1
|
Tanaka T, Fujita M, Kusajima M, Narita F, Asami T, Maruyama-Nakashita A, Nakajima M, Nakashita H. Priming of Immune System in Tomato by Treatment with Low Concentration of L-Methionine. Int J Mol Sci 2024; 25:6315. [PMID: 38928022 PMCID: PMC11204331 DOI: 10.3390/ijms25126315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Various metabolites, including phytohormones, phytoalexins, and amino acids, take part in the plant immune system. Herein, we analyzed the effects of L-methionine (Met), a sulfur-containing amino acid, on the plant immune system in tomato. Treatment with low concentrations of Met enhanced the resistance of tomato to a broad range of diseases caused by the hemi-biotrophic bacterial pathogen Pseudomonas syringae pv. tomato (Pst) and the necrotrophic fungal pathogen Botrytis cinerea (Bc), although it did not induce the production of any antimicrobial substances against these pathogens in tomato leaf tissues. Analyses of gene expression and phytohormone accumulation indicated that Met treatment alone did not activate the defense signals mediated by salicylic acid, jasmonic acid, and ethylene. However, the salicylic acid-responsive defense gene and the jasmonic acid-responsive gene were induced more rapidly in Met-treated plants after infection with Pst and Bc, respectively. These findings suggest that low concentrations of Met have a priming effect on the phytohormone-mediated immune system in tomato.
Collapse
Affiliation(s)
- Tomoya Tanaka
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan; (T.T.); (M.F.)
| | - Moeka Fujita
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan; (T.T.); (M.F.)
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan;
| | - Miyuki Kusajima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8567, Japan; (M.K.); (T.A.)
| | - Futo Narita
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan; (T.T.); (M.F.)
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8567, Japan; (M.K.); (T.A.)
| | - Akiko Maruyama-Nakashita
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan;
| | - Masami Nakajima
- Graduate School of Agriculture, Ibaraki University, Ibaraki 300-0393, Japan;
| | - Hideo Nakashita
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan; (T.T.); (M.F.)
| |
Collapse
|
2
|
Cid GA, Francioli D, Kolb S, Tandron Moya YA, von Wirén N, Hajirezaei MR. Transcriptomic and metabolomic approaches elucidate the systemic response of wheat plants under waterlogging. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1510-1529. [PMID: 38014629 DOI: 10.1093/jxb/erad453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
Extreme weather conditions lead to significant imbalances in crop productivity, which in turn affect food security. Flooding events cause serious problems for many crop species such as wheat. Although metabolic readjustments under flooding are important for plant regeneration, underlying processes remain poorly understood. Here, we investigated the systemic response of wheat to waterlogging using metabolomics and transcriptomics. A 12 d exposure to excess water triggered nutritional imbalances and disruption of metabolite synthesis and translocation, reflected by reductions in plant biomass and growth performance. Metabolic and transcriptomic profiling in roots, xylem sap, and leaves indicated anaerobic fermentation processes as a local response in roots. Differentially expressed genes and ontological categories revealed that carbohydrate metabolism plays an important role in the systemic response. Analysis of the composition of xylem exudates revealed decreased root-to-shoot translocation of nutrients, hormones, and amino acids. Interestingly, among all metabolites measured in xylem exudates, alanine was the most abundant. Immersion of excised leaves derived from waterlogged plants in alanine solution led to increased leaf glucose concentration. Our results suggest an important role of alanine not only as an amino-nitrogen donor but also as a vehicle for carbon skeletons to produce glucose de novo and meet the energy demand during waterlogging.
Collapse
Affiliation(s)
- Geeisy Angela Cid
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Davide Francioli
- Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, Geisenheim, Germany
| | - Steffen Kolb
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | | | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | |
Collapse
|
3
|
Feng D, Wang L, Ning S, Peng D, Xu H, Sun C, Sun X. Exogenous Chemicals Used to Alleviate or Salvage Plants under Flooding/Waterlogging Stress: Their Biochemical Effects and Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:65-79. [PMID: 38135656 DOI: 10.1021/acs.jafc.3c06897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Plant flooding/waterlogging stress (FWS) can be a threat to food security worldwide due to climate change. To mitigate its potential devastation, numerous exogenous chemicals (ECs) have been used to demonstrate their effectiveness on alleviating FWS for the last 20 years. This review has summarized the most recent findings on use of various ECs as either nutrients or regulatory substances on crop plants under FWS and their roles involved in improving root respiration of seedlings, optimizing nutritional status, synthesizing osmotic regulators, enhancing the activity of antioxidant enzymes, adjusting phytohormone levels, maintaining photosynthetic systems, and activating flood-tolerance related gene expressions. The effect of ESs on alleviating plants under FWS proves to be beneficial and useful but rather limited unless they are applied on appropriate crops, at the right time, and with optimized methods. Further research should be focused on use of ESs in field settings and on their potential synergetic effect for more FWS tolerance.
Collapse
Affiliation(s)
- Di Feng
- Weifang University of Science and Technology, Shouguang, Shandong 262700, China
| | - Lingyue Wang
- Weifang University of Science and Technology, Shouguang, Shandong 262700, China
| | - Songrui Ning
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
| | - Dianliang Peng
- Weifang University of Science and Technology, Shouguang, Shandong 262700, China
| | - Haicheng Xu
- Weifang University of Science and Technology, Shouguang, Shandong 262700, China
| | - Chitao Sun
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Taian271018, Shandong, China
| | - Xiaoan Sun
- Weifang University of Science and Technology, Shouguang, Shandong 262700, China
- Florida Department of Agriculture and Consumer Services, Gainesville, Florida 32608, United States
| |
Collapse
|
4
|
Zhang XH, Vichyavichien P, Nifakos N, Kaplan N, Jin XL, Wellman A, Spanoudis A, Klingler M. KED gene expression in early response to wounding stress in tomato plants. PHYSIOLOGIA PLANTARUM 2023; 175:e13978. [PMID: 37616012 DOI: 10.1111/ppl.13978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 08/25/2023]
Abstract
The wounding-responsive KED gene, named for its coding for a lysine (K), glutamic acid (E), and aspartic acid (D)-rich protein, is widely present among land plants. However, little is known about its regulation or function. In this study, we found that transcription of the tomato (Solanum lycopersicum) KED gene, SlKED, was rapidly and transiently elevated by wounding or ethephon treatment. Compared to the wild-type plants, the CRISPR/Cas9-mediated SlKED knockout plants did not exhibit altered expression patterns for genes involved in hormone biosynthesis or stress signaling, suggesting a lack of pleiotropic effect on other stress-responsive genes. Conversely, jasmonic acid did not appear to directly regulate SlKED expression. Wounded leaves of the KED-lacking plants exhibited higher binding of Evans blue dye than the wild-type, indicating a possible role for KED in healing damaged tissues. The SlKED knockout plants showed a similar dietary effect as the wild-type on the larval growth of tobacco hornworm. But a higher frequency of larval mandible (mouth) movement was recorded during the first 2 minutes of feeding on the wounded KED-lacking SlKED knockout plants than on the wounded KED-producing wild-type plants, probably reflecting an initial differential response by the feeding larvae to the SlKED knockout plants. Our findings suggest that SlKED may be an ethylene-mediated early responder to mechanical stress in tomato, acting downstream of the wound stress response pathways. Although its possible involvement in response to other biotic and abiotic stresses is still unclear, we propose that SlKED may play a role in plant's rapid, short-term, early wounding responses, such as in cellular damage healing.
Collapse
Affiliation(s)
- Xing-Hai Zhang
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Paveena Vichyavichien
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Nicholas Nifakos
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Noah Kaplan
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Xiao-Lu Jin
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Annalise Wellman
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Alexander Spanoudis
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Marcos Klingler
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
5
|
Zhou L, Ma Y, Zhong S, Cao J, Luo Y, Qu G. Phytohormone ethylene mediates oligogalacturonic acid-induced growth inhibition in tomato etiolated seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111643. [PMID: 36805420 DOI: 10.1016/j.plantsci.2023.111643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Plant growth and immunity are tightly interconnected. Oligogalacturonic acids (OGs) are pectic fragments and have been well investigated in plant immunity as a damage-associated molecular pattern. However, little is known regarding how OGs affect plant growth. Here, we reveal that OGs inhibit the growth of intact etiolated seedling by using the horticultural crop tomato as a model. This inhibitory effect is partially suppressed by the action of ethylene biosynthesis inhibitors, or the gene silencing of SlACS2, an essential rate-limiting enzyme for ethylene biosynthesis, suggesting that SlACS2-mediated ethylene production promotes OG-induced growth inhibition. Furthermore, OGs treatment elevates the SlACS2 protein phosphorylation, and its decrease by the kinase inhibitor K252a partially rescue OG-induced growth inhibition, indicating that SlACS2 phosphorylation involves in OG-induced growth inhibition. Moreover, the mitogen-activated protein kinase SlMPK3 could be activated by OGs treatment and can directly phosphorylate SlACS2 in vitro, and the bimolecular fluorescence complementation combining with the yeast two-hybrid assay shows that SlMPK3 interacts with SlACS2, indicating that SlMPK3 may participate in modulating the OG-induced SlACS2 phosphorylation and growth inhibition. Our results reveal a regulatory mechanism at both the transcriptional and post-transcriptional levels by which OGs inhibit the growth of intact plant seedlings.
Collapse
Affiliation(s)
- Leilei Zhou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yingxuan Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Silin Zhong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yunbo Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Guiqin Qu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
6
|
Chen H, Wu Q, Ni M, Chen C, Han C, Yu F. Transcriptome Analysis of Endogenous Hormone Response Mechanism in Roots of Styrax tonkinensis Under Waterlogging. FRONTIERS IN PLANT SCIENCE 2022; 13:896850. [PMID: 35734248 PMCID: PMC9208659 DOI: 10.3389/fpls.2022.896850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/29/2022] [Indexed: 06/02/2023]
Abstract
As a promising oil species, Styrax tonkinensis has great potential as a biofuel due to an excellent fatty acid composition. However, frequent flooding caused by global warming and the low tolerance of the species to waterlogging largely halted its expansion in waterlogged areas. To explore endogenous hormones and phytohormone-related molecular response mechanism of S. tonkinensis under waterlogging, we determined 1-aminocyclopropane-1-carboxylic acid (ACC) and three phytohormone content (ABA, abscisic acid; SA, salicylic acid; IAA, indole-3-acetic acid) and analyzed the transcriptome of its seedlings under waterlogged condition of 3-5 cm. The sample collecting time was 0, 9, 24, and 72 h, respectively. It was concluded that ACC presented an upward trend, but other plant hormones showed a downward trend from 0 to 72 h under waterlogging stress. A total of 84,601 unigenes were assembled with a total length of 81,389,823 bp through transcriptome analysis. The GO enrichment analysis of total differentially expressed genes (DEGs) revealed that 4,637 DEGs, 8,238 DEGs, and 7,146 DEGs were assigned into three main GO functional categories in 9 vs. 0 h, 24 vs. 0 h, and 72 vs. 0 h, respectively. We also discovered several DEGs involved in phytohormone synthesis pathway and plant hormone signaling pathway. It was concluded that the decreased transcription of PYL resulted in the weak ABA signal transduction pathway. Moreover, decreased SA content caused by the low-expressed PAL might impact the resistance of S. tonkinensis seedlings under waterlogging stress. Our research may provide a scientific basis for the understanding of the endogenous hormone response mechanism of S. tonkinensis to waterlogging and lay a foundation for further exploration of the waterlogging defect resistance genes of S. tonkinensis and improving its resistance to waterlogging stress.
Collapse
Affiliation(s)
- Hong Chen
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
| | - Qikui Wu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Ming Ni
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
| | - Chen Chen
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
| | - Chao Han
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
| | - Fangyuan Yu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University (NJFU), Nanjing, China
| |
Collapse
|
7
|
Ninh TT, Gao W, Trusov Y, Zhao J, Long L, Song C, Botella JR. Tomato and cotton G protein beta subunit mutants display constitutive autoimmune responses. PLANT DIRECT 2021; 5:e359. [PMID: 34765865 PMCID: PMC8573408 DOI: 10.1002/pld3.359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Heterotrimeric G protein Gβ-deficient mutants in rice and maize display constitutive immune responses, whereas Arabidopsis Gβ mutants show impaired defense, suggesting the existence of functional differences between monocots and dicots. Using CRISPR/Cas9, we produced one hemizygous tomato line with a mutated SlGB1 Gβ gene. Homozygous slgb1 knockout mutants exhibit all the hallmarks of autoimmune mutants, including development of necrotic lesions, constitutive expression of defense-related genes, and high endogenous levels of salicylic acid (SA) and reactive oxygen species, resulting in early seedling lethality. Virus-induced silencing of Gβ in cotton reproduced the symptoms observed in tomato mutants, confirming that the autoimmune phenotype is not limited to monocot species but is also shared by dicots. Even though multiple genes involved in SA and ethylene signaling are highly induced by Gβ silencing in tomato and cotton, co-silencing of SA or ethylene signaling components in cotton failed to suppress the lethal phenotype, whereas co-silencing of the oxidative burst oxidase RbohD can repress lethality. Despite the autoimmune response observed in slgb1 mutants, we show that SlGB1 is a positive regulator of the pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) response in tomato. We speculate that the phenotypic differences observed between Arabidopsis and tomato/cotton/rice/maize Gβ knockouts do not necessarily reflect divergences in G protein-mediated defense mechanisms.
Collapse
Affiliation(s)
- Thi Thao Ninh
- Plant Genetic Engineering Laboratory, School of Agriculture and Food SciencesUniversity of QueenslandBrisbaneAustralia
- Department of Plant Biotechnology, Faculty of BiotechnologyVietnam National University of AgricultureHanoiVietnam
| | - Wei Gao
- State Key Laboratory of Cotton Biology, School of Life ScienceHenan UniversityKaifengChina
| | - Yuri Trusov
- Plant Genetic Engineering Laboratory, School of Agriculture and Food SciencesUniversity of QueenslandBrisbaneAustralia
| | - Jing‐Ruo Zhao
- State Key Laboratory of Cotton Biology, School of Life ScienceHenan UniversityKaifengChina
| | - Lu Long
- State Key Laboratory of Cotton Biology, School of Life ScienceHenan UniversityKaifengChina
| | - Chun‐Peng Song
- State Key Laboratory of Cotton Biology, School of Life ScienceHenan UniversityKaifengChina
| | - Jose Ramon Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food SciencesUniversity of QueenslandBrisbaneAustralia
| |
Collapse
|
8
|
Mignolli F, Todaro JS, Vidoz ML. Internal aeration and respiration of submerged tomato hypocotyls are enhanced by ethylene-mediated aerenchyma formation and hypertrophy. PHYSIOLOGIA PLANTARUM 2020; 169:49-63. [PMID: 31688957 DOI: 10.1111/ppl.13044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/03/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
With the impending threat that climate change is imposing on all terrestrial ecosystems, the ability of plants to adjust to changing environments is, more than ever, a very desirable trait. Tomato (Solanum lycopersicum L.) plants display a number of responses that allow them to survive under different abiotic stresses such as flooding. We focused on understanding the mechanism that facilitates oxygen diffusion to submerged tissues and the impact it has on sustaining respiration levels. We observed that, as flooding stress progresses, stems increase their diameter and internal porosity. Ethylene triggers stem hypertrophy by inducing cell wall loosening genes, and aerenchyma formation seems to involve programmed cell death mediated by hydrogen peroxide. We finally assessed whether these changes in stem morphology and anatomy are indeed effective to restore oxygen levels in submerged organs. We found that aerenchyma formation and hypertrophy not only increase oxygen diffusion toward the base of the plant, but also result in an augmented respiration rate. We consider that this response is crucial to maintain adventitious root development under such conditions and, therefore, making it possible for the plant to survive when the original roots die.
Collapse
Affiliation(s)
- Francesco Mignolli
- Instituto de Botánica del Nordeste (IBONE), UNNE-CONICET, Corrientes, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (UNNE), Corrientes, Argentina
| | - Juan S Todaro
- Facultad de Medicina, Universidad Nacional del Nordeste (UNNE), Corrientes, Argentina
| | - María L Vidoz
- Instituto de Botánica del Nordeste (IBONE), UNNE-CONICET, Corrientes, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (UNNE), Corrientes, Argentina
| |
Collapse
|
9
|
Wilmowicz E, Kućko A, Burchardt S, Przywieczerski T. Molecular and Hormonal Aspects of Drought-Triggered Flower Shedding in Yellow Lupine. Int J Mol Sci 2019; 20:E3731. [PMID: 31370140 PMCID: PMC6695997 DOI: 10.3390/ijms20153731] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 02/01/2023] Open
Abstract
The drought is a crucial environmental factor that determines yielding of many crop species, e.g., Fabaceae, which are a source of valuable proteins for food and feed. Herein, we focused on the events accompanying drought-induced activation of flower abscission zone (AZ)-the structure responsible for flower detachment and, consequently, determining seed production in Lupinus luteus. Therefore, detection of molecular markers regulating this process is an excellent tool in the development of improved drought-resistant cultivars to minimize yield loss. We applied physiological, molecular, biochemical, immunocytochemical, and chromatography methods for a comprehensive examination of changes evoked by drought in the AZ cells. This factor led to significant cellular changes and activated AZ, which consequently increased the flower abortion rate. Simultaneously, drought caused an accumulation of mRNA of genes inflorescence deficient in abscission-like (LlIDL), receptor-like protein kinase HSL (LlHSL), and mitogen-activated protein kinase6 (LlMPK6), encoding succeeding elements of AZ activation pathway. The content of hydrogen peroxide (H2O2), catalase activity, and localization significantly changed which confirmed the appearance of stressful conditions and indicated modifications in the redox balance. Loss of water enhanced transcriptional activity of the abscisic acid (ABA) and ethylene (ET) biosynthesis pathways, which was manifested by elevated expression of zeaxanthin epoxidase (LlZEP), aminocyclopropane-1-carboxylic acid synthase (LlACS), and aminocyclopropane-1-carboxylic acid oxidase (LlACO) genes. Accordingly, both ABA and ET precursors were highly abundant in AZ cells. Our study provides information about several new potential markers of early response on water loss, which can help to elucidate the mechanisms that control plant response to drought, and gives a useful basis for breeders and agronomists to enhance tolerance of crops against the stress.
Collapse
Affiliation(s)
- Emilia Wilmowicz
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland.
| | - Agata Kućko
- Department of Plant Physiology Warsaw, University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159 Street, 02-776 Warsaw, Poland
| | - Sebastian Burchardt
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland
| | - Tomasz Przywieczerski
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland
| |
Collapse
|
10
|
Jiang K, Asami T. Chemical regulators of plant hormones and their applications in basic research and agriculture*. Biosci Biotechnol Biochem 2018; 82:1265-1300. [DOI: 10.1080/09168451.2018.1462693] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ABSTRACT
Plant hormones are small molecules that play versatile roles in regulating plant growth, development, and responses to the environment. Classic methodologies, including genetics, analytic chemistry, biochemistry, and molecular biology, have contributed to the progress in plant hormone studies. In addition, chemical regulators of plant hormone functions have been important in such studies. Today, synthetic chemicals, including plant growth regulators, are used to study and manipulate biological systems, collectively referred to as chemical biology. Here, we summarize the available chemical regulators and their contributions to plant hormone studies. We also pose questions that remain to be addressed in plant hormone studies and that might be solved with the help of chemical regulators.
Collapse
Affiliation(s)
- Kai Jiang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Hu Y, Vandenbussche F, Van Der Straeten D. Regulation of seedling growth by ethylene and the ethylene-auxin crosstalk. PLANTA 2017; 245:467-489. [PMID: 28188422 DOI: 10.1007/s00425-017-2651-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/08/2017] [Indexed: 05/06/2023]
Abstract
This review highlights that the auxin gradient, established by local auxin biosynthesis and transport, can be controlled by ethylene, and steers seedling growth. A better understanding of the mechanisms in Arabidopsis will increase potential applications in crop species. In dark-grown Arabidopsis seedlings, exogenous ethylene treatment triggers an exaggeration of the apical hook, the inhibition of both hypocotyl and root elongation, and radial swelling of the hypocotyl. These features are predominantly based on the differential cell elongation in different cells/tissues mediated by an auxin gradient. Interestingly, the physiological responses regulated by ethylene and auxin crosstalk can be either additive or synergistic, as in primary root and root hair elongation, or antagonistic, as in hypocotyl elongation. This review focuses on the crosstalk of these two hormones at the seedling stage. Before illustrating the crosstalk, ethylene and auxin biosynthesis, metabolism, transport and signaling are briefly discussed.
Collapse
Affiliation(s)
- Yuming Hu
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium.
| |
Collapse
|
12
|
Van de Poel B, Van Der Straeten D. 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene! FRONTIERS IN PLANT SCIENCE 2014; 5:640. [PMID: 25426135 PMCID: PMC4227472 DOI: 10.3389/fpls.2014.00640] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 10/28/2014] [Indexed: 05/20/2023]
Abstract
Ethylene is a simple two carbon atom molecule with profound effects on plants. There are quite a few review papers covering all aspects of ethylene biology in plants, including its biosynthesis, signaling and physiology. This is merely a logical consequence of the fascinating and pleiotropic nature of this gaseous plant hormone. Its biochemical precursor, 1-aminocyclopropane-1-carboxylic acid (ACC) is also a fairly simple molecule, but perhaps its role in plant biology is seriously underestimated. This triangularly shaped amino acid has many more features than just being the precursor of the lead-role player ethylene. For example, ACC can be conjugated to three different derivatives, but their biological role remains vague. ACC can also be metabolized by bacteria using ACC-deaminase, favoring plant growth and lowering stress susceptibility. ACC is also subjected to a sophisticated transport mechanism to ensure local and long-distance ethylene responses. Last but not least, there are now a few exciting studies where ACC has been reported to function as a signal itself, independently from ethylene. This review puts ACC in the spotlight, not to give it the lead-role, but to create a picture of the stunning co-production of the hormone and its precursor.
Collapse
Affiliation(s)
- Bram Van de Poel
- Department of Cell Biology and Molecular Genetics, University of Maryland, College ParkMD, USA
- Laboratory of Functional Plant Biology, Department of Physiology, Ghent UniversityGhent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Physiology, Ghent UniversityGhent, Belgium
- *Correspondence: Dominique Van Der Straeten, Laboratory of Functional Plant Biology, Department of Physiology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium e-mail:
| |
Collapse
|
13
|
|
14
|
Hsu FC, Chou MY, Peng HP, Chou SJ, Shih MC. Insights into hypoxic systemic responses based on analyses of transcriptional regulation in Arabidopsis. PLoS One 2011; 6:e28888. [PMID: 22194941 PMCID: PMC3240646 DOI: 10.1371/journal.pone.0028888] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 11/16/2011] [Indexed: 01/08/2023] Open
Abstract
We have adopted a hypoxic treatment system in which only roots were under hypoxic conditions. Through analyzing global transcriptional changes in both shoots and roots, we found that systemic signals may be transduced from roots to trigger responses in tissues not directly subjected to hypoxia. The molecular mechanisms of such systemic responses under flooding are currently largely unknown. Using ontological categorization for regulated genes, a systemic managing program of carbohydrate metabolism was observed, providing an example of how systemic responses might facilitate the survival of plants under flooding. Moreover, a proportion of gene expressions that regulated in shoots by flooding was affected in an ethylene signaling mutation, ein2-5. Many systemic-responsive genes involved in the systemic carbohydrate managing program, hormone responses and metabolism, ubiquitin-dependent protein degradation were also affected in ein2-5. These results suggested an important role of ethylene in mediation of hypoxic systemic responses. Genes associated with abscisic acid (ABA) biosynthesis are upregulated in shoots and down regulated in roots. An ABA signaling mutation, abi4-1, affects expression of several systemic responsive genes. These results suggested that regulation of ABA biosynthesis could be required for systemic responses. The implications of these results for the systemic responses of root-flooded Arabidopsis are discussed.
Collapse
Affiliation(s)
- Fu-Chiun Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
15
|
Mora V, Bacaicoa E, Zamarreño AM, Aguirre E, Garnica M, Fuentes M, García-Mina JM. Action of humic acid on promotion of cucumber shoot growth involves nitrate-related changes associated with the root-to-shoot distribution of cytokinins, polyamines and mineral nutrients. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:633-642. [PMID: 20185204 DOI: 10.1016/j.envexpbot.2011.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 11/23/2009] [Accepted: 11/23/2009] [Indexed: 05/25/2023]
Abstract
Numerous studies have reported the ability of humic substances to increase shoot growth in different plant species cultivated under diverse growth conditions. However, the mechanism responsible for this effect of humic substances is poorly understood. It is possible that the shoot promoting effect of humic substances involves a primary effect on root H(+)-ATPase activity and nitrate root-shoot distribution that, in turn, causes changes in the root-shoot distribution of certain cytokinins, polyamines and abscisic acid, thus affecting shoot growth. We investigated this hypothesis in the present study. The results showed that the root application of a purified humic acid causes a significant increase in shoot growth that is associated with an enhancement in root H(+)-ATPase activity, an increase in nitrate shoot concentration, and a decrease in roots. These effects were associated with significant increases in the shoot concentration of several cytokinins and polyamines (principally putrescine), concomitant with decreases in roots. Likewise, these changes in the root-shoot distribution of diverse active cytokinins correlated well to significant changes in the root-shoot distribution of several mineral nutrients. These results, taken together, indicate that the beneficial effects of humic substances on shoot development in cucumber could be directly associated with nitrate-related effects on the shoot concentration of several active cytokinins and polyamines (principally putrescine).
Collapse
Affiliation(s)
- Verónica Mora
- Department of Chemistry and Soil Chemistry, Faculty of Sciences, University of Navarra, P.O. Box 273, 31080 Pamplona (Navarra), Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Usher AV, Whelan RJ, Ayre DJ. Window of opportunity: an episode of recruitment in a Banksia hybrid zone demonstrates continuing hybridization and phenotypic plasticity. ANNALS OF BOTANY 2010; 105:419-29. [PMID: 20142262 PMCID: PMC2826261 DOI: 10.1093/aob/mcq001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS In perennial plants (especially post-fire resprouters), extant populations may reflect recruitment events in the distant past. This is true of hybrid zones formed by two Banksia species of swamps and woodlands in south-eastern Australia, Banksia robur and B. oblongifolia. Both resprout after fire but recruitment is dependent on periodic fires. Although plants of intermediate morphology have also been identified as hybrids using allozyme markers, the extent of ongoing hybridization is unknown. This study investigates whether both microsatellite markers and morphological measurements can be used to distinguish between the two species and their hybrids. A recent recruitment event and microsatellite markers allow the frequency of ongoing hybridization to be estimated, and also the effects of environmental variation on the morphology of plants and seedlings to be tested. METHODS Variation at seven microsatellite loci was scored and seven leaf characteristics within putatively pure stands and mixed stands of both species were measured, revealing that the two species were genetically and morphologically distinct and that mixed stands also contained genetically and sometimes morphologically distinct hybrids. An opportunity created by wildfires was used to analyse the genetics and morphometrics of adults and seedlings from two hybrid zones. KEY RESULTS Approximately 9 % of adults and 21 % of seedlings were identified as genetic hybrids in both hybrid zones. Within these sites, the genotype of mature plants correlated well with morphology, except for some hybrid plants that had parental morphology. However, seedling morphology was highly variable and insufficient to describe the composition of the hybrid zone in this cohort. Greater phenotypic plasticity was evident among seedlings growing within the hybrid zones than seedlings growing in pots. CONCLUSIONS The hybrid zones are complex and the range of genotypes detected in seedlings reveals both continuing hybridization and introgression.
Collapse
Affiliation(s)
- A V Usher
- School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia.
| | | | | |
Collapse
|
17
|
Matriconditioning Improves Thermotolerance in Pepper Seeds through Increased in 1-Aminocyclopropane-1-Carboxylic Acid Synthesis and Utilization. HAYATI JOURNAL OF BIOSCIENCES 2006. [DOI: 10.1016/s1978-3019(16)30373-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
18
|
Root-to-shoot signalling: Assessing the roles of ‘up’ in the up and down world of long-distance signalling in planta. ACTA ACUST UNITED AC 2005. [DOI: 10.1007/1-4020-4099-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
|
19
|
Shiu OY, Oetiker JH, Yip WK, Yang SF. The promoter of LE-ACS7, an early flooding-induced 1-aminocyclopropane-1-carboxylate synthase gene of the tomato, is tagged by a Sol3 transposon. Proc Natl Acad Sci U S A 1998; 95:10334-9. [PMID: 9707648 PMCID: PMC21509 DOI: 10.1073/pnas.95.17.10334] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many terrestrial plants respond to flooding with enhanced ethylene production. The roots of flooded plants produce 1-aminocyclopropane-1-carboxylic acid (ACC), which is transported from the root to the shoot, where it is converted to ethylene. In the roots, ACC is synthesized by ACC synthase, which is encoded by a multigene family. Previously, we identified two ACC synthase genes of tomato that are involved in flooding-induced ethylene production. Here, we report the cloning of LE-ACS7, a new tomato ACC synthase with a role early during flooding but also in the early wound response of leaves. The promoter of LE-ACS7 is tagged by a Sol3 transposon. A Sol3 transposon is also present in the tomato polygalacturonase promoter to which it conferred regulatory elements. Thus, Sol3 transposons may affect the regulation of LE-ACS7 and may be involved in the communication between the root and the shoot of waterlogged tomato plants.
Collapse
Affiliation(s)
- O Y Shiu
- Department of Vegetable Crops, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
20
|
Shirsat AH, Wieczorek D, Kozbial P. A gene for Brassica napus extensin is differentially expressed on wounding. PLANT MOLECULAR BIOLOGY 1996; 30:1291-300. [PMID: 8704136 DOI: 10.1007/bf00019559] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We have analysed the expression of the endogenous extensin genes in Brassica napus, using northern hybridisation and dot blotting. In the unstressed plant, the extA gene is only expressed in the root, expression in the leaf, petiole and stem being absent. We have found that wounding dramatically alters this normal pattern of expression. Expression in wounded leaf is seen after 36 h, in wounded petioles after 11 h and in wounded stem after 17 h. Differences in the amount of extensin mRNA accumulated are also seen: wounded petiole accumulating extensin message to a level higher than the leaf or the stem. Inhibitors of ethylene biosynthesis greatly delay the onset of accumulation of extensin mRNA in wounded tissues. Wounding the root causes the level of extensin message to decline with time, until levels below the limit of non-specific hybridisation are reached 11 h after wounding. Thus, application of the wounding stimulus results in the accumulation of extensin gene transcripts to different degrees and at different times in the aerial parts of the plant, and results in a decline in the same transcripts in the roots. Extensin transcript accumulation as a result of wounding is also dependent on the age of the tissue; high levels of message are seen in old wounded leaves, while expression in young wounded leaves is absent.
Collapse
Affiliation(s)
- A H Shirsat
- School of Biological Sciences, University of Wales, Bangor, Gwynedd, UK
| | | | | |
Collapse
|
21
|
English PJ, Lycett GW, Roberts JA, Jackson MB. Increased 1-Aminocyclopropane-1-Carboxylic Acid Oxidase Activity in Shoots of Flooded Tomato Plants Raises Ethylene Production to Physiologically Active Levels. PLANT PHYSIOLOGY 1995; 109:1435-1440. [PMID: 12228680 PMCID: PMC157679 DOI: 10.1104/pp.109.4.1435] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Soil flooding increased 1-aminocyclopropane-1-carboxylic (ACC) acid oxidase activity in petioles of wild-type tomato (Lycopersicon esculentum L.) plants within 6 to 12 h in association with faster rates of ethylene production. Petioles of flooded plants transformed with an antisense construct to one isoform of an ACC oxidase gene (ACO1) produced less ethylene and had lower ACC oxidase activity than those of the wild type. Flooding promoted epinastic curvature but did so less strongly in plants transformed with the antisense construct than in the wild type. Exogenous ethylene, supplied to well-drained plants, also promoted epinastic curvature, but transformed and wild-type plants responded similarly. Flooding increased the specific delivery (flux) of ACC to the shoots (picomoles per second per square meter of leaf) in xylem sap flowing from the roots. The amounts were similar in both transformed and wild-type plants. These observations demonstrate that changes in ACC oxidase activity in shoot tissue resulting from either soil flooding or introducing ACC oxidase antisense constructs can influence rates of ethylene production to a physiologically significant extent. They also implicate systemic root to shoot signals in regulating the activity of ACC oxidase in the shoot.
Collapse
Affiliation(s)
- P. J. English
- IACR-Long Ashton Research Station, Department of Agricultural Sciences, University of Bristol, Long Ashton, Bristol BS18 9AF, United Kingdom (P.J.E., M.B.J.)
| | | | | | | |
Collapse
|
22
|
Tudela D, Primo-Millo E. 1-Aminocyclopropane-1-Carboxylic Acid Transported from Roots to Shoots Promotes Leaf Abscission in Cleopatra Mandarin (Citrus reshni Hort. ex Tan.) Seedlings Rehydrated after Water Stress. PLANT PHYSIOLOGY 1992; 100:131-7. [PMID: 16652935 PMCID: PMC1075527 DOI: 10.1104/pp.100.1.131] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The effect of water stress and subsequent rehydration on 1-aminocyclopropane-1-carboxylic acid (ACC) content, ACC synthase activity, ethylene production, and leaf abscission was studied in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings. Leaf abscission occurred when drought-stressed plants were allowed to rehydrate, whereas no abscission was observed in plants under water stress conditions. In roots of water-stressed plants, a high ACC accumulation and an increase in ACC synthase activity were observed. Neither increase in ACC content nor significant ethylene production were detected in leaves of water-stressed plants. After rehydration, a sharp rise in ACC content and ethylene production was observed in leaves of water-stressed plants. Content of ACC in xylem fluid was 10-fold higher in plants rehydrated for 2 h after water stress than in nonstressed plants. Leaf abscission induced by rehydration after drought stress was inhibited when roots or shoots were treated before water stress with aminooxyacetic acid (AOA, inhibitor of ACC synthase) or cobalt ion (inhibitor of ethylene-forming enzyme), respectively. However, AOA treatments to shoots did not suppress leaf abscission. The data indicate that water stress promotes ACC synthesis in roots of Cleopatra mandarin seedlings. Rehydration of plants results in ACC transport to the shoots, where it is oxidized to ethylene. Subsequently, this ethylene induces leaf abscission.
Collapse
Affiliation(s)
- D Tudela
- Departament de Citricultura, Institut Valencià d'Investigacions Agràries, 46113, Montcada de l'Horta, València, Spain
| | | |
Collapse
|
23
|
Wang TW, Arteca RN. Effects of Low O(2) Root Stress on Ethylene Biosynthesis in Tomato Plants (Lycopersicon esculentum Mill cv Heinz 1350). PLANT PHYSIOLOGY 1992; 98:97-100. [PMID: 16668654 PMCID: PMC1080154 DOI: 10.1104/pp.98.1.97] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Low O(2) conditions were obtained by flowing N(2) through the solution in which the tomato plants (Lycopersicon esculentum Mill cv Heinz 1350) were growing. Time course experiments revealed that low O(2) treatments stimulated 1-aminocyclopropane-1-carboxylate (ACC) synthase production in the roots and leaves. After the initiation of low O(2) conditions, ACC synthase activity and ACC content in the roots increased and reached a peak after 12 and 20 hours, respectively. The conversion of ACC to ethylene in the roots was inhibited by low levels of O(2), and ACC was apparently transported to the leaves where it was converted to ethylene. ACC synthase activity in the leaves was also stimulated by low O(2) treatment to the roots, reaching a peak after 24 hours. ACC synthase levels were enhanced by cobalt chloride and aminooxyacetic acid (AOA), although they inhibited ethylene production. Cobalt chloride enhanced ACC synthase only in combination with low O(2) conditions in the roots. Under aeration, AOA stimulated ACC synthase activity in both the roots and leaves. However, in combination with low O(2) conditions, AOA caused a stimulation in ACC synthase activity in the leaves and no effect in the roots.
Collapse
Affiliation(s)
- T W Wang
- Department of Horticulture, The Pennsylvania State University, University Park, Pennsylvania 16802
| | | |
Collapse
|
24
|
Jones RA, El-Abd SO. Prevention of salt-induced epinasty by ?-aminooxyacetic acid and cobalt. PLANT GROWTH REGULATION 1989; 8:315-323. [DOI: 10.1007/bf00024662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
25
|
Khan AA, Prusinski J. Kinetin Enhanced 1-Aminocyclopropane-1-Carboxylic Acid Utilization during Alleviation of High Temperatures Stress in Lettuce Seeds. PLANT PHYSIOLOGY 1989; 91:733-7. [PMID: 16667094 PMCID: PMC1062063 DOI: 10.1104/pp.91.2.733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The thermoinhibition at 35 and 32 degrees C of pregermination ethylene production and germination in lettuce (Lactuca sativa L. cv Mesa 659) seeds was synergistically or additively alleviated by 0.05 millimolar kinetin (KIN) and 10 millimolar 1-aminocyclopropane-1-carboxylic acid (ACC). The synergistic effect of KIN + ACC on ethylene production and germination at 35 degrees C was inhibited by Co(2+) (44-46%) but not by aminoethoxyvinyl glycine (AVG). The uptake of ACC by the seed was not influenced by KIN. Upon slitting of the seed coats (composed of pericarp, testa and endosperm), following the uptake of chemicals, ACC was readily converted into ethylene at all temperatures, and the synergistic effects of KIN + ACC at 35 degrees C were lost. At 35 degrees C, KIN acted synergistically with ACC or ethephon (ETH) in alleviating the osmotic restraint. At 25 degrees C, ETH was more active than KIN or KIN + ACC in overcoming the osmotic restraint. Thus, the integrity of the seed coats, the KIN-enhanced ACC utilization, and an interaction of KIN with the ethylene produced may be the basis for the synergistic or additive effects of KIN + ACC at high temperature.
Collapse
Affiliation(s)
- A A Khan
- Department of Horticultural Sciences, New York State Agricultural Experiment Station, Cornell University, Geneva, New York 14456
| | | |
Collapse
|
26
|
Drew MC, He CJ, Morgan PW. Decreased Ethylene Biosynthesis, and Induction of Aerenchyma, by Nitrogen- or Phosphate-Starvation in Adventitious Roots of Zea mays L. PLANT PHYSIOLOGY 1989; 91:266-71. [PMID: 16667008 PMCID: PMC1061985 DOI: 10.1104/pp.91.1.266] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plants of Zea mays L. cv TX5855 were grown in a complete, well oxygenated nutrient solution then subjected to nutrient starvation by omitting either nitrate and ammonium or phosphate from the solution. These treatments induced the formation of aerenchyma close to the apex of the adventitious roots that subsequently emerged from the base of the shoot, a response similar to that shown earlier to be induced by hypoxia. Compared with control plants supplied with all nutrients throughout, N- or P-starvation consistently depressed the rates of ethylene release by excised, 25 mm apical segments of adventitious roots. Some enzymes and substrates of the ethylene biosynthetic pathway were examined. The content of 1-amino cyclopropane-1-carboxylic acid (ACC) paralleled the differences in ethylene production rates, being depressed by N or P deficiency, while malonyl-ACC showed a similar trend. Activity of ACC synthase and of ethylene forming enzyme (g(-1) fresh weight) was also greater in control roots than in nutrient starved ones. These results indicate that much of the ethylene biosynthetic pathway is slowed under conditions of N- or P-starvation. Thus, by contrast to the effects of hypoxia, the induction of aerenchyma in roots of Zea mays by nutrient starvation is not related to an enhanced biosynthesis and/or accumulation of ethylene in the root tips.
Collapse
Affiliation(s)
- M C Drew
- Texas A&M University, Department of Horticultural Sciences, College Station, Texas 77843
| | | | | |
Collapse
|
27
|
Khan AA, Huang XL. Synergistic enhancement of ethylene production and germination with kinetin and 1-aminocyclopropane-1-carboxylic Acid in lettuce seeds exposed to salinity stress. PLANT PHYSIOLOGY 1988; 87:847-52. [PMID: 16666236 PMCID: PMC1054857 DOI: 10.1104/pp.87.4.847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Relief of salt (0.1 molar NaCl) stress on germination of lettuce (Lactuca sativa L., cv Mesa 659) seeds occurred with applications of 0.05 millimolar kinetin (KIN) and 1 to 10 millimolar 1-aminocyclopropane 1-carboxylic acid (ACC). Treatment with KIN enhanced the pregermination ethylene production under saline condition. A synergistic or an additive enhancement of pregermination ethylene production and germination occurred under saline condition in the presence of KIN and a saturating dose (10 millimolar) of ACC. No KIN-ACC synergism was noted in ethylene production or germination under nonsaline condition. Addition of 1 millimolar aminoethoxyvinylglycine (AVG) inhibited the KIN-enhanced pregermination ethylene production (85 to 89%) and germination (58%) under saline condition but not the synergistic effect of KIN + ACC on ethylene production. Under nonsaline condition, AVG had no effect on germination even though ethylene production was strongly inhibited. Alleviation of salt stress by KIN was inhibited in a competitive manner by 2,5-norbornadiene (NBD) (0.02-0.2 milliliter per liter), and the addition of ACC and/or ethylene reduced this inhibition. An increase in the pregermination ethylene production and germination occurred also by cotylenin E (CN) under saline condition. However, neither AVG (1 millimolar) nor NBD (0.02 to 0.2 milliliter per liter) prevented the relief of salt stress by CN. Thus, KIN may alleviate salt stress on germination by promoting both ACC production and its conversion to ethylene. Rapid utilization of ACC may be the basis for the synergistic or the additive effect of KIN plus ACC. The need for ethylene production and action for the relief of salt stress is circumvented by a treatment with CN.
Collapse
Affiliation(s)
- A A Khan
- Department of Horticultural Sciences, New York State Agricultural Experiment Station, Cornell University, Geneva, New York 14456
| | | |
Collapse
|
28
|
Cohen E, Kende H. In vivo 1-aminocyclopropane-1-carboxylate synthase activity in internodes of deepwater rice : enhancement by submergence and low oxygen levels. PLANT PHYSIOLOGY 1987; 84:282-6. [PMID: 16665431 PMCID: PMC1056571 DOI: 10.1104/pp.84.2.282] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Inasmuch as the activity of 1-aminocyclopropane-1-carboxylate (ACC) synthase cannot be measured in homogenates of deepwater rice internodes (Oryza sativa L.), we have employed an in vivo assay to determine the activity of this enzyme. This assay is based on the accumulation of ACC in tissue kept under N(2). Submergence of whole plants or stem sections containing the uppermost, developing internode enhances the in vivo activity of ACC synthase in the stem. This stimulation of in vivo ACC-synthase activity is especially pronounced in the region of the internode containing the intercalary meristem and the elongation zone above it. Enhancement of in vivo ACC-synthase activity is evident after 2 hours of submergence and shows a peak after 4 hours. Reduced levels of atmospheric O(2), which promote ethylene synthesis and growth in internodes of deepwater rice, also enhance the in vivo activity of ACC synthase. Our results are consistent with the hypothesis that induction of ACC-synthase activity at low partial O(2) pressures is among the first biochemical events leading to internodal growth in deepwater rice.
Collapse
Affiliation(s)
- E Cohen
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | | |
Collapse
|
29
|
|
30
|
Drew MC, Saglio PH, Pradet A. Larger adenylate energy charge and ATP/ADP ratios in aerenchymatous roots of Zea mays in anaerobic media as a consequence of improved internal oxygen transport. PLANTA 1985; 165:51-58. [PMID: 24240957 DOI: 10.1007/bf00392211] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/1984] [Accepted: 01/08/1985] [Indexed: 06/02/2023]
Abstract
Internal transport of O2 from the aerial tissues along the adventitious roots of intact maize plants was estimated by measuring the concentrations of adenine nucleotides in various zones along the root under an oxygen-free atmosphere. Young maize plants were grown in nutrient solution under conditions that either stimulated or prevented the formation of a lysigenous aerenchyma, and the roots (up to 210 mm long) were then exposed to an anaerobic (oxygen-free) nutrient solution. Aerenchymatous roots showed higher values than non-aerenchymatous ones for ATP content, adenylate energy charge and ATP/ADP ratios. We conclude that the lysigenous cortical gas spaces help maintain a high respiration rate in the tissues along the root, and in the apical zone, by improving internal transport of oxygen over distances of at least 210 mm. This contrasted sharply with the low energy status (poor O2 transport) in non-aerenchymatous roots.
Collapse
Affiliation(s)
- M C Drew
- Agriculture and Food Research Council Letcombe Laboratory, Wantage, OX12 9JT, Oxon, UK
| | | | | |
Collapse
|
31
|
Schlagnhaufer CD, Arteca RN. Brassinosteroid-induced epinasty in tomato plants. PLANT PHYSIOLOGY 1985; 78:300-3. [PMID: 16664234 PMCID: PMC1064723 DOI: 10.1104/pp.78.2.300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The effects of root treatments of brassinosteroid (BR) on the growth and development of hydroponically grown tomato plants (Lycopersicon esculentum Mill cv Heinz 1350) were evaluated. There was a dramatic increase in petiole bending when the plants were treated with 0.5 to 1.0 micromolar BR. The leaf angle of the treated plants was almost three times that of untreated controls. BR-induced epinasty appeared to be due to stimulation of ethylene production. Excised petioles from BR-treated plants produced more than twice as much ethylene as did untreated controls. As ethylene production increased, the degree of petiole bending also increased, and inhibition of ethylene production by AOA or CoCl(2) also inhibited epinasty. BR-treated plants had increased levels of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in the leaf tissue. ACC appeared to accumulate primarily in the petioles with the greatest amount of ACC accumulating in the youngest petioles. Time course evaluations revealed that BR treatment stimulated ACC production. As ACC accumulated, ethylene increased, resulting in epinasty. Little or no ACC was found in the xylem sap, indicating that there was a signal transported from the roots which stimulated ACC synthesis in the leaf tissue.
Collapse
Affiliation(s)
- C D Schlagnhaufer
- Department of Horticulture, The Pennsylvania State University, University Park, Pennsylvania 16802
| | | |
Collapse
|
32
|
Bradford KJ, Hsiao TC. Stomatal behavior and water relations of waterlogged tomato plants. PLANT PHYSIOLOGY 1982; 70:1508-13. [PMID: 16662706 PMCID: PMC1065914 DOI: 10.1104/pp.70.5.1508] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The effects of waterlogging the soil on leaf water potential, leaf epidermal conductance, transpiration, root conductance to water flow, and petiole epinasty have been examined in the tomato (Lycopersicon esculentum Mill.). Stomatal conductance and transpiration are reduced by 30% to 40% after approximately 24 hours of soil flooding. This is not due to a transient water deficit, as leaf water potential is unchanged, even though root conductance is decreased by the stress. The stomatal response apparently prevents any reduction in leaf water potential. Experiments with varied time of flooding, root excision, and stem girdling provide indirect evidence for an influence of roots in maintaining stomatal opening potential. This root-effect cannot be entirely accounted for by alterations in source-sink relationships. Although 1-aminocyclopropane-1-carboxylic acid, the immediate precursor of ethylene, is transported from the roots to the shoots of waterlogged tomato plants, it has no direct effect on stomatal conductance. Ethylene-induced petiole epinasty develops coincident with partial stomatal closure in waterlogged plants. Leaf epinasty may have beneficial effects on plant water balance by reducing light interception.
Collapse
Affiliation(s)
- K J Bradford
- Laboratory of Plant-Water Relations, Department of Land, Air and Water Resources, University of California, Davis, California 95616
| | | |
Collapse
|