1
|
Li S, Wang HY, Zhang Y, Huang J, Chen Z, Shen RF, Zhu XF. Auxin is involved in cadmium accumulation in rice through controlling nitric oxide production and the ability of cell walls to bind cadmium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166644. [PMID: 37659569 DOI: 10.1016/j.scitotenv.2023.166644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/30/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Although auxin has been linked to plants' responses to cadmium (Cd) stress, the exact mechanism is yet elusive. The objective of the current investigation was to determine the role and the mechanism of auxin in controlling rice's Cd accumulation. Rice roots with Cd stress have higher endogenous auxin levels, and exogenous auxin combined Cd treatment could reduce root cell wall's hemicellulose content when compared with Cd treatment alone, which in turn reduced its fixation of Cd, as well as decreased the expression of OsCd1 (a major facilitator superfamily gene), OsNRAMP1/5 (Natural Resistance-Associated Macrophage Protein 1/5), OsZIP5/9 (Zinc Transporter 5/9), and OsHMA2 (Heavy Metal ATPase 2) that participated in Cd uptake and root to shoot translocation. Furthermore, less Cd accumulated in the shoots as a result of auxin's impact in increasing the expression of OsCAL1 (Cadmium accumulation in Leaf 1), OsABCG36/OsPDR9 (G-type ATP-binding cassette transporter/Pleiotropic drug resistance 9), and OsHMA3, which were in charge of Cd efflux and sequestering into vacuoles, respectively. Additionally, auxin decreased endogenous nitric oxide (NO) levels and antioxidant enzyme activity, while treatment of a NO scavenger-cPTIO-reduced auxin's alleviatory effects. In conclusion, the rice's ability to tolerate Cd toxicity was likely increased by the auxin-accelerated cell wall Cd exclusion mechanism, a pathway that controlled by the buildup of NO.
Collapse
Affiliation(s)
- Su Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China
| | - Yue Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijian Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Chen ZJ, Huang J, Li S, Shao JF, Shen RF, Zhu XF. Salylic acid minimize cadmium accumulation in rice through regulating the fixation capacity of the cell wall to cadmium. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111839. [PMID: 37643701 DOI: 10.1016/j.plantsci.2023.111839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/05/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Although salylic acid (SA) has been linked to how plants react to cadmium (Cd) stress, the exact mechanism is still unknown. The endogenous SA concentration in the rice (Oryza sativa L.) roots was enhanced by Cd stress in the current investigation, and exogenous SA reduced the hemicellulose content in root cell wall, which in turn inhibited its Cd binding capacity. What's more, exogenous SA also decreased the transcription level of genes such as Natural Resistance-Associated Macrophage Protein 5 (OsNRAMP5) and a major facilitator superfamily gene-OsCd1 that responsible for root Cd absorption. Finally, less Cd was accumulated in the rice as a result of the higher expression of Heavy Metal ATPase 3 (OsHMA3), Cation/Ca exchanger 2 (OsCCX2) and Pleiotropic Drug Resistance 9 (OsPDR9/OsABCG36) that were responsible for separating Cd into vacuole and getting Cd out of cells, respectively. In contrast, mutant with low SA level accumulated more Cd. Additionally, SA enhanced endogenous nitric oxide (NO) levels, and its alleviatory effects were mimicked by a NO donor, sodium nitroprusside (SNP). In conclusion, SA enhanced rice's Cd resistance through regulating the binding capacity of the cell wall to Cd, a pathway that might dependent on the NO accumulation.
Collapse
Affiliation(s)
- Zhi Jian Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Su Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Feng Shao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
De la Vega-Camarillo E, Sotelo-Aguilar J, Rios-Galicia B, Mercado-Flores Y, Arteaga-Garibay R, Villa-Tanaca L, Hernández-Rodríguez C. Promotion of the growth and yield of Zea mays by synthetic microbial communities from Jala maize. Front Microbiol 2023; 14:1167839. [PMID: 37275168 PMCID: PMC10235630 DOI: 10.3389/fmicb.2023.1167839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Plant growth-promoting bacteria (PGPB) are a source of nutrient supply, stimulate plant growth, and even act in the biocontrol of phytopathogens. However, these phenotypic traits have rarely been explored in culturable bacteria from native maize landraces. In this study, synthetic microbial communities (SynCom) were assembled with a set of PGPB isolated from the Jala maize landrace, some of them with additional abilities for the biocontrol of phytopathogenic fungi and the stimulation of plant-induced systemic resistance (ISR). Three SynCom were designed considering the phenotypic traits of bacterial strains, including Achromobacter xylosoxidans Z2K8, Burkholderia sp. Z1AL11, Klebsiella variicola R3J3HD7, Kosakonia pseudosacchari Z2WD1, Pantoea ananatis E2HD8, Pantoea sp. E2AD2, Phytobacter diazotrophicus Z2WL1, Pseudomonas protegens E1BL2, and P. protegens E2HL9. Plant growth promotion in gnotobiotic and greenhouse seedlings assays was performed with Conejo landrace; meanwhile, open field tests were carried out on hybrid CPL9105W maize. In all experimental models, a significant promotion of plant growth was observed. In gnotobiotic assays, the roots and shoot length of the maize seedlings increased 4.2 and 3.0 times, respectively, compared to the untreated control. Similarly, the sizes and weights of the roots and shoots of the plants increased significantly in the greenhouse assays. In the open field assay performed with hybrid CPL9105W maize, the yield increased from 11 tons/ha for the control to 16 tons/ha inoculated with SynCom 3. In addition, the incidence of rust fungal infections decreased significantly from 12.5% in the control to 8% in the treatment with SynCom 3. All SynCom designs promoted the growth of maize in all assays. However, SynCom 3 formulated with A. xylosoxidans Z2K8, Burkholderia sp. Z1AL11, K. variicola R3J3HD7, P. ananatis E2HD8, P. diazotrophicus Z2WL1, and P. protegens E1BL2 displayed the best results for promoting plant growth, their yield, and the inhibition of fungal rust. This study demonstrated the biotechnological eco-friendly plant growth-promoting potential of SynCom assemblies with culturable bacteria from native maize landraces for more sustainable and economic agriculture.
Collapse
Affiliation(s)
- Esaú De la Vega-Camarillo
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Josimar Sotelo-Aguilar
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Bibiana Rios-Galicia
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Yuridia Mercado-Flores
- Laboratorio de Aprovechamiento Integral de Recursos Bióticos, Universidad Politécnica de Pachuca, Hidalgo, Mexico
| | - Ramón Arteaga-Garibay
- Laboratorio de Recursos Genéticos Microbianos, Centro Nacional de Recursos Genéticos, INIFAP, Jalisco, Mexico
| | - Lourdes Villa-Tanaca
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - César Hernández-Rodríguez
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
4
|
NLR surveillance of pathogen interference with hormone receptors induces immunity. Nature 2023; 613:145-152. [PMID: 36517600 DOI: 10.1038/s41586-022-05529-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 11/04/2022] [Indexed: 12/23/2022]
Abstract
Phytohormone signalling pathways have an important role in defence against pathogens mediated by cell-surface pattern recognition receptors and intracellular nucleotide-binding leucine-rich repeat class immune receptors1,2 (NLR). Pathogens have evolved counter-defence strategies to manipulate phytohormone signalling pathways to dampen immunity and promote virulence3. However, little is known about the surveillance of pathogen interference of phytohormone signalling by the plant innate immune system. The pepper (Capsicum chinense) NLR Tsw, which recognizes the effector nonstructural protein NSs encoded by tomato spotted wilt orthotospovirus (TSWV), contains an unusually large leucine-rich repeat (LRR) domain. Structural modelling predicts similarity between the LRR domain of Tsw and those of the jasmonic acid receptor COI1, the auxin receptor TIR1 and the strigolactone receptor partner MAX2. This suggested that NSs could directly target hormone receptor signalling to promote infection, and that Tsw has evolved a LRR resembling those of phytohormone receptors LRR to induce immunity. Here we show that NSs associates with COI1, TIR1 and MAX2 through a common repressor-TCP21-which interacts directly with these phytohormone receptors. NSs enhances the interaction of COI1, TIR1 or MAX2 with TCP21 and blocks the degradation of corresponding transcriptional repressors to disable phytohormone-mediated host immunity to the virus. Tsw also interacts directly with TCP21 and this interaction is enhanced by viral NSs. Downregulation of TCP21 compromised Tsw-mediated defence against TSWV. Together, our findings reveal that a pathogen effector targets TCP21 to inhibit phytohormone receptor function, promoting virulence, and a plant NLR protein has evolved to recognize this interference as a counter-virulence strategy, thereby activating immunity.
Collapse
|
5
|
Wang Y, Wang X, Sun S, Jin C, Su J, Wei J, Luo X, Wen J, Wei T, Sahu SK, Zou H, Chen H, Mu Z, Zhang G, Liu X, Xu X, Gram L, Yang H, Wang E, Liu H. GWAS, MWAS and mGWAS provide insights into precision agriculture based on genotype-dependent microbial effects in foxtail millet. Nat Commun 2022; 13:5913. [PMID: 36207301 PMCID: PMC9546826 DOI: 10.1038/s41467-022-33238-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
Genetic and environmental factors collectively determine plant growth and yield. In the past 20 years, genome-wide association studies (GWAS) have been conducted on crops to decipher genetic loci that contribute to growth and yield, however, plant genotype appears to be insufficient to explain the trait variations. Here, we unravel the associations between genotypic, phenotypic, and rhizoplane microbiota variables of 827 foxtail millet cultivars by an integrated GWAS, microbiome-wide association studies (MWAS) and microbiome genome-wide association studies (mGWAS) method. We identify 257 rhizoplane microbial biomarkers associated with six key agronomic traits and validated the microbial-mediated growth effects on foxtail millet using marker strains isolated from the field. The rhizoplane microbiota composition is mainly driven by variations in plant genes related to immunity, metabolites, hormone signaling and nutrient uptake. Among these, the host immune gene FLS2 and transcription factor bHLH35 are widely associated with the microbial taxa of the rhizoplane. We further uncover a plant genotype-microbiota interaction network that contributes to phenotype plasticity. The microbial-mediated growth effects on foxtail millet are dependent on the host genotype, suggesting that precision microbiome management could be used to engineer high-yielding cultivars in agriculture systems.
Collapse
Grants
- Statens Naturvidenskabelige Forskningsrad (Danish National Science Foundation)
- This research was supported by the Funding of Joint Research on Agricultural Variety Improvement of Henan Province (No. 2022010401, H. Z.), the Major Science and Technology Projects of Yunnan Province (Digitalization, development and application of biotic resource, No. 860 202002AA100007, H. L.), the National Science Foundation (32088102, 31730103, 31825003, E. W.), the Specialty Industry for Key Research and Development Program in Shanxi Academy of Agricultural Sciences (No. YCX2019T01, Z. M.) and Key R&D Program of ShanXi Province (No. 201903D211003, Z. M.). This work was also supported by China National GeneBank (CNGB), Key Laboratory of Genomics, Ministry of Agriculture, BGI-Shenzhen.
Collapse
Affiliation(s)
- Yayu Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xiaolin Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shuai Sun
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- BGI-Qingdao, Qingdao, 266555, China
| | - Canzhi Jin
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianmu Su
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Jinpu Wei
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xinyue Luo
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiawen Wen
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Wei
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hongfeng Zou
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hongyun Chen
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhixin Mu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Gengyun Zhang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xin Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, 518083, China
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs, Lyngby, Denmark
| | - Huanming Yang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
6
|
Tahir MM, Tong L, Fan L, Liu Z, Li S, Zhang X, Li K, Shao Y, Zhang D, Mao J. Insights into the complicated networks contribute to adventitious rooting in transgenic MdWOX11 apple microshoots under nitrate treatments. PLANT, CELL & ENVIRONMENT 2022; 45:3134-3156. [PMID: 35902247 DOI: 10.1111/pce.14409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Adventitious root formation is a bottleneck for the mass propagation of microshoots, and nitrate is an essential nutrient regulating adventitious roots. WOX11 is involved in adventitious rooting. But the crosstalk between nitrate and WOX11 is completely unknown. In this study, MdWOX11 transgenic apple microshoots were grown on different nitrate treatments. Low nitrate promotes adventitious rooting in overexpressed microshoots more than wild type and RNA interference microshoots. In contrast, medium nitrate significantly inhibits it in overexpressed and RNA interference microshoots compared with wild type microshoots. Stem anatomy indicated that medium nitrate delays root primordia formation compared with low nitrate. Methyl jasmonate and zeatin riboside played positive and negative roles in adventitious rooting, respectively. Transcriptomic analysis was conducted to understand the molecular mechanisms behind the phenotypes better. Hormone signalling, sugar metabolism, nitrogen metabolism, cell cycle and root development pathway-related genes were selected for their potential involvement in adventitious rooting. Results suggest that nitrogen signaling and MdWOX11 expression affect cytokinin accumulation and response to cytokinin through regulating the expression of genes related to cytokinin synthesis and transduction pathways, which ultimately affect adventitious rooting. This study provided important insights into the complicated networks involved in adventitious rooting in transgenic microshoots under nitrate treatments.
Collapse
Affiliation(s)
- Muhammad Mobeen Tahir
- College of Horticulture, Yangling Sub-Center of the National Center for Apple Improvement, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Lu Tong
- College of Horticulture, Yangling Sub-Center of the National Center for Apple Improvement, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Li Fan
- College of Horticulture, Yangling Sub-Center of the National Center for Apple Improvement, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Zhimin Liu
- College of Horticulture, Yangling Sub-Center of the National Center for Apple Improvement, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Shaohuan Li
- College of Horticulture, Yangling Sub-Center of the National Center for Apple Improvement, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Xiaoyun Zhang
- College of Horticulture, Yangling Sub-Center of the National Center for Apple Improvement, Northwest A & F University, Yangling, Shaanxi, P. R. China
- Agricultural College, The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization in Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
| | - Ke Li
- College of Horticulture, Yangling Sub-Center of the National Center for Apple Improvement, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Yun Shao
- College of Horticulture, Yangling Sub-Center of the National Center for Apple Improvement, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Dong Zhang
- College of Horticulture, Yangling Sub-Center of the National Center for Apple Improvement, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Jiangping Mao
- College of Horticulture, Yangling Sub-Center of the National Center for Apple Improvement, Northwest A & F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
7
|
Yadav S, Yugandhar P, Alavilli H, Raliya R, Singh A, Sahi SV, Sarkar AK, Jain A. Potassium Chloroaurate-Mediated In Vitro Synthesis of Gold Nanoparticles Improved Root Growth by Crosstalk with Sucrose and Nutrient-Dependent Auxin Homeostasis in Arabidopsis thaliana. NANOMATERIALS 2022; 12:nano12122099. [PMID: 35745438 PMCID: PMC9230854 DOI: 10.3390/nano12122099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/07/2022]
Abstract
In a hydroponic system, potassium chloroaurate (KAuCl4) triggers the in vitro sucrose (Suc)-dependent formation of gold nanoparticles (AuNPs). AuNPs stimulate the growth of the root system, but their molecular mechanism has not been deciphered. The root system of Arabidopsis (Arabidopsis thaliana) exhibits developmental plasticity in response to the availability of various nutrients, Suc, and auxin. Here, we showed the roles of Suc, phosphorus (P), and nitrogen (N) in facilitating a AuNPs-mediated increase in root growth. Furthermore, the recuperating effects of KAuCl4 on the natural (IAA) auxin-mediated perturbation of the root system were demonstrated. Arabidopsis seedlings harboring the cell division marker CycB1;1::CDB-GUS provided evidence of the restoration efficacy of KAuCl4 on the IAA-mediated inhibitory effect on meristematic cell proliferation of the primary and lateral roots. Arabidopsis harboring synthetic auxin DR5rev::GFP exhibited a reinstating effect of KAuCl4 on IAA-mediated aberration in auxin subcellular localization in the root. KAuCl4 also exerted significant and differential recuperating effects on the IAA-mediated altered expression of the genes involved in auxin signaling and biosynthetic pathways in roots. Our results highlight the crosstalk between KAuCl4-mediated improved root growth and Suc and nutrient-dependent auxin homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Sandeep Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; (S.Y.); (A.S.)
| | - Poli Yugandhar
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India;
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea;
| | - Ramesh Raliya
- Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA;
| | - Archita Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; (S.Y.); (A.S.)
| | - Shivendra V. Sahi
- Department of Biology, University City Campus, Saint Joseph's University, 600 S. 43rd St., Philadelphia, PA 19104, USA;
| | - Ananda K. Sarkar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
- Correspondence:
| |
Collapse
|
8
|
Edelmann HG. Plant root development: is the classical theory for auxin-regulated root growth false? PROTOPLASMA 2022; 259:823-832. [PMID: 34515860 PMCID: PMC9010396 DOI: 10.1007/s00709-021-01697-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
One of the longest standing theories and, therein-based, regulation-model of plant root development, posits the inhibitory action of auxin (IAA, indolylacetic acid) on elongation growth of root cells. This effect, as induced by exogenously supplied IAA, served as the foundation stone for root growth regulation. For decades, auxin ruled the day and only allowed hormonal side players to be somehow involved, or in some way affected. However, this copiously reiterated, apparent cardinal role of auxin only applies in roots immersed in solutions; it vanishes as soon as IAA-supplied roots are not surrounded by liquid. When roots grow in humid air, exogenous IAA has no inhibitory effect on elongation growth of maize roots, regardless of whether it is applied basipetally from the top of the root or to the entire residual seedling immersed in IAA solution. Nevertheless, such treatment leads to pronounced root-borne ethylene emission and lateral rooting, illustrating and confirming thereby induced auxin presence and its effect on the root - yet, not on root cell elongation. Based on these findings, a new root growth regulatory model is proposed. In this model, it is not IAA, but IAA-triggered ethylene which plays the cardinal regulatory role - taking effect, or not - depending on the external circumstances. In this model, in water- or solution-incubated roots, IAA-dependent ethylene acts due to its accumulation within the root proper by inhibited/restrained diffusion into the liquid phase. In roots exposed to moist air or gas, there is no effect on cell elongation, since IAA-triggered ethylene diffuses out of the root without an impact on growth.
Collapse
Affiliation(s)
- Hans G Edelmann
- Institut für Biologiedidaktik, Universität zu Köln, Cologne, Germany.
| |
Collapse
|
9
|
Zhang X, Tahir MM, Li S, Mao J, Nawaz MA, Liu Y, Li K, Xing L, Niu J, Zhang D. Transcriptome analysis reveals the inhibitory nature of high nitrate during adventitious roots formation in the apple rootstock. PHYSIOLOGIA PLANTARUM 2021; 173:867-882. [PMID: 34142369 DOI: 10.1111/ppl.13480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/19/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
In the process of vegetative propagation of apple rootstocks, the development of adventitious roots (ARs) has crucial importance. Nitrate is an essential nutrient necessary for plant growth; however, the inhibitory effect of high nitrate on ARs formation has not been explored. The physiological and molecular mechanisms underlying ARs inhibition were examined in this study. Stem cuttings of B9 apple rootstock were cultured on two nitrate treatments (T1 = 18.7 mM L-1 and T2 = 37.5 mM L-1 ), where T2 was identified as ARs inhibiting treatment. Morphological and anatomical observations advocating that high availability of nitrate inhibited AR formation by delaying the ARs initiation and emergence stages, where the root number was 287%, and the length was 604.6% lower than the T1 cuttings. Moreover, the contents of endogenous hormones were also elevated in response to T2 at most of the time points, which may cause a hormonal imbalance within the plant body and drive toward ARs inhibition. Furthermore, 3686 genes were differentially expressed by high-throughput sequencing. Out of these, 1797 genes were upregulated, and 1889 genes were downregulated. Approximately 238 genes related to nitrate, hormones, root development, and cell-cycle induction pathways were selected according to their potential to be involved in ARs regulation. This is the first study providing information regarding the inhibitory effect of high nitrate on ARs formation in apple rootstock.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- College of Agriculture, The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization in Xinjiang Production and Construction Group, Shihezi University, Shihezi, China
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture and Forestry University, Yangling, China
| | - Muhammad Mobeen Tahir
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture and Forestry University, Yangling, China
| | - Shaohuan Li
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture and Forestry University, Yangling, China
| | - Jiangping Mao
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture and Forestry University, Yangling, China
| | - Muhammad Azher Nawaz
- Department of Horticulture, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Yu Liu
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture and Forestry University, Yangling, China
| | - Ke Li
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture and Forestry University, Yangling, China
| | - Libo Xing
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture and Forestry University, Yangling, China
| | - Jianxin Niu
- College of Agriculture, The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization in Xinjiang Production and Construction Group, Shihezi University, Shihezi, China
| | - Dong Zhang
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture and Forestry University, Yangling, China
| |
Collapse
|
10
|
Malangisha GK, Li C, Yang H, Mahmoud A, Ali A, Wang C, Yang Y, Yang J, Hu Z, Zhang M. Permissive action of H 2O 2 mediated ClUGT75 expression for auxin glycosylation and Al 3+- tolerance in watermelon. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:77-90. [PMID: 34340025 DOI: 10.1016/j.plaphy.2021.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/04/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Although Al3+-toxicity is one of the limiting factors for crop production in acidic soils, little is known about the Al3+-tolerance mechanism in watermelon, a fairly acid-tolerant crop. This work aimed to identify the interaction between the H2O2 scavenging pathway and auxin glycosylation relevant to watermelon Al3+-tolerance. By analyzing expressions of hormone-related ClUGTs and antioxidant enzyme genes in Al3+-tolerant (ZJ) and Al3+-sensitive (NBT) cultivars, we identified ClUGT75s (B1, B2, and D1) and ClSOD1-2-ClCAT as crucial components associated with Al3+-tolerance. Al3+-stress significantly increased H2O2 content by 92.7% in NBT and 42.3% in ZJ, accompanied by less Al3+-, auxin (IAA and IBA), and MDA contents in ZJ than NBT. These findings coincided with significant ClSOD1-2 expression and stable dismutation activity in NBT than ZJ. Hence, higher H2O2 content in the root apex of NBT than ZJ correlated with a significant increase in auxin content and ClSOD1-2 up-regulation. Moreover, Al3+-activated ClUGT75D1 and ClUGT75B2 in ZJ coincided with no considerable change in IBA content, suggesting that glycosylation-mediated changes in IBA content might be relevant to Al3+-tolerance in watermelon. Furthermore, exogenous H2O2 and IBA indicated ClUGT75D1 modulating IBA is likely dependent on H2O2 background. We hypothesize that a higher H2O2 level in NBT represses ClUGT75, resulting in increased auxin than those in ZJ roots. Thus, excess in both H2O2 and auxin aggravated the inhibition of root elongation under Al3+-stress. Our findings provide insights on the permissive action of H2O2 in the mediation of auxin glycosylation by ClUGT75 in root apex for Al3+-tolerance in watermelon.
Collapse
Affiliation(s)
- Guy Kateta Malangisha
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China; Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, PR China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, PR China; Faculté des Sciences Agronomiques, Université de Lubumbashi, /UNILU, Lubumbashi, République Démocratique Du Congo/PO Box 1825, PR China
| | - Cheng Li
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Haiyang Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Ahmed Mahmoud
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Abid Ali
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Chi Wang
- Agriculture, Rural Development and Water Conservancy Bureau of Wenling, Wenling, 317500, PR China
| | - Yubin Yang
- Agriculture, Rural Development and Water Conservancy Bureau of Wenling, Wenling, 317500, PR China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China; Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, PR China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, PR China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China; Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, PR China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, PR China.
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China; Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, PR China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, PR China
| |
Collapse
|
11
|
Narasimhan M, Gallei M, Tan S, Johnson A, Verstraeten I, Li L, Rodriguez L, Han H, Himschoot E, Wang R, Vanneste S, Sánchez-Simarro J, Aniento F, Adamowski M, Friml J. Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking. PLANT PHYSIOLOGY 2021; 186:1122-1142. [PMID: 33734402 PMCID: PMC8195513 DOI: 10.1093/plphys/kiab134] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/23/2021] [Indexed: 05/08/2023]
Abstract
The phytohormone auxin and its directional transport through tissues are intensively studied. However, a mechanistic understanding of auxin-mediated feedback on endocytosis and polar distribution of PIN auxin transporters remains limited due to contradictory observations and interpretations. Here, we used state-of-the-art methods to reexamine the auxin effects on PIN endocytic trafficking. We used high auxin concentrations or longer treatments versus lower concentrations and shorter treatments of natural indole-3-acetic acid (IAA) and synthetic naphthalene acetic acid (NAA) auxins to distinguish between specific and nonspecific effects. Longer treatments of both auxins interfere with Brefeldin A-mediated intracellular PIN2 accumulation and also with general aggregation of endomembrane compartments. NAA treatment decreased the internalization of the endocytic tracer dye, FM4-64; however, NAA treatment also affected the number, distribution, and compartment identity of the early endosome/trans-Golgi network, rendering the FM4-64 endocytic assays at high NAA concentrations unreliable. To circumvent these nonspecific effects of NAA and IAA affecting the endomembrane system, we opted for alternative approaches visualizing the endocytic events directly at the plasma membrane (PM). Using total internal reflection fluorescence microscopy, we saw no significant effects of IAA or NAA treatments on the incidence and dynamics of clathrin foci, implying that these treatments do not affect the overall endocytosis rate. However, both NAA and IAA at low concentrations rapidly and specifically promoted endocytosis of photo-converted PIN2 from the PM. These analyses identify a specific effect of NAA and IAA on PIN2 endocytosis, thus, contributing to its polarity maintenance and furthermore illustrate that high auxin levels have nonspecific effects on trafficking and endomembrane compartments.
Collapse
Affiliation(s)
| | - Michelle Gallei
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Shutang Tan
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Alexander Johnson
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Inge Verstraeten
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Lanxin Li
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Lesia Rodriguez
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Huibin Han
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Ellie Himschoot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Ren Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Judit Sánchez-Simarro
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain
| | - Maciek Adamowski
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Jiří Friml
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| |
Collapse
|
12
|
Hasegawa T, Lucob-Agustin N, Yasufuku K, Kojima T, Nishiuchi S, Ogawa A, Takahashi-Nosaka M, Kano-Nakata M, Inari-Ikeda M, Sato M, Tsuji H, Wainaina CM, Yamauchi A, Inukai Y. Mutation of OUR1/OsbZIP1, which encodes a member of the basic leucine zipper transcription factor family, promotes root development in rice through repressing auxin signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110861. [PMID: 33775366 DOI: 10.1016/j.plantsci.2021.110861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
A well-developed root system is essential for efficient water uptake, particularly in drought-prone environments. However, the molecular mechanisms underlying the promotion of root development are poorly understood. We identified and characterized a rice mutant, outstanding rooting1 (our1), which exhibited a well-developed root system. The our1 mutant displayed typical auxin-related phenotypes, including elongated seminal root and defective gravitropism. Seminal root elongation in the our1 mutant was accelerated via the promotion of cell division and elongation. In addition, compared with the wild type, the density of short and thin lateral roots (S-type LRs) was reduced in the our1 mutant, whereas that of long and thick LRs (L-type LRs) was increased. Expression of OUR1, which encodes OsbZIP1, a member of the basic leucine zipper transcription factor family, was observed in the seminal root tip and sites of LR emergence, wherein attenuation of reporter gene expression levels controlled by the auxin response promoter DR5 was also observed in the our1 mutant. Taken together, our results indicate that the our1 gene promotes root development by suppressing auxin signaling, which may be a key factor contributing to an improvement in root architecture.
Collapse
Affiliation(s)
- Tomomi Hasegawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Nonawin Lucob-Agustin
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan; Philippine Rice Research Institute, Central Experiment Station, Science City of Muñoz, Nueva Ecija, 3119, Philippines.
| | - Koki Yasufuku
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Takaaki Kojima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Shunsaku Nishiuchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Atsushi Ogawa
- Department of Biological Production, Akita Prefectural University, Akita, 010-0146, Japan.
| | | | - Mana Kano-Nakata
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Mayuko Inari-Ikeda
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Moeko Sato
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, 244-0813, Japan.
| | - Hiroyuki Tsuji
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, 244-0813, Japan.
| | - Cornelius Mbathi Wainaina
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi, 464-8601, Japan; Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 00200, Kenya.
| | - Akira Yamauchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Yoshiaki Inukai
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
13
|
Hetherington FM, Kakkar M, Topping JF, Lindsey K. Gibberellin signaling mediates lateral root inhibition in response to K+-deprivation. PLANT PHYSIOLOGY 2021; 185:1198-1215. [PMID: 33793923 PMCID: PMC8133588 DOI: 10.1093/plphys/kiaa093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/10/2020] [Indexed: 05/16/2023]
Abstract
The potassium ion (K+) is vital for plant growth and development, and K+-deprivation leads to reduced crop yields. Here we describe phenotypic, transcriptomic, and mutant analyses to investigate the signaling mechanisms mediating root architectural changes in Arabidopsis (Arabidopsis thaliana) Columbia. We showed effects on root architecture are mediated through a reduction in cell division in the lateral root (LR) meristems, the rate of LR initiation is reduced but LR density is unaffected, and primary root growth is reduced only slightly. This was primarily regulated through gibberellic acid (GA) signaling, which leads to the accumulation of growth-inhibitory DELLA proteins. The short LR phenotype was rescued by exogenous application of GA but not of auxin or by the inhibition of ethylene signaling. RNA-seq analysis showed upregulation by K+-deprivation of the transcription factors JUNGBRUNNEN1 (JUB1) and the C-repeat-binding factor (CBF)/dehydration-responsive element-binding factor 1 regulon, which are known to regulate GA signaling and levels that regulate DELLAs. Transgenic overexpression of JUB1 and CBF1 enhanced responses to K+ stress. Attenuation of the reduced LR growth response occurred in mutants of the CBF1 target gene SFR6, implicating a role for JUB1, CBF1, and SFR6 in the regulation of LR growth in response to K+-deprivation via DELLAs. We propose this represents a mechanism to limit horizontal root growth in conditions where K+ is available deeper in the soil.
Collapse
Affiliation(s)
| | - Medhavi Kakkar
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | | | - Keith Lindsey
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
- Author for communication:
| |
Collapse
|
14
|
In Vitro Rooting of Capparis spinosa L. as Affected by Genotype and by the Proliferation Method Adopted During the Multiplication Phase. PLANTS 2020; 9:plants9030398. [PMID: 32210124 PMCID: PMC7154829 DOI: 10.3390/plants9030398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 11/17/2022]
Abstract
The in vitro rooting of three caper (Capparis spinosa L.) selected biotypes, grown in a commercial orchard on the Sicilian island of Salina (38°33′49” N), was performed using—as base material for rooting experiments—shoot explants proceeding from two different in vitro culture systems: solid medium and liquid culture in a PlantForm bioreactor (TIS). The regenerated shoots of each accession were submitted to different auxin treatments (NAA, IBA, IAA - 1 or 2 mg L−1; NAA+IBA 0.75 and 0.25 mg L−1, respectively), supplemented with sucrose or fructose (mg L−1). The highest rooting rate in terms of root percentage (67%) was reached with the explants of the selected accession ‘Sal 39’ proceeding from liquid culture in PlantForm and induced in the MS medium with sucrose, as a carbon source, supplemented with NAA 0.75 mg L−1 + IBA 0.25 mg L−1, after six days in a climatic growth chamber at 25 ± 1 °C in the dark and then placed under a cool white fluorescent lamp, with a PPFD of 35 μmol m−1 s−1 and a photoperiod of 16 h. On the other hand, poor rooting rate was generally achieved under all the tested experimental conditions with the other biotypes, ‘Sal 37’ and ‘Sal 35’, demonstrating the strong role exerted by the previously adopted proliferation method and by the genotype for successful caper in vitro rooting.
Collapse
|
15
|
Guichard M, Allain JM, Wolfe Bianchi M, Frachisse JM. Root Hair Sizer: an algorithm for high throughput recovery of different root hair and root developmental parameters. PLANT METHODS 2019; 15:104. [PMID: 31507646 PMCID: PMC6724272 DOI: 10.1186/s13007-019-0483-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The root is an important organ for water and nutrient uptake, and soil anchorage. It is equipped with root hairs (RHs) which are elongated structures increasing the exchange surface with the soil. RHs are also studied as a model for plant cellular development, as they represent a single cell with specific and highly regulated polarized elongation. For these reasons, it is useful to be able to accurately quantify RH length employing standardized procedures. Methods commonly employed rely on manual steps and are therefore time consuming and prone to errors, restricting analysis to a short segment of the root tip. Few partially automated methods have been reported to increase measurement efficiency. However, none of the reported methods allow an accurate and standardized definition of the position along the root for RH length measurement, making data comparison difficult. RESULTS We developed an image analysis algorithm that semi-automatically detects RHs and measures their length along the whole differentiation zone of roots. This method, implemented as a simple automated script in ImageJ/Fiji software that we termed Root Hair Sizer, slides a rectangular window along a binarized and straightened image of root tips to estimate the maximal RH length in a given measuring interval. This measure is not affected by heavily bent RHs and any bald spots. RH length data along the root are then modelled with a sigmoidal curve, generating several biologically significant parameters such as RH length, positioning of the root differentiation zone and, under certain conditions, RH growth rate. CONCLUSIONS Image analysis with Root Hair Sizer and subsequent sigmoidal modelling of RH length data provide a simple and efficient way to characterize RH growth in different conditions, equally suitable to small and large scale phenotyping experiments.
Collapse
Affiliation(s)
- Marjorie Guichard
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Sciences Plant Saclay, 91198 Gif sur Yvette Cedex, France
- Present Address: Centre for Organismal Studies (COS), Universität Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Jean-Marc Allain
- LMS, Ecole Polytechnique, CNRS, Palaiseau, France
- Inria, Université Paris-Saclay, Palaiseau, France
| | - Michele Wolfe Bianchi
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Sciences Plant Saclay, 91198 Gif sur Yvette Cedex, France
- Unité de Formation et de Recherche Sciences et Technologie, Université Paris-Est Créteil Val de Marne, 94010 Créteil, France
| | - Jean-Marie Frachisse
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Sciences Plant Saclay, 91198 Gif sur Yvette Cedex, France
| |
Collapse
|
16
|
Dastidar MG, Scarpa A, Mägele I, Ruiz‐Duarte P, von Born P, Bald L, Jouannet V, Maizel A. ARF5/MONOPTEROS directly regulates miR390 expression in the Arabidopsis thaliana primary root meristem. PLANT DIRECT 2019; 3:e00116. [PMID: 31245759 PMCID: PMC6508847 DOI: 10.1002/pld3.116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 05/25/2023]
Abstract
The root meristem is organized around a quiescent center (QC) surrounded by stem cells that generate all cell types of the root. In the transit-amplifying compartment, progeny of stem cells further divides prior to differentiation. Auxin controls the size of this transit-amplifying compartment via auxin response factors (ARFs) that interact with auxin response elements (AuxREs) in the promoter of their targets. The microRNA miR390 regulates abundance of ARF2, ARF3, and ARF4 by triggering the production of trans-acting (ta)-siRNA from the TAS3 precursor. This miR390/TAS3/ARF regulatory module confers sensitivity and robustness to auxin responses in diverse developmental contexts and organisms. Here, we show that miR390 is expressed in the transit-amplifying compartment of the root meristem where it modulates response to exogenous auxin. We show that a single AuxRE located in miR390 promoter is necessary for miR390 expression in this compartment and identify that ARF5/MONOPTEROS (MP) binds miR390 promoter via the AuxRE. We show that interfering with ARF5/MP-dependent auxin signaling attenuates miR390 expression in the transit-amplifying compartment of the root meristem. Our results show that ARF5/MP regulates directly the expression of miR390 in the root meristem. We propose that ARF5, miR390, and the ta-siRNAs-regulated ARFs modulate the response of the transit-amplifying region of the meristem to exogenous auxin.
Collapse
Affiliation(s)
- Mouli Ghosh Dastidar
- Center for Organismal Studies (COS)University of HeidelbergHeidelbergGermany
- Present address:
PsiOxus TherapeuticsAbingdonUK
| | - Andrea Scarpa
- Center for Organismal Studies (COS)University of HeidelbergHeidelbergGermany
| | - Ira Mägele
- Center for Organismal Studies (COS)University of HeidelbergHeidelbergGermany
| | - Paola Ruiz‐Duarte
- Center for Organismal Studies (COS)University of HeidelbergHeidelbergGermany
| | - Patrick von Born
- Center for Organismal Studies (COS)University of HeidelbergHeidelbergGermany
- Present address:
Max Planck Institute for Plant Breeding ResearchCologneGermany
| | - Lotte Bald
- Center for Organismal Studies (COS)University of HeidelbergHeidelbergGermany
| | - Virginie Jouannet
- Center for Organismal Studies (COS)University of HeidelbergHeidelbergGermany
| | - Alexis Maizel
- Center for Organismal Studies (COS)University of HeidelbergHeidelbergGermany
| |
Collapse
|
17
|
Kumar Meena M, Kumar Vishwakarma N, Tripathi V, Chattopadhyay D. CBL-interacting protein kinase 25 contributes to root meristem development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:133-147. [PMID: 30239807 PMCID: PMC6305191 DOI: 10.1093/jxb/ery334] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/14/2018] [Indexed: 05/08/2023]
Abstract
Co-ordination of auxin and cytokinin activities determines root meristem size during post-embryonic development. Calcineurin B-like proteins (CBLs) and their interacting protein kinases (CIPKs) constitute signaling modules that relay calcium signals. Here we report that CIPK25 is involved in regulating the root meristem size. Arabidopsis plants lacking CIPK25 expression displayed a short root phenotype and a slower root growth rate with fewer meristem cells. This phenotype was rescued by restoration of CIPK25 expression. CIPK25 interacted with CBL4 and -5, and displayed strong gene expression in the flower and root, except in the cell proliferation domain in the root apical meristem. Its expression in the root was positively and negatively regulated by auxin and cytokinin, respectively. The cipk25 T-DNA insertion line was compromised in auxin transport and auxin-responsive promoter activity. The cipk25 mutant line showed altered expression of auxin efflux carriers (PIN1 and PIN2) and an Aux/IAA family gene SHY2. Decreased PIN1 and PIN2 expression in the cipk25 mutant line was completely restored when combined with a SHY2 loss-of-function mutation, resulting in recovery of root growth. SHY2 and PIN1 expression was partially regulated by cytokinin even in the absence of CIPK25, suggesting a CIPK25-independent cytokinin signaling pathway(s). Our results revealed that CIPK25 plays an important role in the co-ordination of auxin and cytokinin signaling in root meristem development.
Collapse
Affiliation(s)
- Mukesh Kumar Meena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Vineeta Tripathi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
- Correspondence:
| |
Collapse
|
18
|
Paponov IA, Friz T, Budnyk V, Teale W, Wüst F, Paponov M, Al-Babili S, Palme K. Natural Auxin Does Not Inhibit Brefeldin A Induced PIN1 and PIN2 Internalization in Root Cells. FRONTIERS IN PLANT SCIENCE 2019; 10:574. [PMID: 31143194 PMCID: PMC6521567 DOI: 10.3389/fpls.2019.00574] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/16/2019] [Indexed: 05/20/2023]
Abstract
The vesicle trafficking inhibitor Brefeldin A (BFA) changes the localization of plasma membrane localized PINs, proteins that function as polar auxin efflux carriers, by inducing their accumulation within cells. Pretreatment with the synthetic auxin 1-NAA reduces this BFA-induced PIN internalization, suggesting that auxinic compounds inhibit the endocytosis of PIN proteins. However, the most important natural auxin, IAA, did not substantially inhibit PIN internalization unless a supplementary antioxidant, butylated hydroxytoluene (BHT), was also included in the incubation medium. We asked whether the relatively small inhibition caused by IAA alone could be explained by its instability in the incubation solution or whether IAA might interact with BHT to inhibit endocytosis. Analysis of the IAA concentration in the incubation solution and of DR5 reporter activity in the roots showed that IAA is both stable and active in the medium. Therefore, IAA degradation was not able to explain the inability of IAA to inhibit endocytosis. Furthermore, when applied in the absence of auxin, BHT caused a strong increase in the rate of PIN1 internalization and a weaker increase in the rate of PIN2 internalization. These increases were unaffected by the simultaneous application of IAA, further indicating that endocytosis is not inhibited by the natural auxin IAA under physiologically relevant conditions. Endocytosis was inhibited at the same rate with 2-NAA, an inactive auxin analog, as was observed with 1-NAA and more strongly than with natural auxins, supporting the idea that this inhibition is not auxin specific.
Collapse
Affiliation(s)
- Ivan A. Paponov
- Faculty of Biology, Institute of Biology II/Botany, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Food Production and Society, Ås, Norway
- *Correspondence: Ivan A. Paponov,
| | - Tatyana Friz
- Faculty of Biology, Institute of Biology II/Botany, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Vadym Budnyk
- Faculty of Biology, Institute of Biology II/Botany, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - William Teale
- Faculty of Biology, Institute of Biology II/Botany, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Florian Wüst
- Faculty of Biology, Institute of Biology II/Cell Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Martina Paponov
- Faculty of Biology, Institute of Biology II/Botany, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Salim Al-Babili
- Faculty of Biology, Institute of Biology II/Cell Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Klaus Palme
- Faculty of Biology, Institute of Biology II/Botany, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Centre of Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Klaus Palme,
| |
Collapse
|
19
|
Nziengui H, Lasok H, Kochersperger P, Ruperti B, Rébeillé F, Palme K, Ditengou FA. Root Gravitropism Is Regulated by a Crosstalk between para-Aminobenzoic Acid, Ethylene, and Auxin. PLANT PHYSIOLOGY 2018; 178:1370-1389. [PMID: 30275058 PMCID: PMC6236604 DOI: 10.1104/pp.18.00126] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/13/2018] [Indexed: 05/04/2023]
Abstract
Plants respond to gravitational force through directional growth along the gravity vector. Although auxin is the central component of the root graviresponse, it works in concert with other plant hormones. Here, we show that the folate precursor para-aminobenzoic acid (PABA) is a key modulator of the auxin-ethylene interplay during root gravitropism in Arabidopsis (Arabidopsis thaliana). In gravistimulated roots, PABA promotes an asymmetric auxin response, which causes the asymmetric growth responsible for root curvature. This activity requires the auxin response transcription factors AUXIN RESPONSE FACTOR7 (ARF7) and ARF19 as well as ethylene biosynthesis and signaling, indicating that PABA activity requires both auxin and ethylene pathways. Similar to ethylene, exogenous PABA reverses the agravitropic root growth of the auxin transport mutant pin-formed2 (pin2) and the auxin biosynthetic double mutant with loss of function of weak ethylene insensitive (wei) genes, wei8wei2, but not the pin2wei8wei2 triple mutant. This finding suggests that PABA regulates the ethylene-dependent reciprocal compensation between auxin transport and biosynthesis. Furthermore, manipulation of endogenous free PABA levels by modulating the expression of the gene encoding its glucosylation enzyme, UDP-GLYCOSYL TRANSFERASE75B1, impacts the root graviresponse, suggesting that endogenous free PABA levels may play a crucial role in modulating the auxin-ethylene cross talk necessary for root gravitropism.
Collapse
Affiliation(s)
- Hugues Nziengui
- Institute of Biology II, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Hanna Lasok
- Institute of Biology II, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Philip Kochersperger
- Institute of Biology II, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Benedetto Ruperti
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, 35020 Legnaro (Padova), Italy
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire Végétale, Unité Mixte de Recherche 5168, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Universite Grenoble Alpes, Bioscience and Biotechnologies Institute of Grenoble, Commissariat à l'Energie Atomique-Grenoble, F-38054 Grenoble cedex 9, France
| | - Klaus Palme
- Institute of Biology II, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
- Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
| | - Franck Anicet Ditengou
- Institute of Biology II, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
20
|
Aufrecht JA, Timm CM, Bible A, Morrell‐Falvey JL, Pelletier DA, Doktycz MJ, Retterer ST. Quantifying the Spatiotemporal Dynamics of Plant Root Colonization by Beneficial Bacteria in a Microfluidic Habitat. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jayde A. Aufrecht
- Bioscience Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA
- Bredesen Center University of Tennessee Knoxville TN 37996 USA
| | - Collin M. Timm
- Bioscience Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Amber Bible
- Biochemistry and Cellular and Molecular Biology University of Tennessee Knoxville TN 37996 USA
| | - Jennifer L. Morrell‐Falvey
- Bioscience Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA
- Bredesen Center University of Tennessee Knoxville TN 37996 USA
- Biochemistry and Cellular and Molecular Biology University of Tennessee Knoxville TN 37996 USA
| | - Dale A. Pelletier
- Bioscience Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Mitchel J. Doktycz
- Bioscience Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA
- Bredesen Center University of Tennessee Knoxville TN 37996 USA
- Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Scott T. Retterer
- Bioscience Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA
- Bredesen Center University of Tennessee Knoxville TN 37996 USA
- Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| |
Collapse
|
21
|
Li W, Fang C, Krishnan S, Chen J, Yu H, Murphy AS, Merewitz E, Katin‐Grazzini L, McAvoy RJ, Deng Z, Zale J, Li Y. Elevated auxin and reduced cytokinin contents in rootstocks improve their performance and grafting success. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1556-1565. [PMID: 28376249 PMCID: PMC5698044 DOI: 10.1111/pbi.12738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 05/21/2023]
Abstract
Plant grafting is an important technique for horticultural and silvicultural production. However, many rootstock plants suffer from undesirable lateral bud outgrowth, low grafting success rates or poor rooting. Here, we used a root-predominant gene promoter (SbUGT) to drive the expression of a tryptophan-2-monooxygenase gene (iaaM) from Agrobacterium tumefaciens to increase auxin levels in tobacco. The transgenic plants, when used as a rootstock, displayed inhibited lateral bud outgrowth, enhanced grafting success rate and improved root initiation. However, root elongation and biomass of SbUGT::iaaM transgenic plants were reduced compared to those of wild-type plants. In contrast, when we used this same promoter to drive CKX (a cytokinin degradation gene) expression, the transgenic tobacco plants displayed enhanced root elongation and biomass. We then made crosses between the SbUGT::CKX and SbUGT::iaaM transgenic plants. We observed that overexpression of the CKX gene neutralized the negative effects of auxin overproduction on root elongation. Also, the simultaneous expression of both the iaaM and CKX genes in rootstock did not disrupt normal growth and developmental patterns in wild-type scions. Our results demonstrate that expression of both the iaaM and CKX genes predominantly in roots of rootstock inhibits lateral bud release from rootstock, improves grafting success rates and enhances root initiation and biomass.
Collapse
Affiliation(s)
- Wei Li
- Department of Plant Science and Landscape ArchitectureUniversity of ConnecticutStorrsCTUSA
| | - Chu Fang
- Department of Plant Science and Landscape ArchitectureUniversity of ConnecticutStorrsCTUSA
| | | | - Junmei Chen
- Department of Plant Science and Landscape ArchitectureUniversity of ConnecticutStorrsCTUSA
| | - Hao Yu
- Department of Plant Science and Landscape ArchitectureUniversity of ConnecticutStorrsCTUSA
| | - Angus S. Murphy
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMDUSA
| | - Emily Merewitz
- Department of Crop ScienceMichigan State UniversityEast LansingMIUSA
| | - Lorenzo Katin‐Grazzini
- Department of Plant Science and Landscape ArchitectureUniversity of ConnecticutStorrsCTUSA
| | - Richard J. McAvoy
- Department of Plant Science and Landscape ArchitectureUniversity of ConnecticutStorrsCTUSA
| | - Ziniu Deng
- College of Horticulture, Hunan Agricultural UniversityChangshaHunanChina
| | - Janice Zale
- Plant Pathology Department, Institute of Food and Agricultural SciencesCitrus Research and Education CenterUniversity of FloridaLake AlfredFLUSA
| | - Yi Li
- Department of Plant Science and Landscape ArchitectureUniversity of ConnecticutStorrsCTUSA
- College of Horticulture, Hunan Agricultural UniversityChangshaHunanChina
| |
Collapse
|
22
|
Liu C, Wu Q, Liu W, Gu Z, Wang W, Xu P, Ma H, Ge X. Poly(ADP-ribose) polymerases regulate cell division and development in Arabidopsis roots. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:459-474. [PMID: 28263025 DOI: 10.1111/jipb.12530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
Root organogenesis involves cell division, differentiation and expansion. The molecular mechanisms regulating root development are not fully understood. In this study, we identified poly(adenosine diphosphate (ADP)-ribose) polymerases (PARPs) as new players in root development. PARP catalyzes poly(ADP-ribosyl)ation of proteins by repeatedly adding ADP-ribose units onto proteins using nicotinamide adenine dinucleotide (NAD+ ) as the donor. We found that inhibition of PARP activities by 3-aminobenzomide (3-AB) increased the growth rates of both primary and lateral roots, leading to a more developed root system. The double mutant of Arabidopsis PARPs, parp1parp2, showed more rapid primary and lateral root growth. Cyclin genes regulating G1-to-S and G2-to-M transition were up-regulated upon treatment by 3-AB. The proportion of 2C cells increased while cells with higher DNA ploidy declined in the roots of treated plants, resulting in an enlarged root meristematic zone. The expression level of PARP2 was very low in the meristematic zone but high in the maturation zone, consistent with a role of PARP in inhibiting mitosis and promoting cell differentiation. Our results suggest that PARPs play an important role in root development by negatively regulating root cell division.
Collapse
Affiliation(s)
- Caifeng Liu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qiao Wu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Weiwei Liu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zongyin Gu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Wenjing Wang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ping Xu
- School of Biological Sciences, University of East Anglia, Norwich, NR47TJ, UK
| | - Hong Ma
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaochun Ge
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
23
|
Abts W, Vandenbussche B, De Proft MP, Van de Poel B. The Role of Auxin-Ethylene Crosstalk in Orchestrating Primary Root Elongation in Sugar Beet. FRONTIERS IN PLANT SCIENCE 2017; 8:444. [PMID: 28424722 PMCID: PMC5371662 DOI: 10.3389/fpls.2017.00444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 03/14/2017] [Indexed: 05/05/2023]
Abstract
It is well-established in Arabidopsis and other species that ethylene inhibits root elongation through the action of auxin. In sugar beet (Beta vulgaris L.) ethylene promotes root elongation in a concentration dependent manner. However, the crosstalk between ethylene and auxin remains unknown during sugar beet seedling development. Our experiments have shown that exogenously applied auxin (indole-3-acetic acid; IAA) also stimulates root elongation. We also show that auxin promotes ethylene biosynthesis leading to longer roots. We have further demonstrated that the auxin treatment stimulates ethylene production by redirecting the pool of available 1-aminocyclopropane-1-carboxylic acid (ACC) toward ethylene instead of malonyl-ACC (MACC) resulting in a prolonged period of high rates of ethylene production and subsequently a longer root. On the other hand we have also shown that endogenous IAA levels were not affected by an ACC treatment during germination. All together our findings suggest that the general model for auxin-ethylene crosstalk during early root development, where ethylene controls auxin biosynthesis and transport, does not occur in sugar beet. On the contrary, we have shown that the opposite, where auxin stimulates ethylene biosynthesis, is true for sugar beet root development.
Collapse
Affiliation(s)
- Willem Abts
- Division of Crop Biotechnics, Department of Biosystems, University of LeuvenLeuven, Belgium
| | | | - Maurice P. De Proft
- Division of Crop Biotechnics, Department of Biosystems, University of LeuvenLeuven, Belgium
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of LeuvenLeuven, Belgium
| |
Collapse
|
24
|
Sun L, Tian J, Zhang H, Liao H. Phytohormone regulation of root growth triggered by P deficiency or Al toxicity. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3655-3664. [PMID: 27190050 DOI: 10.1093/jxb/erw188] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Phosphorus (P) deficiency and aluminum (Al) toxicity often coexist and limit plant growth on acid soils. It has been well documented that both P deficiency and Al toxicity alter root growth, including inhibition of primary roots and promotion of lateral roots. This suggests that plants adapt to both stresses through a common regulation pathway. Although an expanding set of results shows that phytohormones play vital roles in controlling root responses to Pi starvation and Al toxicity, it remains largely unknown whether P and Al coordinately regulate root growth through interacting phytohormone biosynthesis and signal transduction pathways. This review provides a summary of recent results concerning the influences of P deficiency and Al toxicity on root growth through the action of phytohormones, most notably auxin and ethylene. The objective is to facilitate increasing insights into complex responses of plants to adverse factors common on acid soils, which can spur development of 'smart' cultivars with better root growth and higher yield on these globally distributed marginal soils.
Collapse
Affiliation(s)
- Lili Sun
- Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiang Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, China
| | - Haiyan Zhang
- Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Liao
- Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
25
|
Foo E, McAdam EL, Weller JL, Reid JB. Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2413-24. [PMID: 26889005 PMCID: PMC4809293 DOI: 10.1093/jxb/erw047] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The regulation of arbuscular mycorrhizal development and nodulation involves complex interactions between the plant and its microbial symbionts. In this study, we use the recently identified ethylene-insensitive ein2 mutant in pea (Pisum sativum L.) to explore the role of ethylene in the development of these symbioses. We show that ethylene acts as a strong negative regulator of nodulation, confirming reports in other legumes. Minor changes in gibberellin1 and indole-3-acetic acid levels in ein2 roots appear insufficient to explain the differences in nodulation. Double mutants produced by crosses between ein2 and the severely gibberellin-deficient na and brassinosteroid-deficient lk mutants showed increased nodule numbers and reduced nodule spacing compared with the na and lk single mutants, but nodule numbers and spacing were typical of ein2 plants, suggesting that the reduced number of nodules innaandlkplants is largely due to the elevated ethylene levels previously reported in these mutants. We show that ethylene can also negatively regulate mycorrhizae development when ethylene levels are elevated above basal levels, consistent with a role for ethylene in reducing symbiotic development under stressful conditions. In contrast to the hormone interactions in nodulation, ein2 does not override the effect of lk or na on the development of arbuscular mycorrhizae, suggesting that brassinosteroids and gibberellins influence this process largely independently of ethylene.
Collapse
Affiliation(s)
- Eloise Foo
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Erin L McAdam
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - James L Weller
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - James B Reid
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| |
Collapse
|
26
|
ER network homeostasis is critical for plant endosome streaming and endocytosis. Cell Discov 2015; 1:15033. [PMID: 27462431 PMCID: PMC4860783 DOI: 10.1038/celldisc.2015.33] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/20/2015] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic cells internalize cargo at the plasma membrane via endocytosis, a vital process that is accomplished through a complex network of endosomal organelles. In mammalian cells, the ER is in close association with endosomes and regulates their fission. Nonetheless, the physiological role of such interaction on endocytosis is yet unexplored. Here, we probed the existence of ER–endosome association in plant cells and assayed its physiological role in endocytosis. Through live-cell imaging and electron microscopy studies, we established that endosomes are extensively associated with the plant ER, supporting conservation of interaction between heterotypic organelles in evolutionarily distant kingdoms. Furthermore, by analyzing ER–endosome dynamics in genetic backgrounds with defects in ER structure and movement, we also established that the ER network integrity is necessary for homeostasis of the distribution and streaming of various endosome populations as well as for efficient endocytosis. These results support a novel model that endocytosis homeostasis depends on a spatiotemporal control of the endosome dynamics dictated by the ER membrane network.
Collapse
|
27
|
Steinwand BJ, Xu S, Polko JK, Doctor SM, Westafer M, Kieber JJ. Alterations in auxin homeostasis suppress defects in cell wall function. PLoS One 2014; 9:e98193. [PMID: 24859261 PMCID: PMC4032291 DOI: 10.1371/journal.pone.0098193] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 04/30/2014] [Indexed: 11/30/2022] Open
Abstract
The plant cell wall is a highly dynamic structure that changes in response to both environmental and developmental cues. It plays important roles throughout plant growth and development in determining the orientation and extent of cell expansion, providing structural support and acting as a barrier to pathogens. Despite the importance of the cell wall, the signaling pathways regulating its function are not well understood. Two partially redundant leucine-rich-repeat receptor-like kinases (LRR-RLKs), FEI1 and FEI2, regulate cell wall function in Arabidopsis thaliana roots; disruption of the FEIs results in short, swollen roots as a result of decreased cellulose synthesis. We screened for suppressors of this swollen root phenotype and identified two mutations in the putative mitochondrial pyruvate dehydrogenase E1α homolog, IAA-Alanine Resistant 4 (IAR4). Mutations in IAR4 were shown previously to disrupt auxin homeostasis and lead to reduced auxin function. We show that mutations in IAR4 suppress a subset of the fei1 fei2 phenotypes. Consistent with the hypothesis that the suppression of fei1 fei2 by iar4 is the result of reduced auxin function, disruption of the WEI8 and TAR2 genes, which decreases auxin biosynthesis, also suppresses fei1 fei2. In addition, iar4 suppresses the root swelling and accumulation of ectopic lignin phenotypes of other cell wall mutants, including procuste and cobra. Further, iar4 mutants display decreased sensitivity to the cellulose biosynthesis inhibitor isoxaben. These results establish a role for IAR4 in the regulation of cell wall function and provide evidence of crosstalk between the cell wall and auxin during cell expansion in the root.
Collapse
Affiliation(s)
- Blaire J. Steinwand
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Shouling Xu
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Joanna K. Polko
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Stephanie M. Doctor
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Mike Westafer
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Joseph J. Kieber
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
28
|
Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 2014; 32:429-48. [DOI: 10.1016/j.biotechadv.2013.12.005] [Citation(s) in RCA: 328] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 12/17/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
|
29
|
|
30
|
Choi Y, Lee Y, Kim SY, Lee Y, Hwang JU. Arabidopsis ROP-interactive CRIB motif-containing protein 1 (RIC1) positively regulates auxin signalling and negatively regulates abscisic acid (ABA) signalling during root development. PLANT, CELL & ENVIRONMENT 2013; 36:945-955. [PMID: 23078108 DOI: 10.1111/pce.12028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Auxin and abscisic acid (ABA) modulate numerous aspects of plant development together, mostly in opposite directions, suggesting that extensive crosstalk occurs between the signalling pathways of the two hormones. However, little is known about the nature of this crosstalk. We demonstrate that ROP-interactive CRIB motif-containing protein 1 (RIC1) is involved in the interaction between auxin- and ABA-regulated root growth and lateral root formation. RIC1 expression is highly induced by both hormones, and expressed in the roots of young seedlings. Whereas auxin-responsive gene induction and the effect of auxin on root growth and lateral root formation were suppressed in the ric1 knockout, ABA-responsive gene induction and the effect of ABA on seed germination, root growth and lateral root formation were potentiated. Thus, RIC1 positively regulates auxin responses, but negatively regulates ABA responses. Together, our results suggest that RIC1 is a component of the intricate signalling network that underlies auxin and ABA crosstalk.
Collapse
Affiliation(s)
- Yunjung Choi
- POSTECH-UZH Global Research Laboratory, Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | | | |
Collapse
|
31
|
Jiang F, Chen L, Belimov AA, Shaposhnikov AI, Gong F, Meng X, Hartung W, Jeschke DW, Davies WJ, Dodd IC. Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum sativum. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:6421-30. [PMID: 23136167 PMCID: PMC3504497 DOI: 10.1093/jxb/ers301] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Resolving the physiological mechanisms by which rhizobacteria enhance plant growth is difficult, since many such bacteria contain multiple plant growth-promoting properties. To understand further how the 1-aminocyclopropane-1-carboxylate (ACC) deaminase (ACCd)-containing rhizobacterium Variovorax paradoxus 5C-2 affects plant growth, the flows and partitioning of mineral nutrients and abscisic acid (ABA) and ABA metabolism were studied in pea (Pisum sativum) plants following rhizosphere bacterial inoculation. Although root architecture was not affected, inoculation increased root and shoot biomass, and stomatal conductance, by 20, 15, and 24%, respectively, and increased N, P, K, Ca, and Mg uptake by 16, 81, 50, 46, and 58%, respectively. P deposition in inoculated plant roots was 4.9 times higher than that in uninoculated controls. Rhizobacterial inoculation increased root to shoot xylem flows and shoot to root phloem flows of K by 1.8- and 2.1-fold, respectively. In control plants, major sinks for K deposition were the roots and upper shoot (43% and 49% of total uptake, respectively), while rhizobacterial inoculation increased K distribution to the lower shoot at the expense of other compartments (xylem, phloem, and upper shoot). Despite being unable to metabolize ABA in vitro, V. paradoxus 5C-2 decreased root ABA concentrations and accumulation by 40-60%. Although inoculation decreased xylem ABA flows, phloem ABA flows increased. Whether bacterial ACCd attenuates root to shoot ABA signalling requires further investigation, since ABA is critical to maintain growth of droughted plants, and ACCd-containing organisms have been advocated as a means of minimizing growth inhibition of plants in drying soil.
Collapse
Affiliation(s)
- Fan Jiang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Lin Chen
- The Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Andrey A. Belimov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Sh. 3, Pushkin-8, 196608, Saint Petersburg, Russian Federation
| | - Alexander I. Shaposhnikov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Sh. 3, Pushkin-8, 196608, Saint Petersburg, Russian Federation
| | - Fan Gong
- Rothamsted Research, Harpenden, West Common, Hertfordshire AL5 2JQ, UK
| | - Xu Meng
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Wolfram Hartung
- Julius von Sachs Institut für Biowissenschaften der Universität, Lehrstuhl Botanik I, Julius von Sachs Platz 2, D-97082 Würzburg, Germany
| | - Dieter W. Jeschke
- Julius von Sachs Institut für Biowissenschaften der Universität, Lehrstuhl Botanik I, Julius von Sachs Platz 2, D-97082 Würzburg, Germany
| | - William J. Davies
- The Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Ian C. Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
32
|
Reid JB, Davidson SE, Ross JJ. Auxin acts independently of DELLA proteins in regulating gibberellin levels. PLANT SIGNALING & BEHAVIOR 2011; 6:406-8. [PMID: 21358281 PMCID: PMC3142423 DOI: 10.4161/psb.6.3.14352] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 12/02/2010] [Indexed: 05/26/2023]
Abstract
Shoot elongation is a vital process for plant development and productivity, in both ecological and economic contexts. Auxin and bioactive gibberellins (GAs), such as GA1, play critical roles in the control of elongation, along with environmental and endogenous factors, including other hormones such as the brassinosteroids. The effect of auxins, such as indole-3-acetic acid (IAA), is at least in part mediated by its effect on GA metabolism, since auxin up-regulates biosynthesis genes such as GA 3-oxidase and GA 20-oxidase and down regulates GA catabolism genes such as GA 2-oxidases, leading to elevated levels of bioactive GA 1. In our recent paper, we have provided evidence that this action of IAA is largely independent of DELLA proteins, the negative regulators of GA action, since the auxin effects are still present in the DELLA-deficient la cry-s genotype of pea. This was a crucial issue to resolve, since like auxin, the DELLAs also promote GA 1 synthesis and inhibit its deactivation. DELLAs are deactivated by GA, and thereby mediate a feedback system by which bioactive GA regulates its own level. However, our recent results, in themselves, do not show the generality of the auxin-GA relationship across species and phylogenetic groups or across different tissue types and responses. Further, they do not touch on the ecological benefits of the auxin-GA interaction. These issues are discussed below as well as the need for the development of suitable experimental systems to allow this process to be examined.
Collapse
Affiliation(s)
- James B Reid
- School of Plant Science, University of Tasmania, Hobart, TAS, Australia
| | | | | |
Collapse
|
33
|
Dimkpa C, Weinand T, Asch F. Plant-rhizobacteria interactions alleviate abiotic stress conditions. PLANT, CELL & ENVIRONMENT 2009; 32:1682-94. [PMID: 19671096 DOI: 10.1111/j.1365-3040.2009.02028.x] [Citation(s) in RCA: 323] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Root-colonizing non-pathogenic bacteria can increase plant resistance to biotic and abiotic stress factors. Bacterial inoculates have been applied as biofertilizers and can increase the effectiveness of phytoremediation. Inoculating plants with non-pathogenic bacteria can provide 'bioprotection' against biotic stresses, and some root-colonizing bacteria increase tolerance against abiotic stresses such as drought, salinity and metal toxicity. Systematic identification of bacterial strains providing cross-protection against multiple stressors would be highly valuable for agricultural production in changing environmental conditions. For bacterial cross-protection to be an effective tool, a better understanding of the underlying morphological, physiological and molecular mechanisms of bacterially mediated stress tolerance, and the phenomenon of cross-protection is critical. Beneficial bacteria-mediated plant gene expression studies under non-stress conditions or during pathogenic rhizobacteria-plant interactions are plentiful, but only few molecular studies on beneficial interactions under abiotic stress situations have been reported. Thus, here we attempt an overview of current knowledge on physiological impacts and modes of action of bacterial mitigation of abiotic stress symptoms in plants. Where available, molecular data will be provided to support physiological or morphological observations. We indicate further research avenues to enable better use of cross-protection capacities of root-colonizing non-pathogenic bacteria in agricultural production systems affected by a changing climate.
Collapse
Affiliation(s)
- Christian Dimkpa
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743, Jena, Germany
| | | | | |
Collapse
|
34
|
Chatfield SP, Raizada MN. Ethylene and shoot regeneration: hookless1 modulates de novo shoot organogenesis in Arabidopsis thaliana. PLANT CELL REPORTS 2008; 27:655-66. [PMID: 18084766 DOI: 10.1007/s00299-007-0496-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 11/27/2007] [Accepted: 12/04/2007] [Indexed: 05/08/2023]
Abstract
We have investigated the role of ethylene in shoot regeneration from cotyledon explants of Arabidopsis thaliana. We examined the ethylene sensitivity of five ecotypes representing both poor and prolific shoot regenerators and identified Dijon-G, a poor regenerator, as an ecotype with dramatically enhanced ethylene sensitivity. However, inhibiting ethylene action with silver nitrate generally reduced shoot organogenesis in ecotypes capable of regeneration. In ecotype Col-0, we found that ethylene-insensitive mutants (etr1-1, ein2-1, ein4, ein7) exhibited reduced shoot regeneration rates, whereas constitutive ethylene response mutants (ctr1-1, ctr1-12) increased the proportion of explants producing shoots. Our experiments with ethylene over-production mutants (eto1, eto2 and eto3) indicate that the ethylene biosynthesis inhibitor gene, ETO1, can act as an inhibitor of shoot regeneration. Pharmacological elevation of ethylene levels was also found to significantly increase the proportion of explants regenerating shoots. We determined that the hookless1 (hls1-1) mutant, a suppressor of the ethylene response phenotypes of ctr1 and eto1 mutants, is capable of dramatically enhancing shoot organogenesis. The effects of ACC and loss of HLS1 function on shoot organogenesis were found to be largely additive.
Collapse
Affiliation(s)
- Steven P Chatfield
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | | |
Collapse
|
35
|
Madhaiyan M, Poonguzhali S, Sa T. Characterization of 1-aminocyclopropane-1-carboxylate (ACC) deaminase containing Methylobacterium oryzae and interactions with auxins and ACC regulation of ethylene in canola (Brassica campestris). PLANTA 2007; 226:867-76. [PMID: 17541630 DOI: 10.1007/s00425-007-0532-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 04/17/2007] [Indexed: 05/15/2023]
Abstract
The possible interaction of the plant hormones auxin and ethylene and the role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase containing bacteria on ethylene production in canola (Brassica campestris) in the presence of inhibitory concentrations of growth regulators were investigated. The effects of auxin (indole-3-acetic acid and 2,4-dichlorophenoxy acetic acid), auxin transport inhibitor 2-(p-chlorophenoxy)-2-methylpropionic acid, ethylene precursor 1-aminocyclopropane-1-carboxylate and ethylene synthesis inhibitor L-alpha-(2-aminoethoxyvinyl)glycine hydrochloride on root elongation were concentration dependent. Exogenous addition of growth regulators influences the enzyme activities of ethylene production and we have presented here evidences that support the hypothesis that inhibitory effects of auxin on root elongation are independent of ethylene. Additionally, we have proved that inoculation of ACC deaminase containing Methylobacterium oryzae sequester ACC exuded from roots and hydrolyze them lowering the concentration of ACC in root exudates. However, the inhibitory actions of exogenous additions of auxins could not be ameliorated by bacterial inoculation that reduces ethylene concentration in canola seedlings.
Collapse
Affiliation(s)
- Munusamy Madhaiyan
- Department of Agricultural Chemistry, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea.
| | | | | |
Collapse
|
36
|
Woodward AW, Ratzel SE, Woodward EE, Shamoo Y, Bartel B. Mutation of E1-CONJUGATING ENZYME-RELATED1 decreases RELATED TO UBIQUITIN conjugation and alters auxin response and development. PLANT PHYSIOLOGY 2007; 144:976-87. [PMID: 17449645 PMCID: PMC1914210 DOI: 10.1104/pp.107.100404] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The ubiquitin-like protein RELATED TO UBIQUITIN (RUB) is conjugated to CULLIN (CUL) proteins to modulate the activity of Skp1-Cullin-F-box (SCF) ubiquitylation complexes. RUB conjugation to specific target proteins is necessary for the development of many organisms, including Arabidopsis (Arabidopsis thaliana). Here, we report the isolation and characterization of e1-conjugating enzyme-related1-1 (ecr1-1), an Arabidopsis mutant compromised in RUB conjugation. The ecr1-1 mutation causes a missense change located two amino acid residues from the catalytic site cysteine, which normally functions to form a thioester bond with activated RUB. A higher ratio of unmodified CUL1 relative to CUL1-RUB is present in ecr1-1 compared to wild type, suggesting that the mutation reduces ECR1 function. The ecr1-1 mutant is resistant to the auxin-like compound indole-3-propionic acid, produces fewer lateral roots than wild type, displays reduced adult height, and stabilizes a reporter fusion protein that is degraded in response to auxin, suggesting reduced auxin signaling in the mutant. In addition, ecr1-1 hypocotyls fail to elongate normally when seedlings are grown in darkness, a phenotype shared with certain other RUB conjugation mutants that is not general to auxin-response mutants. The suite of ecr1-1 molecular and morphological phenotypes reflects roles for RUB conjugation in many aspects of plant growth and development. Certain ecr1-1 elongation defects are restored by treatment with the ethylene-response inhibitor silver nitrate, suggesting that the short ecr1-1 root and hypocotyl result from aberrant ethylene accumulation. Further, silver nitrate supplementation in combination with various auxins and auxin-like compounds reveals that members of this growth regulator family may differentially rely on ethylene signaling to inhibit root growth.
Collapse
Affiliation(s)
- Andrew W Woodward
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | | | | | | | | |
Collapse
|
37
|
Li X, Mo X, Shou H, Wu P. Cytokinin-mediated cell cycling arrest of pericycle founder cells in lateral root initiation of Arabidopsis. PLANT & CELL PHYSIOLOGY 2006; 47:1112-23. [PMID: 16854941 DOI: 10.1093/pcp/pcj082] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In Arabidopsis, lateral root formation is a post-embryonic developmental event, which is regulated by hormones and environmental signals. In this study, via analyzing the expression of cyclin genes during lateral root (LR) formation, we report that cytokinins (CTKs) inhibit the initiation of LR through blocking the pericycle founder cells cycling at the G(2) to M transition phase, while the promotion by CTK of LR elongation is due to the stimulation of the G(1) to S transition. No significant difference was detected in the inhibitory effect of CTK on LR formation between wild-type plants and mutants defective in auxin response or transport. In addition, exogenously applied auxin at different concentrations could not rescue the CTK-mediated inhibition of LR initiation. Our data suggest that CTK and auxin might control LR initiation through two separate signaling pathways in Arabidopsis. The CTK-mediated repression of LR initiation is transmitted through the two-component signal system and mediated by the receptor CRE1.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zi Jin Gang Campus, Zhejiang University, Hangzhou, 310058, PR China
| | | | | | | |
Collapse
|
38
|
Keller CP, Stahlberg R, Barkawi LS, Cohen JD. Long-term inhibition by auxin of leaf blade expansion in bean and Arabidopsis. PLANT PHYSIOLOGY 2004; 134:1217-26. [PMID: 14988474 PMCID: PMC389946 DOI: 10.1104/pp.103.032300] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The role of auxin in controlling leaf expansion remains unclear. Experimental increases to normal auxin levels in expanding leaves have shown conflicting results, with both increases and decreases in leaf growth having been measured. Therefore, the effects of both auxin application and adjustment of endogenous leaf auxin levels on midrib elongation and final leaf size (fresh weight and area) were examined in attached primary monofoliate leaves of the common bean (Phaseolus vulgaris) and in early Arabidopsis rosette leaves. Aqueous auxin application inhibited long-term leaf blade elongation. Bean leaves, initially 40 to 50 mm in length, treated once with alpha-naphthalene acetic acid (1.0 mm), were, after 6 d, approximately 80% the length and weight of controls. When applied at 1.0 and 0.1 mm, alpha-naphthalene acetic acid significantly inhibited long-term leaf growth. The weak auxin, beta-naphthalene acetic acid, was effective at 1.0 mm; and a weak acid control, benzoic acid, was ineffective. Indole-3-acetic acid (1 microm, 10 microm, 0.1 mm, and 1 mm) required daily application to be effective at any concentration. Application of the auxin transport inhibitor, 1-N-naphthylphthalamic acid (1% [w/w] in lanolin), to petioles also inhibited long-term leaf growth. This treatment also was found to lead to a sustained elevation of leaf free indole-3-acetic acid content relative to untreated control leaves. Auxin-induced inhibition of leaf growth appeared not to be mediated by auxin-induced ethylene synthesis because growth inhibition was not rescued by inhibition of ethylene synthesis. Also, petiole treatment of Arabidopsis with 1-N-naphthylphthalamic acid similarly inhibited leaf growth of both wild-type plants and ethylene-insensitive ein4 mutants.
Collapse
Affiliation(s)
- Christopher P Keller
- Department of Biology, Minot State University, 500 University Avenue West, Minot, North Dakota 58707, USA.
| | | | | | | |
Collapse
|
39
|
Rugutt KJ, Rugutt JK, Berner DK. In vitro germination of Striga hermonthica and Striga aspera seeds by 1-aminocyclopropane-1-carboxylic acid. Nat Prod Res 2003; 17:47-62. [PMID: 12674143 DOI: 10.1080/1478461031000062205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Treatment of conditioned seeds of four isolates of Striga hermonthica and one isolate of Striga aspera with various concentrations of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), caused complex stimulation of germination patterns. GR 24, the strigol analogue served as a positive control and its stimulatory activity was comparable to that of ACC. When conditioned Striga seeds were treated with negative control that did not contain ACC, the stimulatory effect was lost. Overall, the germination data suggested a hormonal mode of action by ACC, which involves indirect stimulation of biosynthesis of ethylene that then triggers seed germination. The various mechanisms that have been proposed for the chemical and biological oxidation of ACC to generate ethylene are discussed.
Collapse
Affiliation(s)
- Kipngeno J Rugutt
- Department of Education, Illinois State University, Normal, IL 61790-2200, USA
| | | | | |
Collapse
|
40
|
Rahman A, Amakawa T, Goto N, Tsurumi S. Auxin is a positive regulator for ethylene-mediated response in the growth of Arabidopsis roots. PLANT & CELL PHYSIOLOGY 2001; 42:301-7. [PMID: 11266581 DOI: 10.1093/pcp/pce035] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The requirement of auxin for the ethylene-mediated growth response in the root of Arabidopsis thaliana seedlings was investigated using two ethylene-resistant mutants, aux1-7 and eir1-1, whose roots have been shown to have a defect in the auxin influx and efflux carriers, respectively. A 50% inhibition of growth (I(50)) was achieved with 0.84 microl liter(-1) ethylene in wild-type roots, but 71.3 microl liter( -1) ethylene was required to induce I(50) in eir1-1 roots. In aux1-7 roots, I(50) was not obtained even at 1,000 microl liter(-1) ethylene. By contrast, in the presence of 10 nM 1-naphthaleneacetic acid (NAA), the concentrations of ethylene required to induce I(50) in eir1-1 and aux1-7 roots were greatly reduced nearly to the level required in wild-type roots. Since the action of NAA to restore the ethylene response in aux1-7 roots was not replaced by IAA, an increase in the intracellular level of auxin is likely to be the cause for the restoration of ethylene response. NAA at 10 nM did not inhibit root growth when applied solely, but it was the optimum concentration to recover the ethylene response in the mutant roots. These results suggest that auxin is a positive regulator for ethylene-induced inhibition in root elongation.
Collapse
Affiliation(s)
- A Rahman
- Graduate School of Science and Technology, Kobe University, Nada-ku, Kobe, 657-8501 Japan
| | | | | | | |
Collapse
|
41
|
Zhang N, Hasenstein KH. Initiation and elongation of lateral roots in Lactuca sativa. INTERNATIONAL JOURNAL OF PLANT SCIENCES 1999; 160:511-9. [PMID: 11542270 DOI: 10.1086/314147] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Lactuca sativa cv. Baijianye seedlings do not normally produce lateral roots, but removal of the root tip or application of auxin, especially indole-butyric acid, triggered the formation of lateral roots. Primordia initiated within 9 h and were fully developed after 24 h by activating the pericycle cells opposite the xylem pole. The pericycle cells divided asymmetrically into short and long cells. The short cells divided further to form primordia. The effect of root tip removal and auxin application was reversed by 6-benzylaminopurine at concentrations >10(-8) M. The cytokinin oxidase inhibitor N1-(2chloro4pyridyl)-N2-phenylurea also suppressed auxin-induced lateral rooting. The elongation of primary roots was promoted by L-alpha-(2-aminoethoxyvinyl) glycine and silver ions, but only the latter enhanced elongation of lateral roots. The data indicate that the induction of lateral roots is controlled by basipetally moving cytokinin and acropetally moving auxin. Lateral roots appear to not produce ethylene.
Collapse
Affiliation(s)
- N Zhang
- Department of Biology, University of Southwestern Louisiana, Lafayette 70504-2451, USA
| | | |
Collapse
|
42
|
Simmons C, Migliaccio F, Masson P, Caspar T, Soll D. A novel root gravitropism mutant of Arabidopsis thaliana exhibiting altered auxin physiology. PHYSIOLOGIA PLANTARUM 1995. [PMID: 11540162 DOI: 10.1111/j.1399-3054.1995.tb05133.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A root gravitropism mutant was isolated from the DuPont Arabidopsis thaliana T-DNA insertional mutagenesis collection. This mutant has reduced root gravitropism, hence the name rgr1. Roots of rgr1 are shorter than those of wild-type, and they have reduced lateral root formation. In addition, roots of rgr1 coil clockwise on inclined agar plates, unlike wild-type roots which grow in a wavy pattern. The rgr1 mutant has increased resistance, as measured by root elongation, to exogenously applied auxins (6-fold to indole-3-acetic acid, 3-fold to 2,4-dichlorophenoxyacetic acid, and 2-fold to napthyleneacetic acid). It is also resistant to polar auxin transport inhibitors (2-fold to triiodobenzoic acid and 3- to 5-fold to napthylphthalamic acid). The rgr1 mutant does not appear to be resistant to other plant hormone classes. When grown in the presence of 10(-7) M 2,4-dichlorophenoxyacetic acid, rgr1 roots have fewer root hairs than wild type. All these rgr1 phenotypes are Mendelian recessives. Complementation tests indicate that rgr1 is not allelic to previously characterized agravitropic or auxin-resistant mutants. The rgr1 locus was mapped using visible markers to 1.4 +/- 0.6 map units from the CH1 locus at 1-65.4. The rgr1 mutation and the T-DNA cosegregate, suggesting that rgr1 was caused by insertional gene inactivation.
Collapse
Affiliation(s)
- C Simmons
- Dept of Molecular Biophysics and Biochemistry, Yale Univ., New Haven, CT 06520-8114, USA
| | | | | | | | | |
Collapse
|
43
|
Gozu Y, Yokoyama M, Nakamura M, Namba R, Yomogida K, Yanagi M, Nakamura S. In vitro propagation of Iris pallida. PLANT CELL REPORTS 1993; 13:12-16. [PMID: 24196175 DOI: 10.1007/bf00232307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/1993] [Revised: 08/09/1993] [Indexed: 06/02/2023]
Abstract
Plantlets were regenerated from callus of Iris pallida, an important perfume plant. Only the leaf base attached to the rhizome had the ability to generate yellow-colored callus on LS medium supplemented with 1 mg/l 2,4-D and 0.1 mg/l KT in the dark. Yellow calli grew with partial differentiation into white tissue, probably embryogenic, during subculture on the same medium with a 16-h photoperiod. Only yellow-colored calli with the white tissue could differentiate into plantlets after transfer to kinetin- or gibberellin- supplemented LS medium. Regenerated plantlets which grew on the medium without growth regulators were transferred to the soil. After 2 years of cultivation in soil, the regenerated plants flowered and formed rhizomes. The components of the essential oil in the rhizome of regenerated plants were essentially the same as those in natural plants.
Collapse
Affiliation(s)
- Y Gozu
- Shiseido Research Center, 1050 Nippa-cho, Kohoku-ku, 223, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Logan DC, Stewart GR. Role of Ethylene in the Germination of the Hemiparasite Striga hermonthica. PLANT PHYSIOLOGY 1991; 97:1435-8. [PMID: 16668568 PMCID: PMC1081183 DOI: 10.1104/pp.97.4.1435] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Seed germination of the hemiparasitic angiosperm Striga hermonthica (Del.) Benth is elicited by compounds present in the root exudates of the host plant. Although a variety of compounds can substitute for the host-derived signal, the mechanism through which these act is unknown. In the present study, an inhibitor of ethylene biosynthesis, aminoethoxyvinyl glycine, was found to inhibit germination. Addition of an intermediate in ethylene biosynthesis, 1-aminocyclopropane-1-carboxylic acid, was found to override this inhibition and to act as a substitute for the host-derived signal. 2,5-Norbornadiene, an inhibitor of ethylene action, was also found to inhibit germination. Ethylene is rapidly produced by Striga seeds after treatment with host root exudates. These results are consistent with a model for Striga seed germination in which host-derived signals and other compounds act by eliciting the synthesis of ethylene and in which ethylene itself initiates the biochemical changes leading to germination.
Collapse
Affiliation(s)
- D C Logan
- Striga Research Group, Department of Biology, University College London, Gower Street, London, WC1E 6BT United Kingdom
| | | |
Collapse
|
45
|
de Souza L, King PJ. Mutants of Nicotiana plumbaginifolia with increased sensitivity to auxin. MOLECULAR & GENERAL GENETICS : MGG 1991; 231:65-75. [PMID: 1836527 DOI: 10.1007/bf00293823] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Two non-allelic, monogenic recessive mutations, aus1 and aus2, have been isolated which result in auxin hypersensitivity in mutant Nicotiana plumbaginifolia plants. At relatively low concentrations of indole-3-acetic acid or 1-naphthaleneacetic acid, the elongation growth of mutant seedling hypocotyls is more inhibited than in the case of the wild type; at high auxin concentrations, mutant seedlings are killed. The leaves of mature mutant plants degenerate after a spray treatment with auxin that has only a mild, transient effect on the wild type. Seedling hypocotyls of aus1 are more sensitive to L-tryptophan than those of the wild type but do not differ in their response to the D-isomer. The mutant is also more sensitive to ethylene and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, but not to either 6-benzyladenine or abscisic acid. Mutant seedlings display several distinct morphological characters: mild leaf epinasty, short primary root, increased root branching and no root hairs.
Collapse
Affiliation(s)
- L de Souza
- Friedrich Miescher-Institut, Basel, Switzerland
| | | |
Collapse
|
46
|
Gehring CA, Irving HR, Parish RW. Effects of auxin and abscisic acid on cytosolic calcium and pH in plant cells. Proc Natl Acad Sci U S A 1990; 87:9645-9. [PMID: 11607135 PMCID: PMC55229 DOI: 10.1073/pnas.87.24.9645] [Citation(s) in RCA: 165] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dark-grown corn coleoptiles and parsley hypocotyls and their roots were loaded with acetoxymethyl esterified forms of the Ca2+ indicator fluo-3, and the pH indicator 2',7'-bis (2-carboxyethyl)-5(and-6)-carboxyfluorescein. These tissues were treated with the plant growth regulator 2,4-dichlorophenoxyacetic acid (2,4-D), an auxin analogue, or abscisic acid (ABA), and the cytosolic pH (pHcyt) and cytosolic Ca2+ ([Ca2+]cyt) changes were monitored by confocal scanning optical microscopy. Over a period of 4 min pHcyt decreased 0.1-0.2 pH unit and [Ca2+]cyt increased from 280 to 380 nM in response to 2,4-D. ABS, on the other hand, induced cytosolic alkalinization of 0.05-0.1 pH unit with a concomitant increase in [Ca2+]cyt from 240 to 320 nM over a 4-min period. Responses similar to these were observed in all the tissues tested. We suggest that pHcyt profoundly influences signaling by[Ca2+]cyt, possibly by regulating Ca2+-protein binding, and that the divergent effects of auxin and ABA on pHcyt underlie their mutual antagonism.
Collapse
Affiliation(s)
- C A Gehring
- Department of Botany, La Trobe University, Bundoora, Victoria, Australia
| | | | | |
Collapse
|
47
|
Pickett FB, Wilson AK, Estelle M. The aux1 Mutation of Arabidopsis Confers Both Auxin and Ethylene Resistance. PLANT PHYSIOLOGY 1990; 94:1462-6. [PMID: 16667854 PMCID: PMC1077399 DOI: 10.1104/pp.94.3.1462] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Mutagenized populations of Arabidopsis thaliana seedlings were screened for plants capable of root growth on inhibitory concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. Four of the mutant lines recovered from this screen display a defect in root gravitropism as well as hormone resistance. The aerial portions of these plants are similar to wild-type in appearance. Genetic analysis of these four mutants demonstrated that hormone resistance segregated as a recessive trait and that all four mutations were alleles of the auxin-resistant mutation aux1 [Maher HP, Martindale SJB (1980) Biochem Genet 18: 1041-1053]. These new mutants have been designated aux1-7, 1-12, 1-15, and 1-19. The sensitivity of wild-type and aux1-7 roots to indole-3-acetic acid, 2,4-dichlorophenoxyacetic acid, and ethylene was determined. The results of these assays show that aux1-7 plants require a 12-fold (indole-3-acetic acid) or 18-fold (2,4-dichlorophenoxyacetic acid) higher concentration of auxin than wild-type for a 50% inhibition of root growth. In addition, ethylene inhibition of root growth in aux1-7 plants is approximately 30% that of wild-type at saturating ethylene concentrations. These results indicate that aux1 plants are resistant to both auxin and ethylene. We have also determined the effect of ethylene treatment on chlorophyll loss and peroxidase activity in the leaves of aux1 and wild-type plants. No difference between mutant and wild-type plants was observed in these experiments, indicating that hormone resistance in aux1 plants may be limited to root growth. Our studies suggest that the AUX1 gene may have a specific function in the hormonal regulation of gravitropism.
Collapse
Affiliation(s)
- F B Pickett
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | | | | |
Collapse
|
48
|
Lee JS, Evans ML. Effects of ethylene on the kinetics of curvature and auxin redistribution in gravistimulated roots of Zea mays. PLANT PHYSIOLOGY 1990; 94:1770-5. [PMID: 11537475 PMCID: PMC1077451 DOI: 10.1104/pp.94.4.1770] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We tested the involvement of ethylene in maize (Zea mays L.) root gravitropism by measuring the kinetics of curvature and lateral auxin movement in roots treated with ethylene, inhibitors of ethylene synthesis, or inhibitors of ethylene action. In the presence of ethylene the latent period of gravitropic curvature appeared to be increased somewhat. However, ethylene-treated roots continued to curve after control roots had reached their final angle of curvature. Consequently, maximum curvature in the presence of ethylene was much greater in ethylene-treated roots than in controls. Inhibitors of ethylene biosynthesis or action had effects on the kinetics of curvature opposite to that of ethylene, i.e. the latent period appeared to be shortened somewhat while total curvature was reduced relative to that of controls. Label from applied 3H-indole-3-acetic acid was preferentially transported toward the lower side of stimulated roots. In parallel with effects on curvature, ethylene treatment delayed the development of gravity-induced asymmetric auxin movement across the root but extended its duration once initiated. The auxin transport inhibitor, 1-N-naphthylphthalamic acid reduced both gravitropic curvature and the effect of ethylene on curvature. Since neither ethylene nor inhibitors of ethylene biosynthesis or action prevented curvature, we conclude that ethylene does not mediate the primary differential growth response causing curvature. Because ethylene affects curvature and auxin transport in parallel, we suggest that ethylene modifies curvature by affecting gravity-induced lateral transport of auxin, perhaps by interfering with adaptation of the auxin transport system to the gravistimulus.
Collapse
Affiliation(s)
- J S Lee
- Department of Biology, Ewha Womans University, Seoul, Korea
| | | |
Collapse
|