1
|
Feitosa-Junior OR, Lubbe A, Kosina SM, Martins-Junior J, Barbosa D, Baccari C, Zaini PA, Bowen BP, Northen TR, Lindow SE, da Silva AM. The Exometabolome of Xylella fastidiosa in Contact with Paraburkholderia phytofirmans Supernatant Reveals Changes in Nicotinamide, Amino Acids, Biotin, and Plant Hormones. Metabolites 2024; 14:82. [PMID: 38392974 PMCID: PMC10890622 DOI: 10.3390/metabo14020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/25/2024] Open
Abstract
Microbial competition within plant tissues affects invading pathogens' fitness. Metabolomics is a great tool for studying their biochemical interactions by identifying accumulated metabolites. Xylella fastidiosa, a Gram-negative bacterium causing Pierce's disease (PD) in grapevines, secretes various virulence factors including cell wall-degrading enzymes, adhesion proteins, and quorum-sensing molecules. These factors, along with outer membrane vesicles, contribute to its pathogenicity. Previous studies demonstrated that co-inoculating X. fastidiosa with the Paraburkholderia phytofirmans strain PsJN suppressed PD symptoms. Here, we further investigated the interaction between the phytopathogen and the endophyte by analyzing the exometabolome of wild-type X. fastidiosa and a diffusible signaling factor (DSF) mutant lacking quorum sensing, cultivated with 20% P. phytofirmans spent media. Liquid chromatography-mass spectrometry (LC-MS) and the Method for Metabolite Annotation and Gene Integration (MAGI) were used to detect and map metabolites to genomes, revealing a total of 121 metabolites, of which 25 were further investigated. These metabolites potentially relate to host adaptation, virulence, and pathogenicity. Notably, this study presents the first comprehensive profile of X. fastidiosa in the presence of a P. phytofirmans spent media. The results highlight that P. phytofirmans and the absence of functional quorum sensing affect the ratios of glutamine to glutamate (Gln:Glu) in X. fastidiosa. Additionally, two compounds with plant metabolism and growth properties, 2-aminoisobutyric acid and gibberellic acid, were downregulated when X. fastidiosa interacted with P. phytofirmans. These findings suggest that P. phytofirmans-mediated disease suppression involves modulation of the exometabolome of X. fastidiosa, impacting plant immunity.
Collapse
Affiliation(s)
- Oseias R Feitosa-Junior
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
- The DOE Joint Genome Institute, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Andrea Lubbe
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Suzanne M Kosina
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Joaquim Martins-Junior
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
| | - Deibs Barbosa
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
| | - Clelia Baccari
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Paulo A Zaini
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Benjamin P Bowen
- The DOE Joint Genome Institute, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Trent R Northen
- The DOE Joint Genome Institute, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Steven E Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Aline M da Silva
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
| |
Collapse
|
2
|
Fu B, Yan Q. Exopolysaccharide is required for motility, stress tolerance, and plant colonization by the endophytic bacterium Paraburkholderia phytofirmans PsJN. Front Microbiol 2023; 14:1218653. [PMID: 37670984 PMCID: PMC10475733 DOI: 10.3389/fmicb.2023.1218653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/24/2023] [Indexed: 09/07/2023] Open
Abstract
Paraburkholderia phytofirmans PsJN is an endophytic bacterium and has been shown to promote the growth and health of many different plants. Exopolysaccharide (EPS) plays important roles in plant-bacteria interaction and tolerance to environmental stresses. However, the function of EPS in PsJN and its interaction with plants remain largely unknown. In this study, a deletion mutation of bceQ gene, encoding a putative flippase for the EPS biosynthesis, was introduced in the genome of PsJN. The ΔbceQ mutant produced a significantly lower level of EPS than the wild type strain in culture media. Compared to the wild type PsJN, the ΔbceQ mutant was more sensitive to desiccation, UV damage, salt (NaCl) and iron (FeCl3) stresses, and bacteriophage infection. More importantly, the mutation of bceQ decreased the endophytic colonization of PsJN in camelina (Camelina sativa) and pea (Camelina sativa) under plant drought stress conditions. To the best of our knowledge, this is the first report that EPS production is required for the maximal colonization of an endophytic bacterium in the plant tissues under stress conditions.
Collapse
Affiliation(s)
| | - Qing Yan
- Plant Sciences and Plant Pathology Department, Montana State University, Bozeman, MT, United States
| |
Collapse
|
3
|
Macabuhay A, Arsova B, Watt M, Nagel KA, Lenz H, Putz A, Adels S, Müller-Linow M, Kelm J, Johnson AAT, Walker R, Schaaf G, Roessner U. Plant Growth Promotion and Heat Stress Amelioration in Arabidopsis Inoculated with Paraburkholderia phytofirmans PsJN Rhizobacteria Quantified with the GrowScreen-Agar II Phenotyping Platform. PLANTS (BASEL, SWITZERLAND) 2022; 11:2927. [PMID: 36365381 PMCID: PMC9655538 DOI: 10.3390/plants11212927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
High temperatures inhibit plant growth. A proposed strategy for improving plant productivity under elevated temperatures is the use of plant growth-promoting rhizobacteria (PGPR). While the effects of PGPR on plant shoots have been extensively explored, roots-particularly their spatial and temporal dynamics-have been hard to study, due to their below-ground nature. Here, we characterized the time- and tissue-specific morphological changes in bacterized plants using a novel non-invasive high-resolution plant phenotyping and imaging platform-GrowScreen-Agar II. The platform uses custom-made agar plates, which allow air exchange to occur with the agar medium and enable the shoot to grow outside the compartment. The platform provides light protection to the roots, the exposure of it to the shoots, and the non-invasive phenotyping of both organs. Arabidopsis thaliana, co-cultivated with Paraburkholderia phytofirmans PsJN at elevated and ambient temperatures, showed increased lengths, growth rates, and numbers of roots. However, the magnitude and direction of the growth promotion varied depending on root type, timing, and temperature. The root length and distribution per depth and according to time was also influenced by bacterization and the temperature. The shoot biomass increased at the later stages under ambient temperature in the bacterized plants. The study offers insights into the timing of the tissue-specific, PsJN-induced morphological changes and should facilitate future molecular and biochemical studies on plant-microbe-environment interactions.
Collapse
Affiliation(s)
- Allene Macabuhay
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, 53115 Bonn, Germany
| | - Borjana Arsova
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Michelle Watt
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kerstin A. Nagel
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Henning Lenz
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Alexander Putz
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Sascha Adels
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Mark Müller-Linow
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Jana Kelm
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | | | - Robert Walker
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gabriel Schaaf
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, 53115 Bonn, Germany
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
4
|
Orozco-Mosqueda MDC, Fadiji AE, Babalola OO, Glick BR, Santoyo G. Rhizobiome engineering: Unveiling complex rhizosphere interactions to enhance plant growth and health. Microbiol Res 2022; 263:127137. [PMID: 35905581 DOI: 10.1016/j.micres.2022.127137] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/17/2022] [Accepted: 07/13/2022] [Indexed: 12/13/2022]
Abstract
Crop plants are affected by a series of inhibitory environmental and biotic factors that decrease their growth and production. To counteract these adverse effects, plants work together with the microorganisms that inhabit their rhizosphere, which is part of the soil influenced by root exudates. The rhizosphere is a microecosystem where a series of complex interactions takes place between the resident microorganisms (rhizobiome) and plant roots. Therefore, this study analyzes the dynamics of plant-rhizobiome communication, the role of exudates (diffusible and volatile) as a factor in stimulating a diverse rhizobiome, and the differences between rhizobiomes of domesticated crops and wild plants. The study also analyzes different strategies to decipher the rhizobiome through both classical cultivation techniques and the so-called "omics" sciences. In addition, the rhizosphere engineering concept and the two general strategies to manipulate the rhizobiome, i.e., top down and bottom up engineering have been revisited. In addition, recent studies on the effects on the indigenous rhizobiome of inoculating plants with foreign strains, the impact on the endobiome, and the collateral effects on plant crops are discussed. Finally, understanding of the complex rhizosphere interactions and the biological repercussions of rhizobiome engineering as essential steps for improving plant growth and health is proposed, including under adverse conditions.
Collapse
Affiliation(s)
| | - Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich 58030, Mexico.
| |
Collapse
|
5
|
Petrova YD, Zhao J, Webster G, Mullins AJ, Williams K, Alswat AS, Challis GL, Bailey AM, Mahenthiralingam E. Cloning and expression of Burkholderia polyyne biosynthetic gene clusters in Paraburkholderia hosts provides a strategy for biopesticide development. Microb Biotechnol 2022; 15:2547-2561. [PMID: 35829647 PMCID: PMC9518984 DOI: 10.1111/1751-7915.14106] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022] Open
Abstract
Burkholderia have potential as biocontrol agents because they encode diverse biosynthetic gene clusters (BGCs) for a range of antimicrobial metabolites. Given the opportunistic pathogenicity associated with Burkholderia species, heterologous BGC expression within non-pathogenic hosts is a strategy to construct safe biocontrol strains. We constructed a yeast-adapted Burkholderia-Escherichia shuttle vector (pMLBAD_yeast) with a yeast replication origin 2 μ and URA3 selection marker and optimised it for cloning BGCs using the in vivo recombination ability of Saccharomyces cerevisiae. Two Burkholderia polyyne BGCs, cepacin (13 kb) and caryoynencin (11 kb), were PCR-amplified as three overlapping fragments, cloned downstream of the pBAD arabinose promoter in pMLBAD_yeast and mobilised into Burkholderia and Paraburkholderia heterologous hosts. Paraburkholderia phytofirmans carrying the heterologous polyyne constructs displayed in vitro bioactivity against a variety of fungal and bacterial plant pathogens similar to the native polyyne producers. Thirteen Paraburkholderia strains with preferential growth at 30°C compared with 37°C were also identified, and four of these were amenable to genetic manipulation and heterologous expression of the caryoynencin construct. The cloning and successful heterologous expression of Burkholderia biosynthetic gene clusters within Paraburkholderia with restricted growth at 37°C opens avenues for engineering non-pathogenic biocontrol strains.
Collapse
Affiliation(s)
| | - Jinlian Zhao
- Department of Chemistry, University of Warwick, Coventry, UK
| | | | | | | | - Amal S Alswat
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Gregory L Challis
- Department of Chemistry, University of Warwick, Coventry, UK.,Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, UK.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, Australia
| | - Andy M Bailey
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
6
|
Madhaiyan M, Selvakumar G, Alex TH, Cai L, Ji L. Plant Growth Promoting Abilities of Novel Burkholderia-Related Genera and Their Interactions With Some Economically Important Tree Species. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.618305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A survey of bacterial endophytes associated with the leaves of oil palm and acacias resulted in the isolation of 19 bacterial strains belonging to the genera Paraburkholderia, Caballeronia, and Chitinasiproducens, which are now regarded as distinctively different from the parent genus Burkholderia. Most strains possessed one or more plant growth promotion (PGP) traits although nitrogenase activity was present in only a subset of the isolates. The diazotrophic Paraburkholderia tropica strain S39-2 with multiple PGP traits and the non-diazotrophic Chitinasiproducens palmae strain JS23T with a significant level of 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity were selected to investigate the influence of bacterial inoculation on some economically important tree species. Microscopic examination revealed that P. tropica S39-2 was rhizospheric as well as endophytic while C. palmae JS23T was endophytic. P. tropica strain S39-2 significantly promoted the growth of oil palm, eucalyptus, and Jatropha curcas. Interestingly, the non-diazotrophic, non-auxin producing C. palmae JS23T strain also significantly promoted the growth of oil palm and eucalyptus although it showed negligible effect on J. curcas. Our results suggest that strains belonging to the novel Burkholderia-related genera widely promote plant growth via both N-independent and N-dependent mechanisms. Our results also suggest that the induction of defense response may prevent the colonization of an endophyte in plants.
Collapse
|
7
|
Shao J, Li Y, Li Z, Xu Z, Xun W, Zhang N, Feng H, Miao Y, Shen Q, Zhang R. Participating mechanism of a major contributing gene ysnE for auxin biosynthesis in Bacillus amyloliquefaciens SQR9. J Basic Microbiol 2021; 61:569-575. [PMID: 33914927 DOI: 10.1002/jobm.202100098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/18/2021] [Indexed: 12/22/2022]
Abstract
The phytohormone indole-3-acetic acid (IAA) has been demonstrated to contribute to the plant growth-promoting effect of rhizobacteria, but the IAA biosynthesis pathway in rhizobacteria remains unclear. The ysnE gene, encoding a putative tryptophan acetyltransferase, has been demonstrated to be involved in and strongly contribute to IAA production in Bacillus, but the mechanism is unknown. In this study, to investigate how ysnE participates in IAA biosynthesis in the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens SQR9, differences in the produced IAA biosynthesis intermediates between wild-type SQR9 and ΔysnE were analyzed and compared, and the effects of different intermediate compounds on the production of IAA and the accumulation of other intermediates were also investigated. The results showed that the mutant ΔysnE produced more indole-3-lactic acid (ILA) and tryptamine (TAM) than the SQR9 wild-type strain (nearly 1.6- and 2.1-fold), while the production of tryptophol (TOL) was significantly decreased by 46%. When indole-3-pyruvic acid (IPA) served as the substrate, the concentration of ILA in the ΔysnE fermentation broth was much higher than that of the wild type, while IAA and TOL were significantly lower, and ΔysnE was lower than SQR9 in IAA and TOL with the addition of TAM. The TOL content in the ΔysnE fermentation broth was much lower than that in the wild-type SQR9 with the addition of ILA. We suggest that ysnE may be involved in the IPA and TAM pathways and play roles in indole acetaldehyde (IAAld) synthesis from IPA and TAM and in the conversion of ILA to TOL.
Collapse
Affiliation(s)
- Jiahui Shao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yucong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zunfeng Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Weibing Xun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Nan Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Haichao Feng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Youzhi Miao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Vandana UK, Rajkumari J, Singha LP, Satish L, Alavilli H, Sudheer PD, Chauhan S, Ratnala R, Satturu V, Mazumder PB, Pandey P. The Endophytic Microbiome as a Hotspot of Synergistic Interactions, with Prospects of Plant Growth Promotion. BIOLOGY 2021; 10:101. [PMID: 33535706 PMCID: PMC7912845 DOI: 10.3390/biology10020101] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022]
Abstract
The plant root is the primary site of interaction between plants and associated microorganisms and constitutes the main components of plant microbiomes that impact crop production. The endophytic bacteria in the root zone have an important role in plant growth promotion. Diverse microbial communities inhabit plant root tissues, and they directly or indirectly promote plant growth by inhibiting the growth of plant pathogens, producing various secondary metabolites. Mechanisms of plant growth promotion and response of root endophytic microorganisms for their survival and colonization in the host plants are the result of complex plant-microbe interactions. Endophytic microorganisms also assist the host to sustain different biotic and abiotic stresses. Better insights are emerging for the endophyte, such as host plant interactions due to advancements in 'omic' technologies, which facilitate the exploration of genes that are responsible for plant tissue colonization. Consequently, this is informative to envisage putative functions and metabolic processes crucial for endophytic adaptations. Detection of cell signaling molecules between host plants and identification of compounds synthesized by root endophytes are effective means for their utilization in the agriculture sector as biofertilizers. In addition, it is interesting that the endophytic microorganism colonization impacts the relative abundance of indigenous microbial communities and suppresses the deleterious microorganisms in plant tissues. Natural products released by endophytes act as biocontrol agents and inhibit pathogen growth. The symbiosis of endophytic bacteria and arbuscular mycorrhizal fungi (AMF) affects plant symbiotic signaling pathways and root colonization patterns and phytohormone synthesis. In this review, the potential of the root endophytic community, colonization, and role in the improvement of plant growth has been explained in the light of intricate plant-microbe interactions.
Collapse
Affiliation(s)
- Udaya Kumar Vandana
- Department of Biotechnology, Assam University Silchar, Assam 788011, India; (U.K.V.); (P.B.M.)
| | - Jina Rajkumari
- Department of Microbiology, Assam University Silchar, Assam 788011, India; (J.R.); (L.P.S.)
| | - L. Paikhomba Singha
- Department of Microbiology, Assam University Silchar, Assam 788011, India; (J.R.); (L.P.S.)
| | - Lakkakula Satish
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Hemasundar Alavilli
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea Molecular Medicine and Nutrition Research Institute, Korea University, Seoul 02841, Korea;
| | - Pamidimarri D.V.N. Sudheer
- Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur 493225, India; (P.D.V.N.S.); (S.C.)
| | - Sushma Chauhan
- Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur 493225, India; (P.D.V.N.S.); (S.C.)
| | - Rambabu Ratnala
- TATA Institute for Genetics and Society, Bangalore 560065, India;
| | - Vanisri Satturu
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad 500030, India;
| | - Pranab Behari Mazumder
- Department of Biotechnology, Assam University Silchar, Assam 788011, India; (U.K.V.); (P.B.M.)
| | - Piyush Pandey
- Department of Microbiology, Assam University Silchar, Assam 788011, India; (J.R.); (L.P.S.)
| |
Collapse
|
9
|
Niu H, Pang Z, Fallah N, Zhou Y, Zhang C, Hu C, Lin W, Yuan Z. Diversity of microbial communities and soil nutrients in sugarcane rhizosphere soil under water soluble fertilizer. PLoS One 2021; 16:e0245626. [PMID: 33481857 PMCID: PMC7822549 DOI: 10.1371/journal.pone.0245626] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022] Open
Abstract
The dynamics of soil microbial communities are important for plant health and productivity. Soil microbial communities respond differently to fertilization. Organic water soluble fertilizer is an effective soil improver, which can effectively improve soil nutrient status and adjust soil pH value. However, little is known about the effects of water soluble fertilizers on soil microbial community, and the combined effects on soil nutrients and sugarcane productivity. Therefore, this study sought to assess the effects of water soluble fertilizer (1,050 kg/hm2 (WS1), 1,650 kg/hm2 (WS2)) and mineral fertilizer (1,500 kg/hm2 (CK)) on the soil microbial community, soil nutrients and crop yield of sugarcane. The results showed that compared with CK, the application of water soluble fertilizers (WS1 and WS2) alleviated soil acidity, increased the OM, DOC, and AK contents in the soil, and further improved agronomic parameters and sugarcane yield. Both WS1 and WS2 treatments significantly increased the species richness of microorganisms, especially the enrichment of beneficial symbiotic bacteria such as Acidobacteria and Planctomycetes, which are more conducive to the healthy growth of plants. Furthermore, we found that soil nutrient contents were associated with soil microbial enrichment. These results indicate that water soluble fertilizer affects the enrichment of microorganisms by improving the nutrient content of the soil, thereby affecting the growth and yield of sugarcane. These findings therefore suggest that the utilization of water soluble fertilizer is an effective agriculture approach to improve soil fertility.
Collapse
Affiliation(s)
- Huan Niu
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ziqin Pang
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Province and Ministry Co-sponsored Collaborative Innovation Center of Sugar Industry, Guangxi University, Nanning, China
| | - Nyumah Fallah
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongmei Zhou
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Caifang Zhang
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chaohua Hu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiong Lin
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhaonian Yuan
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Province and Ministry Co-sponsored Collaborative Innovation Center of Sugar Industry, Guangxi University, Nanning, China
| |
Collapse
|
10
|
Laird TS, Flores N, Leveau JHJ. Bacterial catabolism of indole-3-acetic acid. Appl Microbiol Biotechnol 2020; 104:9535-9550. [PMID: 33037916 DOI: 10.1007/s00253-020-10938-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 12/18/2022]
Abstract
Indole-3-acetic acid (IAA) is a molecule with the chemical formula C10H9NO2, with a demonstrated presence in various environments and organisms, and with a biological function in several of these organisms, most notably in plants where it acts as a growth hormone. The existence of microorganisms with the ability to catabolize or assimilate IAA has long been recognized. To date, two sets of gene clusters underlying this property in bacteria have been identified and characterized: one (iac) is responsible for the aerobic degradation of IAA into catechol, and another (iaa) for the anaerobic conversion of IAA to 2-aminobenzoyl-CoA. Here, we summarize the literature on the products, reactions, and pathways that these gene clusters encode. We explore two hypotheses about the benefit that iac/iaa gene clusters confer upon their bacterial hosts: (1) exploitation of IAA as a source of carbon, nitrogen, and energy; and (2) interference with IAA-dependent processes and functions in other organisms, including plants. The evidence for both hypotheses will be reviewed for iac/iaa-carrying model strains of Pseudomonas putida, Enterobacter soli, Acinetobacter baumannii, Paraburkholderia phytofirmans, Caballeronia glathei, Aromatoleum evansii, and Aromatoleum aromaticum, more specifically in the context of access to IAA in the environments from which these bacteria were originally isolated, which include not only plants, but also soils and sediment, as well as patients in hospital environments. We end the mini-review with an outlook for iac/iaa-inspired research that addresses current gaps in knowledge, biotechnological applications of iac/iaa-encoded enzymology, and the use of IAA-destroying bacteria to treat pathologies related to IAA excess in plants and humans. KEY POINTS: • The iac/iaa gene clusters encode bacterial catabolism of the plant growth hormone IAA. • Plants are not the only environment where IAA or IAA-degrading bacteria can be found. • The iac/iaa genes allow growth at the expense of IAA; other benefits remain unknown.
Collapse
Affiliation(s)
- Tyler S Laird
- Department of Plant Pathology, University of California Davis, Davis, CA, 95616, USA
| | - Neptali Flores
- Department of Plant Pathology, University of California Davis, Davis, CA, 95616, USA
| | - Johan H J Leveau
- Department of Plant Pathology, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
11
|
Herpell JB, Schindler F, Bejtović M, Fragner L, Diallo B, Bellaire A, Kublik S, Foesel BU, Gschwendtner S, Kerou M, Schloter M, Weckwerth W. The Potato Yam Phyllosphere Ectosymbiont Paraburkholderia sp. Msb3 Is a Potent Growth Promotor in Tomato. Front Microbiol 2020; 11:581. [PMID: 32373084 PMCID: PMC7186400 DOI: 10.3389/fmicb.2020.00581] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/17/2020] [Indexed: 01/07/2023] Open
Abstract
The genus Paraburkholderia includes a variety of species with promising features for sustainable biotechnological solutions in agriculture through increasing crop productivity. Here, we present a novel Paraburkholderia isolate, a permanent and predominant member of the Dioscoreae bulbifera (yam family, Dioscoreaceae) phyllosphere, making up to 25% of the microbial community on leaf acumens. The 8.5 Mbp genome of isolate Msb3 encodes an unprecedented combination of features mediating a beneficial plant-associated lifestyle, including biological nitrogen fixation (BNF), plant hormone regulation, detoxification of various xenobiotics, degradation of aromatic compounds and multiple protein secretion systems including both T3SS and T6SS. The isolate exhibits significant growth promotion when applied to agriculturally important plants such as tomato, by increasing the total dry biomass by up to 40%. The open question about the “beneficial” nature of this strain led us to investigate ecological and generic boundaries in Burkholderia sensu lato. In a refined phylogeny including 279 Burkholderia sensu lato isolates strain Msb3 clusters within Clade I Paraburkholderia, which also includes few opportunistic strains that can potentially act as pathogens, as revealed by our ecological meta-data analysis. In fact, we demonstrate that all genera originating from the “plant beneficial and environmental” (PBE) Burkholderia species cluster include opportunists. This indicates that further functional examinations are needed before safe application of these strains in sustainable agricultural settings can be assured.
Collapse
Affiliation(s)
- Johannes B Herpell
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Florian Schindler
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Mersad Bejtović
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Lena Fragner
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Bocar Diallo
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Anke Bellaire
- Division of Structural and Functional Botany, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Bärbel U Foesel
- Research Unit for Comparative Microbiome Analysis, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Silvia Gschwendtner
- Research Unit for Comparative Microbiome Analysis, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Melina Kerou
- Archaea Biology and Ecogenomics Division, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Naveed M, Mustafa A, Qura-Tul-Ain Azhar S, Kamran M, Zahir ZA, Núñez-Delgado A. Burkholderia phytofirmans PsJN and tree twigs derived biochar together retrieved Pb-induced growth, physiological and biochemical disturbances by minimizing its uptake and translocation in mung bean (Vigna radiata L.). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 257:109974. [PMID: 31868638 DOI: 10.1016/j.jenvman.2019.109974] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/11/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Anthropogenic activities like industrial mining, refining and smelting release substantial amounts of lead (Pb) into the soil causing potential ecological menaces to environment, soil productivity and food security. Present pot scale study was undertaken to investigate the effects of tree twigs-derived biochar and a bacterium Burkholderia phytofirmans PsJN on Pb accumulation, growth, physiological, biochemical and antioxidative defense responses of mung bean grown in Pb spiked soil. The original soil was spiked with Pb (600 mg kg-1) and amended with biochar (1% w/w). Upon screening in laboratory, B. phytofirmans PsJN exhibited high Pb tolerance and was able to grow at high Pb concentrations. Surface-disinfected seeds of mung bean were inoculated with B. phytofirmans PsJN and sown in pots along with un-inoculated seeds. Data were collected for various growth, physiological and biochemical parameters from fully matured harvested plants. Application of biochar and B. phytofirmans PsJN ameliorated Pb induced negative impacts in mung bean both individually and in combination, but better growth, physiological and seed quality responses were observed with their combined use. Compared with respective controls, their combined use increased the following parameters in normal and Pb spiked soils, respectively: plant height (69% and 159%), root dry weight (97% and 130%), shoot dry weight (42% and 104%), number of pods (70% and 210%), grains weight (58% and 194%) and number of root nodules (71% and 255%). Moreover, combined use increased chlorophyll contents (27% and 37%), photosynthetic rate (93% and 204%), transpiration rate (42% and 132%), stomatal conductance (70% and 218%), sub-stomatal conductance (93% and 148%) and water use efficiency (35% and 43%). In addition, combined application of biochar and B. phytofirmans PsJN retarded Pb-induced oxidative stress by intensifying antioxidant enzyme activities and reducing activities of reactive oxygen species. Similarly, considerable reduction in Pb uptake, translocation and bioaccumulation in mung bean was noticed in Pb spiked soil due to applied amendments. Furthermore, their combined use resulted in considerable increase in grain quality parameters (protein, fat, ash) both in normal and Pb-spiked soils. Therefore, it can be inferred that interactive use of biochar and B. phytofirmans PsJN provides an efficient innovative strategy to repossess Pb induced growth, physiological, biochemical and oxidative disturbances in mung bean.
Collapse
Affiliation(s)
- Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Adnan Mustafa
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan; National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Syeda Qura-Tul-Ain Azhar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Kamran
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Avelino Núñez-Delgado
- Dept. Soil Sci. and Agric. Chem., Engineering Polytech. School, Campus Univ. Lugo, Univ. Santiago de Compostela, Spain
| |
Collapse
|
13
|
Timmermann T, Poupin MJ, Vega A, Urrutia C, Ruz GA, González B. Gene networks underlying the early regulation of Paraburkholderia phytofirmans PsJN induced systemic resistance in Arabidopsis. PLoS One 2019; 14:e0221358. [PMID: 31437216 PMCID: PMC6705864 DOI: 10.1371/journal.pone.0221358] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/05/2019] [Indexed: 01/07/2023] Open
Abstract
Plant defense responses to biotic stresses are complex biological processes, all governed by sophisticated molecular regulations. Induced systemic resistance (ISR) is one of these defense mechanisms where beneficial bacteria or fungi prime plants to resist pathogens or pest attacks. In ISR, the defense arsenal in plants remains dormant and it is only triggered by an infection, allowing a better allocation of plant resources. Our group recently described that the well-known beneficial bacterium Paraburkholderia phytofirmans PsJN is able to induce Arabidopsis thaliana resistance to Pseudomonas syringae pv. tomato (Pst) DC3000 through ISR, and that ethylene, jasmonate and salicylic acid are involved in this protection. Nevertheless, the molecular networks governing this beneficial interaction remain unknown. To tackle this issue, we analyzed the temporal changes in the transcriptome of PsJN-inoculated plants before and after being infected with Pst DC3000. These data were used to perform a gene network analysis to identify highly connected transcription factors. Before the pathogen challenge, the strain PsJN regulated 405 genes (corresponding to 1.8% of the analyzed genome). PsJN-inoculated plants presented a faster and stronger transcriptional response at 1-hour post infection (hpi) compared with the non-inoculated plants, which presented the highest transcriptional changes at 24 hpi. A principal component analysis showed that PsJN-induced plant responses to the pathogen could be differentiated from those induced by the pathogen itself. Forty-eight transcription factors were regulated by PsJN at 1 hpi, and a system biology analysis revealed a network with four clusters. Within these clusters LHY, WRKY28, MYB31 and RRTF1 are highly connected transcription factors, which could act as hub regulators in this interaction. Concordantly with our previous results, these clusters are related to jasmonate, ethylene, salicylic, acid and ROS pathways. These results indicate that a rapid and specific response of PsJN-inoculated plants to the virulent DC3000 strain could be the pivotal element in the protection mechanism.
Collapse
Affiliation(s)
- Tania Timmermann
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - María Josefina Poupin
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Andrea Vega
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristóbal Urrutia
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Gonzalo A. Ruz
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Bernardo González
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
- * E-mail:
| |
Collapse
|
14
|
Fidan O, Zhan J. Discovery and engineering of an endophytic Pseudomonas strain from Taxus chinensis for efficient production of zeaxanthin diglucoside. J Biol Eng 2019; 13:66. [PMID: 31388354 PMCID: PMC6676639 DOI: 10.1186/s13036-019-0196-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/24/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Endophytic microorganisms are a rich source of bioactive natural products. They are considered as promising biofertilizers and biocontrol agents due to their growth-promoting interactions with the host plants and their bioactive secondary metabolites that can help manage plant pathogens. Identification of new endophytes may lead to the discovery of novel molecules or provide new strains for production of valuable compounds. RESULTS In this study, we isolated an endophytic bacterium from the leaves of Taxus chinensis, which was identified as Pseudomonas sp. 102515 based on the 16S rRNA gene sequence and physiological characteristics. Analysis of its secondary metabolites revealed that this endophytic strain produces a major product zeaxanthin diglucoside, a promising antioxidant natural product that belongs to the family of carotenoids. A carotenoid (Pscrt) biosynthetic gene cluster was amplified from this strain, and the functions of PsCrtI and PsCrtY in the biosynthesis of zeaxanthin diglucoside were characterized in Escherichia coli BL21(DE3). The entire Pscrt biosynthetic gene cluster was successfully reconstituted in E. coli BL21(DE3) and Pseudomonas putida KT2440. The production of zeaxanthin diglucoside in Pseudomonas sp. 102515 was improved through the optimization of fermentation conditions such as medium, cultivation temperature and culture time. The highest yield under the optimized conditions reached 206 mg/L. The engineered strain of P. putida KT2440 produced zeaxanthin diglucoside at 121 mg/L in SOC medium supplemented with 0.5% glycerol at 18 °C, while the yield of zeaxanthin diglucoside in E. coli BL21(DE3) was only 2 mg/L. To further enhance the production, we introduced an expression plasmid harboring the Pscrt biosynthetic gene cluster into Pseudomonas sp. 102515. The yield in this engineered strain reached 380 mg/L, 85% higher than the wild type. Through PCR, we also discovered the presence of a turnerbactin biosynthetic gene cluster in Pseudomonas sp. 102515. Because turnerbactin is involved in nitrogen fixation, this endophytic strain might have a role in promoting growth of the host plant. CONCLUSIONS We isolated and identified an endophytic strain of Pseudomonas from T. chinensis. A zeaxanthin diglucoside biosynthetic gene cluster was discovered and characterized in this bacterium. Through fermentation and genetic engineering, the engineered strain produced zeaxanthin diglucoside at 380 ± 12 mg/L, representing a promising strain for the production of this antioxidant natural product. Additionally, Pseudomonas sp. 102515 might also be utilized as a plant-promoting strain for agricultural applications.
Collapse
Affiliation(s)
- Ozkan Fidan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105 USA
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105 USA
- TCM and Ethnomedicine Innovation & Development Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208 Hunan China
| |
Collapse
|
15
|
Biofilm-Constructing Variants of Paraburkholderia phytofirmans PsJN Outcompete the Wild-Type Form in Free-Living and Static Conditions but Not In Planta. Appl Environ Microbiol 2019; 85:AEM.02670-18. [PMID: 30902863 DOI: 10.1128/aem.02670-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/09/2019] [Indexed: 11/20/2022] Open
Abstract
Members of the genus Burkholderia colonize diverse ecological niches. Among the plant-associated strains, Paraburkholderia phytofirmans PsJN is an endophyte with a broad host range. In a spatially structured environment (unshaken broth cultures), biofilm-constructing specialists of P. phytofirmans PsJN colonizing the air-liquid interface arose at high frequency. In addition to forming a robust biofilm in vitro and in planta on Arabidopsis roots, those mucoid phenotypic variants display a reduced swimming ability and modulate the expression of several microbe-associated molecular patterns (MAMPs), including exopolysaccharides (EPS), flagellin, and GroEL. Interestingly, the variants induce low PR1 and PDF1.2 expression compared to that of the parental strain, suggesting a possible evasion of plant host immunity. We further demonstrated that switching from the planktonic to the sessile form did not involve quorum-sensing genes but arose from spontaneous mutations in two genes belonging to an iron-sulfur cluster: hscA (encoding a cochaperone protein) and iscS (encoding a cysteine desulfurase). A mutational approach validated the implication of these two genes in the appearance of variants. We showed for the first time that in a heterogeneous environment, P. phytofirmans strain PsJN is able to rapidly diversify and coexpress a variant that outcompete the wild-type form in free-living and static conditions but not in planta IMPORTANCE Paraburkholderia phytofirmans strain PsJN is a well-studied plant-associated bacterium known to induce resistance against biotic and abiotic stresses. In this work, we described the spontaneous appearance of mucoid variants in PsJN from static cultures. We showed that the conversion from the wild-type (WT) form to variants (V) correlates with an overproduction of EPS, an enhanced ability to form biofilm in vitro and in planta, and a reduced swimming motility. Our results revealed also that these phenotypes are in part associated with spontaneous mutations in an iron-sulfur cluster. Overall, the data provided here allow a better understanding of the adaptive mechanisms likely developed by P. phytofirmans PsJN in a heterogeneous environment.
Collapse
|
16
|
Bochkareva OO, Moroz EV, Davydov II, Gelfand MS. Genome rearrangements and selection in multi-chromosome bacteria Burkholderia spp. BMC Genomics 2018; 19:965. [PMID: 30587126 PMCID: PMC6307245 DOI: 10.1186/s12864-018-5245-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 11/14/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The genus Burkholderia consists of species that occupy remarkably diverse ecological niches. Its best known members are important pathogens, B. mallei and B. pseudomallei, which cause glanders and melioidosis, respectively. Burkholderia genomes are unusual due to their multichromosomal organization, generally comprised of 2-3 chromosomes. RESULTS We performed integrated genomic analysis of 127 Burkholderia strains. The pan-genome is open with the saturation to be reached between 86,000 and 88,000 genes. The reconstructed rearrangements indicate a strong avoidance of intra-replichore inversions that is likely caused by selection against the transfer of large groups of genes between the leading and the lagging strands. Translocated genes also tend to retain their position in the leading or the lagging strand, and this selection is stronger for large syntenies. Integrated reconstruction of chromosome rearrangements in the context of strains phylogeny reveals parallel rearrangements that may indicate inversion-based phase variation and integration of new genomic islands. In particular, we detected parallel inversions in the second chromosomes of B. pseudomallei with breakpoints formed by genes encoding membrane components of multidrug resistance complex, that may be linked to a phase variation mechanism. Two genomic islands, spreading horizontally between chromosomes, were detected in the B. cepacia group. CONCLUSIONS This study demonstrates the power of integrated analysis of pan-genomes, chromosome rearrangements, and selection regimes. Non-random inversion patterns indicate selective pressure, inversions are particularly frequent in a recent pathogen B. mallei, and, together with periods of positive selection at other branches, may indicate adaptation to new niches. One such adaptation could be a possible phase variation mechanism in B. pseudomallei.
Collapse
Affiliation(s)
- Olga O. Bochkareva
- Kharkevich Institute for Information Transmission Problems, Moscow, Russia
- Center of Life Sciences Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Elena V. Moroz
- Kharkevich Institute for Information Transmission Problems, Moscow, Russia
| | - Iakov I. Davydov
- Department of Ecology and Evolution & Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Mikhail S. Gelfand
- Kharkevich Institute for Information Transmission Problems, Moscow, Russia
- Center of Life Sciences Skolkovo Institute of Science and Technology, Moscow, Russia
- Faculty of Computer Science, Higher School of Economics, Moscow, Russia
| |
Collapse
|
17
|
Issa A, Esmaeel Q, Sanchez L, Courteaux B, Guise JF, Gibon Y, Ballias P, Clément C, Jacquard C, Vaillant-Gaveau N, Aït Barka E. Impacts of Paraburkholderia phytofirmans Strain PsJN on Tomato ( Lycopersicon esculentum L.) Under High Temperature. FRONTIERS IN PLANT SCIENCE 2018; 9:1397. [PMID: 30405648 PMCID: PMC6201190 DOI: 10.3389/fpls.2018.01397] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/03/2018] [Indexed: 05/24/2023]
Abstract
Abnormal temperatures induce physiological and biochemical changes resulting in the loss of yield. The present study investigates the impact of the PsJN strain of Paraburkholderia phytofirmans on tomato (Lycopersicon esculentum Mill.) in response to heat stress (32°C). The results of this work showed that bacterial inoculation with P. phytofirmans strain PsJN increased tomato growth parameters such as chlorophyll content and gas exchange at both normal and high temperatures (25 and 32°C). At normal temperature (25°C), the rate of photosynthesis and the photosystem II activity increased with significant accumulations of sugars, total amino acids, proline, and malate in the bacterized tomato plants, demonstrating that the PsJN strain had a positive effect on plant growth. However, the amount of sucrose, total amino acids, proline, and malate were significantly affected in tomato leaves at 32°C compared to that at 25°C. Changes in photosynthesis and chlorophyll fluorescence showed that the bacterized tomato plants were well acclimated at 32°C. These results reinforce the current knowledge about the PsJN strain of P. phytofirmans and highlight in particular its ability to alleviate the harmful effects of high temperatures by stimulating the growth and tolerance of tomato plants.
Collapse
Affiliation(s)
- Alaa Issa
- SFR Condorcet FR CNRS 3417, Unité de Recherche Résistance Induite et BioProtection des Plantes, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Qassim Esmaeel
- SFR Condorcet FR CNRS 3417, Unité de Recherche Résistance Induite et BioProtection des Plantes, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Lisa Sanchez
- SFR Condorcet FR CNRS 3417, Unité de Recherche Résistance Induite et BioProtection des Plantes, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Barbara Courteaux
- SFR Condorcet FR CNRS 3417, Unité de Recherche Résistance Induite et BioProtection des Plantes, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Jean-Francois Guise
- SFR Condorcet FR CNRS 3417, Unité de Recherche Résistance Induite et BioProtection des Plantes, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Yves Gibon
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Villenave-d’Ornon, France
| | - Patricia Ballias
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Villenave-d’Ornon, France
| | - Christophe Clément
- SFR Condorcet FR CNRS 3417, Unité de Recherche Résistance Induite et BioProtection des Plantes, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Cédric Jacquard
- SFR Condorcet FR CNRS 3417, Unité de Recherche Résistance Induite et BioProtection des Plantes, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Nathalie Vaillant-Gaveau
- SFR Condorcet FR CNRS 3417, Unité de Recherche Résistance Induite et BioProtection des Plantes, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Essaïd Aït Barka
- SFR Condorcet FR CNRS 3417, Unité de Recherche Résistance Induite et BioProtection des Plantes, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
18
|
iac Gene Expression in the Indole-3-Acetic Acid-Degrading Soil Bacterium Enterobacter soli LF7. Appl Environ Microbiol 2018; 84:AEM.01057-18. [PMID: 30054366 DOI: 10.1128/aem.01057-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/21/2018] [Indexed: 12/14/2022] Open
Abstract
We show for soil bacterium Enterobacter soli LF7 that the possession of an indole-3-acetic acid catabolic (iac) gene cluster is causatively linked to the ability to utilize the plant hormone indole-3-acetic acid (IAA) as a carbon and energy source. Genome-wide transcriptional profiling by mRNA sequencing revealed that these iac genes, chromosomally arranged as iacHABICDEFG and coding for the transformation of IAA to catechol, were the most highly induced (>29-fold) among the relatively few (<1%) differentially expressed genes in response to IAA. Also highly induced and immediately downstream of the iac cluster were genes for a major facilitator superfamily protein (mfs) and enzymes of the β-ketoadipate pathway (pcaIJD-catBCA), which channels catechol into central metabolism. This entire iacHABICDEFG-mfs-pcaIJD-catBCA gene set was constitutively expressed in an iacR deletion mutant, confirming the role of iacR, annotated as coding for a MarR-type regulator and located upstream of iacH, as a repressor of iac gene expression. In E. soli LF7 carrying the DNA region upstream of iacH fused to a promoterless gfp gene, green fluorescence accumulated in response to IAA at concentrations as low as 1.6 μM. The iacH promoter region also responded to chlorinated IAA, but not other aromatics tested, indicating a narrow substrate specificity. In an iacR deletion mutant, gfp expression from the iacH promoter region was constitutive, consistent with the predicted role of iacR as a repressor. A deletion analysis revealed putative -35/-10 promoter sequences upstream of iacH, as well as a possible binding site for the IacR repressor.IMPORTANCE Bacterial iac genes code for the enzymatic conversion of the plant hormone indole-3-acetic acid (IAA) to catechol. Here, we demonstrate that the iac genes of soil bacterium Enterobacter soli LF7 enable growth on IAA by coarrangement and coexpression with a set of pca and cat genes that code for complete conversion of catechol to central metabolites. This work contributes in a number of novel and significant ways to our understanding of iac gene biology in bacteria from (non-)plant environments. More specifically, we show that LF7's response to IAA involves derepression of the MarR-type transcriptional regulator IacR, which is quite fast (less than 25 min upon IAA exposure), highly specific (only in response to IAA and chlorinated IAA, and with few genes other than iac, cat, and pca induced), relatively sensitive (low micromolar range), and seemingly tailored to exploit IAA as a source of carbon and energy.
Collapse
|
19
|
Esmaeel Q, Miotto L, Rondeau M, Leclère V, Clément C, Jacquard C, Sanchez L, Barka EA. Paraburkholderia phytofirmans PsJN-Plants Interaction: From Perception to the Induced Mechanisms. Front Microbiol 2018; 9:2093. [PMID: 30214441 PMCID: PMC6125355 DOI: 10.3389/fmicb.2018.02093] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022] Open
Abstract
The use of plant-associated bacteria has received many scientific and economic attention as an effective and alternative method to reduce the chemical pesticides use in agriculture. The genus Burkholderia includes at least 90 species including pathogenic strains, plant pathogens, as well as plant beneficial species as those related to Paraburkholderia, which has been reported to be associated with plants and exerts a positive effect on plant growth and fitness. Paraburkholderia phytofirmans PsJN, a beneficial endophyte able to colonize a wide range of plants, is an established model for plant-associated endophytic bacteria. Indeed, in addition to its plant growth promoting ability, it can also induce plant resistance against biotic as well as abiotic stresses. Here, we summarized an inventory of knowledge on PsJN-plant interaction, from the perception to the resistance mechanisms induced in the plant by a way of the atypical colonization mode of this endophyte. We also have carried out an extensive genome analysis to identify all gene clusters which contribute to the adaptive mechanisms under different environments and partly explaining the high ecological competence of P. phytofirmans PsJN.
Collapse
Affiliation(s)
- Qassim Esmaeel
- Unité de Résistance Induite et Bioprotection des Plantes EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Lidiane Miotto
- Unité de Résistance Induite et Bioprotection des Plantes EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Marine Rondeau
- Unité de Résistance Induite et Bioprotection des Plantes EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Valérie Leclère
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV- Institut Charles Viollette, SFR Condorcet FR CNRS 3417, Lille, France
| | - Christophe Clément
- Unité de Résistance Induite et Bioprotection des Plantes EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Cédric Jacquard
- Unité de Résistance Induite et Bioprotection des Plantes EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Lisa Sanchez
- Unité de Résistance Induite et Bioprotection des Plantes EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Essaid A Barka
- Unité de Résistance Induite et Bioprotection des Plantes EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
20
|
Jones LB, Ghosh P, Lee JH, Chou CN, Kunz DA. Linkage of the Nit1C gene cluster to bacterial cyanide assimilation as a nitrogen source. Microbiology (Reading) 2018; 164:956-968. [DOI: 10.1099/mic.0.000668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Lauren B. Jones
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Pallab Ghosh
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Jung-Hyun Lee
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Chia-Ni Chou
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Daniel A. Kunz
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| |
Collapse
|
21
|
Novinscak A, Filion M. Enhancing total lipid and stearidonic acid yields inBuglossoides arvensisthrough PGPR inoculation. J Appl Microbiol 2018; 125:203-215. [DOI: 10.1111/jam.13749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 01/08/2023]
Affiliation(s)
- A. Novinscak
- Biology Department; Université de Moncton; Moncton NB Canada
| | - M. Filion
- Biology Department; Université de Moncton; Moncton NB Canada
| |
Collapse
|
22
|
Nafees M, Ali S, Naveed M, Rizwan M. Efficiency of biogas slurry and Burkholderia phytofirmans PsJN to improve growth, physiology, and antioxidant activity of Brassica napus L. in chromium-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:6387-6397. [PMID: 29249026 DOI: 10.1007/s11356-017-0924-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 12/03/2017] [Indexed: 06/07/2023]
Abstract
Contamination of soil is a major problem globally with colligated danger for ecosystem and human health. Chromium (Cr) is a toxic heavy metal and caused harmful effect on growth and development of plants. Phytostabilization reduced the mobility of heavy metals with addition of amendments which can significantly decrease metal solubility in soil. Phytostabilization can be achieved by application of biogas slurry (BGS) and endophytic bacteria as amendments in the contaminated soils. The present study revealed that the Burkholderia phytofirmans PsJN and BGS improved the growth, physiology, and antioxidant activity and reduced Cr uptake under a pot experiment spiked with Cr (20 mg kg-1 soil). The experiment was designed under completely randomized design, four treatments with three replications in normal and Cr-contaminated soil. The inoculation of endophytic bacteria improved the growth and physiology of Brassica. This study showed that the inoculation of endophytic bacteria stabilized the Cr levels in soil and minimized the uptake by the plant shoots and roots in BGS-amended soil. Similarly, activity of antioxidants such as catalase (CAT), reduced glutathione (GSH), glutathione peroxidase (GSH-Px), and glutathione s-transferase (GST) was decreased to normal with combined treatment of BGS and endophytic bacteria in Cr-stressed soil. Overall, the best results were analyzed by combined treatment of BGS and endophytic bacteria to improve growth, physiology, and antioxidant activity of Brassica and immobilize Cr in soil. Moreover, results emphasized the need to use BGS alone or in combination with endophytic bacteria to optimize crop performance, stabilize Cr concentration, and improve environmental efficiency.
Collapse
Affiliation(s)
- Muhammad Nafees
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000, Pakistan.
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| |
Collapse
|
23
|
Dynamics of endophytic and epiphytic bacterial communities of Indian cultivated and wild rice ( Oryza spp.) genotypes. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.egg.2017.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Bacterial Endophytes of Plants: Diversity, Invasion Mechanisms and Effects on the Host. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2017. [DOI: 10.1007/978-3-319-66541-2_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Puri A, Padda KP, Chanway CP. Plant Growth Promotion by Endophytic Bacteria in Nonnative Crop Hosts. ENDOPHYTES: CROP PRODUCTIVITY AND PROTECTION 2017. [DOI: 10.1007/978-3-319-66544-3_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Crosstalk between sugarcane and a plant-growth promoting Burkholderia species. Sci Rep 2016; 6:37389. [PMID: 27869215 PMCID: PMC5116747 DOI: 10.1038/srep37389] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/27/2016] [Indexed: 12/03/2022] Open
Abstract
Bacterial species in the plant-beneficial-environmental clade of Burkholderia represent a substantial component of rhizosphere microbes in many plant species. To better understand the molecular mechanisms of the interaction, we combined functional studies with high-resolution dual transcriptome analysis of sugarcane and root-associated diazotrophic Burkholderia strain Q208. We show that Burkholderia Q208 forms a biofilm at the root surface and suppresses the virulence factors that typically trigger immune response in plants. Up-regulation of bd-type cytochromes in Burkholderia Q208 suggests an increased energy production and creates the microaerobic conditions suitable for BNF. In this environment, a series of metabolic pathways are activated in Burkholderia Q208 implicated in oxalotrophy, microaerobic respiration, and formation of PHB granules, enabling energy production under microaerobic conditions. In the plant, genes involved in hypoxia survival are up-regulated and through increased ethylene production, larger aerenchyma is produced in roots which in turn facilitates diffusion of oxygen within the cortex. The detected changes in gene expression, physiology and morphology in the partnership are evidence of a sophisticated interplay between sugarcane and a plant-growth promoting Burkholderia species that advance our understanding of the mutually beneficial processes occurring in the rhizosphere.
Collapse
|
27
|
Ledger T, Rojas S, Timmermann T, Pinedo I, Poupin MJ, Garrido T, Richter P, Tamayo J, Donoso R. Volatile-Mediated Effects Predominate in Paraburkholderia phytofirmans Growth Promotion and Salt Stress Tolerance of Arabidopsis thaliana. Front Microbiol 2016; 7:1838. [PMID: 27909432 PMCID: PMC5112238 DOI: 10.3389/fmicb.2016.01838] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 11/01/2016] [Indexed: 01/09/2023] Open
Abstract
Abiotic stress has a growing impact on plant growth and agricultural activity worldwide. Specific plant growth promoting rhizobacteria have been reported to stimulate growth and tolerance to abiotic stress in plants, and molecular mechanisms like phytohormone synthesis and 1-aminocyclopropane-1-carboxylate deamination are usual candidates proposed to mediate these bacterial effects. Paraburkholderia phytofirmans PsJN is able to promote growth of several plant hosts, and improve their tolerance to chilling, drought and salinity. This work investigated bacterial determinants involved in PsJN stimulation of growth and salinity tolerance in Arabidopsis thaliana, showing bacteria enable plants to survive long-term salinity treatment, accumulating less sodium within leaf tissues relative to non-inoculated controls. Inactivation of specific bacterial genes encoding ACC deaminase, auxin catabolism, N-acyl-homoserine-lactone production, and flagellin synthesis showed these functions have little influence on bacterial induction of salinity tolerance. Volatile organic compound emission from strain PsJN was shown to reproduce the effects of direct bacterial inoculation of roots, increasing plant growth rate and tolerance to salinity evaluated both in vitro and in soil. Furthermore, early exposure to VOCs from P. phytofirmans was sufficient to stimulate long-term effects observed in Arabidopsis growth in the presence and absence of salinity. Organic compounds were analyzed in the headspace of PsJN cultures, showing production of 2-undecanone, 7-hexanol, 3-methylbutanol and dimethyl disulfide. Exposure of A. thaliana to different quantities of these molecules showed that they are able to influence growth in a wide range of added amounts. Exposure to a blend of the first three compounds was found to mimic the effects of PsJN on both general growth promotion and salinity tolerance. To our knowledge, this is the first report on volatile compound-mediated induction of plant abiotic stress tolerance by a Paraburkholderia species.
Collapse
Affiliation(s)
- Thomas Ledger
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center of Applied Ecology and SustainabilitySantiago, Chile
- Millennium Nucleus Center for Plant Systems and Synthetic BiologySantiago, Chile
| | - Sandy Rojas
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
| | - Tania Timmermann
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center of Applied Ecology and SustainabilitySantiago, Chile
- Millennium Nucleus Center for Plant Systems and Synthetic BiologySantiago, Chile
| | - Ignacio Pinedo
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
| | - María J. Poupin
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center of Applied Ecology and SustainabilitySantiago, Chile
- Millennium Nucleus Center for Plant Systems and Synthetic BiologySantiago, Chile
| | - Tatiana Garrido
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Pablo Richter
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Javier Tamayo
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
| | - Raúl Donoso
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center of Applied Ecology and SustainabilitySantiago, Chile
- Millennium Nucleus Center for Plant Systems and Synthetic BiologySantiago, Chile
| |
Collapse
|
28
|
Wdowiak-Wróbel S, Małek W. Properties of Astragalus sp. microsymbionts and their putative role in plant growth promotion. Arch Microbiol 2016; 198:793-801. [PMID: 27209414 PMCID: PMC4995237 DOI: 10.1007/s00203-016-1243-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/06/2016] [Accepted: 05/11/2016] [Indexed: 11/04/2022]
Abstract
The plant growth-promoting rhizobacteria have developed many different (indirect and direct) mechanisms that have a positive effect on plant growth and development. Strains isolated from Astragaluscicer and Astragalusglycyphyllos root nodules were investigated for their plant growth-promoting properties such as production of indole-3-acetic acid (IAA) and siderophores, phosphate solubilization, ACC deaminase activity, and tolerance to heavy metals. IAA production and P-solubilization were frequent features in the analysed strains, while siderophores were not produced by any of them. In this work, we investigated the presence of the acdS genes and ACC deaminase activities in Astragalauscicer and A. glycyphyllos microsymbionts, classified within the genus Mesorhizobium. The results demonstrated that the acdS gene is widespread in the genome of Astragalus sp. microsymbionts; however, none of the tested strains showed ACC deaminase activity. The acdS gene sequence similarity of the analysed strains to each other was in the range from 84 to 99 %. On the phylogram of acdS gene sequences of milkvetch, the symbionts clustered tightly with the genus Mesorhizobium bacteria.
Collapse
Affiliation(s)
- Sylwia Wdowiak-Wróbel
- Department of Genetics and Microbiology, Maria Curie Skłodowska University, Akademicka 19 St., 20-033, Lublin, Poland.
| | - Wanda Małek
- Department of Genetics and Microbiology, Maria Curie Skłodowska University, Akademicka 19 St., 20-033, Lublin, Poland
| |
Collapse
|
29
|
Zhao S, Wei H, Lin CY, Zeng Y, Tucker MP, Himmel ME, Ding SY. Burkholderia phytofirmans Inoculation-Induced Changes on the Shoot Cell Anatomy and Iron Accumulation Reveal Novel Components of Arabidopsis-Endophyte Interaction that Can Benefit Downstream Biomass Deconstruction. FRONTIERS IN PLANT SCIENCE 2016; 7:24. [PMID: 26858740 PMCID: PMC4731519 DOI: 10.3389/fpls.2016.00024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 01/08/2016] [Indexed: 06/05/2023]
Abstract
It is known that plant growth promoting bacteria (PGPB) elicit positive effects on plant growth and biomass yield. However, the actual mechanism behind the plant-PGPB interaction is poorly understood, and the literature is scarce regarding the thermochemical pretreatability and enzymatic degradability of biomass derived from PGPB-inoculated plants. Most recent transcriptional analyses of PGPB strain Burkholderia phytofirmans PsJN inoculating potato in literature and Arabidopsis in our present study have revealed the expression of genes for ferritin and the biosynthesis and transport of siderophores (i.e., the molecules with high affinity for iron), respectively. The expression of such genes in the shoots of PsJN-inoculated plants prompted us to propose that PsJN-inoculation can improve the host plant's iron uptake and accumulation, which facilitates the downstream plant biomass pretreatment and conversion to simple sugars. In this study, we employed B. phytofirmans PsJN to inoculate the Arabidopsis thaliana plants, and conducted the first investigation for its effects on the biomass yield, the anatomical organization of stems, the iron accumulation, and the pretreatment and enzymatic hydrolysis of harvested biomass. The results showed that the strain PsJN stimulated plant growth in the earlier period of plant development and enlarged the cell size of stem piths, and it also indeed enhanced the essential metals uptake and accumulation in host plants. Moreover, we found that the PsJN-inoculated plant biomass released more glucose and xylose after hot water pretreatment and subsequent co-saccharification, which provided a novel insight into development of lignocellulosic biofuels from renewable biomass resources.
Collapse
Affiliation(s)
- Shuai Zhao
- Bioscience Center, National Renewable Energy Laboratory Golden, CO, USA
| | - Hui Wei
- Bioscience Center, National Renewable Energy Laboratory Golden, CO, USA
| | - Chien-Yuan Lin
- Bioscience Center, National Renewable Energy Laboratory Golden, CO, USA
| | - Yining Zeng
- Bioscience Center, National Renewable Energy Laboratory Golden, CO, USA
| | - Melvin P Tucker
- National Bioenergy Center, National Renewable Energy Laboratory Golden, CO, USA
| | - Michael E Himmel
- Bioscience Center, National Renewable Energy Laboratory Golden, CO, USA
| | - Shi-You Ding
- Bioscience Center, National Renewable Energy Laboratory Golden, CO, USA
| |
Collapse
|
30
|
Su F, Gilard F, Guérard F, Citerne S, Clément C, Vaillant-Gaveau N, Dhondt-Cordelier S. Spatio-temporal Responses of Arabidopsis Leaves in Photosynthetic Performance and Metabolite Contents to Burkholderia phytofirmans PsJN. FRONTIERS IN PLANT SCIENCE 2016; 7:403. [PMID: 27066045 PMCID: PMC4811906 DOI: 10.3389/fpls.2016.00403] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/14/2016] [Indexed: 05/13/2023]
Abstract
A valuable strategy to improve crop yield consists in the use of plant growth-promoting rhizobacteria (PGPRs). However, the influence of PGPR colonization on plant physiology is largely unknown. PGPR Burkholderia phytofirmans strain PsJN (Bp PsJN) colonized only Arabidopsis thaliana roots after seed or soil inoculation. Foliar bacteria were detected only after leaf infiltration. Since, different bacterial times of presence and/or locations in host plant could lead to different plant physiological responses, photosynthesis, and metabolite profiles in A. thaliana leaves were thus investigated following leaf, root, or seed inoculation with Bp PsJN. Only Bp PsJN leaf colonization transiently decreased cyclic electron transport and effective quantum yield of photosystem I (PSI), and prevented a decrease in net photosynthesis and stomatal opening compared to the corresponding control. Metabolomic analysis revealed that soluble sugars, amino acids or their derivatives accumulated differently in all Bp PsJN-inoculated plants. Octanoic acid accumulated only in case of inoculated plants. Modifications in vitamin, organic acid such as tricarboxylic acid intermediates, and hormone amounts were dependent on bacterial time of presence and location. Additionally, a larger array of amino acids and hormones (auxin, cytokinin, abscisic acid) were modified by seed inoculation with Bp PsJN. Our work thereby provides evidence that relative short-term inoculation with Bp PsJN altered physiological status of A. thaliana leaves, whereas long-term bacterization triggered modifications on a larger set of metabolites. Our data highlighted the changes displayed during this plant-microbe interaction to trigger physiological and metabolic responses that could explain the increase in plant growth or stress tolerance conferred by the presence of Bp PsJN.
Collapse
Affiliation(s)
- Fan Su
- Unité de Recherche Vignes et Vins de Champagne – EA 4707, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-ArdenneReims, France
| | - Françoise Gilard
- UMR CNRS-INRA 9213, Saclay Plant Sciences, Institute of Plant Sciences Paris-Saclay IPS2 (Bâtiment 630), Université Paris-SudOrsay, France
| | - Florence Guérard
- UMR CNRS-INRA 9213, Saclay Plant Sciences, Institute of Plant Sciences Paris-Saclay IPS2 (Bâtiment 630), Université Paris-SudOrsay, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, UMR 1318 INRA-AgroParisTech, ERL 3559 CNRS, INRA Versailles-GrignonVersailles, France
| | - Christophe Clément
- Unité de Recherche Vignes et Vins de Champagne – EA 4707, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-ArdenneReims, France
| | - Nathalie Vaillant-Gaveau
- Unité de Recherche Vignes et Vins de Champagne – EA 4707, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-ArdenneReims, France
| | - Sandrine Dhondt-Cordelier
- Unité de Recherche Vignes et Vins de Champagne – EA 4707, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-ArdenneReims, France
- *Correspondence: Sandrine Dhondt-Cordelier,
| |
Collapse
|
31
|
Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda MDC, Glick BR. Plant growth-promoting bacterial endophytes. Microbiol Res 2015; 183:92-9. [PMID: 26805622 DOI: 10.1016/j.micres.2015.11.008] [Citation(s) in RCA: 605] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 11/14/2015] [Accepted: 11/21/2015] [Indexed: 11/30/2022]
Abstract
Bacterial endophytes ubiquitously colonize the internal tissues of plants, being found in nearly every plant worldwide. Some endophytes are able to promote the growth of plants. For those strains the mechanisms of plant growth-promotion known to be employed by bacterial endophytes are similar to the mechanisms used by rhizospheric bacteria, e.g., the acquisition of resources needed for plant growth and modulation of plant growth and development. Similar to rhizospheric plant growth-promoting bacteria, endophytic plant growth-promoting bacteria can act to facilitate plant growth in agriculture, horticulture and silviculture as well as in strategies for environmental cleanup (i.e., phytoremediation). Genome comparisons between bacterial endophytes and the genomes of rhizospheric plant growth-promoting bacteria are starting to unveil potential genetic factors involved in an endophytic lifestyle, which should facilitate a better understanding of the functioning of bacterial endophytes.
Collapse
Affiliation(s)
- Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edificio A1',Morelia, Michoacán 58030, Mexico.
| | | | | | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| |
Collapse
|
32
|
Sheibani-Tezerji R, Rattei T, Sessitsch A, Trognitz F, Mitter B. Transcriptome Profiling of the Endophyte Burkholderia phytofirmans PsJN Indicates Sensing of the Plant Environment and Drought Stress. mBio 2015. [PMID: 26350963 DOI: 10.1128/mbio.0062115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
UNLABELLED It is widely accepted that bacterial endophytes actively colonize plants, interact with their host, and frequently show beneficial effects on plant growth and health. However, the mechanisms of plant-endophyte communication and bacterial adaption to the plant environment are still poorly understood. Here, whole-transcriptome sequencing of B. phytofirmans PsJN colonizing potato (Solanum tuberosum L.) plants was used to analyze in planta gene activity and the response of strain PsJN to plant stress. The transcriptome of PsJN colonizing in vitro potato plants showed a broad array of functionalities encoded in the genome of strain PsJN. Transcripts upregulated in response to plant drought stress were mainly involved in transcriptional regulation, cellular homeostasis, and the detoxification of reactive oxygen species, indicating an oxidative stress response in PsJN. Genes with modulated expression included genes for extracytoplasmatic function (ECF) group IV sigma factors. These cell surface signaling elements allow bacteria to sense changing environmental conditions and to adjust their metabolism accordingly. TaqMan quantitative PCR (TaqMan-qPCR) was performed to identify ECF sigma factors in PsJN that were activated in response to plant stress. Six ECF sigma factor genes were expressed in PsJN colonizing potato plants. The expression of one ECF sigma factor was upregulated whereas that of another one was downregulated in a plant genotype-specific manner when the plants were stressed. Collectively, our study results indicate that endophytic B. phytofirmans PsJN cells are active inside plants. Moreover, the activity of strain PsJN is affected by plant drought stress; it senses plant stress signals and adjusts its gene expression accordingly. IMPORTANCE In recent years, plant growth-promoting endophytes have received steadily growing interest as an inexpensive alternative to resource-consuming agrochemicals in sustainable agriculture. Even though promising effects are recurrently observed under controlled conditions, these are rarely reproducible in the field or show undesirably strong variations. Obviously, a better understanding of endophyte activities in plants and the influence of plant physiology on these activities is needed to develop more-successful application strategies. So far, research has focused mainly on analyzing the plant response to bacterial inoculants. This prompted us to study the gene expression of the endophyte Burkholderia phytofirmans PsJN in potato plants. We found that endophytic PsJN cells express a wide array of genes and pathways, pointing to high metabolic activity inside plants. Moreover, the strain senses changes in the plant physiology due to plant stress and adjusts its gene expression pattern to cope with and adapt to the altered conditions.
Collapse
Affiliation(s)
- Raheleh Sheibani-Tezerji
- Health and Environment Department, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Tulln, Austria Division of Computational System Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Thomas Rattei
- Division of Computational System Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Angela Sessitsch
- Health and Environment Department, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Friederike Trognitz
- Health and Environment Department, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Birgit Mitter
- Health and Environment Department, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
33
|
Transcriptome Profiling of the Endophyte Burkholderia phytofirmans PsJN Indicates Sensing of the Plant Environment and Drought Stress. mBio 2015; 6:e00621-15. [PMID: 26350963 PMCID: PMC4600099 DOI: 10.1128/mbio.00621-15] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED It is widely accepted that bacterial endophytes actively colonize plants, interact with their host, and frequently show beneficial effects on plant growth and health. However, the mechanisms of plant-endophyte communication and bacterial adaption to the plant environment are still poorly understood. Here, whole-transcriptome sequencing of B. phytofirmans PsJN colonizing potato (Solanum tuberosum L.) plants was used to analyze in planta gene activity and the response of strain PsJN to plant stress. The transcriptome of PsJN colonizing in vitro potato plants showed a broad array of functionalities encoded in the genome of strain PsJN. Transcripts upregulated in response to plant drought stress were mainly involved in transcriptional regulation, cellular homeostasis, and the detoxification of reactive oxygen species, indicating an oxidative stress response in PsJN. Genes with modulated expression included genes for extracytoplasmatic function (ECF) group IV sigma factors. These cell surface signaling elements allow bacteria to sense changing environmental conditions and to adjust their metabolism accordingly. TaqMan quantitative PCR (TaqMan-qPCR) was performed to identify ECF sigma factors in PsJN that were activated in response to plant stress. Six ECF sigma factor genes were expressed in PsJN colonizing potato plants. The expression of one ECF sigma factor was upregulated whereas that of another one was downregulated in a plant genotype-specific manner when the plants were stressed. Collectively, our study results indicate that endophytic B. phytofirmans PsJN cells are active inside plants. Moreover, the activity of strain PsJN is affected by plant drought stress; it senses plant stress signals and adjusts its gene expression accordingly. IMPORTANCE In recent years, plant growth-promoting endophytes have received steadily growing interest as an inexpensive alternative to resource-consuming agrochemicals in sustainable agriculture. Even though promising effects are recurrently observed under controlled conditions, these are rarely reproducible in the field or show undesirably strong variations. Obviously, a better understanding of endophyte activities in plants and the influence of plant physiology on these activities is needed to develop more-successful application strategies. So far, research has focused mainly on analyzing the plant response to bacterial inoculants. This prompted us to study the gene expression of the endophyte Burkholderia phytofirmans PsJN in potato plants. We found that endophytic PsJN cells express a wide array of genes and pathways, pointing to high metabolic activity inside plants. Moreover, the strain senses changes in the plant physiology due to plant stress and adjusts its gene expression pattern to cope with and adapt to the altered conditions.
Collapse
|
34
|
Llorente BE, Alasia MA, Larraburu EE. Biofertilization with Azospirillum brasilense improves in vitro culture of Handroanthus ochraceus, a forestry, ornamental and medicinal plant. N Biotechnol 2015; 33:32-40. [PMID: 26255131 DOI: 10.1016/j.nbt.2015.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 06/30/2015] [Accepted: 07/29/2015] [Indexed: 11/28/2022]
Abstract
Biofertilization with plant growth-promoting rhizobacteria is a potential alternative to plant productivity. Here, in vitro propagation of Handroanthus ochraceus (yellow lapacho), a forest crop with high economic and environmental value, was developed using the Azospirillum brasilense strains Cd and Az39 during rhizogenesis. Epicotiles of in vitro plantlets were multiplied in Woody Plant Medium (WPM). For rooting, elongated shoots were transferred to auxin-free Murashige-Skoog medium with Gamborg's vitamins and WPM, both at half salt concentration (½MSG and ½WPM), and inoculated with Cd or Az39 at the base of each shoot. Anatomical studies were performed using leaves cleared and stained with safranin for optical microscopy and leaves and roots metalized with gold-palladium for scanning electron microscopy (SEM). In ½WPM auxin-free medium, A. brasilense Cd inoculation produced 55% of rooting, increased root fresh and dry weight (45% and 77%, respectively), and led to lower stomata size and density with similar proportion of open and closed stomata. Both strains selectively increased the size or density of glandular trichomes in ½MSG. Moreover, bacteria were detected on the root surface by SEM. In conclusion, the difference in H. ochraceus response to A. brasilense inoculation depends on the strain and the plant culture media. Cd strain enhanced rooting in auxin-free ½WPM and produced plantlets with features similar to those expected in ex vitro plants. This work presents an innovative in vitro approach using beneficial plant-microorganism interaction as an ecologically compatible strategy in plant biotechnology.
Collapse
Affiliation(s)
- Berta E Llorente
- Plant Tissue Culture Laboratory (CULTEV), Department of Basic Sciences, National University of Luján, CC221 Luján (B), Argentina.
| | - María A Alasia
- Plant Tissue Culture Laboratory (CULTEV), Department of Basic Sciences, National University of Luján, CC221 Luján (B), Argentina
| | - Ezequiel E Larraburu
- Plant Tissue Culture Laboratory (CULTEV), Department of Basic Sciences, National University of Luján, CC221 Luján (B), Argentina
| |
Collapse
|
35
|
Lara-Chavez A, Lowman S, Kim S, Tang Y, Zhang J, Udvardi M, Nowak J, Flinn B, Mei C. Global gene expression profiling of two switchgrass cultivars following inoculation with Burkholderia phytofirmans strain PsJN. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4337-4350. [PMID: 25788737 DOI: 10.1093/jxb/erv096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Improvement and year-to-year stabilization of biomass yields are primary objectives for the development of a low-input switchgrass feedstock production system using microbial endophytes. An earlier investigation of the effect of Burkholderia phytofirmans strain PsJN on switchgrass germplasm demonstrated differential responses between genotypes. PsJN inoculation of cv. Alamo (lowland ecotype) increased the plant root system, shoot length, and biomass yields, whereas it had no beneficial effect on cv. Cave-in-Rock (upland ecotype). To understand the gene networks governing plant growth promotion responses triggered by PsJN, the gene expression profiles were analysed in these two hosts, following seedling inoculation. The Affymetrix platform switchgrass expressed sequence tag (EST) microarray chip representing 122 972 probe sets, developed by the DOE BioEnergy Science Center, was employed to assess transcript abundance at 0.5, 2, 4, and 8 DAI (days after PsJN inoculation). Approximately 20 000 switchgrass probe sets showed significant responses in either cultivar. Switchgrass identifiers were used to map 19 421 genes in MapMan software. There were apparent differences in gene expression profiling between responsive and non-responsive cultivars after PsJN inoculation. Overall, there were 14 984 and 9691 genes affected by PsJN inoculation in Alamo and Cave-in-Rock, respectively. Of these, 394 are annotated as pathogenesis-related genes. In the responsive cv. Alamo, 68 pathogenesis-related genes were affected, compared with only 10 in the non-responsive cv. Cave-in-Rock. At the very early stage at 0.5 DAI, both cultivars exhibited similar recognition and defence responses, such as genes in signalling and proteolysis, after which the defence reaction in the responsive cv. Alamo became weaker while it was sustained in non-responsive cv. Cave-in-Rock.
Collapse
Affiliation(s)
- Alejandra Lara-Chavez
- Institute for Sustainable and Renewable Resources, Institute for Advanced Learning and Research, Danville, VA 24540, USA
| | - Scott Lowman
- Institute for Sustainable and Renewable Resources, Institute for Advanced Learning and Research, Danville, VA 24540, USA Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA 24601, USA
| | - Seonhwa Kim
- Institute for Sustainable and Renewable Resources, Institute for Advanced Learning and Research, Danville, VA 24540, USA
| | - Yuhong Tang
- Plant Biology Division, the Samuel Roberts Noble Foundation, Inc., Ardmore, OK 73401, USA BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831, USA
| | - Jiyi Zhang
- Plant Biology Division, the Samuel Roberts Noble Foundation, Inc., Ardmore, OK 73401, USA BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831, USA
| | - Michael Udvardi
- Plant Biology Division, the Samuel Roberts Noble Foundation, Inc., Ardmore, OK 73401, USA BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831, USA
| | - Jerzy Nowak
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA 24601, USA
| | - Barry Flinn
- Institute for Sustainable and Renewable Resources, Institute for Advanced Learning and Research, Danville, VA 24540, USA Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA 24601, USA Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA 24601, USA
| | - Chuansheng Mei
- Institute for Sustainable and Renewable Resources, Institute for Advanced Learning and Research, Danville, VA 24540, USA Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA 24601, USA Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA 24601, USA
| |
Collapse
|
36
|
Akhtar SS, Andersen MN, Naveed M, Zahir ZA, Liu F. Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:770-781. [PMID: 32480720 DOI: 10.1071/fp15054] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/24/2015] [Indexed: 06/11/2023]
Abstract
The objective of this work was to study the interactive effect of biochar and plant growth-promoting endophytic bacteria containing 1-aminocyclopropane-1-carboxylate deaminase and exopolysaccharide activity on mitigating salinity stress in maize (Zea mays L.). The plants were grown in a greenhouse under controlled conditions, and were subjected to separate or combined treatments of biochar (0% and 5%, w/w) and two endophytic bacterial strains (Burkholderia phytofirmans (PsJN) and Enterobacter sp. (FD17)) and salinity stress. The results indicated that salinity significantly decreased the growth of maize, whereas both biochar and inoculation mitigated the negative effects of salinity on maize performance either by decreasing the xylem Na+ concentration ([Na+]xylem) uptake or by maintaining nutrient balance within the plant, especially when the two treatments were applied in combination. Moreover, in biochar-amended saline soil, strain FD17 performed significantly better than did PsJN in reducing [Na+]xylem. Our results suggested that inoculation of plants with endophytic baterial strains along with biochar amendment could be an effective approach for sustaining crop production in salt-affected soils.
Collapse
Affiliation(s)
- Saqib Saleem Akhtar
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark
| | - Mathias Neumann Andersen
- Sino-Danish Center for Education and Research, 3 Zhongguancun South 1st Alley, Haidian District, 100190 Beijing, China
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad-38040, Pakistan
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad-38040, Pakistan
| | - Fulai Liu
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark
| |
Collapse
|
37
|
Wang B, Mei C, Seiler JR. Early growth promotion and leaf level physiology changes in Burkholderia phytofirmans strain PsJN inoculated switchgrass. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 86:16-23. [PMID: 25461696 DOI: 10.1016/j.plaphy.2014.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/14/2014] [Indexed: 05/09/2023]
Abstract
Switchgrass (SG) is one of the most promising next generation biofuel crops in North America. Inoculation with bacterial endophytes has improved growth of several plant species. Our study demonstrated that Burkholderia phytofirmans strain PsJN, a well-studied plant growth promoting rhizo-bacterium (PGPR) significantly increased both aboveground and belowground biomass (DW) and promoted elongation of root, stem and leaf within 17 days following inoculation. Furthermore, the enhanced root growth in PsJN inoculated plants lagged behind the shoot response, resulting in greater allocation to aboveground growth (p = 0.0041). Lower specific root length (SRL, p = 0.0158) and higher specific leaf weight (SLW, p = 0.0029) were also observed in PsJN inoculated seedlings, indicating changes in development. Photosynthetic rates (Ps) were also significantly higher in PsJN inoculated seedlings after 17 days (54%, p = 0.0016), and this occurred initially without increases in stomatal conductance resulting in significantly greater water use efficiency (WUE, 37.7%, p = 0.0467) and lower non-stomatal limitation (LNS, 29.6%, p = 0.0222). These rapid changes in leaf level physiology are at least partially responsible for the growth enhancement due to PsJN.
Collapse
Affiliation(s)
- Bingxue Wang
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Chuansheng Mei
- Center for Sustainable and Renewable Resources, Institute of Advanced Learning and Research, Danville, VA 24540, USA.
| | - John R Seiler
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
38
|
Su F, Jacquard C, Villaume S, Michel J, Rabenoelina F, Clément C, Barka EA, Dhondt-Cordelier S, Vaillant-Gaveau N. Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2015; 6:810. [PMID: 26483823 PMCID: PMC4591482 DOI: 10.3389/fpls.2015.00810] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/16/2015] [Indexed: 05/08/2023]
Abstract
Several plant growth-promoting rhizobacteria (PGPR) are known to improve plant tolerance to multiple stresses, including low temperatures. However, mechanisms underlying this protection are still poorly understood. The aim of this study was to evaluate the role of the endophytic PGPR, Burkholderia phytofirmans strain PsJN (Bp PsJN), on Arabidopsis thaliana cold tolerance using photosynthesis parameters as physiological markers. Under standard conditions, our results indicated that Bp PsJN inoculation led to growth promotion of Arabidopsis plants without significant modification on photosynthesis parameters and chloroplast organization. However, bacterial colonization induced a cell wall strengthening in the mesophyll. Impact of inoculation modes (either on seeds or by soil irrigation) and their effects overnight at 0, -1, or -3°C, were investigated by following photosystem II (PSII) activity and gas exchanges. Following low temperatures stress, a decrease of photosynthesis parameters was observed. In addition, during three consecutive nights or days at -1°C, PSII activity was monitored. Pigment contents, RuBisCO protein abundance, expression of several genes including RbcS, RbcL, CBF1, CBF2, CBF3, ICE1, COR15a, and COR78 were evaluated at the end of exposure. To assess the impact of the bacteria on cell ultrastructure under low temperatures, microscopic observations were achieved. Results indicated that freezing treatment induced significant changes in PSII activity as early as the first cold day, whereas the same impact on PSII activity was observed only during the third cold night. The significant effects conferred by PsJN were differential accumulation of pigments, and reduced expression of RbcL and COR78. Microscopical observations showed an alteration/disorganization in A. thaliana leaf mesophyll cells independently of the freezing treatments. The presence of bacteria during the three successive nights or days did not significantly improved A. thaliana responses but prevented the plasmalemma disruption under freezing stress.
Collapse
Affiliation(s)
- Fan Su
- Unité de Recherche Vignes et Vins de Champagne – EA 4707, Laboratoire de Stress, Défenses et Reproduction des Plantes, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-ArdenneReims, France
| | - Cédric Jacquard
- Unité de Recherche Vignes et Vins de Champagne – EA 4707, Laboratoire de Stress, Défenses et Reproduction des Plantes, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-ArdenneReims, France
| | - Sandra Villaume
- Unité de Recherche Vignes et Vins de Champagne – EA 4707, Laboratoire de Stress, Défenses et Reproduction des Plantes, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-ArdenneReims, France
| | - Jean Michel
- Laboratoire de Recherche en Nanosciences, Pôle FarmanReims, France
| | - Fanja Rabenoelina
- Unité de Recherche Vignes et Vins de Champagne – EA 4707, Laboratoire de Stress, Défenses et Reproduction des Plantes, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-ArdenneReims, France
| | - Christophe Clément
- Unité de Recherche Vignes et Vins de Champagne – EA 4707, Laboratoire de Stress, Défenses et Reproduction des Plantes, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-ArdenneReims, France
| | - Essaid A. Barka
- Unité de Recherche Vignes et Vins de Champagne – EA 4707, Laboratoire de Stress, Défenses et Reproduction des Plantes, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-ArdenneReims, France
| | - Sandrine Dhondt-Cordelier
- Unité de Recherche Vignes et Vins de Champagne – EA 4707, Laboratoire de Stress, Défenses et Reproduction des Plantes, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-ArdenneReims, France
| | - Nathalie Vaillant-Gaveau
- Unité de Recherche Vignes et Vins de Champagne – EA 4707, Laboratoire de Stress, Défenses et Reproduction des Plantes, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-ArdenneReims, France
- *Correspondence: Nathalie Vaillant-Gaveau, Unité de Recherche Vignes et Vins de Champagne – EA 4707, Laboratoire de Stress, Défenses et Reproduction des Plantes, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, Moulin de la Housse – Bâtiment 18, BP 1039, 51687 Reims Cedex 2, France,
| |
Collapse
|
39
|
AKHDIYA ALINA, WAHYUDI ARISTRI, MUNIF ABDUL, DARUSMAN LATIFAHKOSIM. Characterization of an Endophytic Bacterium G062 Isolate with Beneficial Traits. HAYATI JOURNAL OF BIOSCIENCES 2014. [DOI: 10.4308/hjb.21.4.187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
40
|
Naveed M, Qureshi MA, Zahir ZA, Hussain MB, Sessitsch A, Mitter B. L-Tryptophan-dependent biosynthesis of indole-3-acetic acid (IAA) improves plant growth and colonization of maize by Burkholderia phytofirmans PsJN. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0976-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
41
|
Winston ME, Hampton-Marcell J, Zarraonaindia I, Owens SM, Moreau CS, Gilbert JA, Hartsel J, Kennedy SJ, Gibbons SM. Understanding cultivar-specificity and soil determinants of the cannabis microbiome. PLoS One 2014; 9:e99641. [PMID: 24932479 PMCID: PMC4059704 DOI: 10.1371/journal.pone.0099641] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/17/2014] [Indexed: 11/19/2022] Open
Abstract
Understanding microbial partnerships with the medicinally and economically important crop Cannabis has the potential to affect agricultural practice by improving plant fitness and production yield. Furthermore, Cannabis presents an interesting model to explore plant-microbiome interactions as it produces numerous secondary metabolic compounds. Here we present the first description of the endorhiza-, rhizosphere-, and bulk soil-associated microbiome of five distinct Cannabis cultivars. Bacterial communities of the endorhiza showed significant cultivar-specificity. When controlling cultivar and soil type the microbial community structure was significantly different between plant cultivars, soil types, and between the endorhiza, rhizosphere and soil. The influence of soil type, plant cultivar and sample type differentiation on the microbial community structure provides support for a previously published two-tier selection model, whereby community composition across sample types is determined mainly by soil type, while community structure within endorhiza samples is determined mainly by host cultivar.
Collapse
Affiliation(s)
- Max E. Winston
- The Field Museum, Department of Science and Education, Chicago, Illinois, United States of America
- Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Jarrad Hampton-Marcell
- Argonne National Laboratory, Institute for Genomic and Systems Biology, Lemont, Illinois, United States of America
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Iratxe Zarraonaindia
- Argonne National Laboratory, Institute for Genomic and Systems Biology, Lemont, Illinois, United States of America
- Basque Country Government, Bilbao, Spain
| | - Sarah M. Owens
- Argonne National Laboratory, Institute for Genomic and Systems Biology, Lemont, Illinois, United States of America
- Computation Institute, University of Chicago, Chicago, Illinois, United States of America
| | - Corrie S. Moreau
- The Field Museum, Department of Science and Education, Chicago, Illinois, United States of America
| | - Jack A. Gilbert
- Argonne National Laboratory, Institute for Genomic and Systems Biology, Lemont, Illinois, United States of America
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Josh Hartsel
- Cannavest, San Diego, California, United States of America
| | | | - S. M. Gibbons
- Argonne National Laboratory, Institute for Genomic and Systems Biology, Lemont, Illinois, United States of America
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
42
|
Park JM, Lazarovits G. Involvement of hexokinase1 in plant growth promotion as mediated by Burkholderia phytofirmans. Can J Microbiol 2014; 60:343-54. [PMID: 24849083 DOI: 10.1139/cjm-2014-0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Potato plantlets inoculated with strain PsJN of the bacterium Burkholderia phytofirmans exhibit consistent and significant increases in plant growth under in vitro conditions, when compared with uninoculated plants. The greatest influence on the degree and type of growth enhancement that develops has been shown to be mediated by the sugar concentration in the agar media. Bacterial growth promotion has been suggested in other studies to be regulated by the sugar sensor enzyme hexokinase1, the role of which is activation of glucose phosphorylation. In this present study, we examined the co-relationship between root and stem development in potato plants treated with PsJN and the activity of hexokinase1. Plants grown in the presence of 1.5% and 3% sucrose showed increased levels of hexokinase1 activity only in the roots of inoculated plants, suggesting that the increased enzyme levels may be associated with root growth. Analysis for mRNA using reverse transcriptase did not reveal any significant differences in transcription levels of the gene between inoculated and uninoculated plants. When PsJN-inoculated plants were grown in 1.5% and 3% concentrations of glucose and fructose, stem height and mass, leaf number, root mass, and overall biomass increased. No growth promotion occurred when PsJN-inoculated plants were grown in 3% maltose. Subsequently, a hexokinase1 activity assay showed that PsJN-induced growth of potato plants was found to only occur when plants were grown in the presence of sugars that are recognized by the plant hexokinase1. The results suggest that PsJN may enhance sugar uptake in plants by direct or indirect stimulation of hexokinase1 activity in roots and this results in enhanced overall plant growth.
Collapse
Affiliation(s)
- Jae Min Park
- a Department of Biology, The University of Western Ontario, London, Ont., Canada
| | | |
Collapse
|
43
|
Christina A, Christapher V, Bhore SJ. Endophytic bacteria as a source of novel antibiotics: An overview. Pharmacogn Rev 2013; 7:11-6. [PMID: 23922451 PMCID: PMC3731874 DOI: 10.4103/0973-7847.112833] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/21/2012] [Accepted: 06/01/2013] [Indexed: 11/09/2022] Open
Abstract
World human population is increasing with an alarming rate; and a variety of new types of health issues are popping up. For instance, increase in number of drug-resistant bacteria is a cause of concern. Research on antibiotics and other microbial natural products is pivotal in the global fight against the growing problem of antibiotic resistance. It is necessary to find new antibiotics to tackle this problem. The use of therapeutic plant species in traditional medicine is as old as mankind; and currently, it is strongly believed that all types of plant species across the plant kingdom do harbour endophytic bacteria (EB). The natural therapeutic compounds produced by EB do have several potential applications in pharmaceutical industry. The EB derived natural products such as Ecomycins, Pseudomycins, Munumbicins and Xiamycins are antibacterial, antimycotic and antiplasmodial. Some of these natural products have been reported to possess even antiviral (including Human Immunodeficiency Virus (HIV)) properties. Therefore, to deal with increasing number of drug-resistant pathogens EB could serve as a potential source of novel antibiotics.
Collapse
Affiliation(s)
- Ambrose Christina
- Department of Pharmacology, Faculty of Pharmacy, AIMST University, Bedong-Semeling Road, Semeling 08100, Kedah, Malaysia
| | | | | |
Collapse
|
44
|
Poupin MJ, Timmermann T, Vega A, Zuñiga A, González B. Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana. PLoS One 2013; 8:e69435. [PMID: 23869243 PMCID: PMC3711820 DOI: 10.1371/journal.pone.0069435] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 06/07/2013] [Indexed: 12/31/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) induce positive effects in plants, such as increased growth or reduced stress susceptibility. The mechanisms behind PGPR/plant interaction are poorly understood, as most studies have described short-term responses on plants and only a few studies have analyzed plant molecular responses under PGPR colonization. Here, we studied the effects of the PGPR bacterial model Burkholderiaphytofirmans PsJN on the whole life cycle of Arabidopsis thaliana plants. We reported that at different plant developmental points, strain PsJN can be found in the rhizosphere and also colonizing their internal tissues. In early ontogeny, strain PsJN increased several growth parameters and accelerated growth rate of the plants. Also, an Arabidopsis transcriptome analysis revealed that 408 genes showed differential expression in PsJN-inoculated plants; some of these genes are involved in stress response and hormone pathways. Specifically, genes implicated in auxin and gibberellin pathways were induced. Quantitative transcriptional analyses of selected genes in different developmental stages revealed that the beginning of these changes could be evidenced early in development, especially among the down-regulated genes. The inoculation with heat-killed bacteria provoked a more severe transcriptional response in plants, but was not able to induce plant growth-promotion. Later in ontogeny, the growth rates of inoculated plants decreased with respect to the non-inoculated group and, interestingly, the inoculation accelerated the flowering time and the appearance of senescence signs in plants; these modifications correlate with the early up-regulation of flowering control genes. Then, we show that a single inoculation with a PGPR could affect the whole life cycle of a plant, accelerating its growth rate and shortening its vegetative period, both effects relevant for most crops. Thus, these findings provide novel and interesting aspects of these relevant biological interactions.
Collapse
Affiliation(s)
- María Josefina Poupin
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.
| | | | | | | | | |
Collapse
|
45
|
Zúñiga A, Poupin MJ, Donoso R, Ledger T, Guiliani N, Gutiérrez RA, González B. Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:546-53. [PMID: 23301615 DOI: 10.1094/mpmi-10-12-0241-r] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Although not fully understood, molecular communication in the rhizosphere plays an important role regulating traits involved in plant-bacteria association. Burkholderia phytofirmans PsJN is a well-known plant-growth-promoting bacterium, which establishes rhizospheric and endophytic colonization in different plants. A competent colonization is essential for plant-growth-promoting effects produced by bacteria. Using appropriate mutant strains of B. phytofirmans, we obtained evidence for the importance of N-acyl homoserine lactone-mediated (quorum sensing) cell-to-cell communication in efficient colonization of Arabidopsis thaliana plants and the establishment of a beneficial interaction. We also observed that bacterial degradation of the auxin indole-3-acetic acid (IAA) plays a key role in plant-growth-promoting traits and is necessary for efficient rhizosphere colonization. Wildtype B. phytofirmans but not the iacC mutant in IAA mineralization is able to restore promotion effects in roots of A. thaliana in the presence of exogenously added IAA, indicating the importance of this trait for promoting primary root length. Using a transgenic A. thaliana line with suppressed auxin signaling (miR393) and analyzing the expression of auxin receptors in wild-type inoculated plants, we provide evidence that auxin signaling in plants is necessary for the growth promotion effects produced by B. phytofirmans. The interplay between ethylene and auxin signaling was also confirmed by the response of the plant to a 1-aminocyclopropane-1-carboxylate deaminase bacterial mutant strain.
Collapse
Affiliation(s)
- Ana Zúñiga
- Universidad Adolfo Ibanez, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
46
|
Mitter B, Petric A, Shin MW, Chain PSG, Hauberg-Lotte L, Reinhold-Hurek B, Nowak J, Sessitsch A. Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. FRONTIERS IN PLANT SCIENCE 2013; 4:120. [PMID: 23641251 PMCID: PMC3639386 DOI: 10.3389/fpls.2013.00120] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/16/2013] [Indexed: 05/20/2023]
Abstract
Burkholderia phytofirmans PsJN is a naturally occurring plant-associated bacterial endophyte that effectively colonizes a wide range of plants and stimulates their growth and vitality. Here we analyze whole genomes, of PsJN and of eight other endophytic bacteria. This study illustrates that a wide spectrum of endophytic life styles exists. Although we postulate the existence of typical endophytic traits, no unique gene cluster could be exclusively linked to the endophytic lifestyle. Furthermore, our study revealed a high genetic diversity among bacterial endophytes as reflected in their genotypic and phenotypic features. B. phytofirmans PsJN is in many aspects outstanding among the selected endophytes. It has the biggest genome consisting of two chromosomes and one plasmid, well-equipped with genes for the degradation of complex organic compounds and detoxification, e.g., 24 glutathione-S-transferase (GST) genes. Furthermore, strain PsJN has a high number of cell surface signaling and secretion systems and harbors the 3-OH-PAME quorum-sensing system that coordinates the switch of free-living to the symbiotic lifestyle in the plant-pathogen R. solanacearum. The ability of B. phytofirmans PsJN to successfully colonize such a wide variety of plant species might be based on its large genome harboring a broad range of physiological functions.
Collapse
Affiliation(s)
- Birgit Mitter
- Department of Health and Environment, Bioresources Unit, Austrian Institute of Technology GmbHTulln, Austria
- *Correspondence: Birgit Mitter, Bioresources Unit, Austrian Institute of Technology Gmbh, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria. e-mail:
| | - Alexandra Petric
- Department of Health and Environment, Bioresources Unit, Austrian Institute of Technology GmbHTulln, Austria
| | - Maria W. Shin
- Department of Energy, Joint Genome InstituteWalnut Creek, CA, USA
| | | | | | | | - Jerzy Nowak
- Department of Agriculture and Life Sciences, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| | - Angela Sessitsch
- Department of Health and Environment, Bioresources Unit, Austrian Institute of Technology GmbHTulln, Austria
| |
Collapse
|
47
|
|
48
|
Bacillus subtilis and Enterobacter cloacae endophytes from healthy Theobroma cacao L. trees can systemically colonize seedlings and promote growth. Appl Microbiol Biotechnol 2012; 97:2639-51. [PMID: 23212670 DOI: 10.1007/s00253-012-4574-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 10/27/2022]
Abstract
Clonal genotypes resistant to fungal diseases are an important component of the cocoa production system in southeastern Bahia state (Brazil), so that technologies for faster production of stronger and healthier plantlets are highly desirable. In this study, the effects of inoculated bacterial endophytes isolated from healthy adult cacao plants on seedlings, and aspects related to inoculation methods, colonization patterns, and photosynthesis were investigated. Sequencing of 16S rRNA, hsp-60, and rpo-B genes placed the wild-type isolates within the species Enterobacter cloacae (isolates 341 and 344) and Bacillus subtilis (isolate 629). Spontaneous rifampicin-resistant (rif(R)) variants for 344 were also produced and tested. Endophytic application was either by immersion of surface sterilized seeds in bacterial suspensions or direct inoculation into soil, 20 days after planting non-inoculated seeds into pots. Results from in vitro recovery of inoculated isolates showed that the wild-type endophytes and rif(R) variants systemically colonized the entire cacao seedlings in 15-20 days, regardless of the inoculation method. Some endophytic treatments showed significant increases in seedlings' height, number of leaves, and dry matter. Inoculation methods affected the combined application of endophytes, which maintained the growth-promotion effects, but not in the same manner as in single applications. Interestingly, the 344-3.2 rif(R) variant showed improved performance in relation to both the wild type and another related variant. Photosynthetic rates and stomatal conductance increased significantly for some endophytic treatments, being partially associated with effects on growth and affected by the inoculation method. The results suggest that E. cloacae and B. subtilis endophytes from healthy adult plants (not transmitted by seeds) were able to promote vegetative growth on cacao seedlings. The development of products for large-scale use in seedlings/plantlets production systems was discussed.
Collapse
|
49
|
Kim S, Lowman S, Hou G, Nowak J, Flinn B, Mei C. Growth promotion and colonization of switchgrass (Panicum virgatum) cv. Alamo by bacterial endophyte Burkholderia phytofirmans strain PsJN. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:37. [PMID: 22647367 PMCID: PMC3462104 DOI: 10.1186/1754-6834-5-37] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 05/10/2012] [Indexed: 05/06/2023]
Abstract
BACKGROUND Switchgrass is one of the most promising bioenergy crop candidates for the US. It gives relatively high biomass yield and can grow on marginal lands. However, its yields vary from year to year and from location to location. Thus it is imperative to develop a low input and sustainable switchgrass feedstock production system. One of the most feasible ways to increase biomass yields is to harness benefits of microbial endophytes. RESULTS We demonstrate that one of the most studied plant growth promoting bacterial endophytes, Burkholderia phytofirmans strain PsJN, is able to colonize and significantly promote growth of switchgrass cv. Alamo under in vitro, growth chamber, and greenhouse conditions. In several in vitro experiments, the average fresh weight of PsJN-inoculated plants was approximately 50% higher than non-inoculated plants. When one-month-old seedlings were grown in a growth chamber for 30 days, the PsJN-inoculated Alamo plants had significantly higher shoot and root biomass compared to controls. Biomass yield (dry weight) averaged from five experiments was 54.1% higher in the inoculated treatment compared to non-inoculated control. Similar results were obtained in greenhouse experiments with transplants grown in 4-gallon pots for two months. The inoculated plants exhibited more early tillers and persistent growth vigor with 48.6% higher biomass than controls. We also found that PsJN could significantly promote growth of switchgrass cv. Alamo under sub-optimal conditions. However, PsJN-mediated growth promotion in switchgrass is genotype specific. CONCLUSIONS Our results show B. phytofirmans strain PsJN significantly promotes growth of switchgrass cv. Alamo under different conditions, especially in the early growth stages leading to enhanced production of tillers. This phenomenon may benefit switchgrass establishment in the first year. Moreover, PsJN significantly stimulated growth of switchgrass cv. Alamo under sub-optimal conditions, indicating that the use of the beneficial bacterial endophytes may boost switchgrass growth on marginal lands and significantly contribute to the development of a low input and sustainable feedstock production system.
Collapse
Affiliation(s)
- Seonhwa Kim
- Institute for Sustainable and Renewable Resource, Institute for Advanced Learning and Research, 150 Slayton Ave, Danville, VA, 24540, USA
| | - Scott Lowman
- Institute for Sustainable and Renewable Resource, Institute for Advanced Learning and Research, 150 Slayton Ave, Danville, VA, 24540, USA
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24601, USA
| | - Guichuan Hou
- The Dewel Microscopy Facility at the College of Arts and Sciences, Appalachian State University, Boone, NC, 28608, USA
| | - Jerzy Nowak
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24601, USA
| | - Barry Flinn
- Institute for Sustainable and Renewable Resource, Institute for Advanced Learning and Research, 150 Slayton Ave, Danville, VA, 24540, USA
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24601, USA
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24601, USA
| | - Chuansheng Mei
- Institute for Sustainable and Renewable Resource, Institute for Advanced Learning and Research, 150 Slayton Ave, Danville, VA, 24540, USA
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24601, USA
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24601, USA
| |
Collapse
|
50
|
Suárez-Moreno ZR, Caballero-Mellado J, Coutinho BG, Mendonça-Previato L, James EK, Venturi V. Common features of environmental and potentially beneficial plant-associated Burkholderia. MICROBIAL ECOLOGY 2012; 63:249-266. [PMID: 21850446 DOI: 10.1007/s00248-011-9929-1] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 08/01/2011] [Indexed: 05/31/2023]
Abstract
The genus Burkholderia comprises more than 60 species isolated from a wide range of niches. Although they have been shown to be diverse and ubiquitously distributed, most studies have thus far focused on the pathogenic species due to their clinical importance. However, the increasing number of recently described Burkholderia species associated with plants or with the environment has highlighted the division of the genus into two main clusters, as suggested by phylogenetical analyses. The first cluster includes human, animal, and plant pathogens, such as Burkholderia glumae, Burkholderia pseudomallei, and Burkholderia mallei, as well as the 17 defined species of the Burkholderia cepacia complex, while the other, more recently established cluster comprises more than 30 non-pathogenic species, which in most cases have been found to be associated with plants, and thus might be considered to be potentially beneficial. Several species from the latter group share characteristics that are of use when associating with plants, such as a quorum sensing system, the presence of nitrogen fixation and/or nodulation genes, and the ability to degrade aromatic compounds. This review examines the commonalities in this growing subgroup of Burkholderia species and discusses their prospective biotechnological applications.
Collapse
Affiliation(s)
- Zulma Rocío Suárez-Moreno
- Bacteriology Group, International Centre for Genetic Engineering & Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | | | | | | | | | | |
Collapse
|