1
|
Hedden P. The Current Status of Research on Gibberellin Biosynthesis. PLANT & CELL PHYSIOLOGY 2020; 61:1832-1849. [PMID: 32652020 PMCID: PMC7758035 DOI: 10.1093/pcp/pcaa092] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/21/2020] [Indexed: 05/23/2023]
Abstract
Gibberellins are produced by all vascular plants and several fungal and bacterial species that associate with plants as pathogens or symbionts. In the 60 years since the first experiments on the biosynthesis of gibberellic acid in the fungus Fusarium fujikuroi, research on gibberellin biosynthesis has advanced to provide detailed information on the pathways, biosynthetic enzymes and their genes in all three kingdoms, in which the production of the hormones evolved independently. Gibberellins function as hormones in plants, affecting growth and differentiation in organs in which their concentration is very tightly regulated. Current research in plants is focused particularly on the regulation of gibberellin biosynthesis and inactivation by developmental and environmental cues, and there is now considerable information on the molecular mechanisms involved in these processes. There have also been recent advances in understanding gibberellin transport and distribution and their relevance to plant development. This review describes our current understanding of gibberellin metabolism and its regulation, highlighting the more recent advances in this field.
Collapse
Affiliation(s)
- Peter Hedden
- Laboratory of Growth Regulators, Palack� University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK
| |
Collapse
|
2
|
Darwish TA, Yepuri NR, Holden PJ, James M. Quantitative analysis of deuterium using the isotopic effect on quaternary 13C NMR chemical shifts. Anal Chim Acta 2016; 927:89-98. [DOI: 10.1016/j.aca.2016.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
|
3
|
Chen ML, Su X, Xiong W, Liu JF, Wu Y, Feng YQ, Yuan BF. Assessing gibberellins oxidase activity by anion exchange/hydrophobic polymer monolithic capillary liquid chromatography-mass spectrometry. PLoS One 2013; 8:e69629. [PMID: 23922762 PMCID: PMC3724942 DOI: 10.1371/journal.pone.0069629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/12/2013] [Indexed: 02/06/2023] Open
Abstract
Bioactive gibberellins (GAs) play a key regulatory role in plant growth and development. In the biosynthesis of GAs, GA3-oxidase catalyzes the final step to produce bioactive GAs. Thus, the evaluation of GA3-oxidase activity is critical for elucidating the regulation mechanism of plant growth controlled by GAs. However, assessing catalytic activity of endogenous GA3-oxidase remains challenging. In the current study, we developed a capillary liquid chromatography--mass spectrometry (cLC-MS) method for the sensitive assay of in-vitro recombinant or endogenous GA3-oxidase by analyzing the catalytic substrates and products of GA3-oxidase (GA1, GA4, GA9, GA20). An anion exchange/hydrophobic poly([2-(methacryloyloxy)ethyl]trimethylammonium-co-divinylbenzene-co-ethylene glycol dimethacrylate)(META-co-DVB-co-EDMA) monolithic column was successfully prepared for the separation of all target GAs. The limits of detection (LODs, Signal/Noise = 3) of GAs were in the range of 0.62-0.90 fmol. We determined the kinetic parameters (K m) of recombinant GA3-oxidase in Escherichia coli (E. coli) cell lysates, which is consistent with previous reports. Furthermore, by using isotope labeled substrates, we successfully evaluated the activity of endogenous GA3-oxidase that converts GA9 to GA4 in four types of plant samples, which is, to the best of our knowledge, the first report for the quantification of the activity of endogenous GA3-oxidase in plant. Taken together, the method developed here provides a good solution for the evaluation of endogenous GA3-oxidase activity in plant, which may promote the in-depth study of the growth regulation mechanism governed by GAs in plant physiology.
Collapse
Affiliation(s)
- Ming-Luan Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Xin Su
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Wei Xiong
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiu-Feng Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Yan Wu
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Bhattacharya A, Kourmpetli S, Ward DA, Thomas SG, Gong F, Powers SJ, Carrera E, Taylor B, de Caceres Gonzalez FN, Tudzynski B, Phillips AL, Davey MR, Hedden P. Characterization of the fungal gibberellin desaturase as a 2-oxoglutarate-dependent dioxygenase and its utilization for enhancing plant growth. PLANT PHYSIOLOGY 2012; 160:837-45. [PMID: 22911627 PMCID: PMC3461559 DOI: 10.1104/pp.112.201756] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 08/20/2012] [Indexed: 05/19/2023]
Abstract
The biosynthesis of gibberellic acid (GA(3)) by the fungus Fusarium fujikuroi is catalyzed by seven enzymes encoded in a gene cluster. While four of these enzymes are characterized as cytochrome P450 monooxygenases, the nature of a fifth oxidase, GA(4) desaturase (DES), is unknown. DES converts GA(4) to GA(7) by the formation of a carbon-1,2 double bond in the penultimate step of the pathway. Here, we show by expression of the des complementary DNA in Escherichia coli that DES has the characteristics of a 2-oxoglutarate-dependent dioxygenase. Although it has low amino acid sequence homology with known 2-oxoglutarate-dependent dioxygenases, putative iron- and 2-oxoglutarate-binding residues, typical of such enzymes, are apparent in its primary sequence. A survey of sequence databases revealed that homologs of DES are widespread in the ascomycetes, although in most cases the homologs must participate in non-gibberellin (GA) pathways. Expression of des from the cauliflower mosaic virus 35S promoter in the plant species Solanum nigrum, Solanum dulcamara, and Nicotiana sylvestris resulted in substantial growth stimulation, with a 3-fold increase in height in S. dulcamara compared with controls. In S. nigrum, the height increase was accompanied by a 20-fold higher concentration of GA(3) in the growing shoots than in controls, although GA(1) content was reduced. Expression of des was also shown to partially restore growth in plants dwarfed by ectopic expression of a GA 2-oxidase (GA-deactivating) gene, consistent with GA(3) being protected from 2-oxidation. Thus, des has the potential to enable substantial growth increases, with practical implications, for example, in biomass production.
Collapse
MESH Headings
- Agrobacterium tumefaciens/genetics
- Agrobacterium tumefaciens/metabolism
- Caulimovirus/enzymology
- Caulimovirus/genetics
- Caulimovirus/metabolism
- Chromatography, High Pressure Liquid
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Databases, Genetic
- Enzyme Assays/methods
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Fungal Proteins/genetics
- Fungal Proteins/isolation & purification
- Fungal Proteins/metabolism
- Fusarium/enzymology
- Fusarium/genetics
- Genetic Vectors
- Gibberellins/biosynthesis
- Gibberellins/genetics
- Gibberellins/metabolism
- Ketoglutaric Acids/metabolism
- Mixed Function Oxygenases/genetics
- Mixed Function Oxygenases/isolation & purification
- Mixed Function Oxygenases/metabolism
- Molecular Sequence Data
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/metabolism
- Promoter Regions, Genetic
- Sequence Alignment
- Sequence Homology, Amino Acid
- Solanum/genetics
- Solanum/growth & development
- Solanum/metabolism
- Substrate Specificity
- Nicotiana/genetics
- Nicotiana/growth & development
- Nicotiana/metabolism
Collapse
Affiliation(s)
| | | | - Dennis A. Ward
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom (A.B., S.K., B.T., F.N.d.C.G., M.R.D.); Rothamsted Research, Harpenden AL5 2JQ, United Kingdom (D.A.W., F.G., S.G.T., S.J.P., E.C., A.L.P., P.H.); and Institüt für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, D–48153, Muenster, Germany (B.T.)
| | - Stephen G. Thomas
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom (A.B., S.K., B.T., F.N.d.C.G., M.R.D.); Rothamsted Research, Harpenden AL5 2JQ, United Kingdom (D.A.W., F.G., S.G.T., S.J.P., E.C., A.L.P., P.H.); and Institüt für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, D–48153, Muenster, Germany (B.T.)
| | - Fan Gong
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom (A.B., S.K., B.T., F.N.d.C.G., M.R.D.); Rothamsted Research, Harpenden AL5 2JQ, United Kingdom (D.A.W., F.G., S.G.T., S.J.P., E.C., A.L.P., P.H.); and Institüt für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, D–48153, Muenster, Germany (B.T.)
| | - Stephen J. Powers
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom (A.B., S.K., B.T., F.N.d.C.G., M.R.D.); Rothamsted Research, Harpenden AL5 2JQ, United Kingdom (D.A.W., F.G., S.G.T., S.J.P., E.C., A.L.P., P.H.); and Institüt für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, D–48153, Muenster, Germany (B.T.)
| | - Esther Carrera
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom (A.B., S.K., B.T., F.N.d.C.G., M.R.D.); Rothamsted Research, Harpenden AL5 2JQ, United Kingdom (D.A.W., F.G., S.G.T., S.J.P., E.C., A.L.P., P.H.); and Institüt für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, D–48153, Muenster, Germany (B.T.)
| | - Benjamin Taylor
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom (A.B., S.K., B.T., F.N.d.C.G., M.R.D.); Rothamsted Research, Harpenden AL5 2JQ, United Kingdom (D.A.W., F.G., S.G.T., S.J.P., E.C., A.L.P., P.H.); and Institüt für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, D–48153, Muenster, Germany (B.T.)
| | - Francisco Nuñez de Caceres Gonzalez
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom (A.B., S.K., B.T., F.N.d.C.G., M.R.D.); Rothamsted Research, Harpenden AL5 2JQ, United Kingdom (D.A.W., F.G., S.G.T., S.J.P., E.C., A.L.P., P.H.); and Institüt für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, D–48153, Muenster, Germany (B.T.)
| | - Bettina Tudzynski
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom (A.B., S.K., B.T., F.N.d.C.G., M.R.D.); Rothamsted Research, Harpenden AL5 2JQ, United Kingdom (D.A.W., F.G., S.G.T., S.J.P., E.C., A.L.P., P.H.); and Institüt für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, D–48153, Muenster, Germany (B.T.)
| | - Andrew L. Phillips
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom (A.B., S.K., B.T., F.N.d.C.G., M.R.D.); Rothamsted Research, Harpenden AL5 2JQ, United Kingdom (D.A.W., F.G., S.G.T., S.J.P., E.C., A.L.P., P.H.); and Institüt für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, D–48153, Muenster, Germany (B.T.)
| | - Michael R. Davey
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom (A.B., S.K., B.T., F.N.d.C.G., M.R.D.); Rothamsted Research, Harpenden AL5 2JQ, United Kingdom (D.A.W., F.G., S.G.T., S.J.P., E.C., A.L.P., P.H.); and Institüt für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, D–48153, Muenster, Germany (B.T.)
| | - Peter Hedden
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom (A.B., S.K., B.T., F.N.d.C.G., M.R.D.); Rothamsted Research, Harpenden AL5 2JQ, United Kingdom (D.A.W., F.G., S.G.T., S.J.P., E.C., A.L.P., P.H.); and Institüt für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, D–48153, Muenster, Germany (B.T.)
| |
Collapse
|
5
|
Abstract
The GAs (gibberellins) comprise a large group of diterpenoid carboxylic acids that are ubiquitous in higher plants, in which certain members function as endogenous growth regulators, promoting organ expansion and developmental changes. These compounds are also produced by some species of lower plants, fungi and bacteria, although, in contrast to higher plants, the function of GAs in these organisms has only recently been investigated and is still unclear. In higher plants, GAs are synthesized by the action of terpene cyclases, cytochrome P450 mono-oxygenases and 2-oxoglutarate-dependent dioxygenases localized, respectively, in plastids, the endomembrane system and the cytosol. The concentration of biologically active GAs at their sites of action is tightly regulated and is moderated by numerous developmental and environmental cues. Recent research has focused on regulatory mechanisms, acting primarily on expression of the genes that encode the dioxygenases involved in biosynthesis and deactivation. The present review discusses the current state of knowledge on GA metabolism with particular emphasis on regulation, including the complex mechanisms for the maintenance of GA homoeostasis.
Collapse
|
6
|
Ward DA, MacMillan J, Gong F, Phillips AL, Hedden P. Gibberellin 3-oxidases in developing embryos of the southern wild cucumber, Marah macrocarpus. PHYTOCHEMISTRY 2010; 71:2010-8. [PMID: 20965527 DOI: 10.1016/j.phytochem.2010.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 09/22/2010] [Accepted: 09/23/2010] [Indexed: 05/06/2023]
Abstract
Immature seeds of the southern wild cucumber, Marah macrocarpus, are a rich source of gibberellins (GAs) and were used in some of the earliest experiments on GA biosynthesis. The main biologically active GAs in developing embryos and endosperm of M. macrocarpus are GA(4) and GA(7), which have been shown previously to be formed from GA(9) in separate pathways, GA(4) being formed directly by 3β-hydroxylation, while GA(7) is produced in two steps via 2,3-didehydroGA(9). In order to identify the enzymes responsible for these conversions, three cDNA clones encoding functionally different GA 3-oxidases, MmGA3ox1, -2 and -3, were obtained from young immature M. macrocarpus embryos. Their biochemical functions were determined by expression of the cDNAs in Escherichia coli and incubation of cell lysates with (14)C-labelled substrates. MmGA3ox1 and MmGA3ox3 converted GA(9) to GA(4) as sole product, while MmGA3ox2 produced several products, including GA(4), 2,3-didehydroGA(9), 2,3-epoxyGA(9), GA(20) and GA(5), these last two products requiring 13-hydroxylation of GA(9) and 2,3-didehydroGA(9), respectively. MmGA3ox1 converted 2,3-didehydroGA(9) to GA(7), while MmGA3ox3 converted this substrate to the 2,3-epoxide, and MmGA3ox2 also formed the epoxide, but also GA(5.) Thus, formation of GA(7) requires the sequential activities of MmGA3ox2 and MmGA3ox1, while MmGA3ox3 is not involved in GA(7) production. The enzymes catalysed similar reactions when incubated with 13-hydroxylated GAs, although with reduced efficiencies. The 13-hydroxylase activity of MmGA3ox2 may be responsible for the production of GA(1) and GA(3), which are present at low levels in developing M. macrocarpus seeds.
Collapse
Affiliation(s)
- Dennis A Ward
- Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom
| | | | | | | | | |
Collapse
|
7
|
Appleford NEJ, Evans DJ, Lenton JR, Gaskin P, Croker SJ, Devos KM, Phillips AL, Hedden P. Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat. PLANTA 2006; 223:568-82. [PMID: 16160850 DOI: 10.1007/s00425-005-0104-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 07/29/2005] [Indexed: 05/04/2023]
Abstract
The enzymes gibberellin (GA) 20-oxidase and 3-oxidase are major sites of regulation in GA biosynthesis. We have characterised one member of each of the gene families encoding these enzymes that are highly expressed in elongating stems and in developing and germinating grains of wheat and are therefore likely to have prominent developmental roles in these tissues. We mapped the three homoeologues of the GA 20-oxidase gene TaGA20ox1 to chromosomes 5BL, 5DL and 4AL. TaGA20ox1 is expressed mainly in the nodes and ears of the elongating stem, and also in developing and germinating embryos. Expression in the nodes, ears and germinating embryos is predominantly from the A and D genomes. Each homoeologous cDNA encodes a functional enzyme that catalyses the multi-step conversions of GA12-GA9, and GA53-GA20. Time course and enzyme kinetic studies indicate that the initial oxidation steps from GA12 and GA53 to the free alcohol forms of GA15 and GA44, respectively, occur rapidly but that subsequent steps occur more slowly. The intermediate GA19 has an especially low affinity for the enzyme, consistent with its accumulation in wheat tissues. The three homoeologous cDNAs for the 3-oxidase gene TaGA3ox2 encode functional enzymes, one of which was shown to possess low levels of 2beta-hydroxylase, 2,3-desaturase, 2,3-epoxidase and even 13-hydroxylase activities in addition to 3beta-hydroxylase activity. In contrast to TaGA20ox1, TaGA3ox2 is expressed in internodes, as well as nodes and the ear of the elongating stem. It is also highly expressed in developing and germinated embryos.
Collapse
|
8
|
Tudzynski B, Mihlan M, Rojas MC, Linnemannstons P, Gaskin P, Hedden P. Characterization of the final two genes of the gibberellin biosynthesis gene cluster of Gibberella fujikuroi: des and P450-3 encode GA4 desaturase and the 13-hydroxylase, respectively. J Biol Chem 2003; 278:28635-43. [PMID: 12750377 DOI: 10.1074/jbc.m301927200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, six genes of the gibberellin (GA) biosynthesis gene cluster in Gibberella fujikuroi were cloned and the functions of five of these genes were determined. Here we describe the function of the sixth gene, P450-3, and the cloning and functional analysis of a seventh gene, orf3, located at the left border of the gene cluster. We have thereby defined the complete GA biosynthesis gene cluster in this fungus. The predicted amino acid sequence of orf3 revealed no close homology to known proteins. High performance liquid chromatography and gas chromatography-mass spectrometry analyses of the culture fluid of knock-out mutants identified GA1 and GA4, rather than GA3 and GA7, as the major C19-GA products, suggesting that orf3 encodes the GA4 1,2-desaturase. This was confirmed by transformation of the SG139 mutant, which lacks the GA biosynthesis gene cluster, with the desaturase gene renamed des. The transformants converted GA4 to GA7, and also metabolized GA9 (3-deoxyGA4) to GA120 (1,2-didehydroGA9), but the 2alpha-hydroxylated compound GA40 was the major product in this case. We demonstrate also by gene disruption that P450-3, one of the four cytochrome P450 monooxygenase genes in the GA gene cluster, encodes the 13-hydroxylase, which catalyzes the conversion of GA7 to GA3, in the last step of the pathway. This enzyme also catalyzes the 13-hydroxylation of GA4 to GA1. Disruption of the des gene in an UV-induced P450-3 mutant produced a double mutant lacking both desaturase and 13-hydroxylase activities that accumulated high amounts of the commercially important GA4. The des and P450-3 genes differ in their regulation by nitrogen metabolite repression. In common with the other five GA biosynthesis genes, expression of the desaturase gene is repressed by high amounts of nitrogen in the culture medium, whereas P450-3 is the only gene in the cluster not repressed by nitrogen.
Collapse
Affiliation(s)
- Bettina Tudzynski
- Westfälische Wilhelms-Universität Münster, Institut für Botanik, Schlobetagarten 3, D-48149 Münster, Germany.
| | | | | | | | | | | |
Collapse
|
9
|
Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Matsuoka M, Kobayashi M. Cloning and functional analysis of two gibberellin 3 beta -hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci U S A 2001; 98:8909-14. [PMID: 11438692 PMCID: PMC37534 DOI: 10.1073/pnas.141239398] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have cloned two gibberellin (GA) 3 beta-hydroxylase genes, OsGA3ox1 and OsGA3ox2, from rice by screening a genomic library with a DNA fragment obtained by PCR using degenerate primers. We have used full-scan GC-MS and Kovats retention indices to show function for the two encoded recombinant fusion proteins. Both proteins show 3 beta-hydroxylase activity for the steps GA(20) to GA(1), GA(5) to GA(3), GA(44) to GA(38), and GA(9) to GA(4). In addition, indirect evidence suggests that the OsGA3ox1 protein also has 2,3-desaturase activity, which catalyzes the steps GA(9) to 2,3-dehydro-GA(9) and GA(20) to GA(5) (2,3-dehydro GA(20)), and 2 beta-hydroxylase activity, which catalyzes the steps GA(1) to GA(8) and GA(4) to GA(34). Molecular and linkage analysis maps the OsGA3ox1 gene to the distal end of the short arm of chromosome 5; the OsGA3ox2 gene maps to the distal end of the short arm of chromosome 1 that corresponds to the D18 locus. The association of the OsGA3ox2 gene with the d18 locus is confirmed by sequence and complementation analysis of three d18 alleles. Complementation of the d18-AD allele with the OxGA3ox2 gene results in transgenic plants with a normal phenotype. Although both genes show transient expression, the highest level for OsGA3ox1 is from unopened flower. The highest level for OsGA3ox2 is from elongating leaves.
Collapse
Affiliation(s)
- H Itoh
- Bioscience Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Nakayama M, Koshioka M, Matsui H, Ohara H, Mander LN, Leitch SK, Twitchin B, Kraft-Klaunzer P, Pharis RP, Yokota T. Endogenous gibberellins in immature seeds of Prunus persica L.: identification of GA(118), GA(119), GA(120), GA(121), GA(122) and GA(126). PHYTOCHEMISTRY 2001; 57:749-758. [PMID: 11397444 DOI: 10.1016/s0031-9422(01)00154-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The endogenous gibberellins in immature seeds of Prunus persica were analyzed by gas chromatography-mass spectrometry. Eleven known gibberellins, GA(3), GA(9), GA(17), GA(19), GA(30), GA(44), GA(61), GA(63), GA(87), GA(95) and GA(97) were identified. Additionally, several hitherto unknown gibberellins were detected and their putative structures were verified by synthesis of the authentic gibberellins. These gibberellins were then assigned trivial numbers, e.g. 1alpha-hydroxy GA(20) (GA(118)), 1alpha-hydroxy GA(9) (GA(119)), 1,2-didehydro GA(9) (GA(120)), 1,2-didehydro GA(70) (GA(121)), 1,2-didehydro GA(69) (GA(122)) and 1,2-didehydro GA(77) (GA(126)). GA(118) and GA(119) were the first 1alpha-hydroxy gibberellins identified from higher plants. The above profile of 1,2-didehydro gibberellins suggests that 1,2-dehydrogenation might occur prior to 3beta-hydroxylation in biosynthesis of GA(3), GA(30) and GA(87) in immature seeds of P. persica.
Collapse
Affiliation(s)
- M Nakayama
- Department of Genetics and Physiology, National Institute of Floricultural Science, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8519, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hedden P, Phillips AL. Gibberellin metabolism: new insights revealed by the genes. TRENDS IN PLANT SCIENCE 2000; 5:523-30. [PMID: 11120474 DOI: 10.1016/s1360-1385(00)01790-8] [Citation(s) in RCA: 514] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The identification of most of the genes involved in the metabolic pathways for gibberellin hormones has helped us to understand these pathways and their regulation. Many of these enzymes are multifunctional and therefore fewer enzymes than might be expected are required to synthesize the various gibberellin structures. However, several of the enzymes are encoded by multiple genes that are regulated differently, adding unexpected genetic complexity. Several endogenous and environmental factors modify the expression of gibberellin biosynthesis genes, including developmental stage, hormonal status and light. A future challenge will be to dissect the complex, interacting pathways that mediate the regulation of gibberellin metabolism.
Collapse
Affiliation(s)
- P Hedden
- Crop Production and Improvement Dept, IACR Long Ashton Research Station, University of Bristol Dept of Agricultural Sciences, Long Ashton, Bristol, UK BS41 9AF.
| | | |
Collapse
|
12
|
Davis G, Kobayashi M, Phinney BO, Lange T, Croker SJ, Gaskin P, MacMillan J. Gibberellin Biosynthesis in Maize. Metabolic Studies with GA(15), GA(24), GA(25), GA(7), and 2,3-Dehydro-GA(9). PLANT PHYSIOLOGY 1999; 121:1037-1045. [PMID: 10557253 PMCID: PMC59468 DOI: 10.1104/pp.121.3.1037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
[17-(14)C]-Labeled GA(15), GA(24), GA(25), GA(7), and 2,3-dehydro-GA(9) were separately injected into normal, dwarf-1 (d1), and dwarf-5 (d5) seedlings of maize (Zea mays L.). Purified radioactive metabolites from the plant tissues were identified by full-scan gas chromatography-mass spectrometry and Kovats retention index data. The metabolites from GA(15) were GA(44), GA(19), GA(20), GA(113), and GA(15)-15,16-ene (artifact?). GA(24) was metabolized to GA(19), GA(20), and GA(17). The metabolites from GA(25) were GA(17), GA(25) 16alpha,17-H(2)-17-OH, and HO-GA(25) (hydroxyl position not determined). GA(7) was metabolized to GA(30), GA(3), isoGA(3) (artifact?), and trace amounts of GA(7)-diene-diacid (artifact?). 2,3-Dehydro-GA(9) was metabolized to GA(5), GA(7) (trace amounts), 2,3-dehydro-GA(10) (artifact?), GA(31), and GA(62). Our results provide additional in vivo evidence of a metabolic grid in maize (i.e. pathway convergence). The grid connects members of a putative, non-early 3,13-hydroxylation branch pathway to the corresponding members of the previously documented early 13-hydroxylation branch pathway. The inability to detect the sequence GA(12) --> GA(15) --> GA(24) --> GA(9) indicates that the non-early 3,13-hydroxylation pathway probably plays a minor role in the origin of bioactive gibberellins in maize.
Collapse
Affiliation(s)
- G Davis
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, California 90095-1606
| | | | | | | | | | | | | |
Collapse
|
13
|
Hedden P. Regulation of gibberellin biosynthesis. BIOCHEMISTRY AND MOLECULAR BIOLOGY OF PLANT HORMONES 1999. [DOI: 10.1016/s0167-7306(08)60487-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Williams J, Phillips AL, Gaskin P, Hedden P. Function and substrate specificity of the gibberellin 3beta-hydroxylase encoded by the Arabidopsis GA4 gene. PLANT PHYSIOLOGY 1998; 117:559-63. [PMID: 9625708 PMCID: PMC34975 DOI: 10.1104/pp.117.2.559] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/1997] [Accepted: 03/11/1998] [Indexed: 05/18/2023]
Abstract
cDNA corresponding to the GA4 gene of Arabidopsis thaliana L. (Heynh. ) was expressed in Escherichia coli, from which cell lysates converted [14C]gibberellin (GA)9 and [14C]GA20 to radiolabeled GA4 and GA1, respectively, thereby confirming that GA4 encodes a GA 3beta-hydroxylase. GA9 was the preferred substrate, with a Michaelis value of 1 microm compared with 15 microm for GA20. Hydroxylation of these GAs was regiospecific, with no indication of 2beta-hydroxylation or 2,3-desaturation. The capacity of the recombinant enzyme to hydroxylate a range of other GA substrates was investigated. In general, the preferred substrates contained a polar bridge between C-4 and C-10, and 13-deoxy GAs were preferred to their 13-hydroxylated analogs. Therefore, no activity was detected using GA12-aldehyde, GA12, GA19, GA25, GA53, or GA44 as the open lactone (20-hydroxy-GA53), whereas GA15, GA24, and GA44 were hydroxylated to GA37, GA36, and GA38, respectively. The open lactone of GA15 (20-hydroxy-GA12) was hydroxylated but less efficiently than GA15. In contrast to the free acid, GA25 19,20-anhydride was 3beta-hydroxylated to give GA13. 2,3-Didehydro-GA9 and GA5 were converted by recombinant GA4 to the corresponding epoxides 2, 3-oxido-GA9 and GA6.
Collapse
Affiliation(s)
- J Williams
- IACR-Long Ashton Research Station, Department of Agricultural Sciences, University of Bristol, Long Ashton, Bristol BS41 9AF, United Kingdom
| | | | | | | |
Collapse
|
15
|
Abstract
The recent impressive progress in research on gibberellin (GA) biosynthesis has resulted primarily from cloning of genes encoding biosynthetic enzymes and studies with GA-deficient and GA-insensitive mutants. Highlights include the cloning of ent-copalyl diphosphate synthase and ent-kaurene synthase (formally ent-kaurene synthases A and B) and the demonstration that the former is targeted to the plastid; the finding that the Dwarf-3 gene of maize encodes a cytochrome P450, although of unknown function; and the cloning of GA 20-oxidase and 3beta-hydroxylase genes. The availability of cDNA and genomic clones for these enzymes is enabling the mechanisms by which GA concentrations are regulated by environmental and endogenous factors to be studied at the molecular level. For example, it has been shown that transcript levels for GA 20-oxidase and 3beta-hydroxylase are subject to feedback regulation by GA action and, in the case of the GA 20-oxidase, are regulated by light. Also discussed is other new information, particularly from mutants, that has added to our understanding of the biosynthetic pathway, the enzymes, and their regulation and tissue localization.
Collapse
Affiliation(s)
- Peter Hedden
- IACR-Long Ashton Research Station, Department of Agricultural Science, University of Bristol, Bristol, BS18 9AF, United Kingdom, Frontier Research Program, The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako-shi, Saitama 351-01, Japan
| | | |
Collapse
|
16
|
MacMillan J, Ward DA, Phillips AL, Sánchez-Beltrán MJ, Gaskin P, Lange T, Hedden P. Gibberellin biosynthesis from gibberellin A12-aldehyde in endosperm and embryos of Marah macrocarpus. PLANT PHYSIOLOGY 1997; 113:1369-77. [PMID: 9112781 PMCID: PMC158260 DOI: 10.1104/pp.113.4.1369] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Soluble enzyme preparations from embryos and endosperm of Marah macrocarpus (previously Echinocystis macrocarpa) were incubated with [14C4]gibberellin(GA)12-aldehyde, [14C4]GA12, [14C1] GA9, 2,3-didehydro[14C1]GA9, [14C1]GA20, and [17-13C, 3H]GA5. Embryo preparations converted GA12-aldehyde, GA12, and GA9 to GA4 and GA7; 2,3-didehydroGA9 to GA7; GA5 to GA3; and GA20 (incompletely) to GA1 and GA60, but not to GA3. Endosperm preparations converted GA12-aldehyde and GA12 to GA15, GA24, and GA9, but, unlike embryo preparations, not to GA4 or GA7. However, GA4 and GA7 were formed from GA9 and GA7 was formed from 2,3-didehydroGA9. Metabolism of GA5 to GA3 and GA20 to GA1 was low. 2,3-DidehydroGA9 accumulated when GA9 was incubated with a desalted endosperm preparation. A cDNA clone (M3-8), selected from an embryo-derived cDNA library using a DNA fragment generated by reverse transcriptase polymerase chain reaction, was expressed in Escherichia coli. The fusion protein converted GA12 to GA9 (major) and GA25 (minor); GA53 was metabolized less effectively and only to GA44. Thus, the M3-8 protein is functionally similar to GA 20-oxidases from Arabidopsis thaliana, Spinacia oleracea, and Pisum sativum, but different from that from Cucurbita maxima seeds, to which its amino acid sequence is most closely related. mRNA hybridizing to M3-8 accumulated in embryos and endosperm of M. macrocarpus, but was absent in vegetative tissues.
Collapse
Affiliation(s)
- J MacMillan
- Department of Agricultural Sciences, University of Bristol, Long Ashton, Bristol, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Affiliation(s)
- P M Dewick
- Department of Pharmaceutical Sciences, University of Nottingham, UK
| |
Collapse
|
19
|
Phillips AL, Ward DA, Uknes S, Appleford NE, Lange T, Huttly AK, Gaskin P, Graebe JE, Hedden P. Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. PLANT PHYSIOLOGY 1995; 108:1049-57. [PMID: 7630935 PMCID: PMC157456 DOI: 10.1104/pp.108.3.1049] [Citation(s) in RCA: 272] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Using degenerate oligonucleotide primers based on a pumpkin (Cucurbita maxima) gibberellin (GA) 20-oxidase sequence, six different fragments of dioxygenase genes were amplified by polymerase chain reaction from arabidopsis thaliana genomic DNA. One of these was used to isolate two different full-length cDNA clones, At2301 and At2353, from shoots of the GA-deficient Arabidopsis mutant ga1-2. A third, related clone, YAP169, was identified in the Database of Expressed Sequence Tags. The cDNA clones were expressed in Escherichia coli as fusion proteins, each of which oxidized GA12 at C-20 to GA15, GA24, and the C19 compound GA9, a precursor of bioactive GAs; the C20 tricarboxylic acid compound GA25 was formed as a minor product. The expression products also oxidized the 13-hydroxylated substrate GA53, but less effectively than GA12. The three cDNAs hybridized to mRNA species with tissue-specific patterns of accumulation, with At2301 being expressed in stems and inflorescences, At2353 in inflorescences and developing siliques, and YAP169 in siliques only. In the floral shoots of the ga1-2 mutant, transcript levels corresponding to each cDNA decreased dramatically after GA3 application, suggesting that GA biosynthesis may be controlled, at least in part, through down-regulation of the expression of the 20-oxidase genes.
Collapse
Affiliation(s)
- A L Phillips
- IACR-Long Ashton Research Station, Department of Agricultural Sciences, University of Bristol, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Smith VA, Knatt CJ, Gaskin P, Reid JB. The Distribution of Gibberellins in Vegetative Tissues of Pisum sativum L. : I. Biological and Biochemical Consequences of the le Mutation. PLANT PHYSIOLOGY 1992; 99:368-71. [PMID: 16668892 PMCID: PMC1080469 DOI: 10.1104/pp.99.2.368] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The concentrations of endogenous gibberellin (GA) 1, 5, 8, 19, 20, and 29 in the component tissues of maturing tall (Le) and dwarf (le) pea (Pisum sativum) plants have been determined. The following conclusions were drawn from the data obtained: (a) GA(20) and its metabolites accumulate only in the growing regions of Le and le plants; (b) the le mutation is biochemically expressed in all immature tissues of the dwarf plants; (c) the quantitative composition of the GA metabolites in the various immature tissues is variable; (d) the total GA concentration in apical buds, unexpanded leaves, and tendrils is considerably higher than in GA(1)-responsive stem tissue; and (e) there is very little GA accumulation of the inactive 2beta-hydroxylated GAs (GA(8) and GA(29)) in either the mature vegetative tissues or the roots of pea plants.
Collapse
Affiliation(s)
- V A Smith
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | | | | | | |
Collapse
|
21
|
Talon M, Zeevaart JA, Gage DA. Identification of Gibberellins in Spinach and Effects of Light and Darkness on their Levels. PLANT PHYSIOLOGY 1991; 97:1521-6. [PMID: 16668579 PMCID: PMC1081195 DOI: 10.1104/pp.97.4.1521] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The endogenous gibberellin (GA) content of spinach (Spinacia oleracea) was reinvestigated by combined gas chromatography-mass spectrometry analysis. The 13-hydroxy GAs: GA(53), GA(44), GA(19), GA(17), GA(20), GA(5), GA(1), GA(29), and GA(8); the non-3, 13-hydroxy GAs: GA(12), GA(15), GA(9), and GA(51); and the 3beta-hydroxy GAs: GA(4), GA(7), and GA(34), were identified in spinach extracts by comparing full-scan mass spectra and Kovats retention indices with those of reference GAs. In addition, spinach plants contained GA(7)-isolactone, 16,17-dihydro-17-hydroxy-GA(53), GA(29)-catabolite, 3-epi-GA(1), and 10 uncharacterized GAs with mass spectra indicative of mono- and dihydroxy-GA(12), monohydroxy-GA(25), dihydroxy-GA(24), and dihydroxy-GA(g). The effect of light-dark conditions on the GA levels of the 13-hydroxylation pathway was studied by using labeled internal standards in selected ion monitoring mode. In short day, the GA levels were higher at the end of the light period than at the end of the dark period. Levels of GAs at the end of each short day were relatively constant. During the first supplementary light period of long day treatment, GA(53) and GA(19) declined dramatically, GA(44) and GA(1) decreased slightly, and GA(20) increased. During the subsequent high-intensity light period, the GA(20) level decreased and the levels of GA(53), GA(44), GA(19), and GA(1) increased slightly. Within 7 days after the beginning of long day treatment, similar patterns for GA(53) and GA(19) occurred. Furthermore, when these plants were transferred to darkness, an increase in the levels of GA(53) and GA(19) was observed. These results are compatible with the idea that in spinach, the flow through the GA biosynthetic pathway is much enhanced during the high-intensity light period, although GA turnover occurs also during the supplementary period of long day, both effects being responsible for the increase of GA(20) and GA(1) in long day.
Collapse
Affiliation(s)
- M Talon
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | | | | |
Collapse
|
22
|
Fujioka S, Yamane H, Spray CR, Phinney BO, Gaskin P, Macmillan J, Takahashi N. Gibberellin A(3) Is Biosynthesized from Gibberellin A(20) via Gibberellin A(5) in Shoots of Zea mays L. PLANT PHYSIOLOGY 1990; 94:127-31. [PMID: 16667678 PMCID: PMC1077200 DOI: 10.1104/pp.94.1.127] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
[17-(13)C,(3)H]-Labeled gibberellin A(20) (GA(20)), GA(5), and GA(1) were fed to homozygous normal (+/+), heterozygous dominant dwarf (D8/+), and homozygous dominant dwarf (D8/D8) seedlings of Zea mays L. (maize). (13)C-Labeled GA(29), GA(8), GA(5), GA(1), and 3-epi-GA(1), as well as unmetabolized [(13)C]GA(20), were identified by gas chromatography-selected ion monitoring (GC-SIM) from feeds of [17-(13)C, (3)H]GA(20) to all three genotypes. (13)C-Labeled GA(8) and 3-epi-G(1), as well as unmetabolized [(13)C]GA(1), were identified by GC-SIM from feeds of [17-(13)C, (3)H]GA(1) to all three genotypes. From feeds of [17-(13)C, (3)H]GA(5), (13)C-labeled GA(3) and the GA(3)-isolactone, as well as unmetabolized [(13)C]GA(5), were identified by GC-SIM from +/+ and D8/D8, and by full scan GC-MS from D8/+. No evidence was found for the metabolism of [17-(13)C, (3)H]GA(5) to [(13)C]GA(1), either by full scan GC-mass spectrometry or by GC-SIM. The results demonstrate the presence in maize seedlings of three separate branches from GA(20), as follows: (a) GA(20) --> GA(1) --> GA(8); (b) GA(20) --> GA(5) --> GA(3); and (c) GA(20) --> GA(29). The in vivo biogenesis of GA(3) from GA(5), as well as the origin of GA(5) from GA(20), are conclusively established for the first time in a higher plant (maize shoots).
Collapse
Affiliation(s)
- S Fujioka
- Department of Biology, University of California, Los Angeles, Los Angeles, California 90024
| | | | | | | | | | | | | |
Collapse
|