1
|
Abstract
Biological nitrogen fixation in rhizobium-legume symbioses is of major importance for sustainable agricultural practices. To establish a mutualistic relationship with their plant host, rhizobia transition from free-living bacteria in soil to growth down infection threads inside plant roots and finally differentiate into nitrogen-fixing bacteroids. We reconstructed a genome-scale metabolic model for Rhizobium leguminosarum and integrated the model with transcriptome, proteome, metabolome, and gene essentiality data to investigate nutrient uptake and metabolic fluxes characteristic of these different lifestyles. Synthesis of leucine, polyphosphate, and AICAR is predicted to be important in the rhizosphere, while myo-inositol catabolism is active in undifferentiated nodule bacteria in agreement with experimental evidence. The model indicates that bacteroids utilize xylose and glycolate in addition to dicarboxylates, which could explain previously described gene expression patterns. Histidine is predicted to be actively synthesized in bacteroids, consistent with transcriptome and proteome data for several rhizobial species. These results provide the basis for targeted experimental investigation of metabolic processes specific to the different stages of the rhizobium-legume symbioses. IMPORTANCE Rhizobia are soil bacteria that induce nodule formation on plant roots and differentiate into nitrogen-fixing bacteroids. A detailed understanding of this complex symbiosis is essential for advancing ongoing efforts to engineer novel symbioses with cereal crops for sustainable agriculture. Here, we reconstruct and validate a genome-scale metabolic model for Rhizobium leguminosarum bv. viciae 3841. By integrating the model with various experimental data sets specific to different stages of symbiosis formation, we elucidate the metabolic characteristics of rhizosphere bacteria, undifferentiated bacteria inside root nodules, and nitrogen-fixing bacteroids. Our model predicts metabolic flux patterns for these three distinct lifestyles, thus providing a framework for the interpretation of genome-scale experimental data sets and identifying targets for future experimental studies.
Collapse
|
2
|
Metabolic Analyses of Nitrogen Fixation in the Soybean Microsymbiont Sinorhizobium fredii Using Constraint-Based Modeling. mSystems 2020; 5:5/1/e00516-19. [PMID: 32071157 PMCID: PMC7029217 DOI: 10.1128/msystems.00516-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitrogen is the most limiting macronutrient for plant growth, and rhizobia are important bacteria for agriculture because they can fix atmospheric nitrogen and make it available to legumes through the establishment of a symbiotic relationship with their host plants. In this work, we studied the nitrogen fixation process in the microsymbiont Sinorhizobium fredii at the genome level. A metabolic model was built using genome annotation and literature to reconstruct the symbiotic form of S. fredii. Genes controlling the nitrogen fixation process were identified by simulating gene knockouts. Additionally, the nitrogen-fixing capacities of S. fredii CCBAU45436 in symbiosis with cultivated and wild soybeans were evaluated. The predictions suggested an outperformance of S. fredii with cultivated soybean, consistent with published experimental evidence. The reconstruction presented here will help to understand and improve nitrogen fixation capabilities of S. fredii and will be beneficial for agriculture by reducing the reliance on fertilizer applications. Rhizobia are soil bacteria able to establish symbiosis with diverse host plants. Specifically, Sinorhizobium fredii is a soil bacterium that forms nitrogen-fixing root nodules in diverse legumes, including soybean. The strain S. fredii CCBAU45436 is a dominant sublineage of S. fredii that nodulates soybeans in alkaline-saline soils in the Huang-Huai-Hai Plain region of China. Here, we present a manually curated metabolic model of the symbiotic form of Sinorhizobium fredii CCBAU45436. A symbiosis reaction was defined to describe the specific soybean-microsymbiont association. The performance and quality of the reconstruction had a 70% score when assessed using a standardized genome-scale metabolic model test suite. The model was used to evaluate in silico single-gene knockouts to determine the genes controlling the nitrogen fixation process. One hundred forty-one of 541 genes (26%) were found to influence the symbiotic process, wherein 121 genes were predicted as essential and 20 others as having a partial effect. Transcriptomic profiles of CCBAU45436 were used to evaluate the nitrogen fixation capacity in cultivated versus in wild soybean inoculated with the microsymbiont. The model quantified the nitrogen fixation activities of the strain in these two hosts and predicted a higher nitrogen fixation capacity in cultivated soybean. Our results are consistent with published data demonstrating larger amounts of ureides and total nitrogen in cultivated soybean than in wild soybean. This work presents the first metabolic network reconstruction of S. fredii as an example of a useful tool for exploring the potential benefits of microsymbionts to sustainable agriculture and the ecosystem. IMPORTANCE Nitrogen is the most limiting macronutrient for plant growth, and rhizobia are important bacteria for agriculture because they can fix atmospheric nitrogen and make it available to legumes through the establishment of a symbiotic relationship with their host plants. In this work, we studied the nitrogen fixation process in the microsymbiont Sinorhizobium fredii at the genome level. A metabolic model was built using genome annotation and literature to reconstruct the symbiotic form of S. fredii. Genes controlling the nitrogen fixation process were identified by simulating gene knockouts. Additionally, the nitrogen-fixing capacities of S. fredii CCBAU45436 in symbiosis with cultivated and wild soybeans were evaluated. The predictions suggested an outperformance of S. fredii with cultivated soybean, consistent with published experimental evidence. The reconstruction presented here will help to understand and improve nitrogen fixation capabilities of S. fredii and will be beneficial for agriculture by reducing the reliance on fertilizer applications.
Collapse
|
3
|
Li Y, Tian CF, Chen WF, Wang L, Sui XH, Chen WX. High-resolution transcriptomic analyses of Sinorhizobium sp. NGR234 bacteroids in determinate nodules of Vigna unguiculata and indeterminate nodules of Leucaena leucocephala. PLoS One 2013; 8:e70531. [PMID: 23936444 PMCID: PMC3732241 DOI: 10.1371/journal.pone.0070531] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 06/20/2013] [Indexed: 11/18/2022] Open
Abstract
The rhizobium-legume symbiosis is a model system for studying mutualistic interactions between bacteria and eukaryotes. Sinorhizobium sp. NGR234 is distinguished by its ability to form either indeterminate nodules or determinate nodules with diverse legumes. Here, we presented a high-resolution RNA-seq transcriptomic analysis of NGR234 bacteroids in indeterminate nodules of Leucaena leucocephala and determinate nodules of Vigna unguiculata. In contrast to exponentially growing free-living bacteria, non-growing bacteroids from both legumes recruited several common cellular functions such as cbb3 oxidase, thiamine biosynthesis, nitrate reduction pathway (NO-producing), succinate metabolism, PHB (poly-3-hydroxybutyrate) biosynthesis and phosphate/phosphonate transporters. However, different transcription profiles between bacteroids from two legumes were also uncovered for genes involved in the biosynthesis of exopolysaccharides, lipopolysaccharides, T3SS (type three secretion system) and effector proteins, cytochrome bd ubiquinol oxidase, PQQ (pyrroloquinoline quinone), cytochrome c550, pseudoazurin, biotin, phasins and glycolate oxidase, and in the metabolism of glutamate and phenylalanine. Noteworthy were the distinct expression patterns of genes encoding phasins, which are thought to be involved in regulating the surface/volume ratio of PHB granules. These patterns are in good agreement with the observed granule size difference between bacteroids from L. leucocephala and V. unguiculata.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
- * E-mail:
| | - Wen Feng Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Lei Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Xin Hua Sui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Wen Xin Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Dunn MF, Ramírez-Trujillo JA, Hernández-Lucas I. Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis. MICROBIOLOGY-SGM 2009; 155:3166-3175. [PMID: 19684068 DOI: 10.1099/mic.0.030858-0] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The glyoxylate cycle is an anaplerotic pathway of the tricarboxylic acid (TCA) cycle that allows growth on C(2) compounds by bypassing the CO(2)-generating steps of the TCA cycle. The unique enzymes of this route are isocitrate lyase (ICL) and malate synthase (MS). ICL cleaves isocitrate to glyoxylate and succinate, and MS converts glyoxylate and acetyl-CoA to malate. The end products of the bypass can be used for gluconeogenesis and other biosynthetic processes. The glyoxylate cycle occurs in Eukarya, Bacteria and Archaea. Recent studies of ICL- and MS-deficient strains as well as proteomic and transcriptional analyses show that these enzymes are often important in human, animal and plant pathogenesis. These studies have extended our understanding of the metabolic pathways essential for the survival of pathogens inside the host and provide a more complete picture of the physiology of pathogenic micro-organisms. Hopefully, the recent knowledge generated about the role of the glyoxylate cycle in virulence can be used for the development of new vaccines, or specific inhibitors to combat bacterial and fungal diseases.
Collapse
Affiliation(s)
- M F Dunn
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - J A Ramírez-Trujillo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - I Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
5
|
Jacob AI, Adham SAI, Capstick DS, Clark SRD, Spence T, Charles TC. Mutational analysis of the Sinorhizobium meliloti short-chain dehydrogenase/reductase family reveals substantial contribution to symbiosis and catabolic diversity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:979-87. [PMID: 18533838 DOI: 10.1094/mpmi-21-7-0979] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The short-chain dehydrogenase/reductase (SDR) family is one of the largest and most ubiquitous protein families in bacterial genomes. Despite there being a few well-characterized examples, the substrate specificities or functions of most members of the family are unknown. In this study, we carried out a large-scale mutagenesis of the SDR gene family in the alfalfa root nodule symbiont Sinorhizobium meliloti. Subsequent phenotypic analysis revealed phenotypes for mutants of 21 of the SDR-encoding genes. This brings the total number of S. meliloti SDR-encoding genes with known function or associated phenotype to 25. Several of the mutants were deficient in the utilization of specific carbon sources, while others exhibited symbiotic deficiencies on alfalfa (Medicago sativa), ranging from partial ineffectiveness to complete inability to form root nodules. Five of the mutants had both symbiotic and carbon utilization phenotypes. These results clearly demonstrate the importance of the SDR family in both symbiosis and saprotrophy, and reinforce the complex nature of the interaction of S. meliloti with its plant hosts. Further analysis of the genes identified in this study will contribute to the overall understanding of the biology and metabolism of S. meliloti in relation to its interaction with alfalfa.
Collapse
Affiliation(s)
- Asha I Jacob
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | | | | | | | | | | |
Collapse
|
6
|
Ramírez-Trujillo JA, Encarnación S, Salazar E, de los Santos AG, Dunn MF, Emerich DW, Calva E, Hernández-Lucas I. Functional characterization of the Sinorhizobium meliloti acetate metabolism genes aceA, SMc00767, and glcB. J Bacteriol 2007; 189:5875-84. [PMID: 17526694 PMCID: PMC1952029 DOI: 10.1128/jb.00385-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genes encoding malate synthase (glcB) and isocitrate lyase (aceA) and a 240-bp open reading frame (SMc00767) located downstream of aceA were isolated and functionally characterized in Sinorhizobium meliloti. Independent and double interposon mutants of each gene were constructed, and the corresponding phenotypes were analyzed. aceA mutants failed to grow on acetate, and mutants deficient in SMc00767 were also affected in acetate utilization. In contrast, mutants deficient in glcB grew on acetate similar to wild-type strain Rm5000. Complementation experiments showed that aceA and SMc00767 gene constructs were able to restore the growth on acetate in the corresponding single mutants. aceA-glcB, aceA-SMc00767, and glcB-SMc00767 double knockouts were also unable to grow on acetate, but this ability was recovered when the wild-type aceA-glcB or aceA-SMc00767 loci were introduced into the double mutants. These data confirm the functional role of aceA and SMc00767 and show that glcB, in the absence of SMc00767, is required for acetate metabolism. Isocitrate lyase and malate synthase activities were measured in strain Rm5000, the mutant derivatives, and complemented strains. aceA and glcB were able to complement the enzymatic activity lacking in the corresponding single mutants. The enzymatic activities also showed that SMc00767 represses the activity of isocitrate lyase in cells grown on acetate. Gene fusions confirmed the repressor role of SMc00767, which regulates aceA expression at the transcriptional level. Comparison of the transcriptional profiles of the SMc00767 mutant and wild-type strain Rm5000 showed that SMc00767 represses the expression of a moderate number of open reading frames, including aceA; thus, we propose that SMc00767 is a novel repressor involved in acetate metabolism in S. meliloti. Genetic and functional analyses indicated that aceA and SMc00767 constitute a functional two-gene operon, which is conserved in other alpha-proteobacteria. Alfalfa plants infected with the aceA and glcB mutants were not impaired in nodulation or nitrogen fixation, and so the glyoxylate cycle is not required in the Rhizobium-legume symbiosis.
Collapse
Affiliation(s)
- J A Ramírez-Trujillo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Fargeix C, Gindro K, Widmer F. Soybean (Glycine max. L.) and bacteroid glyoxylate cycle activities during nodular senescence. JOURNAL OF PLANT PHYSIOLOGY 2004; 161:183-90. [PMID: 15022832 DOI: 10.1078/0176-1617-01094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Soybean (Glycine max. L.) nodular senescence results in the dismantling of the peribacteroid membrane (PBM) and in an increase of soybean isocitrate lyase (ICL; EC 4.1.3.1) and malate synthase (MS; EC 4.1.3.2) mRNA and protein levels. This suggests that in senescing soybean nodular cells, the specific glyoxylate cycle enzyme activities might be induced to reallocate carbon obtained from the PBM degradation. In order to evaluate as well the carbon metabolism of the nitrogen-fixing Bradyrhizobium japonicum endosymbiotic bacteroids during nodular senescence, their glyoxylate cycle activities were also investigated. To this end, partial DNA sequences were isolated from their icl and ms genes, but the corresponding mRNAs were not detected in the microorganisms. It was also observed that the bacteroid ICL and MS activities were negligible during nodular senescence. This suggests that glyoxylate cycle activities are not reinitiated in the bacteroids under these physiological conditions. In case the microorganisms nevertheless feed on the PBM degradation products, this might occur via the citric acid cycle exclusively.
Collapse
Affiliation(s)
- Christophe Fargeix
- Laboratory of Plant Biology and Physiology, University Biology Building, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
8
|
Abstract
Rhizobia are a diverse group of Gram-negative bacteria comprised of the genera Rhizobium, Bradyrhizobium, Mesorhizobium, Sinorhizobium and Azorhizobium. A unifying characteristic of the rhizobia is their capacity to reduce (fix) atmospheric nitrogen in symbiotic association with a compatible plant host. Symbiotic nitrogen fixation requires a substantial input of energy from the rhizobial symbiont. This review focuses on recent studies of rhizobial carbon metabolism which have demonstrated the importance of a functional tricarboxylic acid (TCA) cycle in allowing rhizobia to efficiently colonize the plant host and/or develop an effective nitrogen fixing symbiosis. Several anaplerotic pathways have also been shown to maintain TCA cycle activity under specific conditions. Biochemical and physiological characterization of carbon metabolic mutants, along with the analysis of cloned genes and their corresponding gene products, have greatly advanced our understanding of the function of enzymes such as citrate synthase, oxoglutarate dehydrogenase, pyruvate carboxylase and malic enzymes. However, much remains to be learned about the control and function of these and other key metabolic enzymes in rhizobia.
Collapse
Affiliation(s)
- M F Dunn
- Departamento de Ecología Molecular, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
9
|
Green LS, Emerich DW. Bradyrhizobium japonicum does not require alpha-ketoglutarate dehydrogenase for growth on succinate or malate. J Bacteriol 1997; 179:194-201. [PMID: 8981998 PMCID: PMC178679 DOI: 10.1128/jb.179.1.194-201.1997] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The sucA gene, encoding the E1 component of alpha-ketoglutarate dehydrogenase, was cloned from Bradyrhizobium japonicum USDA110, and its nucleotide sequence was determined. The gene shows a codon usage bias typical of non-nif and non-fix genes from this bacterium, with 89.1% of the codons being G or C in the third position. A mutant strain of B. japonicum, LSG184, was constructed with the sucA gene interrupted by a kanamycin resistance marker. LSG184 is devoid of alpha-ketoglutarate dehydrogenase activity, indicating that there is only one copy of sucA in B. japonicum and that it is completely inactivated in the mutant. Batch culture experiments on minimal medium revealed that LSG184 grows well on a variety of carbon substrates, including arabinose, malate, succinate, beta-hydroxybutyrate, glycerol, formate, and galactose. The sucA mutant is not a succinate auxotroph but has a reduced ability to use glutamate as a carbon or nitrogen source and an increased sensitivity to growth inhibition by acetate, relative to the parental strain. Because LSG184 grows well on malate or succinate as its sole carbon source, we conclude that B. japonicum, unlike most other bacteria, does not require an intact tricarboxylic acid (TCA) cycle to meet its energy needs when growing on the four-carbon TCA cycle intermediates. Our data support the idea that B. japonicum has alternate energy-yielding pathways that could potentially compensate for inhibition of alpha-ketoglutarate dehydrogenase during symbiotic nitrogen fixation under oxygen-limiting conditions.
Collapse
Affiliation(s)
- L S Green
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia 65211, USA.
| | | |
Collapse
|
10
|
McDermott TR, Kahn ML. Cloning and mutagenesis of the Rhizobium meliloti isocitrate dehydrogenase gene. J Bacteriol 1992; 174:4790-7. [PMID: 1320616 PMCID: PMC206277 DOI: 10.1128/jb.174.14.4790-4797.1992] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The gene encoding Rhizobium meliloti isocitrate dehydrogenase (ICD) was cloned by complementation of an Escherichia coli icd mutant with an R. meliloti genomic library constructed in pUC18. The complementing DNA was located on a 4.4-kb BamHI fragment. It encoded an ICD that had the same mobility as R. meliloti ICD in nondenaturing polyacrylamide gels. In Western immunoblot analysis, antibodies raised against this protein reacted with R. meliloti ICD but not with E. coli ICD. The complementing DNA fragment was mutated with transposon Tn5 and then exchanged for the wild-type allele by recombination by a novel method that employed the Bacillus subtilis levansucrase gene. No ICD activity was found in the two R. meliloti icd::Tn5 mutants isolated, and the mutants were also found to be glutamate auxotrophs. The mutants formed nodules, but they were completely ineffective. Faster-growing pseudorevertants were isolated from cultures of both R. meliloti icd::Tn5 mutants. In addition to lacking all ICD activity, the pseudorevertants also lacked citrate synthase activity. Nodule formation by these mutants was severely affected, and inoculated plants had only callus structures or small spherical structures.
Collapse
Affiliation(s)
- T R McDermott
- Institute of Biological Chemistry, Washington State University, Pullman 99164-6340
| | | |
Collapse
|
11
|
McDermott TR, Griffith SM, Vance CP, Graham PH. Carbon metabolism inBradyrhizobium japonicumbacteroids. FEMS Microbiol Lett 1989. [DOI: 10.1111/j.1574-6968.1989.tb03403.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
12
|
Martin GB, Chapman KA, Chelm BK. Role of the Bradyrhizobium japonicum ntrC gene product in differential regulation of the glutamine synthetase II gene (glnII). J Bacteriol 1988; 170:5452-9. [PMID: 2903856 PMCID: PMC211637 DOI: 10.1128/jb.170.12.5452-5459.1988] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We isolated the ntrC gene from Bradyrhizobium japonicum, the endosymbiont of soybean (Glycine max), and examined its role in regulating nitrogen assimilation. Two independent ntrC mutants were constructed by gene replacement techniques. One mutant was unable to produce NtrC protein, while the other constitutively produced a stable, truncated NtrC protein. Both ntrC mutants were unable to utilize potassium nitrate as a sole nitrogen source. In contrast to wild-type B. japonicum, the NtrC null mutant lacked glnII transcripts in aerobic, nitrogen-starved cultures. However, the truncated-NtrC mutant expressed glnII in both nitrogen-starved and nitrogen-excess cultures. Both mutants expressed glnII under oxygen-limited culture conditions and in symbiotic cells. These results suggest that nitrogen assimilation in B. japonicum is regulated in response to both nitrogen limitation and oxygen limitation and that separate regulatory networks exist in free-living and symbiotic cells.
Collapse
Affiliation(s)
- G B Martin
- MSU/DOE Plant Research Laboratory, Michigan State University, East Lansing 48824-1312
| | | | | |
Collapse
|
13
|
Sutherland JM, Sprent JI. Calcium-oxalate crystals and crystal cells in determinate root nodules of legumes. PLANTA 1984; 161:193-200. [PMID: 24253643 DOI: 10.1007/bf00982912] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/1983] [Accepted: 02/02/1984] [Indexed: 06/02/2023]
Abstract
Early reports of the presence of calciumoxalate crystals in the cortices ofPhaseolus vulgaris root nodules have been confirmed. Crystals were found in all six genera examined (Cajanus, Desmodium, Glycine, Lespedeza, Phaseolus, Vigna) that have determinate nodules and export ureides. They were absent from six genera examined that have indeterminate nodules and export amides. The possible physiological significance of these structures is discussed.
Collapse
Affiliation(s)
- J M Sutherland
- Department of Biological Sciences, University of Dundee, DD1 4HN, Dundee, UK
| | | |
Collapse
|
14
|
Finan TM, Wood JM, Jordan DC. Symbiotic properties of C4-dicarboxylic acid transport mutants of Rhizobium leguminosarum. J Bacteriol 1983; 154:1403-13. [PMID: 6853448 PMCID: PMC217617 DOI: 10.1128/jb.154.3.1403-1413.1983] [Citation(s) in RCA: 160] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The transport of succinate was studied in bacteroids of an effective, streptomycin-resistant strain (GF160) of Rhizobium leguminosarum. High levels of succinate transport occurred, and the kinetics, specificity, and sensitivity to metabolic inhibitors were similar to those previously described for free-living cells. The symbiotic properties of two transposon (Tn5)-mediated C4-dicarboxylate transport mutants (strains GF31 and GF252) were determined. Strain GF31 formed ineffective nodules, and bacteroids from these nodules showed no succinate transport activity. Strain GF252 formed partially effective nodules, and bacteroids from these nodules showed about 50% of the succinate transport activity of the parent bacteroids. Another dicarboxylic acid transport mutant (Dct-), strain GFS5, isolated after N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis, formed ineffective nodules. The ability to form ineffective nodules in strains GF31 and GFS5 was shown to correlate with the Dct- phenotype. The data indicate that the presence of a functional C4-dicarboxylic acid transport system is essential for N2 fixation to occur in pea nodules.
Collapse
|
15
|
Peterson JB, Larue TA. Utilization of aldehydes and alcohols by soybean bacteroids. PLANT PHYSIOLOGY 1981; 68:489-93. [PMID: 16661942 PMCID: PMC427516 DOI: 10.1104/pp.68.2.489] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Aldehydes, alcohols and acids were tested for their ability to support acetylene reduction and oxygen consumption by Rhizobium japonicum bacteroids isolated from soybean nodules. Several alcohols and aldehydes increased acetylene reduction and oxygen uptake. This is consistent with the concept that the plant nodule cytosol can metabolize carbohydrate via anaerobic fermentative pathways.
Collapse
Affiliation(s)
- J B Peterson
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | | |
Collapse
|
16
|
Miernyk JA, Trelease RN. Role of malate synthase in citric Acid synthesis by maturing cotton embryos: a proposal. PLANT PHYSIOLOGY 1981; 67:875-81. [PMID: 16661785 PMCID: PMC425793 DOI: 10.1104/pp.67.5.875] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cotton embryos from 34 to 54 days after anthesis were analyzed for organic acids, and enzymes associated with organic acid metabolism. During this developmental period, embryos accumulated citrate. Malate synthase activity appeared at 46 days after anthesis and increased rapidly to 54 days. Of other enzymes examined, only citrate synthase activity increased during this period. As isocitrate lyase activity was absent from cotton embryos during maturation, an alternative source of glyoxylate would be required for in vivo malate synthase activity. Of several metabolic sources tested, glycine was converted to glyoxylate via a transamination reaction.Halves of 50-day (mature) cotton embryos incorporated radioactivity from [1-(14)C]acetate, [1-(14)C]glyoxylate, and [1-(14)C]glycine into organic acids. Embryo halves incubated with [(14)C]glyoxylate plus [(3)H]acetate synthesized double-labeled malate and citrate. Radioactive citrate isolated from 50-day cotton embryos incubated with [1-(14)C]acetate was degraded; label was distributed as follows: 55% in C(1), 33% in C(5), and 12% in C(6). Taken together, these data strongly suggest participation of malate synthase in citrate production in vivo.Separation of organelles by sucrose density gradient sedimentation revealed that malate synthase, malate dehydrogenase, and citrate synthase were compartmentalized together only in the peroxisome fraction (1.24 grams per milliliter). Peroxisomes isolated from 50-day embryos, when incubated with glyoxylate and [(3)H]acetyl-CoA, synthesized labeled malate and citrate, but only radioactive citrate accumulated. Incubations with glycine plus alpha-ketoglutarate, in place of glyoxylate, also resulted in synthesis of radioactive citrate.A metabolic scheme illustrating the participation of cotton embryo peroxisomes in citrate synthesis is proposed. This scheme suggests a function for plant peroxisomes not previously elucidated. The ontogenetic and metabolic relationship between these organelles and glyoxysomes active in gluconeogenesis during postgerminative growth remains to be examined.
Collapse
Affiliation(s)
- J A Miernyk
- Department of Botany-Microbiology, Arizona State University, Tempe, Arizona 85281
| | | |
Collapse
|
17
|
Coker GT, Schubert KR. Carbon Dioxide Fixation in Soybean Roots and Nodules: I. CHARACTERIZATION AND COMPARISON WITH N(2) FIXATION AND COMPOSITION OF XYLEM EXUDATE DURING EARLY NODULE DEVELOPMENT. PLANT PHYSIOLOGY 1981; 67:691-6. [PMID: 16661737 PMCID: PMC425755 DOI: 10.1104/pp.67.4.691] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
These studies demonstrate that soybean (Merr) roots and nodules possess an active system for fixing CO(2). The maximum rates of CO(2) fixation observed for roots and nodules of intact plants were 120 and 110 nanomoles CO(2) fixed per milligram dry weight per hour, respectively. Results of labeling studies suggest a primary role for phosphoenolpyruvate carboxylase in CO(2) assimilation in these tissues. After pulse-labeling with (14)CO(2) for 2 minutes, 70% of the total radioactivity was lost within 18 minutes via respiration and/or translocation out of nodules. During the vegetative stages of growth of soybeans grown symbiotically, CO(2) fixation in nodules increased at the onset of N(2) fixation but declined to a lower level prior to the decrease in N(2) fixation. This decrease coincided with a decrease in the transport of amino acids, especially asparagine, and an increase in the export of ureides. These findings are consistent with a dual role for CO(2) fixation, providing substrates for energy-yielding metabolism and supplying carbon skeletons for NH(4) (+) assimilation and amino acid biosynthesis.
Collapse
Affiliation(s)
- G T Coker
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824
| | | |
Collapse
|
18
|
|
19
|
Simpson FB, Maier RJ, Evans HJ. Hydrogen-stimulated CO2 fixation and coordinate induction of hydrogenase and ribulosebiphosphate carboxylase in a H2-uptake positive strain of Rhizobium japonicum. Arch Microbiol 1979. [DOI: 10.1007/bf00403496] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Abstract
A mutant of Rhizobium meliloti selected as unable to grow on L-arabinose also failed to grow on acetate or pyruvate. It grew, but slower than the parental strain, on many other carbon sources. Assay showed it to lack alpha-ketoglutarate dehydrogenase (kgd) activity, and revertants of normal growth phenotype contained the activity again. Other enzymes of the tricarboxylic acid cycle and of the glyoxylate cycle were present in both mutant and parent strains. Enzymes of pyruvate metabolism were also assayed. L-Arabinose degradation in R. meliloti was found to differ from the known pathway in R. japonicum, since the former strain lacked 2-keto-o-deoxy-L-arabonate aldolase but contained alpha-ketoglutarate semialdehyde dehydrogenase; thus, it is likely that R. meliloti has the L-arabinose pathway leading to alpha-ketoglutarate rather than the one to glycolaldehyde and pyruvate. This finding accounts for the L-arabinose negativity of the mutant. Resting cells of the mutant were able to metabolize the three substrates which did not allow growth.
Collapse
|
21
|
Abstract
We report a phenomenon similar to catabolite repression in Rhizobium meliloti. Succinate, which allows the highest observed rate of growth of R. meliloti, caused an immediate reduction of beta-galactosidase activity when added to cells growing in lactose. A Lac- mutant was unaltered in nodulation and nitrogen fixation capacities, but a pleiotropic mutant deficient in several catabolic properties was unable to produce effective nitrogen-fixing nodules.
Collapse
|
22
|
Laane C, Haaker H, Veeger C. Involvement of the cytoplasmic membrane in nitrogen fixation by Rhizobium leguminosarum bacteroids. EUROPEAN JOURNAL OF BIOCHEMISTRY 1978; 87:147-53. [PMID: 668685 DOI: 10.1111/j.1432-1033.1978.tb12361.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
1. The nitrogen-fixing efficiency of freshly prepared suspensions of Rhizobium leguminosarum bacteroids from pea root nodules was considerably enhanced by addition of bovine serum albumin. Evidence was found that during preparation of bacteroids the cell membrane is exposed to the uncoupling effect of free fatty acids and to plant phospholipase D activity. Both effects could be counteracted by bovine serum albumin. 2. A technique was developed by which concentrations of free O2 and nitrogenase activity could be measured simultaneously under conditions of steady-state respiration. By means of this system it could be shown that in contrast to previous claims, high ATP/ADP ratios can be achieved in bacteroids even with a high concentration of O2 in the medium. 3. Nitrogen fixation was found to be controlled by the ATP/ADP ratio, the generation of reducing equivalents and the switch-off phenomenon. It was demonstrated that the generation of reducing equivalents for nitrogenase is regulated by the energized state and the integrity of the bacteroid cell membrane. The data indicate that the process of aerobic nitrogen fixation in R. leguminosarum bacteroids resembles that of Azotobacter vinelandii.
Collapse
|
23
|
Meeks JC, Wolk CP, Schilling N, Shaffer PW. Initial Organic Products of Fixation of [N]Dinitrogen by Root Nodules of Soybean (Glycine max). PLANT PHYSIOLOGY 1978; 61:980-3. [PMID: 16660438 PMCID: PMC1092024 DOI: 10.1104/pp.61.6.980] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
When detached soybean Glycine max (L.) Merr. cv. Hark, nodules assimilate [(13)N]N(2), the initial organic product of fixation is glutamine; glutamate becomes more highly radioactive than glutamine within 1 minute; (13)N in alanine becoms detectable at 1 minute of fixation and increases rapidly between 1 and 2 minutes. After 15 minutes of fixation, the major (13)N-labeled organic products in both detached and attached nodules are glutamate and alanine, plus, in the case of attached nodules, an unidentified substance, whereas [(13)N]glutamine comprises only a small fraction of organic (13)N, and very little (13)N is detected in asparagine. The fixation of [(13)N]N(2) into organic products was inhibited more than 99% by C(2)H(2) (10%, v/v). The results support the idea that the glutamine synthetase-glutamate synthase pathway is the primary route for assimilation of fixed nitrogen in soybean nodules.
Collapse
Affiliation(s)
- J C Meeks
- MSU-ERDA Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | | | | | | |
Collapse
|
24
|
Stovall I, Cole M. Organic Acid Metabolism by Isolated Rhizobium japonicum Bacteroids. PLANT PHYSIOLOGY 1978; 61:787-90. [PMID: 16660386 PMCID: PMC1091978 DOI: 10.1104/pp.61.5.787] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Rhizobium japonicum bacteroids isolated from soybean (Glycine max L.) nodules oxidized (14)C-labeled succinate, pyruvate, and acetate in a manner consistent with operation of the tricarboxylic acid cycle and a partial glyoxylate cycle. Substrate carbon was incorporated into all major cellular components (cell wall + membrane, nucleic acids, and protein).
Collapse
Affiliation(s)
- I Stovall
- Department of Agronomy, University of Illinois, Urbana, Illinois 61801
| | | |
Collapse
|
25
|
Nadler KD, Avissar YJ. Heme Synthesis in Soybean Root Nodules: I. On the Role of Bacteroid delta-Aminolevulinic Acid Synthase and delta-Aminolevulinic Acid Dehydrase in the Synthesis of the Heme of Leghemoglobin. PLANT PHYSIOLOGY 1977; 60:433-6. [PMID: 16660108 PMCID: PMC542631 DOI: 10.1104/pp.60.3.433] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
During nodulation of soybean (Glycine max) by Rhizobium japonicum, variations in the activities of two enzymes of heme biosynthesis, delta-aminolevulinic acid synthase (ALAS) and delta-aminolevulinic acid dehydrase (ALAD) are described. delta-Aminolevulinic acid synthase activity is found in the bacteroid fraction of nodules, but is not detected in the plant fraction. Bacteroid ALAS activity parallels heme accumulation during nodule development. delta-Aminolevulinic acid dehydrase activity is found in both bacteroid and plant cytosol fractions. Bacteroid ALAD activity is constant or increases during nodulation while plant ALAD activity falls.Bacteroid ALAD activity is found in effective, not in inefficient nodules. Plant ALAD activity is found in both effective and inefficient nodules. Plant ALAD activity falls during development of both types of root nodules.These results support the contention that it is the bacteroid ALAS and ALAD activities, not those of the plant, that are directly involved in formation of leghemoglobin heme, suggesting that the bacteroid may be solely responsible for formation of leghemoglobin heme in the nodule symbiosis.
Collapse
Affiliation(s)
- K D Nadler
- Department of Botany and Plant Pathology, Michigan State University, East Lansing, Michigan 48824
| | | |
Collapse
|
26
|
Vanni P, Vincenzini MT, Vincieri F, Baccari V. Stimulation of isocitrate lyase biosynthesis by hydroxylamine and hydrazine. Mol Cell Biochem 1977; 15:125-31. [PMID: 895730 DOI: 10.1007/bf01793334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recently it has been demonstrated that hydroxylamine is an activator of triglyceride catabolism. We have studied the effect of hydroxylamine on isocitrate lyase activity and lipid catabolism and have noted a stimulation of isocitrate lyase biosynthesis by 5 mM hydroxylamine. The specificity of this effect was tested with a number of representative enzymes of other metabolic pathways. In an attempt to study the possible mechanism of action of hydroxylamine we have also tested the effects of two substances that are structural or functional analogues of hydroxylamine, namely, ethanolamine and hydrazine, both on the enzyme level in plant cultures and on the activity of enzyme preparations. From our data we may conclude that "de nove" biosynthesis of isocitrate lyase depends on the reaction of hydroxylamine or hydrazine with glyoxylate to give the corresponding oxime and hydrazone. The removal of glyoxylate from the biological equilibrium in this way could cause extra formation of isocitrate lyase.
Collapse
|
27
|
Siddiqui KA, Banerjee AK. Fructose 1,6-bisphosphate aldolase activity of Rhizobium species. Folia Microbiol (Praha) 1975; 20:412-7. [PMID: 283 DOI: 10.1007/bf02877044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
FDP aldolase was found to be present in the cell-free extracts of Rhizobium leguminosarum, Rhizobium phaseoli, Rhizobium trifolii, Rhizobium meliloti, Rhizobium lupini, Rhizobium japonicum and Rhizobium species from Arachis hypogaea and Sesbania cannabina. The enzyme in 3 representative species has optimal activity at pH 8.4 in 0.2M veronal buffer. The enzyme activity was completely lost by treatment at 60 degrees C for 15 min. The Km values were in the range from 2.38 to 4.55 X 10(-6)M FDP. Metal chelating agents inhibited enzyme activity, but monovalent or bivalent metal ions failed to stimulate the activity. Bivalent metal ions in general were rather inhibitory.
Collapse
|
28
|
Abstract
l-Arabinose was metabolized through an oxidative pathway by extracts of a strain of Rhizobium japonicum. The findings showed that l-arabinose is converted into 2-keto-3-deoxy-l-arabonate, which is cleaved into glycoaldehyde and pyruvate.
Collapse
|
29
|
Vincenzini MT, Vincieri F, Vanni P. The Effects of Octanoate and Oleate on Isocitrate Lyase Activity during the Germination of Pinus pinea Seeds. PLANT PHYSIOLOGY 1973; 52:549-53. [PMID: 16658603 PMCID: PMC366543 DOI: 10.1104/pp.52.6.549] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The changes of isocitrate lyase levels with respect to the catabolism of triglycerides have been studied during the germination of Pinus pinea seeds. We studied the effects of octanoate, oleate, and inhibitors of protein synthesis on isocitrate lyase during germination. Pyruvate kinase, glucose-6-P-dehydrogenase, malate dehydrogenase, and isocitrate dehydrogenase were also assayed. Octanoate and oleate inhibited the isocitrate lyase activity, similarly to cycloheximide, chloramphenicol, and actinomycin, inhibitors of protein biosynthesis. This inhibitory effect is not specific but is strikingly evident with isocitrate lyase. This inhibition was not proportional to the concentration but was proportional to the chain length of oleate and octanoate.
Collapse
Affiliation(s)
- M T Vincenzini
- Institute of Biochemistry and Pharmaceutical Chemistry, University of Florence, Florence, Italy
| | | | | |
Collapse
|
30
|
Rokosh DA, Kurz WG, LaRue TA. A modification of isocitrate and malate dehydrogenase assays for use in crude cell free extracts. Anal Biochem 1973; 54:477-83. [PMID: 4146785 DOI: 10.1016/0003-2697(73)90376-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Wong PP, Evans HJ. Poly-beta-hydroxybutyrate Utilization by Soybean (Glycine max Merr.) Nodules and Assessment of Its Role in Maintenance of Nitrogenase Activity. PLANT PHYSIOLOGY 1971; 47:750-5. [PMID: 16657699 PMCID: PMC396765 DOI: 10.1104/pp.47.6.750] [Citation(s) in RCA: 93] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Soybean (Glycine max) nodule bacteroids contain high concentrations of poly-beta-hydroxybutyrate and possess a depolymerase system that catalyzes the hydrolysis of the polymer. Changes in poly-beta-hydroxybutyrate content and in activities of nitrogenase, beta-hydroxybutyrate dehydrogenase, and isocitrate lyase in nodule bacteroids were investigated under conditions in which the supply of carbohydrate from the soybean plants was interrupted. The poly-beta-hydroxybutyrate content of bacteroids did not decrease appreciably until the carbohydrate supply from the host plants was limited by incubation of excised nodules, incubation of plants in the dark, or by senescence of the host plant. Isocitrate lyase activity in bacteroids was not detected until poly-beta-hydroxybutyrate utilization appeared to begin. The presence of a supply of poly-beta-hydroxybutyrate in nodule bacteroids was not sufficient for maintenance of high nitrogenase activity under conditions of limited carbohydrate supply from the host plant. An unusually high activity of beta-hydroxybutyrate dehydrogenase was observed in bacteroid extracts but no significant change in the activity of this enzyme was observed as a result of apparent utilization of poly-beta-hydroxybutyrate by nodule bacteroids.
Collapse
Affiliation(s)
- P P Wong
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | | |
Collapse
|
32
|
Broughton WJ, Hellmuth EO, Yeung D. Role of glucose in development of the gibberellin response in peas. BIOCHIMICA ET BIOPHYSICA ACTA 1970; 222:491-500. [PMID: 5491226 DOI: 10.1016/0304-4165(70)90140-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
33
|
Ching TM. Glyoxysomes in megagamethophyte of germinating ponderosa pine seeds. PLANT PHYSIOLOGY 1970; 46:475-82. [PMID: 16657489 PMCID: PMC396619 DOI: 10.1104/pp.46.3.475] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Decoated ponderosa pine (Pinus ponderosa Laws) seeds contained 40% lipids, which were mainly stored in megagametophytic tissue and were utilized or converted to sugars via the glyoxylate cycle during germination. Mitochondria and glyoxysomes were isolated from the tissue by sucrose density gradient centrifugation at different stages of germination. It was found that isocitrate lyase, malate synthase, and catalase were mainly bound in glyoxysomes. Aconitase and fumarase were chiefly localized in mitochondria, whereas citrate synthase was common for both. Both organelles increased in quantity and specific activity of their respective marker enzymes with the advancement of germination. When the megagametophyte was exhausted at the end of germination, the quantity of these organelles and the activity of their marker enzymes decreased abruptly. At the stage of highest lipolysis, the isolated mitochondria and glyoxysomes were able to synthesize protein from labeled amino acids. Both organellar fractions contained RNA and DNA. Some degree of autonomy in glyoxysomes is indicated.
Collapse
Affiliation(s)
- T M Ching
- Seed Laboratory, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
34
|
Abstract
Gluconate catabolism in Rhizobium japonicum ATCC 10324 was investigated by the radiorespirometric method and by assaying for key enzymes of the major energy-yielding pathways. Specifically labeled gluconate gave the following results for growing cells, with values expressed as per cent (14)CO(2) evolution: C-1 = 93%, C-2 = 57%, C-3 = 30%, C-4 = 70%, C-6 = 39%. The preferential release of (14)CO(2) from C-1 and C-4 indicate that gluconate is degraded primarily by the Entner-Doudoroff pathway but the inequalities between C-1 and C-4 and between C-3 and C-6 indicate that another pathway(s) also participates. The presence of gluconokinase and a system for converting 6-phosphogluconate to pyruvate also indicate a role for the Entner-Doudoroff pathway. The extraordinarily high yield of (14)CO(2) from C-1 labeled gluconate suggests that the other participating pathway is a C-1 decarboxylative pathway. The key enzyme of the pentose phosphate pathway, 6-phosphogluconate dehydrogenase, could not be demonstrated. Specifically labeled 2-ketogluconate and 2,5-diketogluconate were oxidized by gluconate grown cells and gave ratios of C-1 to C-6 of 2.73 and 2.61, respectively. These compare with a ratio of 2.39 obtained with specifically labeled gluconate. Gluconate dehydrogenase, the first enzyme in the ketogluconate pathway found in acetic acid bacteria, was found. Oxidation of specifically labeled pyruvate, acetate, succinate, and glutamate by gluconate-grown cells yielded the preferential rates of (14)CO(2) evolution expected from the operation of the tricarboxylic acid cycle. These data are consistent with the operation of the Entner-Doudoroff pathway and tricarboxylic acid cycle as the primary pathways of gluconate oxidation in R. japonicum. An ancillary pathway for the initial breakdown of gluconate would appear to be the ketogluconate pathway which enters the tricarboxylic acid cycle at alpha-ketoglutarate.
Collapse
|
35
|
Abstract
Glucose catabolism in Rhizobium japonicum ATCC 10324 was investigated by the radiorespirometric method and by assaying for key enzymes of the major energy-yielding pathways. Specifically labeled glucose gave the following results for resting cells, with values expressed as per cent (14)CO(2) evolution: C-1=59%, C-2=51%, C-3=45%, C-4=59%, and C-6=43%. These values indicate that glucose was degraded by the Entner-Doudoroff pathway alone. Cells which grew in glucose-yeast extract-salts medium gave essentially the same pattern except for retardation of the C-6 carbon. The rates were: C-1=54%, C-2=42%, C-3=51%, C-4=59%, and C-6=32%. Hexokinase, glucose-6-phosphate dehydrogenase, transketolase, and an enzyme system which produces pyruvate from 6-phosphogluconate were found to be present in these cells. No 6-phosphogluconate dehydrogenase was detected. Oxidation of specifically labeled pyruvate gave the following (14)CO(2) evolution pattern: C-1=78%, C-2=48%, and C-3=37%; the pattern from acetate was C-1=73%; and C-2=56%. Oxidation of glutamate showed the preferential rate of (14)CO(2) evolution to be C-1 > C-2=C-5 > C-3, 4, whereas a higher yield of (14)CO(2) was obtained from the C-1 and C-4 carbons of succinate than from the C-2 and C-3 carbons. These data are consistent with the operation of the Entner-Doudoroff pathway and tricarboxylic acid cycle as the catabolic pathways of glucose oxidation in R. japonicum.
Collapse
|
36
|
Wegener WS, Reeves HC, Rabin R, Ajl SJ. Alternate pathways of metabolism of short-chain fatty acids. BACTERIOLOGICAL REVIEWS 1968; 32:1-26. [PMID: 4869938 PMCID: PMC378289 DOI: 10.1128/br.32.1.1-26.1968] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|