1
|
Agrawal V, Singh V, Tripathi BN. Components and processes involved in retrograde signaling from chloroplast to nucleus. PHYSIOLOGIA PLANTARUM 2023; 175:e13987. [PMID: 37616006 DOI: 10.1111/ppl.13987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/01/2023] [Accepted: 07/23/2023] [Indexed: 08/25/2023]
Abstract
Retrograde signaling conceptually means the transfer of signals from semi-autonomous cell organelles to the nucleus to modulate nuclear gene expression. A generalized explanation is that chloroplasts are highly sensitive to environmental stimuli and quickly generate signaling molecules (retrograde signals) and transport them to the nucleus through the cytosol to reprogram nuclear gene expression for cellular/metabolic adjustments to cope with environmental fluctuations. During the past decade, substantial advancements have been made in the area of retrograde signaling, including information on putative retrograde signals. Researchers have also proposed possible mechanisms for generating retrograde signals and their transmission. However, the exact mechanisms and processes responsible for transmitting retrograde signaling from the chloroplast to the nucleus remain elusive, demanding substantial attention. This review highlights strategies employed to detect retrograde signals, their possible modes of signaling to the nucleus, and their implications for cellular processes during stress conditions. The present review also summarizes the role of ROS-mediated retrograde signaling in plastid-nucleus communication and its functional significance in co-coordinating the physiological profile of plant cells.
Collapse
Affiliation(s)
- Variyata Agrawal
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, India
| | - Vijetna Singh
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, India
| | - Bhumi Nath Tripathi
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, India
| |
Collapse
|
2
|
Wu GZ, Bock R. GUN control in retrograde signaling: How GENOMES UNCOUPLED proteins adjust nuclear gene expression to plastid biogenesis. THE PLANT CELL 2021; 33:457-474. [PMID: 33955483 PMCID: PMC8136882 DOI: 10.1093/plcell/koaa048] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/03/2020] [Indexed: 05/08/2023]
Abstract
Communication between cellular compartments is vital for development and environmental adaptation. Signals emanating from organelles, so-called retrograde signals, coordinate nuclear gene expression with the developmental stage and/or the functional status of the organelle. Plastids (best known in their green photosynthesizing differentiated form, the chloroplasts) are the primary energy-producing compartment of plant cells, and the site for the biosynthesis of many metabolites, including fatty acids, amino acids, nucleotides, isoprenoids, tetrapyrroles, vitamins, and phytohormone precursors. Signals derived from plastids regulate the accumulation of a large set of nucleus-encoded proteins, many of which localize to plastids. A set of mutants defective in retrograde signaling (genomes uncoupled, or gun) was isolated over 25 years ago. While most GUN genes act in tetrapyrrole biosynthesis, resolving the molecular function of GUN1, the proposed integrator of multiple retrograde signals, has turned out to be particularly challenging. Based on its amino acid sequence, GUN1 was initially predicted to be a plastid-localized nucleic acid-binding protein. Only recently, mechanistic information on the function of GUN1 has been obtained, pointing to a role in plastid protein homeostasis. This review article summarizes our current understanding of GUN-related retrograde signaling and provides a critical appraisal of the various proposed roles for GUNs and their respective pathways.
Collapse
Affiliation(s)
- Guo-Zhang Wu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, China
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
3
|
Govindjee G, Briskin DP, Benning C, Daniell H, Kolossov V, Scheer H, Rebeiz M. From δ-aminolevulinic acid to chlorophylls and every step in between: in memory of Constantin (Tino) A. Rebeiz, 1936-2019. PHOTOSYNTHESIS RESEARCH 2020; 145:71-82. [PMID: 32458186 PMCID: PMC7250271 DOI: 10.1007/s11120-020-00750-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/09/2020] [Indexed: 05/21/2023]
Abstract
Constantin A. (Tino) Rebeiz, a pioneer in the field of chlorophyll biosynthesis, and a longtime member of the University of Illinois community of plant biologists, passed away on July 25, 2019. He came to the USA at a time that was difficult for members of minority groups to be in academia. However, his passion for the complexity of the biochemical origin of chlorophylls drove a career in basic sciences which extended into applied areas of environmentally friendly pesticides and treatment for skin cancer. He was a philanthropist; in retirement, he founded the Rebeiz Foundation for Basic Research which recognized excellence and lifetime achievements of selected top scientists in the general area of photosynthesis research. His life history, scientific breakthroughs, and community service hold important lessons for the field.
Collapse
Affiliation(s)
- Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University (JNU), New Delhi, 110067 India
| | - Donald P. Briskin
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology- Plant Biology, Plant Research Laboratory, MSU-DOE, East Lansing, MI 48824 USA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Vladimir Kolossov
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Hugo Scheer
- Department of Biology- Botany, Ludwig-Maximilians-University, 80638 Munich, Germany
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260 USA
| |
Collapse
|
4
|
Richter AS, Banse C, Grimm B. The GluTR-binding protein is the heme-binding factor for feedback control of glutamyl-tRNA reductase. eLife 2019; 8:46300. [PMID: 31194674 PMCID: PMC6597238 DOI: 10.7554/elife.46300] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022] Open
Abstract
Synthesis of 5-aminolevulinic acid (ALA) is the rate-limiting step in tetrapyrrole biosynthesis in land plants. In photosynthetic eukaryotes and many bacteria, glutamyl-tRNA reductase (GluTR) is the most tightly controlled enzyme upstream of ALA. Higher plants possess two GluTR isoforms: GluTR1 is predominantly expressed in green tissue, and GluTR2 is constitutively expressed in all organs. Although proposed long time ago, the molecular mechanism of heme-dependent inhibition of GluTR in planta has remained elusive. Here, we report that accumulation of heme, induced by feeding with ALA, stimulates Clp-protease-dependent degradation of Arabidopsis GluTR1. We demonstrate that binding of heme to the GluTR-binding protein (GBP) inhibits interaction of GBP with the N-terminal regulatory domain of GluTR1, thus making it accessible to the Clp protease. The results presented uncover a functional link between heme content and the post-translational control of GluTR stability, which helps to ensure adequate availability of chlorophyll and heme.
Collapse
Affiliation(s)
- Andreas S Richter
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claudia Banse
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
5
|
Wang X, Huang R, Quan R. Mutation in Mg-Protoporphyrin IX Monomethyl Ester Cyclase Decreases Photosynthesis Capacity in Rice. PLoS One 2017; 12:e0171118. [PMID: 28129387 PMCID: PMC5271374 DOI: 10.1371/journal.pone.0171118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 01/15/2017] [Indexed: 01/07/2023] Open
Abstract
In photosynthesis, the pigments chlorophyll a/b absorb light energy to convert to chemical energy in chloroplasts. Though most enzymes of chlorophyll biosynthesis from glutamyl-tRNA to chlorophyll a/b have been identified, the exact composition and regulation of the multimeric enzyme Mg-protoporphyrin IX monomethyl ester cyclase (MPEC) is largely unknown. In this study, we isolated a rice pale-green leaf mutant m167 with yellow-green leaf phenotype across the whole lifespan. Chlorophyll content decreases 43-51% and the granal stacks of chloroplasts becomes thinner in m167. Chlorophyll fluorescence parameters, including Fv/Fm (the maximum quantum efficiency of PSII) and quantum yield of PSII (Y(II)), were lower in m167 than those in wild type plants (WT), and photosynthesis rate decreases 40% in leaves of m167 mutant compared with WT plants, which lead to yield reduction in m167. Genetic analysis revealed that yellow-green leaf phenotype of m167 is controlled by a single recessive genetic locus. By positional cloning, a single mutated locus, G286A (Alanine 96 to Threonine in protein), was found in the coding sequence of LOC_Os01g17170 (Rice Copper Response Defect 1, OsCRD1), encoding a putative subunit of MPEC. Expression profile analysis demonstrated that OsCRD1 is mainly expressed in green tissues of rice. Sequence alignment analysis of CRD1 indicated that Alanine 96 is very conserved in all green plants and photosynthetic bacteria. OsCRD1 protein mainly locates in chloroplast and the point mutation A96T in OsCRD1 does not change its location. Therefore, Alanine96 of OsCRD1 might be fundamental for MPEC activity, mutation of which leads to deficiency in chlorophyll biosynthesis and chloroplast development and decreases photosynthetic capacity in rice.
Collapse
Affiliation(s)
- Xuexia Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Ruidang Quan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
- * E-mail:
| |
Collapse
|
6
|
Apitz J, Nishimura K, Schmied J, Wolf A, Hedtke B, van Wijk KJ, Grimm B. Posttranslational Control of ALA Synthesis Includes GluTR Degradation by Clp Protease and Stabilization by GluTR-Binding Protein. PLANT PHYSIOLOGY 2016; 170:2040-51. [PMID: 26884485 PMCID: PMC4825132 DOI: 10.1104/pp.15.01945] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/13/2016] [Indexed: 05/20/2023]
Abstract
5-Aminolevulinic acid (ALA) is the first committed substrate of tetrapyrrole biosynthesis and is formed from glutamyl-tRNA by two enzymatic steps. Glutamyl-tRNA reductase (GluTR) as the first enzyme of ALA synthesis is encoded by HEMA genes and tightly regulated at the transcriptional and posttranslational levels. Here, we show that the caseinolytic protease (Clp) substrate adaptor ClpS1 and the ClpC1 chaperone as well as the GluTR-binding protein (GBP) interact with the N terminus of GluTR Loss-of function mutants of ClpR2 and ClpC1 proteins show increased GluTR stability, whereas absence of GBP results in decreased GluTR stability. Thus, the Clp protease system and GBP contribute to GluTR accumulation levels, and thereby the rate-limiting ALA synthesis. These findings are supported with Arabidopsis (Arabidopsis thaliana) hema1 mutants expressing a truncated GluTR lacking the 29 N-terminal amino acid residues of the mature protein. Accumulation of this truncated GluTR is higher in dark periods, resulting in increased protochlorophyllide content. It is proposed that the proteolytic activity of Clp protease counteracts GBP binding to assure the appropriate content of GluTR and the adequate ALA synthesis for chlorophyll and heme in higher plants.
Collapse
Affiliation(s)
- Janina Apitz
- Department of Plant Physiology, Humboldt University Berlin, 10115 Berlin, Germany (J.A., J.S., A.W., B.H., B.G.); andSchool of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York 14853 (K.N., K.J.v.W.)
| | - Kenji Nishimura
- Department of Plant Physiology, Humboldt University Berlin, 10115 Berlin, Germany (J.A., J.S., A.W., B.H., B.G.); andSchool of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York 14853 (K.N., K.J.v.W.)
| | - Judith Schmied
- Department of Plant Physiology, Humboldt University Berlin, 10115 Berlin, Germany (J.A., J.S., A.W., B.H., B.G.); andSchool of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York 14853 (K.N., K.J.v.W.)
| | - Anja Wolf
- Department of Plant Physiology, Humboldt University Berlin, 10115 Berlin, Germany (J.A., J.S., A.W., B.H., B.G.); andSchool of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York 14853 (K.N., K.J.v.W.)
| | - Boris Hedtke
- Department of Plant Physiology, Humboldt University Berlin, 10115 Berlin, Germany (J.A., J.S., A.W., B.H., B.G.); andSchool of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York 14853 (K.N., K.J.v.W.)
| | - Klaas J van Wijk
- Department of Plant Physiology, Humboldt University Berlin, 10115 Berlin, Germany (J.A., J.S., A.W., B.H., B.G.); andSchool of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York 14853 (K.N., K.J.v.W.)
| | - Bernhard Grimm
- Department of Plant Physiology, Humboldt University Berlin, 10115 Berlin, Germany (J.A., J.S., A.W., B.H., B.G.); andSchool of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York 14853 (K.N., K.J.v.W.)
| |
Collapse
|
7
|
González A, Bes MT, Valladares A, Peleato ML, Fillat MF. FurA is the master regulator of iron homeostasis and modulates the expression of tetrapyrrole biosynthesis genes inAnabaenasp. PCC 7120. Environ Microbiol 2012; 14:3175-87. [DOI: 10.1111/j.1462-2920.2012.02897.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/06/2012] [Accepted: 09/09/2012] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Ana Valladares
- Instituto de Bioquímica Vegetal y Fotosíntesis; Centro de Investigaciones Científicas Isla de la Cartuja; CSIC-Universidad de Sevilla; E-41092; Seville; Spain
| | | | | |
Collapse
|
8
|
Espinas NA, Kobayashi K, Takahashi S, Mochizuki N, Masuda T. Evaluation of Unbound Free Heme in Plant Cells by Differential Acetone Extraction. ACTA ACUST UNITED AC 2012; 53:1344-54. [DOI: 10.1093/pcp/pcs067] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
Heme synthesis by plastid ferrochelatase I regulates nuclear gene expression in plants. Curr Biol 2011; 21:897-903. [PMID: 21565502 PMCID: PMC4886857 DOI: 10.1016/j.cub.2011.04.004] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/14/2011] [Accepted: 04/04/2011] [Indexed: 01/16/2023]
Abstract
Chloroplast signals regulate hundreds of nuclear genes during development and in response to stress, but little is known of the signals or signal transduction mechanisms of plastid-to-nucleus (retrograde) signaling. In Arabidopsis thaliana, genetic studies using norflurazon (NF), an inhibitor of carotenoid biosynthesis, have identified five GUN (genomes uncoupled) genes, implicating the tetrapyrrole pathway as a source of a retrograde signal. Loss of function of any of these GUN genes leads to increased expression of photosynthesis-associated nuclear genes (PhANGs) when chloroplast development has been blocked by NF. Here we present a new Arabidopsis gain-of-function mutant, gun6-1D, with a similar phenotype. The gun6-1D mutant overexpresses the conserved plastid ferrochelatase 1 (FC1, heme synthase). Genetic and biochemical experiments demonstrate that increased flux through the heme branch of the plastid tetrapyrrole biosynthetic pathway increases PhANG expression. The second conserved plant ferrochelatase, FC2, colocalizes with FC1, but FC2 activity is unable to increase PhANG expression in undeveloped plastids. These data suggest a model in which heme, specifically produced by FC1, may be used as a retrograde signal to coordinate PhANG expression with chloroplast development.
Collapse
|
10
|
Richter A, Peter E, Pörs Y, Lorenzen S, Grimm B, Czarnecki O. Rapid dark repression of 5-aminolevulinic acid synthesis in green barley leaves. PLANT & CELL PHYSIOLOGY 2010; 51:670-81. [PMID: 20375109 DOI: 10.1093/pcp/pcq047] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In photosynthetic organisms chlorophyll and heme biosynthesis is tightly regulated at various levels in response to environmental adaptation and plant development. The formation of 5-aminolevulinic acid (ALA) is the key regulatory step and provides adequate amounts of the common precursor molecule for the Mg and Fe branches of tetrapyrrole biosynthesis. Pathway control prevents accumulation of metabolic intermediates and avoids photo-oxidative damage. In angiosperms reduction of protochlorophyllide (Pchlide) to chlorophyllide is catalyzed by the light-dependent NADPH:Pchlide oxidoreductase (POR). Although a correlation between down-regulated ALA synthesis and accumulation of Pchlide in the dark was proposed a long time ago, the time-resolved mutual dependency has never been analyzed. Taking advantage of the high metabolic activity of young barley (Hordeum vulgare L.) seedlings, in planta ALA synthesis could be determined with high time-resolution. ALA formation declined immediately after transition from light to dark and correlated with an immediate accumulation of POR-bound Pchlide within the first 60 min in darkness. The flu homologous barley mutant tigrina d(12) uncouples ALA synthesis from dark-suppression and continued to form ALA in darkness without a significant change in synthesis rate in this time interval. Similarly, inhibition of protoporphyrinogen IX oxidase by acifluorfen resulted in a delayed accumulation of Pchlide during the entire dark period and a weak repression of ALA synthesis in darkness. Moreover, it is demonstrated that dark repression of ALA formation relies rather on rapid post-translational regulation in response to accumulating Pchlide than on changes in nuclear gene expression.
Collapse
Affiliation(s)
- Andreas Richter
- Humboldt University Berlin, Institute of Biology, Department of Plant Physiology, Unter den Linden 6, D-10099 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Kolossov VL, Rebeiz CA. Chapter 2 Evidence for Various 4-Vinyl Reductase Activities in Higher Plants. THE CHLOROPLAST 2010. [DOI: 10.1007/978-90-481-8531-3_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
Aarti D, Tanaka R, Ito H, Tanaka A. High light inhibits chlorophyll biosynthesis at the level of 5-aminolevulinate synthesis during de-etiolation in cucumber (Cucumis sativus) cotyledons. Photochem Photobiol 2007; 83:171-6. [PMID: 16922603 DOI: 10.1562/2006-03-06-ra-835] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Using the vascular plant Cucumis sativus (cucumber) as a model, we studied the effects of high (intense and excess) light upon chlorophyll biosynthesis during de-etiolation. When illuminated with high light (1500-1600 microE/m2/s), etiolated cucumber cotyledons failed to synthesize chlorophyll entirely. However, upon transfer to low light conditions (40-45 microE/m2/s), chlorophyll biosynthesis and subsequent accumulation resumed following an initial 2-12 h delay. Duration of high light treatment negatively correlated with chlorophyll biosynthetic activity. Specifically, we found that high light severely inhibited 5-aminolevulinic acid (ALA) synthesis. This effect partly could be because of the decrease in protein level of glutamyl-tRNA reductase (GluTR) observed. Protein level of glutamate-1-semialdehyde (GSA-AT) remained unchanged. It was also found that high light did not suppress HEMA 1 expression. Therefore, we speculated that this significant inhibition of ALA synthesis might have occurred mainly because of concomitant inactivation of GluTR and/or inhibition of complex formation between GluTR and GSA-AT. Our further observation that both methyl viologen and rose bengal similarly inhibit ALA synthesis under low light conditions suggested that reactive oxygen species (ROS) could be responsible for the inhibition of ALA synthesis in cotyledons exposed to high light conditions.
Collapse
Affiliation(s)
- D Aarti
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
13
|
|
14
|
Granick S, Beale SI. Hemes, chlorophylls, and related compounds: biosynthesis and metabolic regulation. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 46:33-203. [PMID: 345768 DOI: 10.1002/9780470122914.ch2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Yaronskaya E, Vershilovskaya I, Poers Y, Alawady AE, Averina N, Grimm B. Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. PLANTA 2006; 224:700-9. [PMID: 16506064 DOI: 10.1007/s00425-006-0249-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 02/06/2006] [Indexed: 05/06/2023]
Abstract
Cytokinin promotes morphological and physiological processes including the tetrapyrrole biosynthetic pathway during plant development. Only a few steps of chlorophyll (Chl) biosynthesis, exerting the phytohormonal influence, have been individually examined. We performed a comprehensive survey of cytokinin action on the regulation of tetrapyrrole biosynthesis with etiolated and greening barley seedlings. Protein contents, enzyme activities and tetrapyrrole metabolites were analyzed for highly regulated metabolic steps including those of 5-aminolevulinic acid (ALA) biosynthesis and enzymes at the branch point for protoporphyrin IX distribution to Chl and heme. Although levels of the two enzymes of ALA synthesis, glutamyl-tRNA reductase and glutamate 1-semialdehyde aminotransferase, were elevated in dark grown kinetin-treated barley seedlings, the ALA synthesis rate was only significantly enhanced when plant were exposed to light. While cytokinin do not stimulatorily affect Fe-chelatase activity and heme content, it promotes activities of the first enzymes in the Mg branch, Mg protoporphyrin IX chelatase and Mg protoporphyrin IX methyltransferase, in etiolated seedlings up to the first 5 h of light exposure in comparison to control. This elevated activities result in stimulated Chl biosynthesis, which again parallels with enhanced photosynthetic activities indicated by the photosynthetic parameters F(V)/F(M), J (CO2max) and J (CO2) in the kinetin-treated greening seedlings during the first hours of illumination. Thus, cytokinin-driven acceleration of the tetrapyrrole metabolism supports functioning and assembly of the photosynthetic complexes in developing chloroplasts.
Collapse
Affiliation(s)
- Elena Yaronskaya
- Institute of biophysics and cell engineering, National academy of sciences of Belarus, Akademicheskaya 27, 220072 Minsk, Belarus
| | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Nott A, Jung HS, Koussevitzky S, Chory J. Plastid-to-nucleus retrograde signaling. ANNUAL REVIEW OF PLANT BIOLOGY 2006; 57:739-59. [PMID: 16669780 DOI: 10.1146/annurev.arplant.57.032905.105310] [Citation(s) in RCA: 363] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant cells store genetic information in the genomes of three organelles: the nucleus, plastid, and mitochondrion. The nucleus controls most aspects of organelle gene expression, development, and function. In return, organelles send signals to the nucleus to control nuclear gene expression, a process called retrograde signaling. This review summarizes our current understanding of plastid-to-nucleus retrograde signaling, which involves multiple, partially redundant signaling pathways. The best studied is a pathway that is triggered by buildup of Mg-ProtoporphyrinIX, the first intermediate in the chlorophyll branch of the tetrapyrrole biosynthetic pathway. In addition, there is evidence for a plastid gene expression-dependent pathway, as well as a third pathway that is dependent on the redox state of photosynthetic electron transport components. Although genetic studies have identified several players involved in signal generation, very little is known of the signaling components or transcription factors that regulate the expression of hundreds of nuclear genes.
Collapse
Affiliation(s)
- Ajit Nott
- Plant Biology Laboratory and Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | | | | | |
Collapse
|
18
|
|
19
|
Goslings D, Meskauskiene R, Kim C, Lee KP, Nater M, Apel K. Concurrent interactions of heme and FLU with Glu tRNA reductase (HEMA1), the target of metabolic feedback inhibition of tetrapyrrole biosynthesis, in dark- and light-grown Arabidopsis plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:957-67. [PMID: 15584960 DOI: 10.1111/j.1365-313x.2004.02262.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The regulation of tetrapyrrole biosynthesis in higher plants has been attributed to metabolic feedback inhibition of Glu tRNA reductase by heme. Recently, another negative regulator of tetrapyrrole biosynthesis has been discovered, the FLU protein. During an extensive second site screen of mutagenized flu seedlings a suppressor of flu, ulf3, was identified that is allelic to hy1 and encodes a heme oxygenase. Increased levels of heme in the hy1 mutant have been implicated with inhibiting Glu tRNA reductase and suppressing the synthesis of delta-aminolevulinic acid (ALA) and Pchlide accumulation. When combined with hy1 or ulf3 upregulation of ALA synthesis and overaccumulation of protochlorophyllide in the flu mutants were severely suppressed supporting the notion that heme antagonizes the effect of the flu mutation by inhibiting Glu tRNA reductase independently of FLU. The coiled-coil domain at the C-terminal end of Glu tRNA reductase interacts with FLU, whereas the N-terminal site of Glu tRNA reductase that is necessary for the inhibition of the enzyme by heme is not required for this interaction. The interaction with FLU is specific for the Glu tRNA reductase encoded by HEMA1 that is expressed in photosynthetically active tissues. FLU seems to be part of a second regulatory circuit that controls chlorophyll biosynthesis by interacting directly with Glu tRNA reductase not only in etiolated seedlings but also in light-adapted green plants.
Collapse
Affiliation(s)
- David Goslings
- Institute of Plant Sciences, Plant Genetics, Swiss Federal Institute of Technology (ETH), Universitästr. 2, CH-8092 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
20
|
Lee KP, Kim C, Lee DW, Apel K. TIGRINA d, required for regulating the biosynthesis of tetrapyrroles in barley, is an ortholog of the FLU gene of Arabidopsis thaliana. FEBS Lett 2003; 553:119-24. [PMID: 14550558 DOI: 10.1016/s0014-5793(03)00983-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Regulation of tetrapyrrole biosynthesis in higher plants has been attributed to negative feedback control of steps prior to delta-aminolevulinic acid (ALA) formation. One of the first mutants with a defect in this control had been identified in barley. The tigrina (tig) d mutant accumulates 10-15-fold higher amounts of protochlorophyllide than wild type, when grown in the dark. The identity of the TIGRINA d protein and its mode of action are not known yet. Initially this protein had been proposed to act as a repressor of genes that encode enzymes involved in early steps of ALA formation, but subsequent attempts to confirm this experimentally failed. Here we demonstrate that the TIGRINA d gene of barley is an ortholog of the FLU gene of Arabidopsis thaliana. The FLU protein is a nuclear-encoded plastid protein that plays a key role in negative feedback control of chlorophyll biosynthesis in higher plants. Sequencing of the FLU gene of barley revealed a frame shift mutation in the FLU gene of the tig d mutant that results in the loss of two tetratricopeptide repeats that in the FLU protein of Arabidopsis are essential for its biological activity. This mutation cosegregates strictly with the tigrina phenotype within the F1 population of a heterozygous tig d mutant, thus providing additional support for the flu gene being responsible for the tigrina phenotype of barley.
Collapse
Affiliation(s)
- Keun Pyo Lee
- Institute of Plant Sciences, Plant Genetics, Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland
| | | | | | | |
Collapse
|
21
|
Franklin KA, Linley PJ, Montgomery BL, Lagarias JC, Thomas B, Jackson SD, Terry MJ. Misregulation of tetrapyrrole biosynthesis in transgenic tobacco seedlings expressing mammalian biliverdin reductase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:717-28. [PMID: 12969425 DOI: 10.1046/j.1365-313x.2003.01840.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Previous studies have established that the expression of mammalian biliverdin IXalpha reductase (BVR) in transgenic tobacco (Nicotiana tabacum cv. Maryland Mammoth) resulted in the loss of photoregulatory activity of all phytochromes together with a pronounced chlorophyll deficiency. This study was undertaken to assess the contribution of BVR-mediated alteration of tetrapyrrole metabolism to the observed phenotypes of BVR transgenic plants. BVR expression in dark-grown plants led to the reduced accumulation of protochlorophyllide and transcripts for the two committed enzymes for 5-aminolevulinic acid (ALA) synthesis despite the marked increased capacity for synthesis of ALA. Together with the observation that Mg-porphyrin accumulation in dark-grown seedlings treated with an iron chelator was unaffected by BVR expression, these results indicate that BVR diverts tetrapyrrole metabolism toward heme synthesis while also reducing heme levels to de-repress ALA synthesis. By contrast with dark-grown seedlings, light-grown BVR plants showed a marked inhibition of ALA synthesis compared with wild-type plants - a result that was correlated with the disappearance of the CHL I subunit of Mg-chelatase and an increase in heme oxygenase protein levels. As transcript levels of all tetrapyrrole biosynthetic genes tested were not strongly affected by BVR expression, these results implicate misregulated tetrapyrrole metabolism to be a major mechanism for BVR-dependent inhibition of chlorophyll biosynthesis in light-grown plants.
Collapse
Affiliation(s)
- Keara A Franklin
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | | | | | | | | | | | |
Collapse
|
22
|
Yaronskaya E, Ziemann V, Walter G, Averina N, Börner T, Grimm B. Metabolic control of the tetrapyrrole biosynthetic pathway for porphyrin distribution in the barley mutant albostrians. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:512-522. [PMID: 12904213 DOI: 10.1046/j.1365-313x.2003.01825.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The barley line albostrians exhibits a severe block in chloroplast development as a result of a mutationally induced lack of plastid ribosomes. White leaves of this mutant contain undifferentiated plastids, possess only traces of chlorophyll (Chl), and are photosynthetically inactive. Chl deficiency, combined with a continuous heme requirement, should lead to drastic changes in the tetrapyrrole metabolism in white versus green leaves. We analyzed the extent to which the synthesis rate of the pathway and the porphyrin distribution toward the Chl- and heme-synthesizing bifurcation is altered in the white tissue of albostrians. Expression and activity of several distinctively regulated enzymes, such as glutamyl-tRNAglu reductase, glutamate 1-semialdehyde aminotransferase, Mg- and Fe-chelatase, and Chl synthetase, were altered in white mutant leaves in comparison to control leaves. A drastic loss in the rate-limiting formation of 5-aminolevulinate and in the Mg-chelatase and Mg-protoporphyrin IX methyltransferase activity, as well as an increase in Fe-chelatase activity, accounts for a decrease in the metabolic flux and the re-direction of metabolites. It is proposed that the tightly balanced control of activities in the pathway functions by different metabolic feedback loops and in response to developmental state and physiological requirements. This data supports the idea that the initial steps of Mg-porphyrin synthesis contribute to plastid-derived signaling toward the nucleus. The barley mutant albostrians proved to be a valuable system for studying regulation of tetrapyrrole biosynthesis and their involvement in the bi-directional communication between plastids and nucleus.
Collapse
Affiliation(s)
- Elena Yaronskaya
- Institut für Biologie/Pflanzenphysiologie, Humboldt Universität, 10155 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Cornah JE, Terry MJ, Smith AG. Green or red: what stops the traffic in the tetrapyrrole pathway? TRENDS IN PLANT SCIENCE 2003; 8:224-30. [PMID: 12758040 DOI: 10.1016/s1360-1385(03)00064-5] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Regulation of tetrapyrrole biosynthesis is crucial to plant metabolism. The two pivotal control points are formation of the initial precursor, 5-aminolaevulinic acid (ALA), and the metal-ion insertion step: chelation of Fe(2+) into protoporphyrin IX leads to haem and phytochromobilin, whereas insertion of Mg(2+) is the first step to chlorophyll. Recent studies with mutants and transgenic plants have demonstrated that perturbation of the branch point affects ALA formation. Moreover, one of the signals that controls the expression of genes for nuclear-encoded chloroplast proteins has been shown to be Mg-protoporphyrin-IX. Here, we discuss the regulation of branch-point flux and the relative contributions of the haem and chlorophyll branches to the regulation of ALA synthesis and thus to flow through the tetrapyrrole pathway.
Collapse
Affiliation(s)
- Johanna E Cornah
- Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh, Scotland, UK EH9 3JR
| | | | | |
Collapse
|
24
|
Meskauskiene R, Apel K. Interaction of FLU, a negative regulator of tetrapyrrole biosynthesis, with the glutamyl-tRNA reductase requires the tetratricopeptide repeat domain of FLU. FEBS Lett 2002; 532:27-30. [PMID: 12459457 DOI: 10.1016/s0014-5793(02)03617-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Regulation of tetrapyrrole biosynthesis in plants has been attributed to feedback control of glutamyl-tRNA reductase (GLU-TR) by heme. Recently, another negative regulator, the FLU protein, has been discovered that operates independently of heme. A truncated form of FLU that contains two domains implicated in protein-protein interaction was co-expressed in yeast with either GLU-TR or glutamate-1-semialdehyde-2-1-aminotransferase (GSA-AT), the second enzyme involved in delta-aminolevulinic acid (ALA) biosynthesis. FLU interacts strongly with GLU-TR but not with GSA-AT. Two variants of FLU that carry single amino acid exchanges within their coiled coil and tetratricopeptide repeat (TPR) domains, respectively, were also tested. Only the FLU variant with the mutated TPR motif lost the capacity to interact with GLU-TR.
Collapse
Affiliation(s)
- Rasa Meskauskiene
- Institute of Plant Sciences, Swiss Federal Institute of Technology (ETH), Universitätstr. 2, 8092 Zürich, Switzerland
| | | |
Collapse
|
25
|
Brusslan JA, Peterson MP. Tetrapyrrole regulation of nuclear gene expression. PHOTOSYNTHESIS RESEARCH 2002; 71:185-94. [PMID: 16228131 DOI: 10.1023/a:1015539109209] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Tetrapyrroles are the structural backbone of chlorophyll and heme, and are essential for primary photochemistry, light harvesting, and electron transport. The biochemistry of their synthesis has been studied extensively, and it has been suggested that some of the tetrapyrrole biochemical intermediates can affect nuclear gene expression. In this review, tetrapyrrole biosynthesis, which occurs in the chloroplast, and its regulation will be covered. An analysis of the intracellular location of tetrapyrrole intermediates will also be included. The focus will be on tetrapyrrole intermediates that have been suggested to affect gene expression. These include Mg-protoporphyrin IX and Mg-protoporphyrin IX monomethyl ester. Recent evidence also suggests a specific signaling role for the H subunit of Mg-chelatase, an enzyme that catalyzes the insertion of Mg into the tetrapyrrole ring. Since gene expression studies have been done in plants and green algae, our discussion will be limited to these organisms.
Collapse
Affiliation(s)
- Judy A Brusslan
- Department of Biological Sciences, California State University, Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840-3702, USA,
| | | |
Collapse
|
26
|
The synthesis of magnesium and zinc protoporphyrin IX and their monomethyl esters in etioplast preparations studied by high pressure liquid chromatography. FEBS Lett 2001. [DOI: 10.1016/0014-5793(80)80646-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Meskauskiene R, Nater M, Goslings D, Kessler F, op den Camp R, Apel K. FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2001; 98:12826-31. [PMID: 11606728 PMCID: PMC60138 DOI: 10.1073/pnas.221252798] [Citation(s) in RCA: 416] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tetrapyrroles such as chlorophylls and bacteriochlorophylls play a fundamental role in the energy absorption and transduction activities of photosynthetic organisms. Because of these molecules, however, photosynthetic organisms are also prone to photooxidative damage. They had to evolve highly efficient strategies to control tetrapyrrole biosynthesis and to prevent the accumulation of free intermediates that potentially are extremely destructive when illuminated. In higher plants, the metabolic flow of tetrapyrrole biosynthesis is regulated at the step of delta-aminolevulinic acid synthesis. This regulation previously has been attributed to feedback control of Glu tRNA reductase, the first enzyme committed to tetrapyrrole biosynthesis, by heme. With the recent discovery of chlorophyll intermediates acting as signals that control both nuclear gene activities and tetrapyrrole biosynthesis, it seems likely that heme is not the only regulator of this pathway. A genetic approach was used to identify additional factors involved in the control of tetrapyrrole biosynthesis. In Arabidopsis thaliana, we have found a negative regulator of tetrapyrrole biosynthesis, FLU, which operates independently of heme and seems to selectively affect only the Mg(2+) branch of tetrapyrrole biosynthesis. The identity of this protein was established by map-based cloning and sequencing the FLU gene. FLU is a nuclear-encoded plastid protein that, after import and processing, becomes tightly associated with plastid membranes. It is unrelated to any of the enzymes known to be involved in tetrapyrrole biosynthesis. Its predicted features suggest that FLU mediates its regulatory effect through interaction with enzymes involved in chlorophyll synthesis.
Collapse
Affiliation(s)
- R Meskauskiene
- Institute of Plant Sciences, Swiss Federal Institute of Technology (ETH), CH-8092 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
28
|
Iwamoto K, Fukuda H, Sugiyama M. Elimination of POR expression correlates with red leaf formation in Amaranthus tricolor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 27:275-84. [PMID: 11532173 DOI: 10.1046/j.1365-313x.2001.01082.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Amaranthus tricolor L. tricolor cv. Earlysplendor, an ornamental amaranth, generates red leaves instead of green leaves in late summer to early autumn. Red leaf formation was promoted under short-day conditions and delayed by night-break treatments. Red leaves were characterized by lower levels of chlorophyll accumulation rather than higher levels of red pigment (betacyanin) accumulation. However, the metabolic activity toward the production of Mg-protoporphyrin, an intermediate in the biosynthesis pathway for chlorophyll, was detected in red leaves as well as in green leaves. RNA gel blot analysis was performed to assess the expression of nine genes encoding eight enzymes involved in chlorophyll biosynthesis. Among these enzymes, red-leaf-specific reduction of gene expression was observed only for NADPH-protochlorophyllide oxidoreductase (POR), a key enzyme catalyzing a later step of chlorophyll biosynthesis. In addition, immunoblot analysis showed no accumulation of POR protein(s) in red leaves. These data indicate that the repression of POR gene expression and resultant loss of chlorophyll synthesis activity plays a role in red leaf formation of A. tricolor.
Collapse
Affiliation(s)
- K Iwamoto
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
29
|
Mochizuki N, Brusslan JA, Larkin R, Nagatani A, Chory J. Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci U S A 2001; 98:2053-8. [PMID: 11172074 PMCID: PMC29380 DOI: 10.1073/pnas.98.4.2053] [Citation(s) in RCA: 472] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A plastid-derived signal plays an important role in the coordinated expression of both nuclear- and chloroplast-localized genes that encode photosynthesis-related proteins. Arabidopsis GUN (genomes uncoupled) loci have been identified as components of plastid-to-nucleus signal transduction. Unlike wild-type plants, gun mutants have nuclear Lhcb1 expression in the absence of chloroplast development. We observed a synergistic phenotype in some gun double-mutant combinations, suggesting there are at least two independent pathways in plastid-to-nucleus signal transduction. There is a reduction of chlorophyll accumulation in gun4 and gun5 mutant plants, and a gun4gun5 double mutant shows an albino phenotype. We cloned the GUN5 gene, which encodes the ChlH subunit of Mg-chelatase. We also show that gun2 and gun3 are alleles of the known photomorphogenic mutants, hy1 and hy2, which are required for phytochromobilin synthesis from heme. These findings suggest that certain perturbations of the tetrapyrrole biosynthetic pathway generate a signal from chloroplasts that causes transcriptional repression of nuclear genes encoding plastid-localized proteins. The comparison of mutant phenotypes of gun5 and another Mg-chelatase subunit (ChlI) mutant suggests a specific function for ChlH protein in the plastid-signaling pathway.
Collapse
Affiliation(s)
- N Mochizuki
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan.
| | | | | | | | | |
Collapse
|
30
|
Mochizuki N, Brusslan JA, Larkin R, Nagatani A, Chory J. Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci U S A 2001. [PMID: 11172074 DOI: 10.1073/pnas.98.4.205398/4/2053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
A plastid-derived signal plays an important role in the coordinated expression of both nuclear- and chloroplast-localized genes that encode photosynthesis-related proteins. Arabidopsis GUN (genomes uncoupled) loci have been identified as components of plastid-to-nucleus signal transduction. Unlike wild-type plants, gun mutants have nuclear Lhcb1 expression in the absence of chloroplast development. We observed a synergistic phenotype in some gun double-mutant combinations, suggesting there are at least two independent pathways in plastid-to-nucleus signal transduction. There is a reduction of chlorophyll accumulation in gun4 and gun5 mutant plants, and a gun4gun5 double mutant shows an albino phenotype. We cloned the GUN5 gene, which encodes the ChlH subunit of Mg-chelatase. We also show that gun2 and gun3 are alleles of the known photomorphogenic mutants, hy1 and hy2, which are required for phytochromobilin synthesis from heme. These findings suggest that certain perturbations of the tetrapyrrole biosynthetic pathway generate a signal from chloroplasts that causes transcriptional repression of nuclear genes encoding plastid-localized proteins. The comparison of mutant phenotypes of gun5 and another Mg-chelatase subunit (ChlI) mutant suggests a specific function for ChlH protein in the plastid-signaling pathway.
Collapse
Affiliation(s)
- N Mochizuki
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan.
| | | | | | | | | |
Collapse
|
31
|
Kumar AM, Söll D. Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in arabidopsis. PLANT PHYSIOLOGY 2000; 122:49-56. [PMID: 10631248 PMCID: PMC58843 DOI: 10.1104/pp.122.1.49] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/1999] [Accepted: 09/23/1999] [Indexed: 05/20/2023]
Abstract
5-aminolevulinic acid (ALA) is a precursor in the biosynthesis of tetrapyrroles including chlorophylls and heme. The formation of ALA involves two enzymatic steps which take place in the chloroplast in plants. The first enzyme, glutamyl-tRNA reductase, and the second enzyme, glutamate-1-semialdehyde-2,1-aminomutase, are encoded by the nuclear HEMA and GSA genes, respectively. To assess the significance of the HEMA gene for chlorophyll and heme synthesis, transgenic Arabidopsis plants that expressed antisense HEMA1 mRNA from the constitutive cauliflower mosaic virus 35S promoter were generated. These plants exhibited varying degrees of chlorophyll deficiency, ranging from patchy yellow to total yellow. Analysis indicated that these plants had decreased levels of chlorophyll, non-covalently bound hemes, and ALA; their levels were proportional to the level of glutamyl-tRNA reductase expression and were inversely related to the levels of antisense HEMA transcripts. Plants that lacked chlorophyll failed to survive under normal growth conditions, indicating that HEMA gene expression is essential for growth.
Collapse
Affiliation(s)
- A M Kumar
- Department of Molecular Biophysics and Biochemistry, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8114, USA
| | | |
Collapse
|
32
|
Masuda T, Inoue K, Masuda M, Nagayama M, Tamaki A, Ohta H, Shimada H, Takamiya K. Magnesium insertion by magnesium chelatase in the biosynthesis of zinc bacteriochlorophyll a in an aerobic acidophilic bacterium Acidiphilium rubrum. J Biol Chem 1999; 274:33594-600. [PMID: 10559247 DOI: 10.1074/jbc.274.47.33594] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To elucidate the mechanism for formation of zinc-containing bacteriochlorophyll a in the photosynthetic bacterium Acidiphilium rubrum, we isolated homologs of magnesium chelatase subunits (bchI, -D, and -H). A. rubrum bchI and -H were encoded by single genes located on the clusters bchP-orf168-bchI-bchD-orf320-crtI and bchF-N-B-H-L as in Rhodobacter capsulatus, respectively. The deduced sequences of A. rubrum bchI, -D, and -H had overall identities of 59. 8, 40.5, and 50.7% to those from Rba. capsulatus, respectively. When these genes were introduced into bchI, bchD, and bchH mutants of Rba. capsulatus for functional complementation, all mutants were complemented with concomitant synthesis of bacteriochlorophyll a. Analyses of bacteriochlorophyll intermediates showed that A. rubrum cells accumulate magnesium protoporphyrin IX monomethyl ester without detectable accumulation of zinc protoporphyrin IX or its monomethyl ester. These results indicate that a single set of magnesium chelatase homologs in A. rubrum catalyzes the insertion of only Mg(2+) into protoporphyrin IX to yield magnesium protoporphyrin IX monomethyl ester. Consequently, it is most likely that zinc-containing bacteriochlorophyll a is formed by a substitution of Zn(2+) for Mg(2+) at a step in the bacteriochlorophyll biosynthesis after formation of magnesium protoporphyrin IX monomethyl ester.
Collapse
Affiliation(s)
- T Masuda
- Department of Biological Sciences, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Toneva V, Denev I, Jahoubjan G, Minkov I. Photooxidative Stress in Higher Plants. BOOKS IN SOILS, PLANTS, AND THE ENVIRONMENT 1999. [DOI: 10.1201/9780824746728.ch22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Terry MJ, Kendrick RE. Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato. PLANT PHYSIOLOGY 1999; 119:143-52. [PMID: 9880355 PMCID: PMC32213 DOI: 10.1104/pp.119.1.143] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/1998] [Accepted: 09/25/1998] [Indexed: 05/19/2023]
Abstract
The aurea (au) and yellow-green-2 (yg-2) mutants of tomato (Solanum lycopersicum L.) are unable to synthesize the linear tetrapyrrole chromophore of phytochrome, resulting in plants with a yellow-green phenotype. To understand the basis of this phenotype, we investigated the consequences of the au and yg-2 mutations on tetrapyrrole metabolism. Dark-grown seedlings of both mutants have reduced levels of protochlorophyllide (Pchlide) due to an inhibition of Pchlide synthesis. Feeding experiments with the tetrapyrrole precursor 5-aminolevulinic acid (ALA) demonstrate that the pathway between ALA and Pchlide is intact in au and yg-2 and suggest that the reduction in Pchlide is a result of the inhibition of ALA synthesis. This inhibition was independent of any deficiency in seed phytochrome, and experiments using an iron chelator to block heme synthesis demonstrated that both mutations inhibited the degradation of the physiologically active heme pool, suggesting that the reduction in Pchlide synthesis is a consequence of feedback inhibition by heme. We discuss the significance of these results in understanding the chlorophyll-deficient phenotype of the au and yg-2 mutants.
Collapse
Affiliation(s)
- MJ Terry
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton, SO16 7PX, United Kingdom (M.J.T.)
| | | |
Collapse
|
35
|
Walter G, Shalygo NV. Location and fate of protoporphyrin IX accumulated in etiolated leaves and roots of Zea mays L. and Pisum sativum L. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B: BIOLOGY 1997. [DOI: 10.1016/s1011-1344(97)00052-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Ortel B, Tanew A, Hönigsmann H. Lethal photosensitization by endogenous porphyrins of PAM cells--modification by desferrioxamine. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1993; 17:273-8. [PMID: 8492244 DOI: 10.1016/1011-1344(93)80025-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effects of exogenous delta-aminolevulinic acid (ALA) on cultured PAM 212 cells were investigated. PAM cells exposed to ALA produce an excess of products of the heme biosynthesis pathway within hours. The endogenous porphyrins render the cells photosensitive in a time-, ALA dose- and irradiation-dependent manner. Independently of the ALA-induced photosensitized processes, ALA itself reduces the proliferation rate of PAM cells during the exponential growth phase. Iron deprivation by addition of the chelating agent desferrioxamine (df) accelerates the photosensitizing process, and thus makes it more efficient at lower ALA concentrations. The effects of df were compared with the effects of manganese-df and iron-df. The results indicate that iron trapping is the most important factor for the potentiation of ALA-stimulated photodynamic sensitization as well as for the dark toxicity. Iron complexing agents may thus be used to optimize ALA effects in the photodynamic treatment of cutaneous neoplasms with endogenous porphyrins.
Collapse
Affiliation(s)
- B Ortel
- Division of Special and Environmental Dermatology I, University of Vienna, School of Medicine, Austria
| | | | | |
Collapse
|
37
|
Adekenov SM, Vasin YA, Kalashnikova TS, Samsonova AN. Sesquiterpene lactones as stimulators of photodynamically active porphyrins. Chem Nat Compd 1992. [DOI: 10.1007/bf00630428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Walker CJ, Weinstein JD. Further characterization of the magnesium chelatase in isolated developing cucumber chloroplasts : substrate specificity, regulation, intactness, and ATP requirements. PLANT PHYSIOLOGY 1991; 95:1189-96. [PMID: 16668110 PMCID: PMC1077671 DOI: 10.1104/pp.95.4.1189] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Mg-chelatase catalyzes the first step unique to the chlorophyll branch of tetrapyrrole biosynthesis, namely the insertion of Mg into protoporphyrin IX (Proto). Mg-chelatase was assayed in intact chloroplasts from semi-green cucumber (Cucumis sativus, cv Sumter) cotyledons. In the presence of Proto and MgATP, enzyme activity was linear for 50 minutes. Plastid intactness was directly related to (and necessary for) Mg-chelatase activity. Uncouplers and ionophores did not inhibit Mg-Chelatase in the presence of ATP. The nonhydrolyzable ATP analogs, beta,gamma-methylene ATP and adenylylimidodiphosphate, could not sustain Mg-chelatase activity alone and were inhibitory in the presence of ATP (I(50) 10 and 3 millimolar, respectively). Mg-chelatase was also inhibited by N-ethylmaleimide (I(50), 50 micromolar) and the metal ion chelators 2,2'-dipyridyl and 1, 10 phenanthroline (but not to the same degree by their nonchelating analogs). In addition to Proto, the following porphyrins acted as Mg-chelatase substrates, giving comparable specific activities: deuteroporphyrin, mesoporphyrin, 2-ethyl, 4-vinyl Proto and 2-vinyl, 4-ethyl Proto. Mg-chelatase activity and freely exchangeable heme levels increased steadily with greening, reaching a maximum and leveling off after 15 hours in the light. Exogenous protochlorophyllide, chlorophyllide, heme, and Mg-Proto had no measurable effect on Mg-chelatase activity. The potent ferrochelatase inhibitors, N-methylmesoporphyrin and N-methylprotoporphyrin, inhibited Mg-chelatase at micromolar concentrations.
Collapse
Affiliation(s)
- C J Walker
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634-1903
| | | |
Collapse
|
39
|
Beale SI, Weinstein JD. Chapter 5 Biochemistry and regulation of photosynthetic pigment formation in plants and algae. BIOSYNTHESIS OF TETRAPYRROLES 1991. [DOI: 10.1016/s0167-7306(08)60112-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
|
41
|
Lützow M, Kleinig H. Chlorophyll-free chromoplasts from daffodil contain most of the enzymes for chlorophyll synthesis in a highly active form. Arch Biochem Biophys 1990; 277:94-100. [PMID: 2306129 DOI: 10.1016/0003-9861(90)90555-d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chromoplasts isolated from chlorophyll-free daffodil flowers utilize in vitro delta-aminolevulinic acid (ALA) as precursor for the synthesis of large amounts of at least nine different products. Their identification as intermediates of the chlorophyll biosynthetic pathway demonstrates the presence of the majority of the respective enzymes in this nongreen plastid preparation. Porphobilinogen synthase was investigated more closely and found to be similar in its properties to the corresponding enzyme from other plastid sources. Protoporphyrin IX was also accepted as a substrate by chromoplast homogenate; here, as in the case of ALA as a substrate, Mg-protoporphyrin IX monomethyl ester was the last product formed. Formation of the isocyclic chlorophyll ring was not observed.
Collapse
Affiliation(s)
- M Lützow
- Institut für Biologie II, Universität Freiburg, Federal Republic of Germany
| | | |
Collapse
|
42
|
Sanders IO, Smith AR, Hall MA. Ethylene metabolism in Pisum sativum L. PLANTA 1989; 179:104-114. [PMID: 24201428 DOI: 10.1007/bf00395777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/1989] [Accepted: 04/20/1989] [Indexed: 06/02/2023]
Abstract
The possible role of C2H4 metabolism in mediating the responses of plants to C2H4 is re-examined. It is demonstrated that (i) the effects of inhibitors upon C2H4 action do not correspond with their effects on metabolism, (ii) elicitors of C2H4 effects do not have appropriate effects on C2H4 metabolism, (iii) inhibitors of C2H4 metabolism do not affect the response of plants to C2H4. It is concluded that metabolism of C2H4 is not linked to the mode of action of the growth regulator.
Collapse
Affiliation(s)
- I O Sanders
- Department of Biological Sciences, University College of Wales, SY23 3DA, Aberystwyth, Dyfed, UK
| | | | | |
Collapse
|
43
|
Becerril JM, Duke SO. Protoporphyrin IX Content Correlates with Activity of Photobleaching Herbicides. PLANT PHYSIOLOGY 1989; 90:1175-81. [PMID: 16666869 PMCID: PMC1061861 DOI: 10.1104/pp.90.3.1175] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Several laboratories have demonstrated recently that photobleaching herbicides such as acifluorfen and oxadiazon cause accumulation of protoporphyrin IX (PPIX), a photodynamic pigment capable of herbicidal activity. We investigated, in acifluorfen-treated tissues, the in vivo stability of PPIX, the kinetics of accumulation, and the correlation between concentration of PPIX and herbicidal damage. During a 20 hour dark period, PPIX levels rose from barely detectable concentrations to 1 to 2 nanomoles per 50 cucumber (Cucumis sativus L.) cotyledon discs treated with 10 micromolar acifluorfen. When placed in 500 micromoles per square meter per second PAR, PPIX levels decayed logarithmically, with an initial half-life of about 2.5 hours. PPIX levels at each time after exposure to light correlated positively with the cellular damage that occurred during the following 1 hour in both green and yellow (tentoxin-treated) cucumber cotyledon tissues. PPIX levels in discs incubated for 20 hours in darkness correlated positively with the acifluorfen concentration in which they were incubated. In cucumber, the level of herbicidal damage caused by several p-nitrodiphenyl other herbicides, a p-chlorodiphenylether herbicide, and oxadiazon correlated positively with the amount of PPIX induced to accumulate by each of the herbicide treatments. Similar results were obtained with acifluorfen-treated pigweed and velvetleaf primary leaf tissues. In cucumber, PPIX levels increased within 15 and 30 minutes after exposure of discs to 10 micromolar acifluorfen in the dark and light, respectively. These data strengthen the view that PPIX is responsible for all or a major part of the photobleaching activity of acifluorfen and related herbicides.
Collapse
Affiliation(s)
- J M Becerril
- U.S. Department of Agriculture, Agricultural Research Service, P.O. Box 350, Stoneville, Mississippi 38776
| | | |
Collapse
|
44
|
Shimanskaya MV, Leitis LY. Plant-protection agents based on compounds of the pyridine series (review). Chem Heterocycl Compd (N Y) 1989. [DOI: 10.1007/bf00482487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Witkowski DA, Halling BP. Accumulation of photodynamic tetrapyrroles induced by acifluorfen-methyl. PLANT PHYSIOLOGY 1988; 87:632-7. [PMID: 16666198 PMCID: PMC1054811 DOI: 10.1104/pp.87.3.632] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Treatment with acifluorfen-methyl (AFM), methyl 5-(2-chloro-4-[tri-fluoromethyl] phenoxy)-2-nitrobenzoate, inhibited protochlorophyllide synthesis in dark-held, delta-amino levulinic acid-fed, excised cotyledons of cucumber (Cucumis sativus L.). Protochlorophyllide and protoporphyrin IX levels in AFM-treated cotyledons were inversely related and dependent on AFM concentration; as the herbicide dose increased, protoporphyrin IX levels also increased with a concomitant loss of protochlorophyllide. Significant protoporphyrin IX accumulation was induced by concentrations of AFM from the linear region of the membrane disruption dose response curve. The pattern of precursor accumulation seen in HPLC chromatograms from extracts of AFM-treated tissue indicate that Mg insertion into the tetrapyrrole ring is inhibited, suggesting interference with Mg-chelatase. An inhibitor of delta-amino levulinic acid synthesis, gabaculine (3-amino-2,3-dihydrobenzoic acid), completely blocked the membrane disruption activity of AFM in illuminated cotyledons. Protoporphyrin IX accumulating in AFM-treated tissues may serve as the primary photosensitizer for initiating lipid peroxidation.
Collapse
Affiliation(s)
- D A Witkowski
- FMC Corporation, Agricultural Chemical Group, Box 8, Princeton, New Jersey 08543
| | | |
Collapse
|
46
|
Matringe M, Scalla R. Studies on the mode of action of acifluorfen-methyl in nonchlorophyllous soybean cells : accumulation of tetrapyrroles. PLANT PHYSIOLOGY 1988; 86:619-22. [PMID: 16665956 PMCID: PMC1054533 DOI: 10.1104/pp.86.2.619] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Phytotoxic effects of the herbicide acifluorfen-methyl on nonchlorophyllous soybean cells were estimated by (86)Rb leakage. An action spectrum study showed maximum injury at 350 to 450 nanometers, with lesser activity between 450 and 700 nanometers. Cells treated in the dark with acifluorfen-methyl accumulated fluorescent pigments with the spectral characteristics of protoporphyrin IX. The action spectrum of acifluorfen-methyl matched the absorption spectrum of this tetrapyrrole, and the extent of cellular damage in the light was related to the degree of fluorescent pigment accumulation. We propose that the phytotoxicity of diphenyl ether herbicides could be explained by their ability to cause abnormal accumulations of tetrapyrroles, which in turn induce lethal photooxidative reactions.
Collapse
Affiliation(s)
- M Matringe
- Laboratoire des Herbicides, Institut National de la Recherche Agronomique, BV 1540, 21034 Dijon, France
| | | |
Collapse
|
47
|
Huang DD, Wang WY. Genetic control of chlorophyll biosynthesis: Regulation of delta-aminolevulinate synthesis in Chlamydomonas. ACTA ACUST UNITED AC 1986. [DOI: 10.1007/bf00430430] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Guikema JA, Freeman L, Fleming EH. Effects of Gabaculine on Pigment Biosynthesis in Normal and Nutrient Deficient Cells of Anacystis nidulans. PLANT PHYSIOLOGY 1986; 82:280-4. [PMID: 16665007 PMCID: PMC1056103 DOI: 10.1104/pp.82.1.280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Pigment biosynthesis in the cyanobacterium, Anacystis nidulans, was examined in the presence of gabaculine (5-amino-1,3-cyclohexadienyl-carboxylic acid). At 20 micromolar, this inhibitor blocked the biosynthesis of both chlorophyll and phycocyanin. Analogs of gabaculine were not effective as inhibitors of chlorophyll or phycocyanin biosynthesis. Iron- and phosphate-deficient cultures were 2- to 4-fold more sensitive to the inhibitor than were normal or nitrate-deficient cultures. Inhibition resulted in the excretion of a mixture of organic acids by the cells. delta-Aminolevulinic acid was a principle component of the mixture, identified by thin layer chromatography. Excretion of delta-aminolevulinic acid occurred following a brief lag after gabaculine addition. It remained linear for nearly 24 hours and was dependent upon illumination. However, high light inhibited excretion. Apparently, gabaculine blocks chlorophyll biosynthesis after the formation of delta-aminolevulinic acid in cyanobacteria.
Collapse
Affiliation(s)
- J A Guikema
- Department of Biology, Kansas State University, Manhattan, Kansas 66506
| | | | | |
Collapse
|
49
|
Bednarik DP, Hoober JK. Synthesis of Chlorophyllide b from Protochlorophyllide in Chlamydomonas reinhardtii y-1. Science 1985; 230:450-3. [PMID: 17816078 DOI: 10.1126/science.230.4724.450] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In cells of Chlamydomonas reinhardtii y-1 kept in the dark, 1,7-phenanthroline stimulated the conversion of protochlorophyllide to chlorophyllide b. A membrane fraction was obtained from degreened cells that was active in this conversion only when phenanthroline was present. Untreated cells excreted protochlorophyllide, which was used as substrate for this in vitro reaction. This system may provide a clue to how chlorophyllide b is synthesized in plant cells.
Collapse
|
50
|
Bednarik DP, Hoober JK. Biosynthesis of a chlorophyllide b-like pigment in phenanthroline-treated Chlamydomonas reinhardtii y-1. Arch Biochem Biophys 1985; 240:369-79. [PMID: 4015109 DOI: 10.1016/0003-9861(85)90042-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Incubation of degreened Chlamydomonas reinhardtii y-1 cells in the dark with m-phenanthroline induced de novo synthesis of a chlorophyllide b-like pigment. The rate of synthesis of this pigment in the dark was greater than that of total chlorophyll in illuminated cells. Most of the newly synthesized pigment was excreted into the culture medium. The product was extracted from the medium as the metal-free pheophorbide, which had a fluorescence excitation maximum at 428 +/- 1 nm and an emission maximum at 657 +/- 1 nm (E428F657) in ethyl acetate (E427F657 in diethyl ether). Three pheophorbide species were extracted from the medium of green cells treated in the dark, a minor component with a spectrum (E410F670) identical to demetallated chlorophyll a, and two major species with spectral values of E428F657 and E433F657. The latter, predominant form had a spectrum identical to demetallated chlorophyll b, which was purified from the algal cells. E428F657 and E433F657 reacted with hydroxylamine and Girard's T-reagent, which caused a shift in the fluorescence emission maximum to 668 nm. Pheophytin b, which contains an aldehyde group, exhibited an identical spectral shift when treated in the same way, but pheophytin a or porphyrin biosynthetic intermediates did not. Proton NMR analysis of the E428F657 chlorin produced by yellow cells treated with m-phenanthroline confirmed the presence of an aldehydic proton. Chelating and nonchelating phenanthroline analogs equally stimulated synthesis of this product.
Collapse
|