an exciting research area. In this review, we focus on the selection of plant TISs and highlight studies that revealed previously unannotated TISs used in vivo via comparative genomics and genome-wide profiling of ribosome positioning and protein N-terminal ends. The biological signatures of non-AUG TIS-initiated open reading frames (ORFs) in plants are also discussed. We describe what is understood about cis-regulatory RNA elements and trans-acting eukaryotic initiation factors (eIFs) in the site selection for translation initiation by featuring the findings in plants along with supporting findings in non-plant species. The prevalent, unannotated TISs provide a hidden reservoir of ORFs that likely help reshape plant proteomes in response to developmental or environmental cues. These findings underscore the importance of understanding the mechanistic basis of TIS selection to functionally annotate plant genomes, especially for crops with large genomes.
Collapse
Affiliation(s)
- Jhen-Cheng Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Ming-Jung Liu
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
13
|
Nguyen TMV, Hertog MLATM, Van de Poel B, Tran DT, Nicolaï B. Targeted system approach to ethylene biosynthesis and signaling of a heat tolerant tomato cultivar; the impact of growing season on fruit ripening. FRONTIERS IN PLANT SCIENCE 2023; 14:1195020. [PMID: 37457344 PMCID: PMC10348052 DOI: 10.3389/fpls.2023.1195020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Growing tomato in hot weather conditions is challenging for fruit production and yield. Tomato cv. Savior is a heat-tolerant cultivar which can be grown during both the Vietnamese winter (mild condition) and summer (hot condition) season. Understanding the mechanisms of ethylene biosynthesis and signaling are important for agriculture, as manipulation of these pathways can lead to improvements in crop yield, stress tolerance, and fruit ripening. The objective of this study was to investigate an overview of ethylene biosynthesis and signaling from target genes to proteins and metabolites and the impact of growing season on a heat tolerant tomato cultivar throughout fruit ripening and postharvest storage. This work also showed the feasibility of absolute protein quantification of ethylene biosynthesis enzymes. Summer fruit showed the delayed peak of ethylene production until the red ripe stage. The difference in postharvest ethylene production between winter and summer fruit appears to be regulated by the difference in accumulation of 1-aminocyclopropane-1-carboxylic acid (ACC) which depends on the putative up-regulation of SAM levels. The lack of differences in protein concentrations between winter and summer fruit indicate that heat stress did not alter the ethylene biosynthesis-related protein abundance in heat tolerant cultivar. The analysis results of enzymatic activity and proteomics showed that in both winter and summer fruit, the majority of ACO activity could be mainly contributed to the abundance of ACO5 and ACO6 isoforms, rather than ACO1. Likewise, ethylene signal transduction was largely controlled by the abundance of ethylene receptors ETR1, ETR3, ETR6, and ETR7 together with the constitute triple response regulator CTR1 for both winter and summer grown tomatoes. Altogether our results indicate that in the heat tolerant tomato cv. Savior, growing season mainly affects the ethylene biosynthesis pathway and leaves the signaling pathway relatively unaffected.
Collapse
Affiliation(s)
- Thao Minh Viet Nguyen
- KU Leuven, BIOSYST-MeBioS Postharvest Lab, Leuven, Belgium
- Vietnam National University of Agriculture, Faculty of Food Science and Technology, Hanoi, Vietnam
- KU Leuven Plant Institute (LPI), Leuven, Belgium
| | - Maarten L. A. T. M. Hertog
- KU Leuven, BIOSYST-MeBioS Postharvest Lab, Leuven, Belgium
- KU Leuven Plant Institute (LPI), Leuven, Belgium
| | - Bram Van de Poel
- KU Leuven Plant Institute (LPI), Leuven, Belgium
- KU Leuven, BIOSYST- Crop Biotechnics, Molecular Plant Hormone Physiology Lab, Leuven, Belgium
| | - Dinh Thi Tran
- Vietnam National University of Agriculture, Faculty of Food Science and Technology, Hanoi, Vietnam
| | - Bart Nicolaï
- KU Leuven, BIOSYST-MeBioS Postharvest Lab, Leuven, Belgium
- KU Leuven Plant Institute (LPI), Leuven, Belgium
- Flanders Centre of Postharvest Technology, Leuven, Belgium
| |
Collapse
|
14
|
Jian H, Wen S, Liu R, Zhang W, Li Z, Chen W, Zhou Y, Khassanov V, Mahmoud AMA, Wang J, Lyu D. Dynamic Translational Landscape Revealed by Genome-Wide Ribosome Profiling under Drought and Heat Stress in Potato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2232. [PMID: 37375858 DOI: 10.3390/plants12122232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
The yield and quality of potatoes, an important staple crop, are seriously threatened by high temperature and drought stress. In order to deal with this adverse environment, plants have evolved a series of response mechanisms. However, the molecular mechanism of potato's response to environmental changes at the translational level is still unclear. In this study, we performed transcriptome- and ribosome-profiling assays with potato seedlings growing under normal, drought, and high-temperature conditions to reveal the dynamic translational landscapes for the first time. The translational efficiency was significantly affected by drought and heat stress in potato. A relatively high correlation (0.88 and 0.82 for drought and heat stress, respectively) of the fold changes of gene expression was observed between the transcriptional level and translational level globally based on the ribosome-profiling and RNA-seq data. However, only 41.58% and 27.69% of the different expressed genes were shared by transcription and translation in drought and heat stress, respectively, suggesting that the transcription or translation process can be changed independently. In total, the translational efficiency of 151 (83 and 68 for drought and heat, respectively) genes was significantly changed. In addition, sequence features, including GC content, sequence length, and normalized minimal free energy, significantly affected the translational efficiencies of genes. In addition, 28,490 upstream open reading frames (uORFs) were detected on 6463 genes, with an average of 4.4 uORFs per gene and a median length of 100 bp. These uORFs significantly affected the translational efficiency of downstream major open reading frames (mORFs). These results provide new information and directions for analyzing the molecular regulatory network of potato seedlings in response to drought and heat stress.
Collapse
Affiliation(s)
- Hongju Jian
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400715, China
| | - Shiqi Wen
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Rongrong Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Wenzhe Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Ziyan Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Weixi Chen
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Yonghong Zhou
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400715, China
| | - Vadim Khassanov
- Department of Plant Protection and Quarantine, Faculty of Agronomy, S. Seifullin Kazakh Agrotechnical University, Zhenis Avenue, 010011 Astana, Kazakhstan
| | - Ahmed M A Mahmoud
- Department of Vegetable Crops, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Jichun Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400715, China
| | - Dianqiu Lyu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400715, China
| |
Collapse
|
15
|
Wang Z, Cui Q, Su C, Zhao S, Wang R, Wang Z, Meng J, Luan Y. Unveiling the secrets of non-coding RNA-encoded peptides in plants: A comprehensive review of mining methods and research progress. Int J Biol Macromol 2023:124952. [PMID: 37257526 DOI: 10.1016/j.ijbiomac.2023.124952] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
Non-coding RNAs (ncRNAs) are not conventionally involved in protein encoding. However, recent findings indicate that ncRNAs possess the capacity to code for proteins or peptides. These ncRNA-encoded peptides (ncPEPs) are vital for diverse plant life processes and exhibit significant potential value. Despite their importance, research on plant ncPEPs is limited, with only a few studies conducted and less information on the underlying mechanisms, and the field remains in its nascent stage. This manuscript provides a comprehensive overview of ncPEPs mining methods in plants, focusing on prediction, identification, and functional analysis. We discuss the strengths and weaknesses of various techniques, identify future research directions in the ncPEPs domain, and elucidate the biological functions and agricultural application prospects of plant ncPEPs. By highlighting the immense potential and research value of ncPEPs, we aim to lay a solid foundation for more in-depth studies in plant science.
Collapse
Affiliation(s)
- Zhengjie Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Qi Cui
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Chenglin Su
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Siyuan Zhao
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ruiming Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Zhicheng Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
16
|
Guo Y, Chen Y, Wang Y, Wu X, Zhang X, Mao W, Yu H, Guo K, Xu J, Ma L, Guo W, Hu Z, Xin M, Yao Y, Ni Z, Sun Q, Peng H. The translational landscape of bread wheat during grain development. THE PLANT CELL 2023; 35:1848-1867. [PMID: 36905284 PMCID: PMC10226598 DOI: 10.1093/plcell/koad075] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 05/30/2023]
Abstract
The dynamics of gene expression in crop grains has typically been investigated at the transcriptional level. However, this approach neglects translational regulation, a widespread mechanism that rapidly modulates gene expression to increase the plasticity of organisms. Here, we performed ribosome profiling and polysome profiling to obtain a comprehensive translatome data set of developing bread wheat (Triticum aestivum) grains. We further investigated the genome-wide translational dynamics during grain development, revealing that the translation of many functional genes is modulated in a stage-specific manner. The unbalanced translation between subgenomes is pervasive, which increases the expression flexibility of allohexaploid wheat. In addition, we uncovered widespread previously unannotated translation events, including upstream open reading frames (uORFs), downstream open reading frames (dORFs), and open reading frames (ORFs) in long noncoding RNAs, and characterized the temporal expression dynamics of small ORFs. We demonstrated that uORFs act as cis-regulatory elements that can repress or even enhance the translation of mRNAs. Gene translation may be combinatorially modulated by uORFs, dORFs, and microRNAs. In summary, our study presents a translatomic resource that provides a comprehensive and detailed overview of the translational regulation in developing bread wheat grains. This resource will facilitate future crop improvements for optimal yield and quality.
Collapse
Affiliation(s)
- Yiwen Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yongfa Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaojia Wu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weiwei Mao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Hongjian Yu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Kai Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jin Xu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Liang Ma
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Hang R, Xu Y, Wang X, Hu H, Flynn N, You C, Chen X. Arabidopsis HOT3/eIF5B1 constrains rRNA RNAi by facilitating 18S rRNA maturation. Proc Natl Acad Sci U S A 2023; 120:e2301081120. [PMID: 37011204 PMCID: PMC10104536 DOI: 10.1073/pnas.2301081120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023] Open
Abstract
Ribosome biogenesis is essential for protein synthesis in gene expression. Yeast eIF5B has been shown biochemically to facilitate 18S ribosomal RNA (rRNA) 3' end maturation during late-stage 40S ribosomal subunit assembly and gate the transition from translation initiation to elongation. But the genome-wide effects of eIF5B have not been studied at the single-nucleotide resolution in any organism, and 18S rRNA 3' end maturation is poorly understood in plants. Arabidopsis HOT3/eIF5B1 was found to promote development and heat stress acclimation by translational regulation, but its molecular function remained unknown. Here, we show that HOT3 is a late-stage ribosome biogenesis factor that facilitates 18S rRNA 3' end processing and is a translation initiation factor that globally impacts the transition from initiation to elongation. By developing and implementing 18S-ENDseq, we revealed previously unknown events in 18S rRNA 3' end maturation or metabolism. We quantitatively defined processing hotspots and identified adenylation as the prevalent nontemplated RNA addition at the 3' ends of pre-18S rRNAs. Aberrant 18S rRNA maturation in hot3 further activated RNA interference to generate RDR1- and DCL2/4-dependent risiRNAs mainly from a 3' portion of 18S rRNA. We further showed that risiRNAs in hot3 were predominantly localized in ribosome-free fractions and were not responsible for the 18S rRNA maturation or translation initiation defects in hot3. Our study uncovered the molecular function of HOT3/eIF5B1 in 18S rRNA maturation at the late 40S assembly stage and revealed the regulatory crosstalk among ribosome biogenesis, messenger RNA (mRNA) translation initiation, and siRNA biogenesis in plants.
Collapse
Affiliation(s)
- Runlai Hang
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA92521
| | - Ye Xu
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA92521
| | - Xufeng Wang
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA92521
| | - Hao Hu
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA92521
| | - Nora Flynn
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA92521
| | - Chenjiang You
- College of Life Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong510642, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA92521
- School of Life Sciences, Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing100871, China
| |
Collapse
|
18
|
Ma Q, Wang Y, Li S, Wen J, Zhu L, Yan K, Du Y, Li S, Yan L, Xie Z, Lyu Y, Shen F, Li Q. Ribosome footprint profiling enables elucidating the systemic regulation of fatty acid accumulation in Acer truncatum. BMC Biol 2023; 21:68. [PMID: 37013569 PMCID: PMC10071632 DOI: 10.1186/s12915-023-01564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND The accumulation of fatty acids in plants covers a wide range of functions in plant physiology and thereby affects adaptations and characteristics of species. As the famous woody oilseed crop, Acer truncatum accumulates unsaturated fatty acids and could serve as the model to understand the regulation and trait formation in oil-accumulation crops. Here, we performed Ribosome footprint profiling combing with a multi-omics strategy towards vital time points during seed development, and finally constructed systematic profiling from transcription to proteomes. Additionally, we characterized the small open reading frames (ORFs) and revealed that the translational efficiencies of focused genes were highly influenced by their sequence features. RESULTS The comprehensive multi-omics analysis of lipid metabolism was conducted in A. truncatum. We applied the Ribo-seq and RNA-seq techniques, and the analyses of transcriptional and translational profiles of seeds collected at 85 and 115 DAF were compared. Key members of biosynthesis-related structural genes (LACS, FAD2, FAD3, and KCS) were characterized fully. More meaningfully, the regulators (MYB, ABI, bZIP, and Dof) were identified and revealed to affect lipid biosynthesis via post-translational regulations. The translational features results showed that translation efficiency tended to be lower for the genes with a translated uORF than for the genes with a non-translated uORF. They provide new insights into the global mechanisms underlying the developmental regulation of lipid metabolism. CONCLUSIONS We performed Ribosome footprint profiling combing with a multi-omics strategy in A. truncatum seed development, which provides an example of the use of Ribosome footprint profiling in deciphering the complex regulation network and will be useful for elucidating the metabolism of A. truncatum seed oil and the regulatory mechanisms.
Collapse
Affiliation(s)
- Qiuyue Ma
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement Nanjing, Nanjing, 210014, China
| | - Yuxiao Wang
- Nanjing Forestry University, Nanjing, 210037, China
| | - Shushun Li
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement Nanjing, Nanjing, 210014, China
| | - Jing Wen
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement Nanjing, Nanjing, 210014, China
| | - Lu Zhu
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement Nanjing, Nanjing, 210014, China
| | - Kunyuan Yan
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement Nanjing, Nanjing, 210014, China
| | - Yiming Du
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement Nanjing, Nanjing, 210014, China
| | - Shuxian Li
- Nanjing Forestry University, Nanjing, 210037, China
| | - Liping Yan
- Shandong Academy of Forestry Sciences, Jinan, 250014, China
| | - Zhijun Xie
- Xiangyang Forestry Science and Technology Extension Station, Xiangyang, 441000, China
| | - Yunzhou Lyu
- Jiangsu Academy of Forestry, Nanjing, 211153, China.
| | - Fei Shen
- Institute of Biology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100197, China.
| | - Qianzhong Li
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement Nanjing, Nanjing, 210014, China.
| |
Collapse
|
19
|
Zhu XT, Zhou R, Che J, Zheng YY, Tahir Ul Qamar M, Feng JW, Zhang J, Gao J, Chen LL. Ribosome profiling reveals the translational landscape and allele-specific translational efficiency in rice. PLANT COMMUNICATIONS 2023; 4:100457. [PMID: 36199246 PMCID: PMC10030323 DOI: 10.1016/j.xplc.2022.100457] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/23/2022] [Accepted: 10/01/2022] [Indexed: 05/04/2023]
Abstract
Translational regulation is a critical step in the process of gene expression and governs the synthesis of proteins from mRNAs. Many studies have revealed translational regulation in plants in response to various environmental stimuli. However, there have been no studies documenting the comprehensive landscape of translational regulation and allele-specific translational efficiency in multiple plant tissues, especially those of rice, a main staple crop that feeds nearly half of the world's population. Here we used RNA sequencing and ribosome profiling data to analyze the transcriptome and translatome of an elite hybrid rice, Shanyou 63 (SY63), and its parental varieties Zhenshan 97 and Minghui 63. The results revealed that gene expression patterns varied more among tissues than among varieties at the transcriptional and translational levels. We identified 3392 upstream open reading frames (uORFs), and the uORF-containing genes were enriched in transcription factors. Only 668 of 13 492 long non-coding RNAs could be translated into peptides. Finally, we discovered numerous genes with allele-specific translational efficiency in SY63 and demonstrated that some cis-regulatory elements may contribute to allelic divergence in translational efficiency. Overall, these findings may improve our understanding of translational regulation in rice and provide information for molecular breeding research.
Collapse
Affiliation(s)
- Xi-Tong Zhu
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Run Zhou
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Che
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Yu Zheng
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Tahir Ul Qamar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jia-Wu Feng
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Junxiang Gao
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ling-Ling Chen
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
20
|
Zhao S, Meng J, Wekesa JS, Luan Y. Identification of small open reading frames in plant lncRNA using class-imbalance learning. Comput Biol Med 2023; 157:106773. [PMID: 36924731 DOI: 10.1016/j.compbiomed.2023.106773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023]
Abstract
Recently, small open reading frames (sORFs) in long noncoding RNA (lncRNA) have been demonstrated to encode small peptides that can help study the mechanisms of growth and development in organisms. Since machine learning-based computational methods are less costly compared with biological experiments, they can be used to identify sORFs and provide a basis for biological experiments. However, few computational methods and data resources have been exploited for identifying sORFs in plant lncRNA. Besides, machine learning models produce underperforming classifiers when faced with a class-imbalance problem. In this study, an alternative method called SMOTE based on weighted cosine distance (WCDSMOTE) which enables interaction with feature selection is put forward to synthesize minority class samples and weighted edited nearest neighbor (WENN) is applied to clean up majority class samples, thus, hybrid sampling WCDSMOTE-ENN is proposed to deal with imbalanced datasets with the multi-angle feature. A heterogeneous classifier ensemble is introduced to complete the classification task. Therefore, a novel computational method that is based on class-imbalance learning to identify the sORFs with coding potential in plant lncRNA (sORFplnc) is presented. Experimental results manifest that sORFplnc outperforms existing computational methods in identifying sORFs with coding potential. We anticipate that the proposed work can be a reference for relevant research and contribute to agriculture and biomedicine.
Collapse
Affiliation(s)
- Siyuan Zhao
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| | - Jael Sanyanda Wekesa
- Department of Information Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 62000-00200, Kenya
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| |
Collapse
|
21
|
Feng Y, Jiang M, Yu W, Zhou J. Identification of short open reading frames in plant genomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1094715. [PMID: 36875581 PMCID: PMC9975389 DOI: 10.3389/fpls.2023.1094715] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The roles of short/small open reading frames (sORFs) have been increasingly recognized in recent years due to the rapidly growing number of sORFs identified in various organisms due to the development and application of the Ribo-Seq technique, which sequences the ribosome-protected footprints (RPFs) of the translating mRNAs. However, special attention should be paid to RPFs used to identify sORFs in plants due to their small size (~30 nt) and the high complexity and repetitiveness of the plant genome, particularly for polyploidy species. In this work, we compare different approaches to the identification of plant sORFs, discuss the advantages and disadvantages of each method, and provide a guide for choosing different methods in plant sORF studies.
Collapse
Affiliation(s)
- Yong Feng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Mengyun Jiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Weichang Yu
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Liaoning Peanut Research Institute, Liaoning Academy of Agricultural Sciences, Fuxing, China
| | - Jiannan Zhou
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| |
Collapse
|
22
|
Álvarez-Urdiola R, Borràs E, Valverde F, Matus JT, Sabidó E, Riechmann JL. Peptidomics Methods Applied to the Study of Flower Development. Methods Mol Biol 2023; 2686:509-536. [PMID: 37540375 DOI: 10.1007/978-1-0716-3299-4_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Understanding the global and dynamic nature of plant developmental processes requires not only the study of the transcriptome, but also of the proteome, including its largely uncharacterized peptidome fraction. Recent advances in proteomics and high-throughput analyses of translating RNAs (ribosome profiling) have begun to address this issue, evidencing the existence of novel, uncharacterized, and possibly functional peptides. To validate the accumulation in tissues of sORF-encoded polypeptides (SEPs), the basic setup of proteomic analyses (i.e., LC-MS/MS) can be followed. However, the detection of peptides that are small (up to ~100 aa, 6-7 kDa) and novel (i.e., not annotated in reference databases) presents specific challenges that need to be addressed both experimentally and with computational biology resources. Several methods have been developed in recent years to isolate and identify peptides from plant tissues. In this chapter, we outline two different peptide extraction protocols and the subsequent peptide identification by mass spectrometry using the database search or the de novo identification methods.
Collapse
Affiliation(s)
- Raquel Álvarez-Urdiola
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | - Eva Borràs
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Federico Valverde
- Institute for Plant Biochemistry and Photosynthesis CSIC - University of Seville, Seville, Spain
| | - José Tomás Matus
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Valencia, Spain
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - José Luis Riechmann
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
23
|
Guo R, Yu X, Gregory BD. The identification of conserved sequence features of co-translationally decayed mRNAs and upstream open reading frames in angiosperm transcriptomes. PLANT DIRECT 2023; 7:e479. [PMID: 36643787 PMCID: PMC9831718 DOI: 10.1002/pld3.479] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
RNA turnover is essential in maintaining messenger RNA (mRNA) homeostasis during various developmental stages and stress responses. Co-translational mRNA decay (CTRD), a process in which mRNAs are degraded while still associated with translating ribosomes, has recently been discovered to function in yeast and three angiosperm transcriptomes. However, it is still unclear how prevalent CTRD across the plant lineage. Moreover, the sequence features of co-translationally decayed mRNAs have not been well-studied. Here, utilizing a collection of publicly available degradome sequencing datasets for another seven angiosperm transcriptomes, we have confirmed that CTRD is functioning in at least 10 angiosperms and likely throughout the plant lineage. Additionally, we have identified sequence features shared by the co-translationally decayed mRNAs in these species, implying a possible conserved triggering mechanism for this pathway. Given that degradome sequencing datasets can also be used to identify actively translating upstream open reading frames (uORFs), which are quite understudied in plants, we have identified numerous actively translating uORFs in the same 10 angiosperms. These findings reveal that actively translating uORFs are prevalent in plant transcriptomes, some of which are conserved across this lineage. We have also observed conserved sequence features in the regions flanking these uORFs' stop codons that might contribute to ribosome stalling at these sequences. Finally, we discovered that there were very few overlaps between the mRNAs harboring actively translating uORFs and those sorted into the co-translational decay pathway in the majority of the studied angiosperms, suggesting that these two processes might be nearly mutually exclusive in those species. In total, our findings provide the identification of CTRD and actively translating uORFs across a broad collection of plants and provide novel insights into the important sequence features associated with these collections of mRNAs and regulatory elements, respectively.
Collapse
Affiliation(s)
- Rong Guo
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Xiang Yu
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Present address:
School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Brian D. Gregory
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
24
|
Wu HYL, Hsu PY. A custom library construction method for super-resolution ribosome profiling in Arabidopsis. PLANT METHODS 2022; 18:115. [PMID: 36195920 PMCID: PMC9531494 DOI: 10.1186/s13007-022-00947-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Ribosome profiling, also known as Ribo-seq, is a powerful technique to study genome-wide mRNA translation. It reveals the precise positions and quantification of ribosomes on mRNAs through deep sequencing of ribosome footprints. We previously optimized the resolution of this technique in plants. However, several key reagents in our original method have been discontinued, and thus, there is an urgent need to establish an alternative protocol. RESULTS Here we describe a step-by-step protocol that combines our optimized ribosome footprinting in plants with available custom library construction methods established in yeast and bacteria. We tested this protocol in 7-day-old Arabidopsis seedlings and evaluated the quality of the sequencing data regarding ribosome footprint length, mapped genomic features, and the periodic properties corresponding to actively translating ribosomes through open resource bioinformatic tools. We successfully generated high-quality Ribo-seq data comparable with our original method. CONCLUSIONS We established a custom library construction method for super-resolution Ribo-seq in Arabidopsis. The experimental protocol and bioinformatic pipeline should be readily applicable to other plant tissues and species.
Collapse
Affiliation(s)
- Hsin-Yen Larry Wu
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Polly Yingshan Hsu
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
25
|
Antisense Transcription in Plants: A Systematic Review and an Update on cis-NATs of Sugarcane. Int J Mol Sci 2022; 23:ijms231911603. [PMID: 36232906 PMCID: PMC9569758 DOI: 10.3390/ijms231911603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/09/2022] Open
Abstract
Initially, natural antisense transcripts (NATs, natRNAs, or asRNAs) were considered repressors; however, their functions in gene regulation are diverse. Positive, negative, or neutral correlations to the cognate gene expression have been noted. Although the first studies were published about 50 years ago, there is still much to be investigated regarding antisense transcripts in plants. A systematic review of scientific publications available in the Web of Science databases was conducted to contextualize how the studying of antisense transcripts has been addressed. Studies were classified considering three categories: “Natural antisense” (208), artificial antisense used in “Genetic Engineering” (797), or “Natural antisense and Genetic Engineering”-related publications (96). A similar string was used for a systematic search in the NCBI Gene database. Of the 1132 antisense sequences found for plants, only 0.8% were cited in PubMed and had antisense information confirmed. This value was the lowest when compared to fungi (2.9%), bacteria (2.3%), and mice (54.1%). Finally, we present an update for the cis-NATs identified in Saccharum spp. Of the 1413 antisense transcripts found in different experiments, 25 showed concordant expressions, 22 were discordant, 1264 did not correlate with the cognate genes, and 102 presented variable results depending on the experiment.
Collapse
|
26
|
Palos K, Nelson Dittrich AC, Yu L, Brock JR, Railey CE, Wu HYL, Sokolowska E, Skirycz A, Hsu PY, Gregory BD, Lyons E, Beilstein MA, Nelson ADL. Identification and functional annotation of long intergenic non-coding RNAs in Brassicaceae. THE PLANT CELL 2022; 34:3233-3260. [PMID: 35666179 PMCID: PMC9421480 DOI: 10.1093/plcell/koac166] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/05/2022] [Indexed: 06/01/2023]
Abstract
Long intergenic noncoding RNAs (lincRNAs) are a large yet enigmatic class of eukaryotic transcripts that can have critical biological functions. The wealth of RNA-sequencing (RNA-seq) data available for plants provides the opportunity to implement a harmonized identification and annotation effort for lincRNAs that enables cross-species functional and genomic comparisons as well as prioritization of functional candidates. In this study, we processed >24 Tera base pairs of RNA-seq data from >16,000 experiments to identify ∼130,000 lincRNAs in four Brassicaceae: Arabidopsis thaliana, Camelina sativa, Brassica rapa, and Eutrema salsugineum. We used nanopore RNA-seq, transcriptome-wide structural information, peptide data, and epigenomic data to characterize these lincRNAs and identify conserved motifs. We then used comparative genomic and transcriptomic approaches to highlight lincRNAs in our data set with sequence or transcriptional conservation. Finally, we used guilt-by-association analyses to assign putative functions to lincRNAs within our data set. We tested this approach on a subset of lincRNAs associated with germination and seed development, observing germination defects for Arabidopsis lines harboring T-DNA insertions at these loci. LincRNAs with Brassicaceae-conserved putative miRNA binding motifs, small open reading frames, or abiotic-stress modulated expression are a few of the annotations that will guide functional analyses into this cryptic portion of the transcriptome.
Collapse
Affiliation(s)
- Kyle Palos
- The Boyce Thompson Institute, Cornell University, Ithaca, New York, USA
| | | | - Li’ang Yu
- The Boyce Thompson Institute, Cornell University, Ithaca, New York, USA
| | - Jordan R Brock
- Department of Horticulture, Michigan State University, East Lansing, Michigan, USA
| | - Caylyn E Railey
- The Boyce Thompson Institute, Cornell University, Ithaca, New York, USA
| | - Hsin-Yen Larry Wu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | | | | | - Polly Yingshan Hsu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eric Lyons
- The School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Mark A Beilstein
- The School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | | |
Collapse
|
27
|
Sotta N, Chiba Y, Aoyama H, Takamatsu S, Suzuki T, Miwa K, Yamashita Y, Naito S, Fujiwara T. Translational Landscape of a C4 Plant, Sorghum bicolor, Under Normal and Sulfur-Deficient Conditions. PLANT & CELL PHYSIOLOGY 2022; 63:592-604. [PMID: 35166349 DOI: 10.1093/pcp/pcac023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Recent accumulation of genomic and transcriptomic information has facilitated genetic studies. Increasing evidence has demonstrated that translation is an important regulatory step, and the transcriptome does not necessarily reflect the profile of functional protein production. Deep sequencing of ribosome-protected mRNA fragments (ribosome profiling or Ribo-seq) has enabled genome-wide analysis of translation. Sorghum is a C4 cereal important not only as food but also as forage and a bioenergy resource. Its resistance to harsh environments has made it an agriculturally important research subject. Yet genome-wide translational profiles in sorghum are still missing. In this study, we took advantage of Ribo-seq and identified actively translated reading frames throughout the genome. We detected translation of 4,843 main open reading frames (ORFs) annotated in the sorghum reference genome version 3.1 and revealed a number of unannotated translational events. A comparison of the transcriptome and translatome between sorghums grown under normal and sulfur-deficient conditions revealed that gene expression is modulated independently at transcript and translation levels. Our study revealed the translational landscape of sorghum's response to sulfur and provides datasets that could serve as a fundamental resource to extend genetic research on sorghum, including studies on translational regulation.
Collapse
Affiliation(s)
- Naoyuki Sotta
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Yukako Chiba
- Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Haruka Aoyama
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Seidai Takamatsu
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, 487-8501 Japan
| | - Kyoko Miwa
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Yui Yamashita
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Satoshi Naito
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| |
Collapse
|
28
|
Chiu CW, Li YR, Lin CY, Yeh HH, Liu MJ. Translation initiation landscape profiling reveals hidden open-reading frames required for the pathogenesis of tomato yellow leaf curl Thailand virus. THE PLANT CELL 2022; 34:1804-1821. [PMID: 35080617 PMCID: PMC9048955 DOI: 10.1093/plcell/koac019] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/06/2022] [Indexed: 05/12/2023]
Abstract
Plant viruses with densely packed genomes employ noncanonical translational strategies to increase the coding capacity for viral function. However, the diverse translational strategies used make it challenging to define the full set of viral genes. Here, using tomato yellow leaf curl Thailand virus (TYLCTHV, genus Begomovirus) as a model system, we identified genes beyond the annotated gene sets by experimentally profiling in vivo translation initiation sites (TISs). We found that unanticipated AUG TISs were prevalent and determined that their usage involves alternative transcriptional and/or translational start sites and is associated with flanking mRNA sequences. Specifically, two downstream in-frame TISs were identified in the viral gene AV2. These TISs were conserved in the begomovirus lineage and led to the translation of different protein isoforms localized to cytoplasmic puncta and at the cell periphery, respectively. In addition, we found translational evidence of an unexplored gene, BV2. BV2 is conserved among TYLCTHV isolates and localizes to the endoplasmic reticulum and plasmodesmata. Mutations of AV2 isoforms and BV2 significantly attenuated disease symptoms in tomato (Solanum lycopersicum). In conclusion, our study pinpointing in vivo TISs untangles the coding complexity of a plant viral genome and, more importantly, illustrates the biological significance of the hidden open-reading frames encoding viral factors for pathogenicity.
Collapse
Affiliation(s)
- Ching-Wen Chiu
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Ya-Ru Li
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Cheng-Yuan Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Hsin-Hung Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | | |
Collapse
|
29
|
Xu D, Yuan W, Fan C, Liu B, Lu MZ, Zhang J. Opportunities and Challenges of Predictive Approaches for the Non-coding RNA in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:890663. [PMID: 35498708 PMCID: PMC9048598 DOI: 10.3389/fpls.2022.890663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/28/2022] [Indexed: 06/01/2023]
Affiliation(s)
- Dong Xu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wenya Yuan
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Chunjie Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Bobin Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
30
|
Afonnikov DA, Sinitsyna OI, Golubeva TS, Shmakov NA, Kochetov AV. [Ribosomal profiling as a tool for studying translation in plants: main results, problems and future prospects]. Vavilovskii Zhurnal Genet Selektsii 2021; 25:251-259. [PMID: 34901721 PMCID: PMC8627869 DOI: 10.18699/vj21.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 11/19/2022] Open
Abstract
The expression of eukaryotic genes can be regulated at several stages, including the translation of mRNA. It is known that the structure of mRNA can affect both the efficiency of interaction with the translation apparatus in general and the choice of translation initiation sites. To study the translated fraction of the transcriptome, experimental methods of analysis were developed, the most informative of which is ribosomal profiling (RP, Ribo-seq). Originally developed for use in yeast systems, this method has been adapted for research in translation mechanisms in many plant species. This technology includes the isolation of the polysomal fraction and high-performance sequencing of a pool of mRNA fragments associated with ribosomes. Comparing the results of transcript coverage with reads obtained using the ribosome profiling with the transcriptional efficiency of genes allows the translation efficiency to be evaluated for each transcript. The exact positions of ribosomes determined on mRNA sequences allow determining the translation of open reading frames and switching between the translation of several reading frames - a phenomenon in which two or more overlapping frames are read from one mRNA and different proteins are synthesized. The advantage of this method is that it provides quantitative estimates of ribosome coverage of mRNA and can detect relatively rare translation events. Using this technology, it was possible to identify and classify plant genes by the type of regulation of their expression at the transcription, translation, or both levels. Features of the mRNA structure that affect translation levels have been revealed: the formation of G2 quadruplexes and the presence of specific motifs in the 5'-UTR region, GC content, the presence of alternative translation starts, and the influence of uORFs on the translation of downstream mORFs. In this review, we briefly reviewed the RP methodology and the prospects for its application to study the structural and functional organization and regulation of plant gene expression.
Collapse
Affiliation(s)
- D A Afonnikov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - O I Sinitsyna
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - T S Golubeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - N A Shmakov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - A V Kochetov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
31
|
Wu HYL, Hsu PY. RiboPlotR: a visualization tool for periodic Ribo-seq reads. PLANT METHODS 2021; 17:124. [PMID: 34876166 PMCID: PMC8650366 DOI: 10.1186/s13007-021-00824-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Ribo-seq has revolutionized the study of genome-wide mRNA translation. High-quality Ribo-seq data display strong 3-nucleotide (nt) periodicity, which corresponds to translating ribosomes deciphering three nts at a time. While 3-nt periodicity has been widely used to study novel translation events such as upstream ORFs in 5' untranslated regions and small ORFs in presumed non-coding RNAs, tools that allow the visualization of these events remain underdeveloped. RESULTS RiboPlotR is a visualization package written in R that presents both RNA-seq coverage and Ribo-seq reads in genomic coordinates for all annotated transcript isoforms of a gene. Specifically, for individual isoform models, RiboPlotR plots Ribo-seq data in the context of gene structures, including 5' and 3' untranslated regions and introns, and it presents the reads for all three reading frames in three different colors. The inclusion of gene structures and color-coding the reading frames facilitate observing new translation events and identifying potential regulatory mechanisms. CONCLUSIONS RiboPlotR is freely available ( https://github.com/hsinyenwu/RiboPlotR and https://sourceforge.net/projects/riboplotr/ ) and allows the visualization of translated features identified in Ribo-seq data.
Collapse
Affiliation(s)
- Hsin-Yen Larry Wu
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Polly Yingshan Hsu
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
32
|
Li J, Singh U, Arendsee Z, Wurtele ES. Landscape of the Dark Transcriptome Revealed Through Re-mining Massive RNA-Seq Data. Front Genet 2021; 12:722981. [PMID: 34484307 PMCID: PMC8415361 DOI: 10.3389/fgene.2021.722981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
The "dark transcriptome" can be considered the multitude of sequences that are transcribed but not annotated as genes. We evaluated expression of 6,692 annotated genes and 29,354 unannotated open reading frames (ORFs) in the Saccharomyces cerevisiae genome across diverse environmental, genetic and developmental conditions (3,457 RNA-Seq samples). Over 30% of the highly transcribed ORFs have translation evidence. Phylostratigraphic analysis infers most of these transcribed ORFs would encode species-specific proteins ("orphan-ORFs"); hundreds have mean expression comparable to annotated genes. These data reveal unannotated ORFs most likely to be protein-coding genes. We partitioned a co-expression matrix by Markov Chain Clustering; the resultant clusters contain 2,468 orphan-ORFs. We provide the aggregated RNA-Seq yeast data with extensive metadata as a project in MetaOmGraph (MOG), a tool designed for interactive analysis and visualization. This approach enables reuse of public RNA-Seq data for exploratory discovery, providing a rich context for experimentalists to make novel, experimentally testable hypotheses about candidate genes.
Collapse
Affiliation(s)
- Jing Li
- Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, United States
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
| | - Urminder Singh
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, United States
| | - Zebulun Arendsee
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, United States
| | - Eve Syrkin Wurtele
- Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, United States
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
33
|
Comparative ribosome profiling reveals distinct translational landscapes of salt-sensitive and -tolerant rice. BMC Genomics 2021; 22:612. [PMID: 34384368 PMCID: PMC8359061 DOI: 10.1186/s12864-021-07922-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 08/03/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Soil salinization represents a serious threat to global rice production. Although significant research has been conducted to understand salt stress at the genomic, transcriptomic and proteomic levels, few studies have focused on the translatomic responses to this stress. Recent studies have suggested that transcriptional and translational responses to salt stress can often operate independently. RESULTS We sequenced RNA and ribosome-protected fragments (RPFs) from the salt-sensitive rice (O. sativa L.) cultivar 'Nipponbare' (NB) and the salt-tolerant cultivar 'Sea Rice 86' (SR86) under normal and salt stress conditions. A large discordance between salt-induced transcriptomic and translatomic alterations was found in both cultivars, with more translationally regulated genes being observed in SR86 in comparison to NB. A biased ribosome occupancy, wherein RPF depth gradually increased from the 5' ends to the 3' ends of coding regions, was revealed in NB and SR86. This pattern was strengthened by salt stress, particularly in SR86. On the contrary, the strength of ribosome stalling was accelerated in salt-stressed NB but decreased in SR86. CONCLUSIONS This study revealed that translational reprogramming represents an important layer of salt stress responses in rice, and the salt-tolerant cultivar SR86 adopts a more flexible translationally adaptive strategy to cope with salt stress compared to the salt susceptible cultivar NB. The differences in translational dynamics between NB and SR86 may derive from their differing levels of ribosome stalling under salt stress.
Collapse
|
34
|
Liang Y, Zhu W, Chen S, Qian J, Li L. Genome-Wide Identification and Characterization of Small Peptides in Maize. FRONTIERS IN PLANT SCIENCE 2021; 12:695439. [PMID: 34220917 PMCID: PMC8244733 DOI: 10.3389/fpls.2021.695439] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/20/2021] [Indexed: 05/06/2023]
Abstract
Small peptides (sPeptides), <100 amino acids (aa) long, are encoded by small open reading frames (sORFs) often found in the 5' and 3' untranslated regions (or other parts) of mRNAs, in long non-coding RNAs, or transcripts from introns and intergenic regions; various sPeptides play important roles in multiple biological processes. In this study, we conducted a comprehensive study of maize (Zea mays) sPeptides using mRNA sequencing, ribosome profiling (Ribo-seq), and mass spectrometry (MS) on six tissues (each with at least two replicates). To identify maize sORFs and sPeptides from these data, we set up a robust bioinformatics pipeline and performed a genome-wide scan. This scan uncovered 9,388 sORFs encoding peptides of 2-100 aa. These sORFs showed distinct genomic features, such as different Kozak region sequences, higher specificity of translation, and high translational efficiency, compared with the canonical protein-coding genes. Furthermore, the MS data verified 2,695 sPeptides. These sPeptides perfectly discriminated all the tissues and were highly associated with their parental genes. Interestingly, the parental genes of sPeptides were significantly enriched in multiple functional gene ontology terms related to abiotic stress and development, suggesting the potential roles of sPeptides in the regulation of their parental genes. Overall, this study lays out the guidelines for genome-wide scans of sORFs and sPeptides in plants by integrating Ribo-seq and MS data and provides a more comprehensive resource of functional sPeptides in maize and gives a new perspective on the complex biological systems of plants.
Collapse
Affiliation(s)
| | | | | | | | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
35
|
The role of upstream open reading frames in translation regulation in the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii. Parasitology 2021; 148:1277-1287. [PMID: 34099078 PMCID: PMC8383288 DOI: 10.1017/s0031182021000937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During their complex life cycles, the Apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii employ several layers of regulation of their gene expression. One such layer is mediated at the level of translation through upstream open reading frames (uORFs). As uORFs are found in the upstream regions of a majority of transcripts in both the parasites, it is essential that their roles in translational regulation be appreciated to a greater extent. This review provides a comprehensive summary of studies that show uORF-mediated gene regulation in these parasites and highlights examples of clinically and physiologically relevant genes, including var2csa in P. falciparum, and ApiAT1 in T. gondii, that exhibit uORF-mediated regulation. In addition to these examples, several studies that use bioinformatics, transcriptomics, proteomics and ribosome profiling also indicate the possibility of widespread translational regulation by uORFs. Further analysis of these genome-wide datasets, taking into account uORFs associated with each gene, will reveal novel genes involved in key biological pathways such as cell-cycle progression, stress-response and pathogenicity. The cumulative evidence from studies presented in this review suggests that uORFs will play crucial roles in regulating gene expression during clinical disease caused by these important human pathogens.
Collapse
|
36
|
Xu SY, Weng J. Climate change shapes the future evolution of plant metabolism. ADVANCED GENETICS (HOBOKEN, N.J.) 2020; 1:e10022. [PMID: 36619247 PMCID: PMC9744464 DOI: 10.1002/ggn2.10022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/13/2020] [Accepted: 03/02/2020] [Indexed: 01/11/2023]
Abstract
Planet Earth has experienced many dramatic atmospheric and climatic changes throughout its 4.5-billion-year history that have profoundly impacted the evolution of life as we know it. Photosynthetic organisms, and specifically plants, have played a paramount role in shaping the Earth's atmosphere through oxygen production and carbon sequestration. In turn, the diversity of plants has been shaped by historical atmospheric and climatic changes: plants rose to this challenge by evolving new developmental and metabolic traits. These adaptive traits help plants to thrive in diverse growth conditions, while benefiting humanity through the production of food, raw materials, and medicines. However, the current rapid rate of climate change caused by human activities presents unprecedented new challenges to the future of plants. Here, we discuss the potential effects of modern climate change on plants, with specific attention to plant specialized metabolism. We explore potential avenues of future scientific investigations, powered by cutting-edge methods such as synthetic biology and genome engineering, to better understand and mitigate the consequences of rapid climate change on plant fitness and plant usage by humans.
Collapse
Affiliation(s)
- Sophia Y. Xu
- Whitehead Institute for Biomedical ResearchCambridgeMassachusettsUSA
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Jing‐Ke Weng
- Whitehead Institute for Biomedical ResearchCambridgeMassachusettsUSA
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
37
|
Urquidi-Camacho RA, Lokdarshi A, von Arnim AG. Translational gene regulation in plants: A green new deal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1597. [PMID: 32367681 PMCID: PMC9258721 DOI: 10.1002/wrna.1597] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 01/09/2023]
Abstract
The molecular machinery for protein synthesis is profoundly similar between plants and other eukaryotes. Mechanisms of translational gene regulation are embedded into the broader network of RNA-level processes including RNA quality control and RNA turnover. However, over eons of their separate history, plants acquired new components, dropped others, and generally evolved an alternate way of making the parts list of protein synthesis work. Research over the past 5 years has unveiled how plants utilize translational control to defend themselves against viruses, regulate translation in response to metabolites, and reversibly adjust translation to a wide variety of environmental parameters. Moreover, during seed and pollen development plants make use of RNA granules and other translational controls to underpin developmental transitions between quiescent and metabolically active stages. The economics of resource allocation over the daily light-dark cycle also include controls over cellular protein synthesis. Important new insights into translational control on cytosolic ribosomes continue to emerge from studies of translational control mechanisms in viruses. Finally, sketches of coherent signaling pathways that connect external stimuli with a translational response are emerging, anchored in part around TOR and GCN2 kinase signaling networks. These again reveal some mechanisms that are familiar and others that are different from other eukaryotes, motivating deeper studies on translational control in plants. This article is categorized under: Translation > Translation Regulation RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Ricardo A. Urquidi-Camacho
- UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996
| | - Ansul Lokdarshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Albrecht G von Arnim
- Department of Biochemistry & Cellular and Molecular Biology and UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996
| |
Collapse
|
38
|
Li YR, Liu MJ. Prevalence of alternative AUG and non-AUG translation initiators and their regulatory effects across plants. Genome Res 2020; 30:1418-1433. [PMID: 32973042 PMCID: PMC7605272 DOI: 10.1101/gr.261834.120] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
Translation initiation is a key step determining protein synthesis. Studies have uncovered a number of alternative translation initiation sites (TISs) in mammalian mRNAs and showed their roles in reshaping the proteome. However, the extent to which alternative TISs affect gene expression across plants remains largely unclear. Here, by profiling initiating ribosome positions, we globally identified in vivo TISs in tomato and Arabidopsis and found thousands of genes with more than one TIS. Of the identified TISs, >19% and >20% were located at unannotated AUG and non-AUG sites, respectively. CUG and ACG were the most frequently observed codons at non-AUG TISs, a phenomenon also found in mammals. In addition, although alternative TISs were usually found in both orthologous genes, the TIS sequences were not conserved, suggesting the conservation of alternative initiation mechanisms but flexibility in using TISs. Unlike upstream AUG TISs, the presence of upstream non-AUG TISs was not correlated with the translational repression of main open reading frames, a pattern observed across plants. Also, the generation of proteins with diverse N-terminal regions through the use of alternative TISs contributes to differential subcellular localization, as mutating alternative TISs resulted in the loss of organelle localization. Our findings uncovered the hidden coding potential of plant genomes and, importantly, the constraint and flexibility of translational initiation mechanisms in the regulation of gene expression across plant species.
Collapse
Affiliation(s)
- Ya-Ru Li
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan
| | - Ming-Jung Liu
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
39
|
Kage U, Powell JJ, Gardiner DM, Kazan K. Ribosome profiling in plants: what is not lost in translation? JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5323-5332. [PMID: 32459844 DOI: 10.1093/jxb/eraa227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/05/2020] [Indexed: 05/03/2023]
Abstract
Translation is a highly dynamic cellular process whereby genetic information residing in an mRNA molecule is converted into a protein that in turn executes specific functions. However, pre-synthesized mRNA levels do not always correlate with corresponding protein levels, suggesting that translational control plays an essential role in gene regulation. A better understanding of how gene expression is regulated during translation will enable the discovery of new genes and mechanisms that control important traits in plants. Therefore, in recent years, several methods have been developed to analyse the translatome; that is, all mRNAs being actively translated at a given time, tissue, and/or developmental stage. Ribosome profiling or ribo-seq is one such technology revolutionizing our ability to analyse the translatome and in turn understand translational control of gene expression. Ribo-seq involves isolating mRNA-ribosome complexes, treating them with a RNase, and then identifying ribosome-protected mRNA regions by deep sequencing. Here, we briefly review recent ribosome profiling studies that revealed new insights into plant biology. Manipulation of novel genes identified using ribosome profiling could prove useful for increasing yield through improved biotic and abiotic stress tolerance.
Collapse
Affiliation(s)
- Udaykumar Kage
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, St Lucia, QLD, Australia
| | - Jonathan J Powell
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, St Lucia, QLD, Australia
| | - Donald M Gardiner
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, St Lucia, QLD, Australia
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, St Lucia, QLD, Australia
| |
Collapse
|
40
|
uORFs: Important Cis-Regulatory Elements in Plants. Int J Mol Sci 2020; 21:ijms21176238. [PMID: 32872304 PMCID: PMC7503886 DOI: 10.3390/ijms21176238] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 11/17/2022] Open
Abstract
Gene expression is regulated at many levels, including mRNA transcription, translation, and post-translational modification. Compared with transcriptional regulation, mRNA translational control is a more critical step in gene expression and allows for more rapid changes of encoded protein concentrations in cells. Translation is highly regulated by complex interactions between cis-acting elements and trans-acting factors. Initiation is not only the first phase of translation, but also the core of translational regulation, because it limits the rate of protein synthesis. As potent cis-regulatory elements in eukaryotic mRNAs, upstream open reading frames (uORFs) generally inhibit the translation initiation of downstream major ORFs (mORFs) through ribosome stalling. During the past few years, with the development of RNA-seq and ribosome profiling, functional uORFs have been identified and characterized in many organisms. Here, we review uORF identification, uORF classification, and uORF-mediated translation initiation. More importantly, we summarize the translational regulation of uORFs in plant metabolic pathways, morphogenesis, disease resistance, and nutrient absorption, which open up an avenue for precisely modulating the plant growth and development, as well as environmental adaption. Additionally, we also discuss prospective applications of uORFs in plant breeding.
Collapse
|
41
|
Wang S, Tian L, Liu H, Li X, Zhang J, Chen X, Jia X, Zheng X, Wu S, Chen Y, Yan J, Wu L. Large-Scale Discovery of Non-conventional Peptides in Maize and Arabidopsis through an Integrated Peptidogenomic Pipeline. MOLECULAR PLANT 2020; 13:1078-1093. [PMID: 32445888 DOI: 10.1016/j.molp.2020.05.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 05/10/2023]
Abstract
Non-conventional peptides (NCPs), which include small open reading frame-encoded peptides, play critical roles in fundamental biological processes. In this study, we developed an integrated peptidogenomic pipeline using high-throughput mass spectra to probe a customized six-frame translation database and applied it to large-scale identification of NCPs in plants.A total of 1993 and 1860 NCPs were unambiguously identified in maize and Arabidopsis, respectively. These NCPs showed distinct characteristics compared with conventional peptides and were derived from introns, 3' UTRs, 5' UTRs, junctions, and intergenic regions. Furthermore, our results showed that translation events in unannotated transcripts occur more broadly than previously thought. In addition, we found that dozens of maize NCPs are enriched within regions associated with phenotypic variations and domestication selection, indicating that they potentially are involved in genetic regulation of complex traits and domestication in maize. Taken together, our study developed an integrated peptidogenomic pipeline for large-scale identification of NCPs in plants, which would facilitate global characterization of NCPs from other plants. The identification of large-scale NCPs in both monocot (maize) and dicot (Arabidopsis) plants indicates that a large portion of plant genome can be translated into biologically functional molecules, which has important implications for functional genomic studies.
Collapse
Affiliation(s)
- Shunxi Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Lei Tian
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Haijun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xueyan Chen
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xingmeng Jia
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xu Zheng
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Shubiao Wu
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Yanhui Chen
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
42
|
Gray SB, Rodriguez‐Medina J, Rusoff S, Toal TW, Kajala K, Runcie DE, Brady SM. Translational regulation contributes to the elevated CO 2 response in two Solanum species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:383-397. [PMID: 31797460 PMCID: PMC7216843 DOI: 10.1111/tpj.14632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/17/2019] [Accepted: 11/20/2019] [Indexed: 05/12/2023]
Abstract
Understanding the impact of elevated CO2 (eCO2 ) in global agriculture is important given climate change projections. Breeding climate-resilient crops depends on genetic variation within naturally varying populations. The effect of genetic variation in response to eCO2 is poorly understood, especially in crop species. We describe the different ways in which Solanum lycopersicum and its wild relative S. pennellii respond to eCO2 , from cell anatomy, to the transcriptome, and metabolome. We further validate the importance of translational regulation as a potential mechanism for plants to adaptively respond to rising levels of atmospheric CO2 .
Collapse
Affiliation(s)
- Sharon B. Gray
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
| | - Joel Rodriguez‐Medina
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
| | - Samuel Rusoff
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
| | - Ted W. Toal
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
| | - Kaisa Kajala
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
- Present address:
Plant EcophysiologyUtrecht UniversityPadualaan 83584 CHUtrechtthe Netherlands
| | - Daniel E. Runcie
- Department of Plant SciencesUniversity of California, DavisOne Shields AvenueDavisCA95616USA
| | - Siobhan M. Brady
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
| |
Collapse
|
43
|
Kurihara Y, Makita Y, Shimohira H, Fujita T, Iwasaki S, Matsui M. Translational Landscape of Protein-Coding and Non-Protein-Coding RNAs upon Light Exposure in Arabidopsis. PLANT & CELL PHYSIOLOGY 2020; 61:536-545. [PMID: 31794029 DOI: 10.1093/pcp/pcz219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Light is one of the most essential environmental clues for plant growth and morphogenesis. Exposure to blue monochromatic light from darkness is a turning point for plant biological activity, and as a result dramatic changes in gene expression occur. To understand the translational impacts of blue light, we have performed ribosome profiling analysis and called translated open reading frames (ORFs) de novo within not only mRNAs but also non-coding RNAs (ncRNAs). Translation efficiency of 3,823 protein-coding ORFs, such as nuclear chloroplast-related genes, was up-regulated by blue light exposure. Moreover, the translational activation of the microRNA biogenesis-related genes, DCL1 and HYL1, was induced by blue light. Considering the 3-nucleotide codon periodicity of ribosome footprints, a few hundred short ORFs lying on ncRNAs and upstream ORFs (uORFs) on mRNAs were found that had differential translation status between blue light and dark. uORFs are known to have a negative effect on the expression of the main ORFs (mORFs) on the same mRNAs. Our analysis suggests that the translation of uORFs is likely to be more stimulated than that of the corresponding mORFs, and uORF-mediated translational repression of the mORFs in five genes was alleviated by blue light exposure. With data-based annotation of the ORFs, our analysis provides insights into the translatome in response to environmental changes, such as those involving light.
Collapse
Affiliation(s)
- Yukio Kurihara
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Yuko Makita
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Haruka Shimohira
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
- Graduate School of Nanobioscience Department of Life and Environmental System Science, Yokohama City University, Yokohama, Kanagawa, 236-0027 Japan
| | - Tomoya Fujita
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198 Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503 Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198 Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561 Japan
| | - Minami Matsui
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| |
Collapse
|
44
|
Niu R, Zhou Y, Zhang Y, Mou R, Tang Z, Wang Z, Zhou G, Guo S, Yuan M, Xu G. uORFlight: a vehicle toward uORF-mediated translational regulation mechanisms in eukaryotes. Database (Oxford) 2020; 2020:baaa007. [PMID: 32168374 PMCID: PMC7068905 DOI: 10.1093/database/baaa007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 01/10/2023]
Abstract
Upstream open reading frames (uORFs) are prevalent in eukaryotic mRNAs. They act as a translational control element for precisely tuning the expression of the downstream major open reading frame (mORF). uORF variation has been clearly associated with several human diseases. In contrast, natural uORF variants in plants have not ever been identified or linked with any phenotypic changes. The paucity of such evidence encouraged us to generate this database-uORFlight (http://uorflight.whu.edu.cn). It facilitates the exploration of uORF variation among different splicing models of Arabidopsis and rice genes. Most importantly, users can evaluate uORF frequency among different accessions at the population scale and find out the causal single nucleotide polymorphism (SNP) or insertion/deletion (INDEL), which can be associated with phenotypic variation through database mining or simple experiments. Such information will help to make hypothesis of uORF function in plant development or adaption to changing environments on the basis of the cognate mORF function. This database also curates plant uORF relevant literature into distinct groups. To be broadly interesting, our database expands uORF annotation into more species of fungus (Botrytis cinerea and Saccharomyces cerevisiae), plant (Brassica napus, Glycine max, Gossypium raimondii, Medicago truncatula, Solanum lycopersicum, Solanum tuberosum, Triticum aestivum and Zea mays), metazoan (Caenorhabditis elegans and Drosophila melanogaster) and vertebrate (Homo sapiens, Mus musculus and Danio rerio). Therefore, uORFlight will light up the runway toward how uORF genetic variation determines phenotypic diversity and advance our understanding of translational control mechanisms in eukaryotes.
Collapse
Affiliation(s)
- Ruixia Niu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Yulu Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Yu Zhang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Rui Mou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Zhijuan Tang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Zhao Wang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Guilong Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Sibin Guo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Science, Nanning, Guangxi 530007, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
45
|
Yang X, Cui J, Song B, Yu Y, Mo B, Liu L. Construction of High-Quality Rice Ribosome Footprint Library. FRONTIERS IN PLANT SCIENCE 2020; 11:572237. [PMID: 33013996 PMCID: PMC7500414 DOI: 10.3389/fpls.2020.572237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/20/2020] [Indexed: 05/20/2023]
Abstract
High-throughput sequencing of ribosome footprints precisely maps and quantifies in vivo mRNA translation. The ribosome footprint sequencing has undergone continuing development since its original report. Here we provide a detailed protocol for construction of high-quality ribosome footprint library of rice. Rice total polysomes are isolated with a modified low ionic polysome extraction buffer. After nuclease digestion, rice ribosome footprints are extracted using SDS method followed by column purification. High-quality rice ribosome footprint library with peak reads of approximately 28-nucleotide (nt) length and strong 3-nt periodicity is constructed via key steps including rRNA depletion, end repair, 3' adapter ligation, reverse transcription, circularization, PCR enrichment and several rounds of purification. Biological significance of rice ribosome footprint library is further revealed by the comparison of transcriptomic and translatomic responses to salt stress and the utilization for novel open reading frame (ORF) identification. This improved protocol for rice ribosome footprint library construction will facilitate the global comprehension and quantitative measurement of dynamic translation in rice.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Longhua Bioindustry and Innovation Research Institute, Shenzhen University, Shenzhen, China
| | - Jie Cui
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Longhua Bioindustry and Innovation Research Institute, Shenzhen University, Shenzhen, China
| | - Bo Song
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yu Yu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Longhua Bioindustry and Innovation Research Institute, Shenzhen University, Shenzhen, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Longhua Bioindustry and Innovation Research Institute, Shenzhen University, Shenzhen, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Longhua Bioindustry and Innovation Research Institute, Shenzhen University, Shenzhen, China
- *Correspondence: Lin Liu,
| |
Collapse
|