1
|
Kosma DK, Graça J, Molina I. Update on the structure and regulated biosynthesis of the apoplastic polymers cutin and suberin. PLANT PHYSIOLOGY 2025; 197:kiae653. [PMID: 39657911 DOI: 10.1093/plphys/kiae653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
The plant lipid polymers cutin and suberin play a critical role in many aspects of plant growth, development, and physiology. The mechanisms of cutin and suberin biosynthesis are relatively well understood thanks to just over 2 decades of work with primarily Arabidopsis (Arabidopsis thaliana) mutants. Recent advances in our understanding of cutin and suberin structure have arisen through the application of novel chemistries targeted at quantitative comprehension of intermolecular linkages, isolating intact suberins and cutins, and the application of advanced analytical techniques. The advent of high-throughput transcription factor binding assays and next-generation sequencing has facilitated the discovery of numerous cutin and suberin-regulating transcription factors and their gene promoter targets. Herein we provide an overview of aspects of cutin and suberin structure, biosynthesis, and transcriptional regulation of their synthesis highlighting recent developments in our understanding of these facets of cutin and suberin biology. We further identify outstanding questions in these respective areas and provide perspectives on how to advance the field to address these questions.
Collapse
Affiliation(s)
- Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89501, USA
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV 89501, USA
| | - José Graça
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Isabel Molina
- Department of Biology, Algoma University, Sault Ste. Marie, ON, Canada P6A 2G4
| |
Collapse
|
2
|
Straube J, Athoo TO, Zeisler-Diehl V, Suresh K, Schreiber L, Knoche M. Naturally russeted and wound russeted skins of mango (cv. 'Apple') show no differences in anatomy, chemical composition or gene expression. Sci Rep 2025; 15:2366. [PMID: 39825029 PMCID: PMC11742678 DOI: 10.1038/s41598-025-86563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
The mango cultivar 'Apple' is commercially important in Kenya but highly susceptible to russeting. Russeting refers to an area of fruit skin where the primary (epidermal) surface has been replaced by a secondary (peridermal) surface. The objective was to establish histologies, gene expressions and chemical compositions of a natural periderm, a wound-induced periderm and of cuticles of an un-russeted skin. Fluorescence microscopy revealed a suberized phellem in natural and wound-induced periderms. Wound-induced periderms had more cell layers and a higher mass than natural periderms. Compared with cuticles, periderms showed decreased expressions of cuticle-related genes (MiSHN1, MiGPAT6, MiCUS1, MiCER1, MiWCB11) and increased expressions of periderm-related genes (MiMYB93, MiNAC058, MiCYP86A1, MiCYP86B1, MiGPAT5, MiABCG20). Natural periderms and wound-induced periderms contained cutin and suberin monomers (C16-C28), including carboxylic, dicarboxylic, and ω-hydroxy acids and primary alcohols. Cuticles of the primary skin contained cutin monomers of similar chemistry but shorter chain lengths (C16-C22). The wax composition in natural and wound-induced periderms was similar to that in cuticles. Lignin monomers in natural and wound-induced periderms contained p-hydroxyphenyl, guaiacyl and syringyl units, but only traces of these occurred in cuticles. In 'Apple' mango, the histologies, gene expressions and compositions of natural and wound-induced periderms are largely the same.
Collapse
Affiliation(s)
- Jannis Straube
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Thomas O Athoo
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Viktoria Zeisler-Diehl
- Institute of Cellular and Molecular Botany (IZMB), Department of Ecophysiology, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Kiran Suresh
- Institute of Cellular and Molecular Botany (IZMB), Department of Ecophysiology, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany (IZMB), Department of Ecophysiology, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Moritz Knoche
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany.
| |
Collapse
|
3
|
Kumachova TK, Voronkov AS. Cutinsomes of Malus Mill. (Rosaceae) leaf and pericarp: genesis, localization, and transport. Micron 2024; 183:103657. [PMID: 38735105 DOI: 10.1016/j.micron.2024.103657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
New data were obtained on specific bionanostructures, cutinsomes, which are involved in the formation of cuticles on the surface of leaf blades and pericarp of Malus domestica Borkh (Malus Mill., Rosaceae)introduced to the mountains at the altitudes of 1200 and 1700 m above sea level. Cutinsomes, which are electron-dense structures of spherical shape, have been identified by transmission electron microscopy. It was demonstrated that plastids can be involved in the synthesis of their constituent nanocomponents. The greatest number of nanoparticles was observed in the granal thylakoid lumen of the chloroplasts in palisade mesophyll cells and pericarp hypodermal cells. The transmembrane transport of cutinsomes into the cell wall cuticle proper by exocytosis has been visualized for the first time. The plasma membrane is directly involved in the excretion of nanostructures from the cell. Nanoparticles of cutinsomes in the form of necklace-like formations line up in a chain near cell walls, merge into larger conglomerates and are loaded into plasmalemma invaginations, and then, in membrane packing, they move into the cuticle, which covers both outer and inner cell walls of external tissues. The original materials obtained by us supplement the ideas about the non-enzymatic synthesis of cuticle components available in the literature and expand the cell compartment geography involved in this process.
Collapse
Affiliation(s)
- Tamara Kh Kumachova
- Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Timiryazevskaya 49, Moscow 127550, Russia
| | - Alexander S Voronkov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, Moscow 127276, Russia.
| |
Collapse
|
4
|
Campoli C, Eskan M, McAllister T, Liu L, Shoesmith J, Prescott A, Ramsay L, Waugh R, McKim SM. A GDSL-motif Esterase/Lipase Affects Wax and Cutin Deposition and Controls Hull-Caryopsis Attachment in Barley. PLANT & CELL PHYSIOLOGY 2024; 65:999-1013. [PMID: 38668634 PMCID: PMC11209556 DOI: 10.1093/pcp/pcae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/29/2024] [Accepted: 04/25/2024] [Indexed: 06/28/2024]
Abstract
The cuticle covering aerial organs of land plants is well known to protect against desiccation. Cuticles also play diverse and specialized functions, including organ separation, depending on plant and tissue. Barley shows a distinctive cuticular wax bloom enriched in β-diketones on leaf sheaths, stem nodes and internodes and inflorescences. Barley also develops a sticky surface on the outer pericarp layer of its grain fruit leading to strongly adhered hulls, 'covered grain', important for embryo protection and seed dispersal. While the transcription factor-encoding gene HvNUDUM (HvNUD) appears essential for adherent hulls, little is understood about how the pericarp cuticle changes during adhesion or whether changes in pericarp cuticles contribute to another phenotype where hulls partially shed, called 'skinning'. To that end, we screened barley lines for hull adhesion defects, focussing on the Eceriferum (= waxless, cer) mutants. Here, we show that the cer-xd allele causes defective wax blooms and compromised hull adhesion, and results from a mutation removing the last 10 amino acids of the GDS(L) [Gly, Asp, Ser, (Leu)]-motif esterase/lipase HvGDSL1. We used severe and moderate HvGDSL1 alleles to show that complete HvGDSL1 function is essential for leaf blade cuticular integrity, wax bloom deposition over inflorescences and leaf sheaths and pericarp cuticular ridge formation. Expression data suggest that HvGDSL1 may regulate hull adhesion independently of HvNUD. We found high conservation of HvGDSL1 among barley germplasm, so variation in HvGDSL1 unlikely leads to grain skinning in cultivated barley. Taken together, we reveal a single locus which controls adaptive cuticular properties across different organs in barley.
Collapse
Affiliation(s)
- Chiara Campoli
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Errol road, Invergowrie, Dundee DD25DA, UK
- Cell and Molecular Sciences, James Hutton Institute, Errol road, Invergowrie, Dundee DD25DA, UK
| | - Mhmoud Eskan
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Errol road, Invergowrie, Dundee DD25DA, UK
| | - Trisha McAllister
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Errol road, Invergowrie, Dundee DD25DA, UK
| | - Linsan Liu
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Errol road, Invergowrie, Dundee DD25DA, UK
| | - Jennifer Shoesmith
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Errol road, Invergowrie, Dundee DD25DA, UK
| | - Alan Prescott
- DIF and Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Nethergate, Dundee DD14HN, UK
| | - Luke Ramsay
- Cell and Molecular Sciences, James Hutton Institute, Errol road, Invergowrie, Dundee DD25DA, UK
| | - Robbie Waugh
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Errol road, Invergowrie, Dundee DD25DA, UK
- Cell and Molecular Sciences, James Hutton Institute, Errol road, Invergowrie, Dundee DD25DA, UK
| | - Sarah M McKim
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Errol road, Invergowrie, Dundee DD25DA, UK
| |
Collapse
|
5
|
Gapper NE. NACs strike again: NOR-like1 is responsible for cuticle development in tomato fruit. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1791-1795. [PMID: 38534188 PMCID: PMC10967241 DOI: 10.1093/jxb/erae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
This article comments on:
Liu G-S, Huang H, Grierson D, Gao Y, Ji X, Peng Z-Z, Li H-L, Niu X-L, Jia W, He J-L, Xiang L-T, Gao H-Y, Qu G-Q, Zhu H-L, Zhu B-Z, Luo Y-B, Fu D-Q. 2024. NAC transcription factor SlNOR-like1 plays a dual regulatory role in tomato fruit cuticle formation. Journal of Experimental Botany 75, 1903–1918.
Collapse
Affiliation(s)
- Nigel E Gapper
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland, New Zealand
| |
Collapse
|
6
|
Composition, metabolism and postharvest function and regulation of fruit cuticle: A review. Food Chem 2023; 411:135449. [PMID: 36669336 DOI: 10.1016/j.foodchem.2023.135449] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/19/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
The cuticle of plants, a hydrophobic membrane that covers their aerial organs, is crucial to their ability to withstand biotic and abiotic stressors. Fruit is the reproductive organ of plants, and an important dietary source that can offer a variety of nutrients for the human body, and fruit cuticle performs a crucial protective role in fruit development and postharvest quality. This review discusses the universality and diversity of the fruit cuticle composition, and systematically summarizes the metabolic process of fruit cuticle, including the biosynthesis, transport and regulatory factors (including transcription factors, phytohormones and environmental elements) of fruit cuticle. Additionally, we emphasize the postharvest functions and postharvest regulatory technologies of fruit cuticle, and propose future research directions for fruit cuticle.
Collapse
|
7
|
González Moreno A, Domínguez E, Mayer K, Xiao N, Bock P, Heredia A, Gierlinger N. 3D (x-y-t) Raman imaging of tomato fruit cuticle: Microchemistry during development. PLANT PHYSIOLOGY 2023; 191:219-232. [PMID: 35972400 PMCID: PMC9806558 DOI: 10.1093/plphys/kiac369] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/15/2022] [Indexed: 05/20/2023]
Abstract
The cuticle is a protective extracellular matrix that covers the above-ground epidermis of land plants. Here, we studied the cuticle of tomato (Solanum lycopersicum L.) fruits in situ using confocal Raman microscopy. Microsections from cuticles isolated at different developmental stages were scanned to visualize cuticle components with a spatial resolution of 342 nm by univariate and multivariate data analysis. Three main components, cutin, polysaccharides, and aromatics, were identified, with the latter exhibiting the strongest Raman scattering intensity. Phenolic acids and flavonoids were differentiated within the cuticle, and three schematic cuticle models were identified during development. Phenolic acids were found across the entire cuticle at the earliest stage of development, i.e. during the formation of the procuticle layer. Based on a mixture analysis with reference component spectra, the phenolic acids were identified as mainly esterified p-coumaric acid together with free p-hydroxybenzoic acid. During the cell expansion period of growth, phenolic acids accumulated in an outermost layer of the cuticle and in the middle region of the pegs. In these stages of development, cellulose and pectin were detected next to the inner cuticle region, close to the epidermal cell where flavonoid impregnation started during ripening. In the first ripening stage, chalconaringenin was observed, while methoxylated chalcones were chosen by the algorithm to fit the mature cuticle spectra. The colocation of carbohydrates, esterified p-coumaric acid, and methoxylated chalconaringenin suggests that the latter two link polysaccharide and cutin domains. Elucidating the different distribution of aromatics within the cuticle, suggests important functions: (1) overall impregnation conferring mechanical and thermal functions (2) the outermost phenolic acid layer displaying UV-B protection of the plant tissue.
Collapse
Affiliation(s)
- Ana González Moreno
- IHSM-UMA-CSIC La Mayora, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071, Málaga, Spain
| | - Eva Domínguez
- IHSM-UMA-CSIC La Mayora, Plant breeding and Biotechnology, CSIC, 29750 Algarrobo-Costa, Málaga, Spain
| | - Konrad Mayer
- Department of Nanobiotechnology, BOKU-University of Natural Resources and Life Science, Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Nannan Xiao
- Department of Nanobiotechnology, BOKU-University of Natural Resources and Life Science, Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Peter Bock
- Department of Nanobiotechnology, BOKU-University of Natural Resources and Life Science, Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Antonio Heredia
- IHSM-UMA-CSIC La Mayora, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071, Málaga, Spain
| | - Notburga Gierlinger
- Department of Nanobiotechnology, BOKU-University of Natural Resources and Life Science, Vienna, Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
8
|
Reynoud N, Geneix N, Petit J, D’Orlando A, Fanuel M, Marion D, Rothan C, Lahaye M, Bakan B. The cutin polymer matrix undergoes a fine architectural tuning from early tomato fruit development to ripening. PLANT PHYSIOLOGY 2022; 190:1821-1840. [PMID: 36018278 PMCID: PMC9614491 DOI: 10.1093/plphys/kiac392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/21/2022] [Indexed: 05/20/2023]
Abstract
The cuticle is a complex polymer matrix that protects all aerial organs of plants, fulfills multiple roles in plant-environment interactions, and is critical for plant development. These functions are associated with the structural features of cuticles, and the architectural modeling of cuticles during plant development is crucial for understanding their physical properties and biological functions. In this work, the in-depth architecture of the cutin polymer matrix during fruit development was investigated. Using cherry tomato fruit (Solanum lycopersicum) as a model from the beginning of the cell expansion phase to the red ripe stage, we designed an experimental scheme combining sample pretreatment, Raman mapping, multivariate data analyses, and biochemical analyses. These approaches revealed clear chemical areas with different contributions of cutin, polysaccharides, and phenolics within the cutin polymer matrix. Besides, we demonstrated that these areas are finely tuned during fruit development, including compositional and macromolecular rearrangements. The specific spatiotemporal accumulation of phenolic compounds (p-coumaric acid and flavonoids) suggests that they fulfill distinct functions during fruit development. In addition, we highlighted an unexpected dynamic remodeling of the cutin-embedded polysaccharides pectin, cellulose, and hemicellulose. Such structural tuning enables consistent adaption of the cutin-polysaccharide continuum and the functional performance of the fruit cuticle at the different developmental stages. This study provides insights into the plant cuticle architecture and in particular into the organization of the epidermal cell wall-cuticle.
Collapse
Affiliation(s)
- Nicolas Reynoud
- INRAE, Unité Biopolymères, Interactions, Assemblages, BP71627 44316, Nantes Cedex3, France
| | - Nathalie Geneix
- INRAE, Unité Biopolymères, Interactions, Assemblages, BP71627 44316, Nantes Cedex3, France
| | - Johann Petit
- INRAE, Univ. Bordeaux, UMR BFP, F-33140, Villenave d’Ornon, France
| | - Angelina D’Orlando
- INRAE, Unité Biopolymères, Interactions, Assemblages, BP71627 44316, Nantes Cedex3, France
- INRAE PROBE research infrastructure, BIBS Facility, F- 44300, Nantes, France
| | - Mathieu Fanuel
- INRAE, Unité Biopolymères, Interactions, Assemblages, BP71627 44316, Nantes Cedex3, France
- INRAE PROBE research infrastructure, BIBS Facility, F- 44300, Nantes, France
| | - Didier Marion
- INRAE, Unité Biopolymères, Interactions, Assemblages, BP71627 44316, Nantes Cedex3, France
| | | | - Marc Lahaye
- INRAE, Unité Biopolymères, Interactions, Assemblages, BP71627 44316, Nantes Cedex3, France
| | - Bénédicte Bakan
- INRAE, Unité Biopolymères, Interactions, Assemblages, BP71627 44316, Nantes Cedex3, France
| |
Collapse
|
9
|
Bres C, Petit J, Reynoud N, Brocard L, Marion D, Lahaye M, Bakan B, Rothan C. The SlSHN2 transcription factor contributes to cuticle formation and epidermal patterning in tomato fruit. MOLECULAR HORTICULTURE 2022; 2:14. [PMID: 37789465 PMCID: PMC10515250 DOI: 10.1186/s43897-022-00035-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/03/2022] [Indexed: 10/05/2023]
Abstract
Tomato (Solanum lycopersicum) is an established model for studying plant cuticle because of its thick cuticle covering and embedding the epidermal cells of the fruit. In this study, we screened an EMS mutant collection of the miniature tomato cultivar Micro-Tom for fruit cracking mutants and found a mutant displaying a glossy fruit phenotype. By using an established mapping-by-sequencing strategy, we identified the causal mutation in the SlSHN2 transcription factor that is specifically expressed in outer epidermis of growing fruit. The point mutation in the shn2 mutant introduces a K to N amino acid change in the highly conserved 'mm' domain of SHN proteins. The cuticle from shn2 fruit showed a ~ fivefold reduction in cutin while abundance and composition of waxes were barely affected. In addition to alterations in cuticle thickness and properties, epidermal patterning and polysaccharide composition of the cuticle were changed. RNAseq analysis further highlighted the altered expression of hundreds of genes in the fruit exocarp of shn2, including genes associated with cuticle and cell wall formation, hormone signaling and response, and transcriptional regulation. In conclusion, we showed that a point mutation in the transcriptional regulator SlSHN2 causes major changes in fruit cuticle formation and its coordination with epidermal patterning.
Collapse
Affiliation(s)
- Cécile Bres
- UMR 1332 BFP, INRAE, Université de Bordeaux, 33140, Villenave d'Ornon, France
| | - Johann Petit
- UMR 1332 BFP, INRAE, Université de Bordeaux, 33140, Villenave d'Ornon, France
| | - Nicolas Reynoud
- Unité Biopolymères, Interactions, Assemblages, INRAE, BP71627, 44316, Nantes Cedex 3, France
| | - Lysiane Brocard
- Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, 33000, Bordeaux, France
| | - Didier Marion
- Unité Biopolymères, Interactions, Assemblages, INRAE, BP71627, 44316, Nantes Cedex 3, France
| | - Marc Lahaye
- Unité Biopolymères, Interactions, Assemblages, INRAE, BP71627, 44316, Nantes Cedex 3, France
| | - Bénédicte Bakan
- Unité Biopolymères, Interactions, Assemblages, INRAE, BP71627, 44316, Nantes Cedex 3, France
| | - Christophe Rothan
- UMR 1332 BFP, INRAE, Université de Bordeaux, 33140, Villenave d'Ornon, France.
- INRA, UMR 1332 Biologie du Fruit Et Pathologie, 71 Av Edouard Bourlaux, 33140, Villenave d'Ornon, France.
| |
Collapse
|
10
|
García-Coronado H, Tafolla-Arellano JC, Hernández-Oñate MÁ, Burgara-Estrella AJ, Robles-Parra JM, Tiznado-Hernández ME. Molecular Biology, Composition and Physiological Functions of Cuticle Lipids in Fleshy Fruits. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091133. [PMID: 35567134 PMCID: PMC9099731 DOI: 10.3390/plants11091133] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 05/27/2023]
Abstract
Fleshy fruits represent a valuable resource of economic and nutritional relevance for humanity. The plant cuticle is the external lipid layer covering the nonwoody aerial organs of land plants, and it is the first contact between fruits and the environment. It has been hypothesized that the cuticle plays a role in the development, ripening, quality, resistance to pathogen attack and postharvest shelf life of fleshy fruits. The cuticle's structure and composition change in response to the fruit's developmental stage, fruit physiology and different postharvest treatments. This review summarizes current information on the physiology and molecular mechanism of cuticle biosynthesis and composition changes during the development, ripening and postharvest stages of fleshy fruits. A discussion and analysis of studies regarding the relationship between cuticle composition, water loss reduction and maintaining fleshy fruits' postharvest quality are presented. An overview of the molecular mechanism of cuticle biosynthesis and efforts to elucidate it in fleshy fruits is included. Enhancing our knowledge about cuticle biosynthesis mechanisms and identifying specific transcripts, proteins and lipids related to quality traits in fleshy fruits could contribute to the design of biotechnological strategies to improve the quality and postharvest shelf life of these important fruit crops.
Collapse
Affiliation(s)
- Heriberto García-Coronado
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico;
| | - Julio César Tafolla-Arellano
- Laboratorio de Biotecnología y Biología Molecular, Departamento de Ciencias Básicas, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, Saltillo 25315, Coahuila, Mexico;
| | - Miguel Ángel Hernández-Oñate
- CONACYT-Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico;
| | - Alexel Jesús Burgara-Estrella
- Departamento de Investigación en Física, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Hermosillo 83000, Sonora, Mexico;
| | - Jesús Martín Robles-Parra
- Coordinación de Desarrollo Regional, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico;
| | - Martín Ernesto Tiznado-Hernández
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico;
| |
Collapse
|
11
|
Ichino T, Yazaki K. Modes of secretion of plant lipophilic metabolites via ABCG transporter-dependent transport and vesicle-mediated trafficking. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102184. [PMID: 35217474 DOI: 10.1016/j.pbi.2022.102184] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Many lipophilic metabolites produced by terrestrial plants are deposited on plant surfaces to protect them from abiotic and biotic stresses. Plant-derived lipophilic metabolites include apoplastic biopolymers, such as wax, cutin, sporopollenin, suberin, and lignin, as well as low-molecular-weight secondary metabolites. These secreted molecules confer adaptive toughness and robustness on plants. The mechanisms responsible for the secretion of these lipophilic metabolites remain unclear, although two pathways, mediated by transporters and vesicles, have been proposed. Recent genetic and biochemical studies have shown that G-type ATP-binding cassette (ABCG) transporters and membrane trafficking factors are involved in the apoplastic accumulation of lipophilic metabolites in plants. These two distinctive modes of secretion may be either exclusive or collaborative. This review describes these transporter-dependent and vesicle-mediated mechanisms underlying the secretion of lipophilic metabolites.
Collapse
Affiliation(s)
- Takuji Ichino
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, 611-0011, Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, 611-0011, Japan.
| |
Collapse
|
12
|
Zhu F, Wen W, Cheng Y, Fernie AR. The metabolic changes that effect fruit quality during tomato fruit ripening. MOLECULAR HORTICULTURE 2022; 2:2. [PMID: 37789428 PMCID: PMC10515270 DOI: 10.1186/s43897-022-00024-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/12/2022] [Indexed: 10/05/2023]
Abstract
As the most valuable organ of tomato plants, fruit has attracted considerable attention which most focus on its quality formation during the ripening process. A considerable amount of research has reported that fruit quality is affected by metabolic shifts which are under the coordinated regulation of both structural genes and transcriptional regulators. In recent years, with the development of the next generation sequencing, molecular and genetic analysis methods, lots of genes which are involved in the chlorophyll, carotenoid, cell wall, central and secondary metabolism have been identified and confirmed to regulate pigment contents, fruit softening and other aspects of fruit flavor quality. Here, both research concerning the dissection of fruit quality related metabolic changes, the transcriptional and post-translational regulation of these metabolic pathways are reviewed. Furthermore, a weighted gene correlation network analysis of representative genes of fruit quality has been carried out and the potential of the combined application of the gene correlation network analysis, fine-mapping strategies and next generation sequencing to identify novel candidate genes determinants of fruit quality is discussed.
Collapse
Affiliation(s)
- Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany
| | - Weiwei Wen
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunjiang Cheng
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany.
| |
Collapse
|
13
|
Petit J, Bres C, Reynoud N, Lahaye M, Marion D, Bakan B, Rothan C. Unraveling Cuticle Formation, Structure, and Properties by Using Tomato Genetic Diversity. FRONTIERS IN PLANT SCIENCE 2021; 12:778131. [PMID: 34912361 PMCID: PMC8667768 DOI: 10.3389/fpls.2021.778131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/02/2021] [Indexed: 05/29/2023]
Abstract
The tomato (Solanum lycopersicum) fruit has a thick, astomatous cuticle that has become a model for the study of cuticle formation, structure, and properties in plants. Tomato is also a major horticultural crop and a long-standing model for research in genetics, fruit development, and disease resistance. As a result, a wealth of genetic resources and genomic tools have been established, including collections of natural and artificially induced genetic diversity, introgression lines of genome fragments from wild relatives, high-quality genome sequences, phenotype and gene expression databases, and efficient methods for genetic transformation and editing of target genes. This mini-review reports the considerable progresses made in recent years in our understanding of cuticle by using and generating genetic diversity for cuticle-associated traits in tomato. These include the synthesis of the main cuticle components (cutin and waxes), their role in the structure and properties of the cuticle, their interaction with other cell wall polymers as well as the regulation of cuticle formation. It also addresses the opportunities offered by the untapped germplasm diversity available in tomato and the current strategies available to exploit them.
Collapse
Affiliation(s)
- Johann Petit
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d’Ornon, France
| | - Cécile Bres
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d’Ornon, France
| | - Nicolas Reynoud
- Unité Biopolymères, Interactions, Assemblages, INRAE, Nantes, France
| | - Marc Lahaye
- Unité Biopolymères, Interactions, Assemblages, INRAE, Nantes, France
| | - Didier Marion
- Unité Biopolymères, Interactions, Assemblages, INRAE, Nantes, France
| | - Bénédicte Bakan
- Unité Biopolymères, Interactions, Assemblages, INRAE, Nantes, France
| | | |
Collapse
|
14
|
Vega C, Valbuena-Carabaña M, Gil L, Fernández V. Water Sorption and Desorption of Isolated Cuticles From Three Woody Species With Focus on Ilex aquifolium. FRONTIERS IN PLANT SCIENCE 2021; 12:728627. [PMID: 34671373 PMCID: PMC8522496 DOI: 10.3389/fpls.2021.728627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
The cuticle is a lipid-rich layer that protects aerial plant organs against multiple stress factors such as dehydration. In this study, cuticle composition and structure in relation to water loss are examined in a broad ecophysiological context, taking into consideration leaf age and side from Ilex aquifolium (holly) in comparison with Eucalyptus globulus (eucalypt) and Prunus laurocerasus (cherry laurel). Enzymatically isolated cuticular membranes from holly leaves were studied under three treatment conditions: natural (no chemical treatment), after dewaxing, and after methanolysis, and the rate of water loss was assessed. Structural and chemical changes were evaluated using different microscopy techniques and by Fourier transform infrared (FTIR) spectroscopy. The potential mechanisms of solute absorption by holly leaves were additionally evaluated, also testing if its prickly leaf margin may facilitate uptake. The results indicate that the treatment conditions led to structural changes, and that chemical composition was hardly affected because of the occurrence of cutan. Structural changes led to more hydrophilic adaxial surfaces, which retained more water and were more efficient than natural cuticles, while changes were not significant for abaxial surfaces. Across natural cuticles, age was a significant factor for eucalypt but not for holly. Young eucalypt cuticles were the group that absorbed more water and had the lowest water loss rate. When comparing older leaf cuticles of the three species, cherry laurel was found to absorb more water, which was, however, lost more slowly, compared with the other species. Evidence was gained that holly leaves can absorb foliar-applied solutes (traced after calcium chloride application) through the adaxial and abaxial surfaces, the adaxial mid veins, and to a lower extent, the spines. In conclusion, for the species examined, the results show variations in leaf cuticle composition and structure in relation to leaf ontogeny, and water sorption and desorption capacity.
Collapse
|
15
|
Barraj Barraj R, Segado P, Moreno-González R, Heredia A, Fernández-Muñoz R, Domínguez E. Genome-wide QTL analysis of tomato fruit cuticle deposition and composition. HORTICULTURE RESEARCH 2021; 8:113. [PMID: 33931622 PMCID: PMC8087829 DOI: 10.1038/s41438-021-00548-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 05/24/2023]
Abstract
Genetics of traits related to fruit cuticle deposition and composition was studied in two red-fruited tomato species. Two mapping populations derived from the cross between the cultivated tomato (Solanum lycopersicum L.) and its closest relative wild species Solanum pimpinellifolium L. were employed to conduct a QTL analysis. A combination of fruit cuticle deposition, components and anatomical traits were investigated and the individual effect of each QTL evaluated. A total of 70 QTLs were identified, indicating that all the cuticle traits analyzed have a complex polygenic nature. A combination of additive and epistatic interactions was observed for all the traits, with positive contribution of both parental lines to most of them. Colocalization of QTLs for various traits uncovered novel genomic regions producing extensive changes in the cuticle. Cuticle density emerges as an important trait since it can modulate cuticle thickness and invagination thus providing a strategy for sustaining mechanical strength without compromising palatability. Two genomic regions, located in chromosomes 1 and 12, are responsible for the negative interaction between cuticle waxes and phenolics identified in tomato fruit. Several candidate genes, including transcription factors and structural genes, are postulated and their expression analyzed throughout development.
Collapse
Affiliation(s)
- Rida Barraj Barraj
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Mejora Genética y Biotecnología, Estación Experimental La Mayora, Algarrobo-Costa, E-29750, Málaga, Spain
| | - Patricia Segado
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, E-29071, Málaga, Spain
| | - Rocío Moreno-González
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, E-29071, Málaga, Spain
- Departament de Bioquímica i Fisiologia and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain
| | - Antonio Heredia
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, E-29071, Málaga, Spain
| | - Rafael Fernández-Muñoz
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Mejora Genética y Biotecnología, Estación Experimental La Mayora, Algarrobo-Costa, E-29750, Málaga, Spain
| | - Eva Domínguez
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Mejora Genética y Biotecnología, Estación Experimental La Mayora, Algarrobo-Costa, E-29750, Málaga, Spain.
| |
Collapse
|
16
|
Structure, Assembly and Function of Cuticle from Mechanical Perspective with Special Focus on Perianth. Int J Mol Sci 2021; 22:ijms22084160. [PMID: 33923850 PMCID: PMC8072621 DOI: 10.3390/ijms22084160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 01/05/2023] Open
Abstract
This review is devoted to the structure, assembly and function of cuticle. The topics are discussed from the mechanical perspective and whenever the data are available a special attention is paid to the cuticle of perianth organs, i.e., sepals, petals or tepals. The cuticle covering these organs is special in both its structure and function and some of these peculiarities are related to the cuticle mechanics. In particular, strengthening of the perianth surface is often provided by a folded cuticle that functionally resembles profiled plates, while on the surface of the petal epidermis of some plants, the cuticle is the only integral continuous layer. The perianth cuticle is distinguished also by those aspects of its mechanics and development that need further studies. In particular, more investigations are needed to explain the formation and maintenance of cuticle folding, which is typical for the perianth epidermis, and also to elucidate the mechanical properties and behavior of the perianth cuticle in situ. Gaps in our knowledge are partly due to technical problems caused by very small thicknesses of the perianth cuticle but modern tools may help to overcome these obstacles.
Collapse
|
17
|
Xin A, Fei Y, Molnar A, Fry SC. Cutin:cutin-acid endo-transacylase (CCT), a cuticle-remodelling enzyme activity in the plant epidermis. Biochem J 2021; 478:777-798. [PMID: 33511979 PMCID: PMC7925011 DOI: 10.1042/bcj20200835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/17/2021] [Accepted: 01/28/2021] [Indexed: 01/08/2023]
Abstract
Cutin is a polyester matrix mainly composed of hydroxy-fatty acids that occurs in the cuticles of shoots and root-caps. The cuticle, of which cutin is a major component, protects the plant from biotic and abiotic stresses, and cutin has been postulated to constrain organ expansion. We propose that, to allow cutin restructuring, ester bonds in this net-like polymer can be transiently cleaved and then re-formed (transacylation). Here, using pea epicotyl epidermis as the main model, we first detected a cutin:cutin-fatty acid endo-transacylase (CCT) activity. In-situ assays used endogenous cutin as the donor substrate for endogenous enzymes; the exogenous acceptor substrate was a radiolabelled monomeric cutin-acid, 16-hydroxy-[3H]hexadecanoic acid (HHA). High-molecular-weight cutin became ester-bonded to intact [3H]HHA molecules, which thereby became unextractable except by ester-hydrolysing alkalis. In-situ CCT activity correlated with growth rate in Hylotelephium leaves and tomato fruits, suggesting a role in loosening the outer epidermal wall during organ growth. The only well-defined cutin transacylase in the apoplast, CUS1 (a tomato cutin synthase), when produced in transgenic tobacco, lacked CCT activity. This finding provides a reference for future CCT protein identification, which can adopt our sensitive enzyme assay to screen other CUS1-related enzymes.
Collapse
Affiliation(s)
- Anzhou Xin
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Yue Fei
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Attila Molnar
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Stephen C. Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| |
Collapse
|
18
|
Li Q, Chakrabarti M, Taitano NK, Okazaki Y, Saito K, Al-Abdallat AM, van der Knaap E. Differential expression of SlKLUH controlling fruit and seed weight is associated with changes in lipid metabolism and photosynthesis-related genes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1225-1244. [PMID: 33159787 PMCID: PMC7904157 DOI: 10.1093/jxb/eraa518] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/02/2020] [Indexed: 05/21/2023]
Abstract
The sizes of plant organs such as fruit and seed are crucial yield components. Tomato KLUH underlies the locus fw3.2, an important regulator of fruit and seed weight. However, the mechanism by which the expression levels of KLUH affect organ size is poorly understood. We found that higher expression of SlKLUH increased cell proliferation in the pericarp within 5 d post-anthesis in tomato near-isogenic lines. Differential gene expression analyses showed that lower expression of SlKLUH was associated with increased expression of genes involved in lipid metabolism. Lipidomic analysis revealed that repression of SlKLUH mainly increased the contents of certain non-phosphorus glycerolipids and phospholipids and decreased the contents of four unknown lipids. Co-expression network analyses revealed that lipid metabolism was possibly associated with but not directly controlled by SlKLUH, and that this gene instead controls photosynthesis-related processes. In addition, many transcription factors putatively involved in the KLUH pathway were identified. Collectively, we show that SlKLUH regulates fruit and seed weight which is associated with altered lipid metabolism. The results expand our understanding of fruit and seed weight regulation and offer a valuable resource for functional studies of candidate genes putatively involved in regulation of organ size in tomato and other crops.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Manohar Chakrabarti
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Nathan K Taitano
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA
| | - Yozo Okazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | | - Esther van der Knaap
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA
- Department of Horticulture, University of Georgia, Athens, GA, USA
- Correspondence:
| |
Collapse
|
19
|
Fernández V, Gil-Pelegrín E, Eichert T. Foliar water and solute absorption: an update. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:870-883. [PMID: 33219553 DOI: 10.1111/tpj.15090] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
The absorption of water and solutes by plant leaves has been recognised since more than two centuries. Given the polar nature of water and solutes, the mechanisms of foliar uptake have been proposed to be similar for water and electrolytes, including nutrient solutions. Research efforts since the 19th century focussed on characterising the properties of cuticles and applying foliar sprays to crop plants as a tool for improving crop nutrition. This was accompanied by the development of hundreds of studies aimed at characterising the chemical and structural nature of plant cuticles from different species and the mechanisms of cuticular and, to a lower extent, stomatal penetration of water and solutes. The processes involved are complex and will be affected by multiple environmental, physico-chemical and physiological factors which are only partially clear to date. During the last decades, the body of evidence that water transport across leaf surfaces of native species may contribute to water balances (absorption and loss) at an ecosystem level has grown. Given the potential importance of foliar water absorption for many plant species and ecosystems as shown in recent studies, the aim of this review is to first integrate current knowledge on plant surface composition, structure, wettability and physico-chemical interactions with surface-deposited matter. The different mechanisms of foliar absorption of water and electrolytes and experimental procedures for tracing the uptake process are discussed before posing several outstanding questions which should be tackled in future studies.
Collapse
Affiliation(s)
- Victoria Fernández
- Forest Genetics and Ecophysiology Research Group, School of Forest Engineering, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Eustaquio Gil-Pelegrín
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria, Gobierno de Aragón, Zaragoza, 50059, Spain
| | - Thomas Eichert
- University of Applied Sciences Erfurt, Erfurt, 99051, Germany
| |
Collapse
|
20
|
Benítez JJ, Guzmán-Puyol S, Vilaplana F, Heredia-Guerrero JA, Domínguez E, Heredia A. Mechanical Performances of Isolated Cuticles Along Tomato Fruit Growth and Ripening. FRONTIERS IN PLANT SCIENCE 2021; 12:787839. [PMID: 34975973 PMCID: PMC8718444 DOI: 10.3389/fpls.2021.787839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/25/2021] [Indexed: 05/08/2023]
Abstract
The cuticle is the most external layer that protects fruits from the environment and constitutes the first shield against physical impacts. The preservation of its mechanical integrity is essential to avoid the access to epidermal cell walls and to prevent mass loss and damage that affect the commercial quality of fruits. The rheology of the cuticle is also very important to respond to the size modification along fruit growth and to regulate the diffusion of molecules from and toward the atmosphere. The mechanical performance of cuticles is regulated by the amount and assembly of its components (mainly cutin, polysaccharides, and waxes). In tomato fruit cuticles, phenolics, a minor cuticle component, have been found to have a strong influence on their mechanical behavior. To fully characterize the biomechanics of tomato fruit cuticle, transient creep, uniaxial tests, and multi strain dynamic mechanical analysis (DMA) measurements have been carried out. Two well-differentiated stages have been identified. At early stages of growth, characterized by a low phenolic content, the cuticle displays a soft elastic behavior. Upon increased phenolic accumulation during ripening, a progressive stiffening is observed. The increment of viscoelasticity in ripe fruit cuticles has also been associated with the presence of these compounds. The transition from the soft elastic to the more rigid viscoelastic regime can be explained by the cooperative association of phenolics with both the cutin and the polysaccharide fractions.
Collapse
Affiliation(s)
- José J. Benítez
- Instituto de Ciencia de Materiales de Sevilla, Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Seville, Spain
- *Correspondence: José J. Benítez,
| | - Susana Guzmán-Puyol
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental La Mayora, Málaga, Spain
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - José A. Heredia-Guerrero
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental La Mayora, Málaga, Spain
| | - Eva Domínguez
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental La Mayora, Málaga, Spain
| | - Antonio Heredia
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
21
|
The Role of Cutinsomes in Plant Cuticle Formation. Cells 2020; 9:cells9081778. [PMID: 32722473 PMCID: PMC7465133 DOI: 10.3390/cells9081778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
The cuticle commonly appears as a continuous lipophilic layer located at the outer epidermal cell walls of land plants. Cutin and waxes are its main components. Two methods for cutin synthesis are considered in plants. One that is based on enzymatic biosynthesis, in which cutin synthase (CUS) is involved, is well-known and commonly accepted. The other assumes the participation of specific nanostructures, cutinsomes, which are formed in physicochemical self-assembly processes from cutin precursors without enzyme involvement. Cutinsomes are formed in ground cytoplasm or, in some species, in specific cytoplasmic domains, lipotubuloid metabolons (LMs), and are most probably translocated via microtubules toward the cuticle-covered cell wall. Cutinsomes may additionally serve as platforms transporting cuticular enzymes. Presumably, cutinsomes enrich the cuticle in branched and cross-linked esterified polyhydroxy fatty acid oligomers, while CUS1 can provide both linear chains and branching cutin oligomers. These two systems of cuticle formation seem to co-operate on the surface of aboveground organs, as well as in the embryo and seed coat epidermis. This review focuses on the role that cutinsomes play in cuticle biosynthesis in S. lycopersicum, O. umbellatum and A. thaliana, which have been studied so far; however, these nanoparticles may be commonly involved in this process in different plants.
Collapse
|
22
|
Xin A, Herburger K. Mini Review: Transport of Hydrophobic Polymers Into the Plant Apoplast. FRONTIERS IN PLANT SCIENCE 2020; 11:590990. [PMID: 33488642 PMCID: PMC7817615 DOI: 10.3389/fpls.2020.590990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/27/2020] [Indexed: 05/03/2023]
Abstract
The plant apoplast contains the four hydrophobic polymer, lignin, suberin, cutin, and cutan, that are crucial for stress resistance, controlling solute diffusion, and strengthening the cell wall. Some of these polymers are widely used in industry and daily life products, such as all wood-containing goods (lignin) and wine cork (suberin). Despite the importance of these polymers, several aspects of their formation remain unknown. This mini review highlights technical bottlenecks in the current research and summarizes recent insights into the precursor transmembrane transport, an essential step in the polymer formation. We also briefly discuss how some of the remaining knowledge gaps can be closed and how a better understanding of these biopolymers will benefit other research fields.
Collapse
Affiliation(s)
- Anzhou Xin
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Klaus Herburger
- Section for Plant Glycobiology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Klaus Herburger,
| |
Collapse
|