1
|
Luo L, Zhao P, Su Z, Huang Y, Zhang Y, Mu Q, Xuan X, Qu Z, Yu M, Qi Z, Aziz RB, Gong P, Xie Z, Fang J, Wang C. Characterization and Potential Action Mode Divergences of Homologous ACO1 Genes during the Organ Development and Ripening Process between Non-Climacteric Grape and Climacteric Peach. Int J Mol Sci 2024; 25:789. [PMID: 38255862 PMCID: PMC10815418 DOI: 10.3390/ijms25020789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/23/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
Ethylene is one crucial phytohormone modulating plants' organ development and ripening process, especially in fruits, but its action modes and discrepancies in non-climacteric grape and climacteric peach in these processes remain elusive. This work is focused on the action mode divergences of ethylene during the modulation of the organ development and ripening process in climacteric/non-climacteric plants. We characterized the key enzyme genes in the ethylene synthesis pathway, VvACO1 and PpACO1, and uncovered that their sequence structures are highly conserved, although their promoters exhibit important divergences in the numbers and types of the cis-elements responsive to hormones, implying various responses to hormone signals. Subsequently, we found the two have similar expression modes in vegetative organ development but inverse patterns in reproductive ones, especially in fruits. Then, VvACO1 and PpACO1 were further validated in promoting fruit ripening functions through their transient over-expression/RNAi-expression in tomatoes, of which the former possesses a weaker role than the latter in the fruit ripening process. Our findings illuminated the divergence in the action patterns and function traits of the key VvACO1/PpACO1 genes in the tissue development of climacteric/non-climacteric plants, and they have implications for further gaining insight into the interaction mechanism of ethylene signaling during the modulation of the organ development and ripening process in climacteric/non-climacteric plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (L.L.); (P.Z.); (Z.S.); (Y.H.); (Y.Z.); (Q.M.); (X.X.); (Z.Q.); (M.Y.); (Z.Q.); (R.B.A.); (P.G.); (Z.X.); (J.F.)
| |
Collapse
|
2
|
Vanderstraeten L, Van Der Straeten D. Accumulation and Transport of 1-Aminocyclopropane-1-Carboxylic Acid (ACC) in Plants: Current Status, Considerations for Future Research and Agronomic Applications. FRONTIERS IN PLANT SCIENCE 2017; 8:38. [PMID: 28174583 PMCID: PMC5258695 DOI: 10.3389/fpls.2017.00038] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/09/2017] [Indexed: 05/18/2023]
Abstract
1-aminocyclopropane-1-carboxylic acid (ACC) is a non-protein amino acid acting as the direct precursor of ethylene, a plant hormone regulating a wide variety of vegetative and developmental processes. ACC is the central molecule of ethylene biosynthesis. The rate of ACC formation differs in response to developmental, hormonal and environmental cues. ACC can be conjugated to three derivatives, metabolized in planta or by rhizobacteria using ACC deaminase, and is transported throughout the plant over short and long distances, remotely leading to ethylene responses. This review highlights some recent advances related to ACC. These include the regulation of ACC synthesis, conjugation and deamination, evidence for a role of ACC as an ethylene-independent signal, short and long range ACC transport, and the identification of a first ACC transporter. Although unraveling the complex mechanism of ACC transport is in its infancy, new questions emerge together with the identification of a first transporter. In the light of the future quest for additional ACC transporters, this review presents perspectives of the novel findings and includes considerations for future research toward applications in agronomy.
Collapse
|
3
|
Larrigaudiere C, Recasens I, Graell J, Vendrell M. Harvest maturity related changes in the cold-induced activation of 1-aminocyclopropane-1-carboxylic acid metabolism in Granny Smith apples / Efecto del estado de madurez sobre la activación por frío del metabolismo del ácido 1-aminociclopropano-1-carboxílico en manzanas Granny Smith. FOOD SCI TECHNOL INT 2016. [DOI: 10.1177/108201329900500304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Changes in 1-aminocyclopropane-1-carboxylic acid metabolism in apples ( Malus domestica Borkh cv Granny Smith) were studied in relation to cold storage. Emphasis was given to the differential re sponsiveness of fruits to cold treatment as a function of stage of maturity at harvest. Fruits were held at 1 or 20 °C for 30 days, respectively, or exposed to 1 °C for 10 days and then storaged at 20 °C for up to 30 days. Fruits at 20 °C showed typical climacteric behavior. Differences at 1 °C between maturity stages in ethylene production and ACC oxidase activity were abolished, which showed that cold treatment is an important inducer of climacteric rise in preclimacteric Granny Smith apples. At 1 °C, ethylene production was lower than at 20 °C and the maxima in production were similar for all the stages of maturity, but took place at different times which corresponded exactly to the initial differ ences in harvest dates. After the transfer to 20 °C, fruits exhibited similar behavior as regards ethyl ene production, ACC oxidase activity, and ACC and MACC levels in relation to a harmonization process which is discussed in this study.
Collapse
Affiliation(s)
- C. Larrigaudiere
- Area de Post-collita, CeRTA, Centro UdL-IRTA, Rovira Roure, 177, 25198 Lleida, Spain
| | - I. Recasens
- Area de Post-collita, CeRTA, Centro UdL-IRTA, Rovira Roure, 177, 25198 Lleida, Spain
| | - J. Graell
- Area de Post-collita, CeRTA, Centro UdL-IRTA, Rovira Roure, 177, 25198 Lleida, Spain
| | - M. Vendrell
- Centro de Investigación y Desarrollo, CSIC, Jorge Girona, 18-26, 08034 Barcelona, Spain
| |
Collapse
|
4
|
Rodrigues MA, Bianchetti RE, Freschi L. Shedding light on ethylene metabolism in higher plants. FRONTIERS IN PLANT SCIENCE 2014; 5:665. [PMID: 25520728 PMCID: PMC4249713 DOI: 10.3389/fpls.2014.00665] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/07/2014] [Indexed: 05/20/2023]
Abstract
Ethylene metabolism in higher plants is regulated by a wide array of endogenous and environmental factors. During most physiological processes, ethylene levels are mainly determined by a strict control of the rate-limiting biosynthetic steps responsible for the production of 1-aminocyclopropane-1-carboxylic acid (ACC) and its subsequent conversion to ethylene. Responsible for these reactions, the key enzymes ACC synthase and ACC oxidase are encoded by multigene families formed by members that can be differentially regulated at the transcription and post-translational levels by specific developmental and environmental signals. Among the wide variety of environmental cues controlling plant ethylene production, light quality, duration, and intensity have consistently been demonstrated to influence the metabolism of this plant hormone in diverse plant tissues, organs, and species. Although still not completely elucidated, the mechanisms underlying the interaction between light signal transduction and ethylene evolution appears to involve a complex network that includes central transcription factors connecting multiple signaling pathways, which can be reciprocally modulated by ethylene itself, other phytohormones, and specific light wavelengths. Accumulating evidence has indicated particular photoreceptors as essential mediators in light-induced signaling cascades affecting ethylene levels. Therefore, this review specifically focuses on discussing the current knowledge of the potential molecular mechanisms implicated in the light-induced responses affecting ethylene metabolism during the regulation of developmental and metabolic plant responses. Besides presenting the state of the art in this research field, some overlooked mechanisms and future directions to elucidate the exact nature of the light-ethylene interplay in higher plants will also be compiled and discussed.
Collapse
Affiliation(s)
| | | | - Luciano Freschi
- Laboratory of Plant Physiology, Institute of Biosciences, Department of Botany, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Wang H, Liu G, Li C, Powell ALT, Reid MS, Zhang Z, Jiang CZ. Defence responses regulated by jasmonate and delayed senescence caused by ethylene receptor mutation contribute to the tolerance of petunia to Botrytis cinerea. MOLECULAR PLANT PATHOLOGY 2013; 14:453-69. [PMID: 23437935 PMCID: PMC6638649 DOI: 10.1111/mpp.12017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Ethylene and jasmonate (JA) have powerful effects when plants are challenged by pathogens. The inducible promoter-regulated expression of the Arabidopsis ethylene receptor mutant ethylene-insensitive1-1 (etr1-1) causes ethylene insensitivity in petunia. To investigate the molecular mechanisms involved in transgenic petunia responses to Botrytis cinerea related to the ethylene and JA pathways, etr1-1-expressing petunia plants were inoculated with Botrytis cinerea. The induced expression of etr1-1 by a chemical inducer dexamethasone resulted in retarded senescence and reduced disease symptoms on detached leaves and flowers or intact plants. The extent of decreased disease symptoms correlated positively with etr1-1 expression. The JA pathway, independent of the ethylene pathway, activated petunia ethylene response factor (PhERF) expression and consequent defence-related gene expression. These results demonstrate that ethylene induced by biotic stress influences senescence, and that JA in combination with delayed senescence by etr1-1 expression alters tolerance to pathogens.
Collapse
Affiliation(s)
- Hong Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | |
Collapse
|
6
|
Jafari Z, Haddad R, Hosseini R, Garoosi G. Cloning, identification and expression analysis of ACC oxidase gene involved in ethylene production pathway. Mol Biol Rep 2012; 40:1341-50. [PMID: 23076530 DOI: 10.1007/s11033-012-2178-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
Abstract
1-aminocyclopropane-1-carboxylic acid oxidase (ACO) enzyme is a member of the Fe II-dependent family of oxidases/oxygenases which require Fe(2+) as a cofactor, ascorbate as a cosubstrate and CO(2) as an activator. This enzyme catalyses the terminal step in the plant signaling of ethylene biosynthetic pathway. A 948 bp fragment of the ACO1 gene cDNA sequence was cloned from tomato (Lycopersicon esculentum) fruit tissues by using reverse transcriptase-polymerase chain reaction (RT-PCR) with two PCR primers designed according to the sequence of a tomato cDNA clone (X58273). The BLAST search showed a high level of similarity (77-98 %) between ACO1 and ACO genes of other plants. The calculated molecular mass and predicted isoelectric point of LeACO1 were 35.8 kDa and 5.13, respectively. The three-dimensional structure studies illustrated that the LeACO1 protein folds into a compact jelly-roll motif comprised of 8 α-helices, 12 β-strands and several long loops. The cosubstrate was located in a cofactor-binding pocket referred to as a 2-His-1-carboxylate facial triad. Semi-quantitative RT-PCR analysis of gene expression revealed that the LeACO1 was expressed in fruit tissues at different ripening stages.
Collapse
Affiliation(s)
- Zohreh Jafari
- Department of Agricultural Biotechnology, Imam Khomeini International University, P.O. Box 34149-288, Qazvin, Islamic Republic of Iran
| | | | | | | |
Collapse
|
7
|
Musser RO, Hum-Musser SM, Lee HK, DesRochers BL, Williams SA, Vogel H. Caterpillar Labial Saliva Alters Tomato Plant Gene Expression. J Chem Ecol 2012; 38:1387-401. [DOI: 10.1007/s10886-012-0198-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 09/07/2012] [Accepted: 09/25/2012] [Indexed: 01/06/2023]
|
8
|
Zhang Z, Zhang H, Quan R, Wang XC, Huang R. Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. PLANT PHYSIOLOGY 2009; 150:365-77. [PMID: 19261734 PMCID: PMC2675746 DOI: 10.1104/pp.109.135830] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Accepted: 03/01/2009] [Indexed: 05/18/2023]
Abstract
Fine-tuning of ethylene production plays an important role in developmental processes and in plant responses to stress, but very little is known about the regulation of ethylene response factor (ERF) proteins in ethylene biosynthesis genes and ethylene production. Identifying cis-acting elements and transcription factors that play a role in this process, therefore, is important. Previously, a tomato (Solanum lycopersicum [f. sp. Lycopersicon esculentum]) ERF protein, LeERF2, an allele of TERF2, was reported to confer ethylene triple response on plants. This paper reports the transcriptional modulation of LeERF2/TERF2 in ethylene biosynthesis in tomato and tobacco (Nicotiana tabacum). Using overexpressing and antisense LeERF2/TERF2 transgenic tomato, we found that LeERF2/TERF2 is an important regulator in the expression of ethylene biosynthesis genes and the production of ethylene. Expression analysis revealed that LeERF2/TERF2 is ethylene inducible, and ethylene production stimulated by ethylene was suppressed in antisense LeERF2/TERF2 transgenic tomato, indicating LeERF2/TERF2 to be a positive regulator in the feedback loop of ethylene induction. Further research showed that LeERF2/TERF2 conservatively modulates ethylene biosynthesis in tobacco and that such regulation in tobacco is associated with the elongation of the hypocotyl and insensitivity to abscisic acid and glucose during germination and seedling development. The effects on ethylene synthesis were similar to those of another ERF protein, TERF1, because TERF1 and LeERF2/TERF2 have overlapping roles in the transcriptional regulation of ethylene biosynthesis in tobacco. Biochemical analysis showed that LeERF2/TERF2 interacted with GCC box in the promoter of NtACS3 and with dehydration-responsive element in the promoter of LeACO3, resulting in transcriptional activation of the genes for ethylene biosynthesis in tomato and tobacco, which is a novel regulatory function of ERF proteins in plant ethylene biosynthesis.
Collapse
Affiliation(s)
- Zhijin Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | |
Collapse
|
9
|
Flores F, Martínez-Madrid M, Romojaro F. Influence of Fruit Development Stage on the Physiological Response to Ethylene in Cantaloupe Charentais Melon. FOOD SCI TECHNOL INT 2008. [DOI: 10.1177/1082013208089646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An experiment has been designed and performed using Cantaloupe Charentais melon as climacteric fruit with the aim of finding out at which point of their development they are able to sense the plant hormone ethylene. Fruit were harvested at 20, 25, and 35 days after pollination (DAP), treated for 5 days at 20 °C with 5 ppm of ethylene, and stored for a further 10 days. Nontreated wild type fruit was used as control. Ethylene-treated genetically modified 1-aminocyclopropane-1-carboxylic acid oxidase antisense fruits with inhibited autocatalytic ethylene production were also used to avoid masking effects because of endogenous ethylene produced by control fruits. Ethylene-treated wild type fruits with 25 DAP were able to produce autocatalytic ethylene. A climacteric respiration increase was observed in treated wild type fruit with 25 and 35 DAP. The degreening of the rind was induced by ethylene in the youngest fruit, showing a total dependence on the hormone for its activation. Loss of pulp firmness induced by exogenous ethylene was found only in 20 DAP-fruit. The existence of ethylene-dependent and developmental factors in the regulation of this ripening process was observed.
Collapse
Affiliation(s)
- F.B. Flores
- CEBAS-CSIC, PO Box 164, 30100 Espinardo, Murcia, Spain,
| | - M.C. Martínez-Madrid
- Escuela Politécnica Superior, Universidad Miguel Hernández Ctra. Beniel km 3.2, 03312 Orihuela, Alicante, Spain
| | - F. Romojaro
- CEBAS-CSIC, PO Box 164, 30100 Espinardo, Murcia, Spain
| |
Collapse
|
10
|
Lagunes L, Tovar B, Mata M, Vinay-Vadillo JC, De La Cruz J, Garcia HS. Effect of exogenous ethylene on ACC content and ACC oxidase activity during ripening of Manila mangoes subjected to hot water treatment. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2007; 62:157-63. [PMID: 17906930 DOI: 10.1007/s11130-007-0057-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 09/05/2007] [Indexed: 05/17/2023]
Abstract
Mangoes (Mangifera indica L.) 'Manila' were subjected to the USDA-approved hot water treatment and then exposed to synthetic air mixtures containing 0.5, 0.75 or 1 ml l(-1) of ethylene for 6, 12 or 18 h at 25 degrees C, to induce accelerated ripening. After treatment the mangoes were allowed to ripen in air at 24-25 degrees C. The content of 1-aminocyclopropane-1-carboxylic acid (ACC) and ACC oxidase (ACO) activity increased in fruit treated with 0.5 and 0.75 ml l(-1) of ethylene for 6 or 12 h. Ethylene production was reduced in fruit treated with 1 ml l(-1) of ethylene. This was due to the decreased of ACC synthesis rather than to lower ACC oxidase activity. Treatment with 0.5 ml l(-1) of ethylene for 12 h was found best for accelerate ripening; fruits were fully ripened and edible 3 days after treatment, compared to 6-7 days for untreated mangoes.
Collapse
Affiliation(s)
- L Lagunes
- UNIDA-Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Veracruz 91897, México
| | | | | | | | | | | |
Collapse
|
11
|
Lee JH, Deng XW, Kim WT. Possible role of light in the maintenance of EIN3/EIL1 stability in Arabidopsis seedlings. Biochem Biophys Res Commun 2006; 350:484-91. [PMID: 17011517 DOI: 10.1016/j.bbrc.2006.09.074] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 09/16/2006] [Indexed: 11/29/2022]
Abstract
To examine the mechanism of EIN3-mediated gene expression by ethylene, the expression patterns of ethylene-inducible genes by ethylene were monitored in Col-0 and ethylene signaling mutants. In Col-0, the inducibility of ACC oxidase by ethylene in light-grown seedlings was much higher than in dark-grown seedlings. While the expression of ACC oxidase was highly increased by ethylene not only in Col-0 but in ein3-1 under light treatment, this pattern was completely abrogated in etiolated ein3-1 seedlings, suggesting the expression of EIN3-mediated ACC oxidase genes could be affected by light. To check if the level of EIN3 and EIL1 was regulated by light, cell-free degradation assays were performed. This resulted in the rapid degradation of these proteins within 1h after adding dark-grown cell extracts and this degradation was retarded by light-grown extracts. Here, we propose that light may act as a negative regulator in the destabilization of EIN3/EIL1.
Collapse
Affiliation(s)
- Jae-Hoon Lee
- Department of Biology, College of Science, Yonsei University, Seoul 120-749, Republic of Korea.
| | | | | |
Collapse
|
12
|
Katz E, Riov J, Weiss D, Goldschmidt EE. The climacteric-like behaviour of young, mature and wounded citrus leaves. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:1359-1367. [PMID: 15767320 DOI: 10.1093/jxb/eri137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Although leaves and other vegetative tissues are generally considered as non-climacteric, citrus leaves show a climacteric system II behaviour after detachment. Upon harvest, young, fully expanded 'Valencia' orange (Citrus sinensis) leaves ( approximately 60-d-old) exhibited two phases of ethylene production. The first phase, up to 6 d after detachment, was characterized by a low and constant ethylene production (system I pathway), associated with a constitutive expression of ACC synthase 2 (CsACS2), CsERS1, and CsETR1. ACC synthase 1 (CsACS1) was not expressed during this phase and autoinhibition of ethylene production was apparent following treatment with exogenous ethylene or propylene. The second phase, 7-12 d after detachment, was characterized by a climacteric rise in ethylene production, preceded by the induction of CsACS1 and ACC oxidase 1 (CsACO1) gene expression in the system II pathway. This induction was accelerated and augmented by exogenous ethylene or propylene, indicating an autocatalytic system II ethylene biosynthesis. Mature leaves (6-8-months-old) behaved similarly, except that the climacteric peak in ethylene production occurred earlier (day 5). Young and mature leaves varied in the timing of the climacteric ethylene rise and CsACS1 and CsACO1 induction. The two phases of ethylene production, system I and system II, were also detected in wounded leaf discs of both young and mature leaves. The first phase peaked 15 min after excision and the second phase peaked after 6 h.
Collapse
Affiliation(s)
- Ehud Katz
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel.
| | | | | | | |
Collapse
|
13
|
Kim JH, Kim WT, Kang BG. IAA and N(6)-benzyladenine inhibit ethylene-regulated expression of ACC oxidase and ACC synthase genes in mungbean hypocotyls. PLANT & CELL PHYSIOLOGY 2001; 42:1056-61. [PMID: 11673620 DOI: 10.1093/pcp/pce133] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Regulation of expression of 1-aminocyclopropane-1-carboxylate (ACC) oxidase (VR-ACO1) and ACC synthase (VR-ACS1) genes by ethylene, indole-3-acetic acid (IAA), and N(6)-benzyladenine (BA), was investigated in mungbean hypocotyl tissues. Exogenous ethylene markedly increased transcript level of VR-ACO1 and reduced that of VR-ACS1, whereas aminooxyacetic acid (AOA), an inhibitor of ethylene biosynthesis, decreased the level of VR-ACO1 mRNA and increased that of VR-ACS1, indicating that expression of VR-ACO1 and VR-ACS1 genes are under positive and negative feedback control by ethylene, respectively. However, IAA treatment reduced the level of VR-ACO1 transcripts and increased that of VR-ACS1, although the hormone greatly induced ethylene production. We have demonstrated that, in a system that separates the effect of IAA proper from the effect of IAA-induced ethylene, the amount of IAA-induced ethylene was enough to cause accumulation of VR-ACO1 mRNA and decrease of VR-ACS1 mRNA. We have also shown that the responsiveness of VR-ACO1 and VR-ACS1 to exogenous ethylene was greatly reduced in the presence of IAA. In addition, BA abolished ethylene responsiveness with respect to expression of VR-ACO1 and VR-ACS1. Based on these results, we suggest that IAA and BA inhibit ethylene action, resulting in suppression of VR-ACO1 expression and induction of VR-ACS1 expression.
Collapse
Affiliation(s)
- J H Kim
- Department of Biology, Yonsei University, Seoul 120-749, The Republic of Korea.
| | | | | |
Collapse
|
14
|
Barry CS, Llop-Tous MI, Grierson D. The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. PLANT PHYSIOLOGY 2000; 123:979-86. [PMID: 10889246 PMCID: PMC59060 DOI: 10.1104/pp.123.3.979] [Citation(s) in RCA: 243] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/1999] [Accepted: 04/06/2000] [Indexed: 05/18/2023]
Abstract
1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is one of the key regulatory enzymes involved in the synthesis of the hormone ethylene and is encoded by a multigene family containing at least eight members in tomato (Lycopersicon esculentum). Increased ethylene production accompanies ripening in tomato, and this coincides with a change in the regulation of ethylene synthesis from auto-inhibitory to autostimulatory. The signaling pathways that operate to bring about this transition from so-called system-1 to system-2 ethylene production are unknown, and we have begun to address these by investigating the regulation of ACS expression during ripening. Transcripts corresponding to four ACS genes, LEACS1A, LEACS2, LEACS4, and LEACS6, were detected in tomato fruit, and expression analysis using the ripening inhibitor (rin) mutant in combination with ethylene treatments and the Never-ripe (Nr) mutant has demonstrated that each is regulated in a unique way. A proposed model suggests that system-1 ethylene is regulated by the expression of LEACS1A and LEACS6. In fruit a transition period occurs in which the RIN gene plays a pivotal role leading to increased expression of LEACS1A and induction of LEACS4. System-2 ethylene synthesis is subsequently initiated and maintained by ethylene-dependent induction of LEACS2.
Collapse
Affiliation(s)
- C S Barry
- Plant Science Division, School of Biological Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| | | | | |
Collapse
|
15
|
Tieman DM, Klee HJ. Differential expression of two novel members of the tomato ethylene-receptor family. PLANT PHYSIOLOGY 1999; 120:165-72. [PMID: 10318694 PMCID: PMC59248 DOI: 10.1104/pp.120.1.165] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/1998] [Accepted: 02/07/1999] [Indexed: 05/19/2023]
Abstract
The phytohormone ethylene regulates many aspects of plant growth, development, and environmental responses. Much of the developmental regulation of ethylene responses in tomato (Lycopersicon esculentum) occurs at the level of hormone sensitivity. In an effort to understand the regulation of ethylene responses, we isolated and characterized tomato genes with sequence similarity to the Arabidopsis ETR1 (ethylene response 1) ethylene receptor. Previously, we isolated three genes that exhibit high similarity to ETR1 and to each other. Here we report the isolation of two additional genes, LeETR4 and LeETR5, that are only 42% and 40% identical to ETR1, respectively. Although the amino acids known to be involved in ethylene binding are conserved, LeETR5 lacks the histidine within the kinase domain that is predicted to be phosphorylated. This suggests that histidine kinase activity is not necessary for an ethylene response, because mutated forms of both LeETR4 and LeETR5 confer dominant ethylene insensitivity in transgenic Arabidopsis plants. Expression analysis indicates that LeETR4 accounts for most of the putative ethylene-receptor mRNA present in reproductive tissues, but, like LeETR5, it is less abundant in vegetative tissues. Taken together, ethylene perception in tomato is potentially quite complex, with at least five structurally divergent, putative receptor family members exhibiting significant variation in expression levels throughout development.
Collapse
Affiliation(s)
- D M Tieman
- Horticultural Sciences Department, P.O. Box 110690, University of Florida, Gainesville, Florida 32611-0690, USA
| | | |
Collapse
|
16
|
Nakatsuka A, Murachi S, Okunishi H, Shiomi S, Nakano R, Kubo Y, Inaba A. Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. PLANT PHYSIOLOGY 1998; 118:1295-305. [PMID: 9847103 PMCID: PMC34745 DOI: 10.1104/pp.118.4.1295] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/1998] [Accepted: 08/28/1998] [Indexed: 05/18/2023]
Abstract
We investigated the feedback regulation of ethylene biosynthesis in tomato (Lycopersicon esculentum) fruit with respect to the transition from system 1 to system 2 ethylene production. The abundance of LE-ACS2, LE-ACS4, and NR mRNAs increased in the ripening fruit concomitant with a burst in ethylene production. These increases in mRNAs with ripening were prevented to a large extent by treatment with 1-methylcyclopropene (MCP), an ethylene action inhibitor. Transcripts for the LE-ACS6 gene, which accumulated in preclimacteric fruit but not in untreated ripening fruit, did accumulate in ripening fruit treated with MCP. Treatment of young fruit with propylene prevented the accumulation of transcripts for this gene. LE-ACS1A, LE-ACS3, and TAE1 genes were expressed constitutively in the fruit throughout development and ripening irrespective of whether the fruit was treated with MCP or propylene. The transcripts for LE-ACO1 and LE-ACO4 genes already existed in preclimacteric fruit and increased greatly when ripening commenced. These increases in LE-ACO mRNA with ripening were also prevented by treatment with MCP. The results suggest that in tomato fruit the preclimacteric system 1 ethylene is possibly mediated via constitutively expressed LE-ACS1A and LE-ACS3 and negatively feedback-regulated LE-ACS6 genes with preexisting LE-ACO1 and LE-ACO4 mRNAs. At the onset of the climacteric stage, it shifts to system 2 ethylene, with a large accumulation of LE-ACS2, LE-ACS4, LE-ACO1, and LE-ACO4 mRNAs as a result of a positive feedback regulation. This transition from system 1 to system 2 ethylene production might be related to the accumulated level of NR mRNA.
Collapse
MESH Headings
- Alkenes/pharmacology
- Amino Acid Oxidoreductases/genetics
- Amino Acid Sequence
- Base Sequence
- Cloning, Molecular
- Cyclopropanes/pharmacology
- DNA Primers/genetics
- DNA, Complementary/genetics
- Ethylenes/biosynthesis
- Feedback
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant
- Lyases/genetics
- Solanum lycopersicum/genetics
- Solanum lycopersicum/growth & development
- Solanum lycopersicum/metabolism
- Molecular Sequence Data
- Plant Proteins/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Receptors, Cell Surface/genetics
Collapse
Affiliation(s)
- A Nakatsuka
- Laboratory of Postharvest Agriculture, Faculty of Agriculture, Okayama University, Tsushima, Okayama, 700-8530 Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Lelièvre JM, Tichit L, Dao P, Fillion L, Nam YW, Pech JC, Latché A. Effects of chilling on the expression of ethylene biosynthetic genes in Passe-Crassane pear (Pyrus communis L.) fruits. PLANT MOLECULAR BIOLOGY 1997; 33:847-855. [PMID: 9106508 DOI: 10.1023/a:1005750324531] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Passe-Crassane pears require a 3-month chilling treatment at 0 degrees C to be able to produce ethylene and ripen autonomously after subsequent rewarming. The chilling treatment strongly stimulated ACC oxidase activity, and to a lesser extent ACC synthase activity. At the same time, the levels of mRNAs hybridizing to ACC synthase and ACC oxidase probes increased dramatically. Fruit stored at 18 degrees C immediately after harvest did not exhibit any of these changes, while fruit that had been previously chilled exhibited a burst of ethylene production associated with high activity of ACC oxidase and ACC synthase upon rewarming. ACC oxidase mRNA strongly accumulated in rewarmed fruits, while ACC synthase mRNA level decreased. The chilling-induced accumulation of ACC synthase and ACC oxidase transcripts was strongly reduced when ethylene action was blocked during chilling with 1-methylcyclopropene (1-MCP). Upon rewarming ACC synthase and ACC oxidase transcripts rapidly disappeared in 1-MCP-treated fruits. A five-week treatment of non-chilled fruits with the ethylene analog propylene led to increased expression of ACC oxidase and to ripening. However, ethylene synthesis, ACC synthase activity and ACC synthase mRNAs remained at very low level. Our data indicate that ACC synthase gene expression is regulated by ethylene only during, or after chilling treatment, while ACC oxidase gene expression can be induced separately by either chilling or ethylene.
Collapse
Affiliation(s)
- J M Lelièvre
- INRA Station de Technologie des Produits Végétaux, Avignon, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Kim WT, Yang SF. Structure and expression of cDNAs encoding 1-aminocyclopropane-1-carboxylate oxidase homologs isolated from excised mung bean hypocotyls. PLANTA 1994; 194:223-229. [PMID: 7765118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
By screening a mung bean (Vigna radiata L.) hypocotyl cDNA library using a combination of apple (pAE12) and tomato (pTOM13) 1-aminocyclopropane 1-carboxylate (ACC)-oxidase cDNAs as probes, putative ACC-oxidase clones were isolated. Based on restriction-enzyme map and DNA-sequencing analyses, they can be divided into two homology classes, represented by pVR-ACO1 and pVR-ACO2. While pVR-ACO1 and pVR-ACO2 exhibit close homology in their coding regions, their 3'-noncoding regions are divergent. pVR-ACO1 is a 1312-bp full-length clone and contains a single open reading frame encoding 317 amino acids (MW = 35.8 kDa), while pVR-ACO2 is 1172 bp long and is a partial cDNA clone encoding 308 amino acids. These two deduced amino-acid sequences share 83% identity, and display considerable sequence conservation (73-86%) to other ACC oxidases from various plant species. Northern blot analyses of RNAs isolated from hypocotyl, leaf, and stem tissues using gene-specific probes indicate that the pVR-ACO1 transcript is present in all parts of the seedling and that the expression in hypocotyls is further increased following excision. The maximum induction of ACC-oxidase transcripts occurred at about 6 h after excision, while the maximum enzyme activity was observed at 24 h. When excised hypocotyls were treated with ethylene a further enhanced level of transcripts was observed. Aminooxyacetic acid, an inhibitor of ACC-synthase activity, and 2,5-norbornadiene, an inhibitor of ethylene action, suppressed the wound-induced accumulation of ACC-oxidase mRNA, while an addition of ethylene in these tissues restored the accumulation of ACC-oxidase mRNA.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W T Kim
- Mann Laboratory, Department of Vegetable Crops, University of California, Davis 95616
| | | |
Collapse
|
19
|
Dong JG, Fernández-Maculet JC, Yang SF. Purification and characterization of 1-aminocyclopropane-1-carboxylate oxidase from apple fruit. Proc Natl Acad Sci U S A 1992. [PMID: 1409700 DOI: 10.1073/pnas.89.209789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
1-Aminocyclopropane-1-carboxylate (ACC) oxidase catalyzes the oxidation of ACC to ethylene. Following conventional column fractionation, the enzyme was purified 180-fold to near homogeneity with a specific activity of 20 nmol/(mg.min). This purified enzyme preparation migrated as a single protein band with an apparent molecular mass of 35 kDa on SDS/PAGE and 39 kDa on gel filtration. As in vivo, the purified enzyme required CO2 for activity. Removal of CO2 from the reaction mixture completely abolished the enzyme activity, while 0.5% atmospheric CO2 (0.15 mM in the medium) gave half-maximal activity. The purified enzyme displayed an absolute requirement for Fe2+ and ascorbate. The stoichiometry of the enzymatic reaction was determined: ACC + ascorbate + O2-->C2H4 + HCN + CO2 + dehydroascorbate + 2 H2O. A polyclonal antibody was raised against a synthetic tridecapeptide (PDLEEEYRKTMKE) whose sequence was deduced from the apple pAE12 cDNA [Dong, J. G., Olson, D., Silverstone, A. & Yang, S. F. (1992) Plant Physiol. 98, 1530-1531], which is homologous to tomato cDNAs encoding ACC oxidase. On a Western blot, this antibody specifically recognized the purified ACC oxidase protein. The amino acid composition of the purified enzyme agreed well with that deduced from the pAE12 sequence. When the protein was cleaved with CNBr and one of the peptide fragments was isolated and sequenced for 20 cycles, its sequence (KEFAVELEKLAEKLLDLLCE) precisely matched that predicted from pAE12 (residues 115-134). When preclimacteric apple fruit was treated with ethylene, a parallel increase in in vivo and in vitro ACC oxidase activities was observed, and this increase was accompanied by a concomitant increase in the level of pAE12 transcript. These observations support the conclusion that the isolated ACC oxidase protein is encoded by pAE12.
Collapse
Affiliation(s)
- J G Dong
- Mann Laboratory, Department of Vegetable Crops, University of California, Davis 95616
| | | | | |
Collapse
|
20
|
Dong JG, Fernández-Maculet JC, Yang SF. Purification and characterization of 1-aminocyclopropane-1-carboxylate oxidase from apple fruit. Proc Natl Acad Sci U S A 1992; 89:9789-93. [PMID: 1409700 PMCID: PMC50218 DOI: 10.1073/pnas.89.20.9789] [Citation(s) in RCA: 179] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
1-Aminocyclopropane-1-carboxylate (ACC) oxidase catalyzes the oxidation of ACC to ethylene. Following conventional column fractionation, the enzyme was purified 180-fold to near homogeneity with a specific activity of 20 nmol/(mg.min). This purified enzyme preparation migrated as a single protein band with an apparent molecular mass of 35 kDa on SDS/PAGE and 39 kDa on gel filtration. As in vivo, the purified enzyme required CO2 for activity. Removal of CO2 from the reaction mixture completely abolished the enzyme activity, while 0.5% atmospheric CO2 (0.15 mM in the medium) gave half-maximal activity. The purified enzyme displayed an absolute requirement for Fe2+ and ascorbate. The stoichiometry of the enzymatic reaction was determined: ACC + ascorbate + O2-->C2H4 + HCN + CO2 + dehydroascorbate + 2 H2O. A polyclonal antibody was raised against a synthetic tridecapeptide (PDLEEEYRKTMKE) whose sequence was deduced from the apple pAE12 cDNA [Dong, J. G., Olson, D., Silverstone, A. & Yang, S. F. (1992) Plant Physiol. 98, 1530-1531], which is homologous to tomato cDNAs encoding ACC oxidase. On a Western blot, this antibody specifically recognized the purified ACC oxidase protein. The amino acid composition of the purified enzyme agreed well with that deduced from the pAE12 sequence. When the protein was cleaved with CNBr and one of the peptide fragments was isolated and sequenced for 20 cycles, its sequence (KEFAVELEKLAEKLLDLLCE) precisely matched that predicted from pAE12 (residues 115-134). When preclimacteric apple fruit was treated with ethylene, a parallel increase in in vivo and in vitro ACC oxidase activities was observed, and this increase was accompanied by a concomitant increase in the level of pAE12 transcript. These observations support the conclusion that the isolated ACC oxidase protein is encoded by pAE12.
Collapse
Affiliation(s)
- J G Dong
- Mann Laboratory, Department of Vegetable Crops, University of California, Davis 95616
| | | | | |
Collapse
|
21
|
Penarrubia L, Aguilar M, Margossian L, Fischer RL. An Antisense Gene Stimulates Ethylene Hormone Production during Tomato Fruit Ripening. THE PLANT CELL 1992; 4:681-687. [PMID: 12297659 PMCID: PMC160164 DOI: 10.1105/tpc.4.6.681] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The ripening of many fruits is controlled by an increase in ethylene hormone concentration. E8 is a fruit ripening protein that is related to the enzyme that catalyzes the last step in the ethylene biosynthesis pathway, 1-aminocyclopropane-1-carboxylic (ACC) oxidase. To determine the function of E8, we have transformed tomato plants with an E8 antisense gene. We show here that the antisense gene inhibits the accumulation of E8 protein during ripening. Whereas others have shown that reduction of ACC oxidase results in reduced levels of ethylene biosynthesis, we find that reduction of the related E8 protein produces the opposite effect, an increase in ethylene evolution specifically during the ripening of detached fruit. Thus, E8 has a negative effect on ethylene production in fruit.
Collapse
Affiliation(s)
- L. Penarrubia
- Department of Plant Biology, University of California, Berkeley, California 94720
| | | | | | | |
Collapse
|
22
|
Fernández-Maculet JC, Yang SF. Extraction and partial characterization of the ethylene-forming enzyme from apple fruit. PLANT PHYSIOLOGY 1992; 99:751-4. [PMID: 16668949 PMCID: PMC1080528 DOI: 10.1104/pp.99.2.751] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ethylene-forming enzyme (EFE) was isolated from apple (Malus domestica Borkh. cv Golden Delicious) fruit tissue. The enzyme activity in the homogenate is associated with the pellet fraction and can be solubilized with Triton X-100 or polyvinylpolypyrrolidone. The solubilized enzyme system resembles the in vivo system in that it exhibits a low K(m) (17 micromolar) for its substrate 1-aminocyclopropane-1-carboxylic acid (ACC), is stereospecific toward 2-ethyl-ACC stereoisomers for 1-butene production, and is inhibited by cobalt ions and alpha-aminoisobutyric acid. Intact preclimacteric fruits treated with exogenous ethylene showed a marked increase in in vivo EFE activity and this increase was accompanied by a parallel increase in in vitro EFE activity. These results support the notion that the isolated EFE represents the authentic in vivo activity.
Collapse
Affiliation(s)
- J C Fernández-Maculet
- Mann Laboratory, Department of Vegetable Crops, University of California, Davis, California 95616
| | | |
Collapse
|
23
|
Dong JG, Olson D, Silverstone A, Yang SF. Sequence of a cDNA coding for a 1-aminocyclopropane-1-carboxylate oxidase homolog from apple fruit. PLANT PHYSIOLOGY 1992; 98:1530-1. [PMID: 16668829 PMCID: PMC1080386 DOI: 10.1104/pp.98.4.1530] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- J G Dong
- Mann Laboratory, Department of Vegetable Crops, University of California at Davis, Davis, California 95616
| | | | | | | |
Collapse
|
24
|
McGarvey DJ, Sirevåg R, Christoffersen RE. Ripening-related gene from avocado fruit : ethylene-inducible expression of the mRNA and polypeptide. PLANT PHYSIOLOGY 1992; 98:554-9. [PMID: 16668676 PMCID: PMC1080225 DOI: 10.1104/pp.98.2.554] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Fruit ripening involves a series of changes in gene expression regulated by the phytohormone ethylene. AVOe3, a ripening-related gene in avocado fruit (Persea americana Mill. cv Hass), was characterized with regard to its ethylene-regulated expression. The AVOe3 mRNA and immunopositive protein were induced in mature fruit within 12 hours of propylene treatment. The AVOe3 mRNA levels reached a maximum 1 to 2 days before the ethylene climacteric, whereas the immunopositive protein continued to accumulate. RNA selected by the pAVOe3 cDNA clone encoded a polypeptide with molecular mass of 34 kilodaltons, corresponding to the molecular mass of the AVOe3 protein determined by immunoblots. The protein was soluble, remaining in solution at 100,000 gravity and eluted as a monomer on gel filtration. Because of its pattern of induction and relationship to an ethylene-related gene of tomato, the possible involvement of AVOe3 in ethylene biosynthesis is discussed.
Collapse
Affiliation(s)
- D J McGarvey
- Department of Biological Sciences, University of California, Santa Barbara, California 93106
| | | | | |
Collapse
|
25
|
Inaba A, Gao JP, Nakamura R. Induction by Electric Currents of Ethylene Biosynthesis in Cucumber (Cucumis sativus L.) Fruit. PLANT PHYSIOLOGY 1991; 97:1161-5. [PMID: 16668503 PMCID: PMC1081136 DOI: 10.1104/pp.97.3.1161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The effects of an electric current on ethylene biosynthesis were investigated in cucumber (Cucumis sativus L.) fruit that were producing almost no ethylene. Direct currents at 0.5 to 3.0 milliamperes induced much ethylene synthesis, with a rapid continuous increase in the rate, which reached a peak within 5 to 6 hours and then decreased. The rate of production was greater with a stronger current. Ethylene production was not observed after the use of a sine-wave alternating current (60 hertz) at 3 milliamperes, the magnitude at which a direct current had the greatest effect. The activity of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ethylene forming enzyme (EFE) increased before the rise in ethylene production. ACC synthase and EFE were activated sixfold and fourfold, respectively, by 2 hours. The concentration of ACC increased linearly up to 6 hours and then decreased. Ethylene induction by an electric current was suppressed almost completely by the infiltration of the cucumbers with 5 millimolar aminooxyacetic acid, an inhibitor of ACC synthase, and was also suppressed 70% by 5 millimolar salicylic acid, an inhibitor of EFE. The results indicate that the ethylene induced by the direct current was synthesized via the ACC-ethylene pathway as a result of electrical stress, a new kind of stress to be identified.
Collapse
Affiliation(s)
- A Inaba
- Faculty of Agriculture, Okayama University, Tsushima, Okayama 700, Japan
| | | | | |
Collapse
|
26
|
Starrett DA, Laties GG. Involvement of wound and climacteric ethylene in ripening avocado discs. PLANT PHYSIOLOGY 1991; 97:720-9. [PMID: 16668458 PMCID: PMC1081066 DOI: 10.1104/pp.97.2.720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Avocado (Persea americana Mill. cv Hass) discs (3 mm thick) ripened in approximately 72 hours when maintained in a flow of moist air and resembled ripe fruit in texture and taste. Ethylene evolution by discs of early and midseason fruit was characterized by two distinct components, viz. wound ethylene, peaking at approximately 18 hours, and climacteric ethylene, rising to a peak at approximately 72 hours. A commensurate respiratory stimulation accompanied each ethylene peak. Aminoethoxyvinyl glycine (AVG) given consecutively, at once and at 24 hours following disc preparation, prevented wound and climacteric respiration peaks, virtually all ethylene production, and ripening. When AVG was administered for the first 24 hours only, respiratory stimulation and softening (ripening) were retarded by at least a day. When AVG was added solely after the first 24 hours, ripening proceeded as in untreated discs, although climacteric ethylene and respiration were diminished. Propylene given together with AVG led to ripening under all circumstances. 2,5-Norbornadiene given continuously stimulated wound ethylene production, and it inhibited climacteric ethylene evolution, the augmentation of ethylene-forming enzyme activity normally associated with climacteric ethylene, and ripening. 2,5-Norbornadiene given at 24 hours fully inhibited ripening. When intact fruit were pulsed with ethylene for 24 hours before discs were prepared therefrom, the respiration rate, ethylene-forming enzyme activity buildup, and rate of ethylene production were all subsequently enhanced. The evidence suggests that ethylene is involved in all phases of disc ripening. In this view, wound ethylene in discs accelerates events that normally take place over an extended period throughout the lag phase in intact fruit, and climacteric ethylene serves the same ripening function in discs and intact fruit alike.
Collapse
Affiliation(s)
- D A Starrett
- Department of Biology, University of California, Los Angeles, Los Angeles, California 90024
| | | |
Collapse
|
27
|
Van Der Straeten D, Van Montagu M. The molecular basis of ethylene biosynthesis, mode of action, and effects in higher plants. Subcell Biochem 1991; 17:279-326. [PMID: 1796487 DOI: 10.1007/978-1-4613-9365-8_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Larrigaudière C, Latché A, Pech JC, Triantaphylidès C. Short-Term Effects of gamma-Irradiation on 1-Aminocyclopropane-1-Carboxylic Acid Metabolism in Early Climacteric Cherry Tomatoes : Comparison with Wounding. PLANT PHYSIOLOGY 1990; 92:577-81. [PMID: 16667318 PMCID: PMC1062337 DOI: 10.1104/pp.92.3.577] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
gamma-Irradiation of early climacteric (breaker) cherry tomatoes (Lycopersicon pimpinellifollium L.) caused a sharp burst in ethylene production during the first hour. The extent of ethylene production was dose dependent and was maximum at about 3 kilograys. The content of 1-aminocyclopropane-1-carboxylic acid (ACC), followed the same evolution as ethylene production, while malonyl ACC increased steadily with time in irradiated fruits. The burst in ethylene production was accompanied by a sharp stimulation of ACC synthase activity which began 15 minutes after irradiation. The stimulation was completely prevented by cycloheximide, but not by actinomycin d or cordycepin. In contrast with irradiation, mechanical wounding continuously stimulated ethylene production over several hours. gamma-Irradiation and cordycepin applied to wounded tissues both caused the cessation of this continuous increase, but the initial burst was still persisting. These data suggest that gamma-irradiation, like wounding, stimulates the translation of preexisting mRNAs. It also reduces, at least temporarily, the subsequent transcription-dependent stimulation of ethylene production. gamma-Irradiation greatly inhibited the activity of ethylene-forming enzyme at doses higher than 1 kilogray. Such sensitivity is in accordance with a highly integrated membranebound enzyme.
Collapse
Affiliation(s)
- C Larrigaudière
- CEN Cadarache, Département de Biologie, Service de Radioagronomie, F-13108 Saint Paul Lez Durance Cedex, France
| | | | | | | |
Collapse
|
29
|
Peiser G. Effect of 2,5-Norbornadiene upon Ethylene Biosynthesis in Midclimacteric Carnation Flowers. PLANT PHYSIOLOGY 1989; 90:21-4. [PMID: 16666738 PMCID: PMC1061668 DOI: 10.1104/pp.90.1.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The climacteric increase in ethylene production in carnation (Dianthus caryophyllus L. cv White Sim) flowers is known to be accompanied by an increase in 1-aminocyclopropane-1-carboxylate (ACC) synthase and ethylene forming enzyme (EFE) activities. When midclimacteric flowers were exposed to 2,5-norbornadiene, which blocks ethylene action, ethylene production began to decrease after 2 to 3 hours. ACC synthase activity was markedly reduced after 4 hours and the increase in EFE activity was blocked indicating that the autocatalytic signal associated with ethylene action stimulates both enzyme activities.
Collapse
Affiliation(s)
- G Peiser
- NPI, 417 Wakara Way, Salt Lake City, Utah 84108
| |
Collapse
|
30
|
Skerritt JH. Hydrolysis of barley endosperm storage proteins during malting. I. Analysis using monoclonal antibodies. J Cereal Sci 1988. [DOI: 10.1016/s0733-5210(88)80006-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Lincoln JE, Cordes S, Read E, Fischer RL. Regulation of gene expression by ethylene during Lycopersicon esculentum (tomato) fruit development. Proc Natl Acad Sci U S A 1987; 84:2793-7. [PMID: 3472237 PMCID: PMC304745 DOI: 10.1073/pnas.84.9.2793] [Citation(s) in RCA: 157] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have investigated the regulation of gene expression by the plant hormone ethylene by cloning mRNAs that accumulate in unripe tomato fruit (Lycopersicon esculentum) exposed to exogenous ethylene. The response to exogenous ethylene is rapid; within 30-120 min we detect an increase in the cloned mRNA concentrations. DNA sequence analysis indicates that one of the ethylene-inducible genes is related to a gene encoding wound-inducible proteinase inhibitor I. We have measured ethylene production during fruit development and detect low basal levels in unripe fruit and much higher levels in ripening fruit. Blot hybridization experiments show that expression of the cloned genes is developmentally regulated by ethylene during fruit ripening: the mRNAs produced by these genes are more abundant in ripe fruit than in unripe fruit, and this mRNA accumulation is repressed by a competitive inhibitor of ethylene action, norbornadiene. However, during fruit development some of the cloned mRNAs begin to accumulate when ethylene production is at a basal level, whereas other mRNAs begin to accumulate later when the endogenous ethylene concentration increases, suggesting that gene expression during fruit development can be activated by ethylene in two ways. In some cases gene expression is primarily activated by an increase in sensitivity to basal ethylene levels, whereas in other cases it may be regulated by an increase in ethylene concentration.
Collapse
|
32
|
Sitrit Y, Riov J, Blumenfeld A. Regulation of Ethylene Biosynthesis in Avocado Fruit during Ripening. PLANT PHYSIOLOGY 1986; 81:130-5. [PMID: 16664762 PMCID: PMC1075295 DOI: 10.1104/pp.81.1.130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Preclimacteric avocado (Persea americana Mill.) fruits produced very little ethylene and had only a trace amount of l-aminocyclopropane-1-carboxylic acid (ACC) and a very low activity of ACC synthase. In contrast, a significant amount of l-(malonylamino)cyclopropane-1-carboxylic acid (MACC) was detected during the preclimacteric stage. In harvested fruits, both ACC synthase activity and the level of ACC increased markedly during the climacteric rise reaching a peak shortly before the climacteric peak. The level of MACC also increased at the climacteric stage. Cycloheximide and cordycepin inhibited the synthesis of ACC synthase in discs excised from preclimacteric fruits. A low but measurable ethylene forming enzyme (EFE) activity was detected during the preclimacteric stage. During ripening, EFE activity increased only at the beginning of the climacteric rise. ACC synthase and EFE activities and the ACC level declined rapidly after the climacteric peak. Application of ACC to attached or detached fruits resulted in increased ethylene production and ripening of the fruits. Exogenous ethylene stimulated EFE activity in intact fruits prior to the increase in ethylene production. The data suggest that conversion of S-adenosylmethionine to ACC is the major factor limiting ethylene production during the preclimacteric stage. ACC synthase is first synthesized during ripening and this leads to the production of ethylene which in turn induces an additional increase in ACC synthase activity. Only when ethylene reaches a certain level does it induce increased EFE activity.
Collapse
Affiliation(s)
- Y Sitrit
- Department of Fruit Trees (Subtropical and Deciduous), Agricultural Research Organization, The Volcani Centre, Bet Dagan 50250, Israel
| | | | | |
Collapse
|
33
|
Smith CJ, Slater A, Grierson D. Rapid appearance of an mRNA correlated with ethylene synthesis encoding a protein ofmolecular weight 35000. PLANTA 1986; 168:94-100. [PMID: 24233740 DOI: 10.1007/bf00407014] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/1985] [Accepted: 11/05/1985] [Indexed: 06/02/2023]
Abstract
Changes in gene expression related to ethylene synthesis were investigated during ripening of tomato fruit, and in unripe fruit and leaves after wounding. Messenger RNA was extracted at different stages of ripening, or at various times after wounding, and translated in vitro. A number of changes in mRNA were noted in all cases, including an increase in one encoding a protein of MW 35000. The mRNA encoding this protein in ripening fruit was hybrid-selected by a ripening-related complementary DNA clone, pTOM13. This clone also selected an mRNA encoding a protein of MW 35000 from RNA extracted from wounded unripe fruit and wounded leaves, but not from unwounded control tissue. During ripening and after wounding the appearance of mRNA for the MW-35000 protein was correlated with increased ethylene synthesis. In unripe fruit, the increase in mRNA for the MW-35000 protein and in ethylene synthesis were detected within 30 min of wounding. In-vivo labelling showed that a protein of MW 35000 was also synthesised rapidly in wounded fruit tissue. We suggest that the mRNAs encoding the MW-35000 proteins that increased during ripening and in response to wounding are the same and may be related to ethylene synthesis.
Collapse
Affiliation(s)
- C J Smith
- Department of Physiology and Environmental Science, University of Nottingham, School of Agriculture, Sutton Bonington, LE12 5RD, Loughborough, UK
| | | | | |
Collapse
|
34
|
Bufler G. Ethylene-promoted conversion of 1-aminocyclopropane-1-carboxylic Acid to ethylene in peel of apple at various stages of fruit development. PLANT PHYSIOLOGY 1986; 80:539-43. [PMID: 16664658 PMCID: PMC1075151 DOI: 10.1104/pp.80.2.539] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Internal ethylene concentration, ability to convert 1-amino-cyclopropane-1-carboxylic acid (ACC) to ethylene (ethylene-forming enzyme [EFE] activity) and ACC content in the peel of apples (Malus domestica Borkh., cv Golden Delicious) increased only slightly during fruit maturation on the tree. Treatment of immature apples with 100 microliters ethylene per liter for 24 hours increased EFE activity in the peel tissue, but did not induce an increase in ethylene production. This ability of apple peel tissue to respond to ethylene with elevated EFE activity increased exponentially during maturation on the tree. After harvest of mature preclimacteric apples previously treated with aminoethoxyvinyl-glycine, 0.05 microliter per liter ethylene did not immediately cause a rapid increase of development in EFE activity in peel tissue. However, 0.5 microliter per liter ethylene and higher concentrations did. The ethylene concentration for half-maximal promotion of EFE development was estimated to be approximately 0.9 microliter per liter. CO(2) partially inhibited the rapid increase of ethylene-promoted development of EFE activity. It is suggested that ethylene-promoted CO(2) production is involved in the regulation of autocatalytic ethylene production in apples.
Collapse
Affiliation(s)
- G Bufler
- Institut für Obst-, Gemüse-, und Weinbau (370), Universität Hohenheim, 7000 Stuttgart 70, Federal Republic of Germany
| |
Collapse
|
35
|
INABA A, NAKAMURA R. Effect of Exogenous Ethylene Concentration and Fruit Temperature on the Minimum Treatment Time Necessary to Induce Ripening in Banana Fruit. ACTA ACUST UNITED AC 1986. [DOI: 10.2503/jjshs.55.348] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Liu Y, Su LY, Yang SF. Ethylene Promotes the Capability To Malonylate 1-Aminocyclopropane-1-carboxylic Acid and d-Amino Acids in Preclimacteric Tomato Fruits. PLANT PHYSIOLOGY 1985; 77:891-5. [PMID: 16664157 PMCID: PMC1064626 DOI: 10.1104/pp.77.4.891] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
When whole unripe green tomato fruits (Lycopersicon esculentum Mill, cv T(3)) were treated with ethylene (10 microliters per liter) for 18 hours, the fruit's ability to convert 1-aminocyclopropane-1-carboxylic acid (ACC) to N-malonyl-ACC (MACC) increased markedly and such an effect was also observed in fruits of mutant nor, which cannot ripen normally. The promotion of the capability to malonylate ACC by ethylene increased with the increasing ethylene concentration from 0.1 to 100 microliters per liter and with increasing duration of ethylene treatment up to 8 hours; a longer duration of ethylene treatment did not further increase the malonylation capability. When ethylene was withdrawn, the promotion disappeared within 72 hours. Norbornadiene, a competitive inhibitor of ethylene action, effectively eliminated the promotive effect of ethylene. Ethylene treatment also promoted the fruits' capability to conjugate d-amino acids and alpha-amino-isobutyric acid. Since the increase in the tissue's capability to malonylate ACC was accompanied by an increase in the extractable activity of ACC and d-amino acid malonyltransferase, ethylene is thought to promote the development of ACC/d-amino acid malonyltransferase in unripe tomato fruits.
Collapse
Affiliation(s)
- Y Liu
- Department of Vegetable Crops, University of California, Davis, California 95616
| | | | | |
Collapse
|