1
|
Guo Y, Wang Y, Zang X, Luo C, Huang C, Cong K, Guo X. Transcriptomic analysis of Amaranthus retroflex resistant to PPO-inhibitory herbicides. PLoS One 2023; 18:e0288775. [PMID: 37616256 PMCID: PMC10449157 DOI: 10.1371/journal.pone.0288775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 07/04/2023] [Indexed: 08/26/2023] Open
Abstract
Amaranthus retroflexus L. is one of the malignant weeds which can cause a reduction in the soybean yield. We found a population of A. retroflexus (R-Q) resistant to fomesafen through the initial screening of whole-plant dose response bioassay in the research. The resistance index of the population (R-Q) was 183 times of the sensitive population (S-N). The resistant and sensitive populations were used as experimental materials in the paper. Strand-specific RNA-Seq analyses of R‒Q and S‒N populations obtained from herbicide-treated and mock-treated leaf samples after treatment were conducted to generate a full-length transcriptome database. We analyzed differentially expressed genes (DEGs) among the R-Q and S‒N A. retroflexus populations treated with recommended dose and mock-treated on the 1st (24 h) and 3rd (72 h) days to identify genes involved in fomesafen resistance. All 82,287 unigenes were annotated by Blastx search with E-value < 0.00001 from 7 databases. A total of 94,815 DEGs among the three group comparisons were identified. Two nuclear genes encoding PPO (PPX1 and PPX2) and five unigenes belonging to the AP2-EREBP, GRAS, NAC, bHLH and bZIP families exhibited different expression patterns between individuals of S‒N and R-Q populations. The A. retroflexus transcriptome and specific transcription factor families which can respond to fomesafen in resistant and susceptible genotypes were reported in this paper. The PPX1 and PPX2 genes of the target enzyme were identified. The study establishes the foundation for future research and provides opportunities to manage resistant weeds better.
Collapse
Affiliation(s)
- Yulian Guo
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang Province, China
| | - Yu Wang
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang Province, China
| | - Xiangyun Zang
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang Province, China
| | - Chan Luo
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang Province, China
| | - Chunyan Huang
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang Province, China
| | - Keqiang Cong
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang Province, China
| | - Xiaotong Guo
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang Province, China
| |
Collapse
|
2
|
Hedtke B, Strätker SM, Pulido ACC, Grimm B. Two isoforms of Arabidopsis protoporphyrinogen oxidase localize in different plastidal membranes. PLANT PHYSIOLOGY 2023; 192:871-885. [PMID: 36806676 PMCID: PMC10231370 DOI: 10.1093/plphys/kiad107] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 01/24/2023] [Indexed: 06/01/2023]
Abstract
All land plants encode 2 isoforms of protoporphyrinogen oxidase (PPO). While PPO1 is predominantly expressed in green tissues and its loss is seedling-lethal in Arabidopsis (Arabidopsis thaliana), the effects of PPO2 deficiency have not been investigated in detail. We identified 2 ppo2 T-DNA insertion mutants from publicly available collections, one of which (ppo2-2) is a knock-out mutant. While the loss of PPO2 did not result in any obvious phenotype, substantial changes in PPO activity were measured in etiolated and root tissues. However, ppo1 ppo2 double mutants were embryo-lethal. To shed light on possible functional differences between the 2 isoforms, PPO2 was overexpressed in the ppo1 background. Although the ppo1 phenotype was partially complemented, even strong overexpression of PPO2 was unable to fully compensate for the loss of PPO1. Analysis of subcellular localization revealed that PPO2 is found exclusively in chloroplast envelopes, while PPO1 accumulates in thylakoid membranes. Mitochondrial localization of PPO2 in Arabidopsis was ruled out. Since Arabidopsis PPO2 does not encode a cleavable transit peptide, integration of the protein into the chloroplast envelope must make use of a noncanonical import route. However, when a chloroplast transit peptide was fused to the N-terminus of PPO2, the enzyme was detected predominantly in thylakoid membranes and was able to fully complement ppo1. Thus, the 2 PPO isoforms in Arabidopsis are functionally equivalent but spatially separated. Their distinctive localizations within plastids thus enable the synthesis of discrete subpools of the PPO product protoporphyrin IX, which may serve different cellular needs.
Collapse
Affiliation(s)
- Boris Hedtke
- Humboldt-Universität zu Berlin, Institute of Biology/Plant Physiology, Philippstraße 13 (Building 12), Berlin 10115, Germany
| | - Sarah Melissa Strätker
- Humboldt-Universität zu Berlin, Institute of Biology/Plant Physiology, Philippstraße 13 (Building 12), Berlin 10115, Germany
| | - Andrea C Chiappe Pulido
- Humboldt-Universität zu Berlin, Institute of Biology/Plant Physiology, Philippstraße 13 (Building 12), Berlin 10115, Germany
| | - Bernhard Grimm
- Humboldt-Universität zu Berlin, Institute of Biology/Plant Physiology, Philippstraße 13 (Building 12), Berlin 10115, Germany
| |
Collapse
|
3
|
Kohata R, Lim H, Kanamoto Y, Murakami A, Fujita Y, Tanaka A, Swingley W, Ito H, Tanaka R. Heterologous complementation systems verify the mosaic distribution of three distinct protoporphyrinogen IX oxidase in the cyanobacterial phylum. JOURNAL OF PLANT RESEARCH 2023; 136:107-115. [PMID: 36357749 DOI: 10.1007/s10265-022-01423-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The pathways for synthesizing tetrapyrroles, including heme and chlorophyll, are well-conserved among organisms, despite the divergence of several enzymes in these pathways. Protoporphyrinogen IX oxidase (PPOX), which catalyzes the last common step of the heme and chlorophyll biosynthesis pathways, is encoded by three phylogenetically-unrelated genes, hemY, hemG and hemJ. All three types of homologues are present in the cyanobacterial phylum, showing a mosaic phylogenetic distribution. Moreover, a few cyanobacteria appear to contain two types of PPOX homologues. Among the three types of cyanobacterial PPOX homologues, only a hemJ homologue has been experimentally verified for its functionality. An objective of this study is to provide experimental evidence for the functionality of the cyanobacterial PPOX homologues by using two heterologous complementation systems. First, we introduced hemY and hemJ homologues from Gloeobacter violaceus PCC7421, hemY homologue from Trichodesmium erythraeum, and hemG homologue from Prochlorococcus marinus MIT9515 into a ΔhemG strain of E. coli. hemY homologues from G. violaceus and T. erythraeum, and the hemG homologue of P. marinus complimented the E. coli strain. Subsequently, we attempted to replace the endogenous hemJ gene of the cyanobacterium Synechocystis sp. PCC6803 with the four PPOX homologues mentioned above. Except for hemG from P. marinus, the other PPOX homologues substituted the function of hemJ in Synechocystis. These results show that all four homologues encode functional PPOX. The transformation of Synechocystis with G. violaceus hemY homologue rendered the cells sensitive to an inhibitor of the HemY-type PPOX, acifluorfen, indicating that the hemY homologue is sensitive to this inhibitor, while the wild-type G. violaceus was tolerant to it, most likely due to the presence of HemJ protein. These results provide an additional level of evidence that G. violaceus contains two types of functional PPOX.
Collapse
Affiliation(s)
- Ryoya Kohata
- Institute of Low Temperature Science, Hokkaido University, N19W8, Kita-Ku, Sapporo, 060-0819, Japan
| | - HyunSeok Lim
- Institute of Low Temperature Science, Hokkaido University, N19W8, Kita-Ku, Sapporo, 060-0819, Japan
| | - Yuki Kanamoto
- Research Center of Inland Seas, Kobe University, Awaji, 656-2401, Japan
| | - Akio Murakami
- Research Center of Inland Seas, Kobe University, Awaji, 656-2401, Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Yuichi Fujita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19W8, Kita-Ku, Sapporo, 060-0819, Japan
| | - Wesley Swingley
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, N19W8, Kita-Ku, Sapporo, 060-0819, Japan
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19W8, Kita-Ku, Sapporo, 060-0819, Japan.
| |
Collapse
|
4
|
Galvin LB, Becerra-Alvarez A, Al-Khatib K. Assessment of oxyfluorfen-tolerant rice systems and implications for rice-weed management in California. PEST MANAGEMENT SCIENCE 2022; 78:4905-4912. [PMID: 36069293 DOI: 10.1002/ps.7111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Weeds are a significant barrier to rice production in California, exacerbated by lack of chemical control options and herbicide-resistance in persistent aquaphilic species. Oxyfluorfen-tolerant rice, created at the Rice Experiment Station (RES) in Biggs, California, was developed to provide an agronomic program for managing problematic grass and sedge rice-weeds including Oryza sativa f. spontanea Roshev. (weedy 'red' rice). Hand-pulling is the most common removal method for O. sativa spontanea because there are no herbicides registered for this pest in California. Oxyfluorfen was used in combination with oxyfluorfen-tolerant rice in 2019 and 2021 field studies to evaluate rice injury and weed control efficacy on prevalent rice-weed species. Additional studies were conducted in 2021 on University of California Davis campus to determine pre-emergent oxyfluorfen efficacy on four California O. sativa spontanea accessions. RESULTS Fields studies indicated minimal crop injury in the first 28 days after seeding (DAS), but no observable injury at 60 DAS in both years. Weed control with oxyfluorfen alone was 87% or greater for all weeds rated with the exception of Schoenoplectus mucronatus (L.) Palla (ricefield bulrush), and Leptochloa fascicularis (Lam.) A. Gray (bearded sprangletop) in both years. All O. sativa spontanea exposed to soil-applied oxyfluorfen successfully emerged through the soil surface, but became completely necrotic 28 days after flooding. CONCLUSION Oxyfluorfen-tolerant rice system was demonstrated to be a viable management strategy for California rice growers who struggle with grass- and sedge-weed control as well as provide a novel herbicide option for California O. sativa spontanea management. © 2022 University of California, Davis. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Kassim Al-Khatib
- Department of Plant Sciences, University of California, Davis, CA, USA
| |
Collapse
|
5
|
Novakova Z, Milosevic M, Kutil Z, Ondrakova M, Havlinova B, Kasparek P, Sandoval-Acuña C, Korandova Z, Truksa J, Vrbacky M, Rohlena J, Barinka C. Generation and characterization of human U-2 OS cell lines with the CRISPR/Cas9-edited protoporphyrinogen oxidase IX gene. Sci Rep 2022; 12:17081. [PMID: 36224252 PMCID: PMC9556554 DOI: 10.1038/s41598-022-21147-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/23/2022] [Indexed: 02/05/2023] Open
Abstract
In humans, disruptions in the heme biosynthetic pathway are associated with various types of porphyrias, including variegate porphyria that results from the decreased activity of protoporphyrinogen oxidase IX (PPO; E.C.1.3.3.4), the enzyme catalyzing the penultimate step of the heme biosynthesis. Here we report the generation and characterization of human cell lines, in which PPO was inactivated using the CRISPR/Cas9 system. The PPO knock-out (PPO-KO) cell lines are viable with the normal proliferation rate and show massive accumulation of protoporphyrinogen IX, the PPO substrate. Observed low heme levels trigger a decrease in the amount of functional heme containing respiratory complexes III and IV and overall reduced oxygen consumption rates. Untargeted proteomics further revealed dysregulation of 22 cellular proteins, including strong upregulation of 5-aminolevulinic acid synthase, the major regulatory protein of the heme biosynthesis, as well as additional ten targets with unknown association to heme metabolism. Importantly, knock-in of PPO into PPO-KO cells rescued their wild-type phenotype, confirming the specificity of our model. Overall, our model system exploiting a non-erythroid human U-2 OS cell line reveals physiological consequences of the PPO ablation at the cellular level and can serve as a tool to study various aspects of dysregulated heme metabolism associated with variegate porphyria.
Collapse
Affiliation(s)
- Zora Novakova
- grid.448014.dLaboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Mirko Milosevic
- grid.448014.dLaboratory of Cellular Metabolism, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic ,grid.4491.80000 0004 1937 116XFaculty of Science, Charles University, Vinicna 5, Prague, 12108 Czech Republic
| | - Zsofia Kutil
- grid.448014.dLaboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Marketa Ondrakova
- grid.448014.dLaboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Barbora Havlinova
- grid.448014.dLaboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Petr Kasparek
- grid.418827.00000 0004 0620 870XCzech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Cristian Sandoval-Acuña
- grid.448014.dLaboratory of Tumour Resistance, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Zuzana Korandova
- grid.418925.30000 0004 0633 9419Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220 Czech Republic ,grid.4491.80000 0004 1937 116XFirst Faculty of Medicine, Charles University, Katerinska 32, Prague, 12108 Czech Republic
| | - Jaroslav Truksa
- grid.448014.dLaboratory of Tumour Resistance, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Marek Vrbacky
- grid.418925.30000 0004 0633 9419Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220 Czech Republic
| | - Jakub Rohlena
- grid.448014.dLaboratory of Cellular Metabolism, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Cyril Barinka
- grid.448014.dLaboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| |
Collapse
|
6
|
Kaundun SS, Hutchings SJ, Marchegiani E, Rauser R, Jackson LV. A derived Polymorphic Amplified Cleaved Sequence assay for detecting the Δ210 PPX2L codon deletion conferring target-site resistance to protoporphyrinogen oxidase-inhibiting herbicides. PEST MANAGEMENT SCIENCE 2020; 76:789-796. [PMID: 31400066 DOI: 10.1002/ps.5581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Resistance to protoporphyrinogen oxidase (PPO)-inhibiting herbicides in Amaranthus rudis from corn/soybean production systems in the USA appears to be mainly due to a codon deletion at position 210 of the target PPX2L gene. In this study, we have developed a simple and cost-effective derived Polymorphic Amplified Cleaved Sequenced (dPACS) marker for detecting this resistance-causing deletion in A. rudis and other relevant weed species. RESULTS Ninety-six plants from 16 diverse fomesafen-sensitive and resistant A. rudis populations from Illinois and Iowa were used to establish the dPACS procedure. The assay requires forced mismatches in both the forward and reverse PCR primers and uses the restriction enzyme XcmI for the positive identification of wild type glycine residue at PPX2L codon position 210. The data from the dPACS method, using either leaf tissues or seeds as starting material, were completely correlated with direct Sanger sequencing results for samples that gave readable nucleotide peaks around codon 210 of PPX2L. Furthermore, the assay was directly transferable to all four other Amaranthus species tested, and to Ambrosia artemisiifolia using species-specific primers. CONCLUSION The proposed assay will allow the rapid detection of the Δ210 codon deletion in the PPX2L gene and the timely development of management strategies for tackling growing resistance to PPO-inhibiting herbicides in A. rudis and other broadleaf weed species. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shiv S Kaundun
- Herbicide Bioscience, Syngenta, Jealott's Hill International Research Centre, Berkshire, UK
| | - Sarah-Jane Hutchings
- Herbicide Bioscience, Syngenta, Jealott's Hill International Research Centre, Berkshire, UK
| | - Elisabetta Marchegiani
- Herbicide Bioscience, Syngenta, Jealott's Hill International Research Centre, Berkshire, UK
| | - Ruben Rauser
- Herbicide Bioscience, Syngenta, Jealott's Hill International Research Centre, Berkshire, UK
| | - Lucy V Jackson
- Herbicide Bioscience, Syngenta, Jealott's Hill International Research Centre, Berkshire, UK
| |
Collapse
|
7
|
Tran BQ, Tran LH, Kim SJ, Jung S. Altered regulation of porphyrin biosynthesis and protective responses to acifluorfen-induced photodynamic stress in transgenic rice expressing Bradyrhizobium japonicum Fe-chelatase. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 159:1-8. [PMID: 31400771 DOI: 10.1016/j.pestbp.2019.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 06/10/2023]
Abstract
We examined the molecular regulation of porphyrin biosynthesis and protective responses in transgenic rice (Oryza sativa) expressing Bradyrhizobium japonicum Fe-chelatase (BjFeCh) after treatment with acifluorfen (AF). During the photodynamic stress imposed by AF, transcript levels of BjFeCh in transgenic plants increased greatly; moreover, transcript levels of OsFeCh2 remained almost constant, whereas in wild type (WT) plants they were considerably down-regulated. In the heme branch, transgenic plants exhibited greater levels of OsFC and HO transcripts than WT plants in the untreated stems as well as in the AF-treated leaves and stems. Both WT and transgenic plants treated with AF substantially decreased transcript levels for all the genes in the chlorophyll branch, with less decline in transgenic plants. After AF treatment, ascorbate (Asc) content and the redox Asc state greatly decreased in leaves of WT plants; however, in transgenic plants both parameters remained constant in leaves and the Asc redox state increased by 20% in stems. In response to AF, the leaves of WT plants greatly up-regulated CatA, CatB, and GST compared to those of transgenic plants, whereas, in the stems, transgenic plants showed higher levels of CatA, CatC, APXb, BCH, and VDE. Photochemical quenching, qP, was considerably dropped by 31% and 18% in WT and transgenic plants, respectively in response to AF, whereas non-radiative energy dissipation through non-photochemical quenching increased by 77% and 38% in WT and transgenic plants, respectively. Transgenic plants treated with AF exhibited higher transcript levels of nucleus-encoded photosynthetic genes, Lhcb1 and Lhcb6, as well as levels of Lhcb6 protein compared to those of WT plants. Our study demonstrates that expression of BjFeCh in transgenic plants influences not only the regulation of porphyrin biosynthesis through maintaining higher levels of gene expression in the heme branch, but also the Asc redox function during photodynamic stress caused by AF.
Collapse
Affiliation(s)
- Bao Quoc Tran
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Lien Hong Tran
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - So-Jin Kim
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sunyo Jung
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
8
|
Rangani G, Salas-Perez RA, Aponte RA, Knapp M, Craig IR, Mietzner T, Langaro AC, Noguera MM, Porri A, Roma-Burgos N. A Novel Single-Site Mutation in the Catalytic Domain of Protoporphyrinogen Oxidase IX (PPO) Confers Resistance to PPO-Inhibiting Herbicides. FRONTIERS IN PLANT SCIENCE 2019; 10:568. [PMID: 31156659 PMCID: PMC6530635 DOI: 10.3389/fpls.2019.00568] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/15/2019] [Indexed: 05/10/2023]
Abstract
Protoporphyrinogen oxidase (PPO)-inhibiting herbicides are used to control weeds in a variety of crops. These herbicides inhibit heme and photosynthesis in plants. PPO-inhibiting herbicides are used to control Amaranthus palmeri (Palmer amaranth) especially those with resistance to glyphosate and acetolactate synthase (ALS) inhibiting herbicides. While investigating the basis of high fomesafen-resistance in A. palmeri, we identified a new amino acid substitution of glycine to alanine in the catalytic domain of PPO2 at position 399 (G399A) (numbered according to the protein sequence of A. palmeri). G399 is highly conserved in the PPO protein family across eukaryotic species. Through combined molecular, computational, and biochemical approaches, we established that PPO2 with G399A mutation has reduced affinity for several PPO-inhibiting herbicides, possibly due to steric hindrance induced by the mutation. This is the first report of a PPO2 amino acid substitution at G399 position in a field-selected weed population of A. palmeri. The mutant A. palmeri PPO2 showed high-level in vitro resistance to different PPO inhibitors relative to the wild type. The G399A mutation is very likely to confer resistance to other weed species under selection imposed by the extensive agricultural use of PPO-inhibiting herbicides.
Collapse
Affiliation(s)
- Gulab Rangani
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Reiofeli A. Salas-Perez
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | | | | | | | | | - Ana Claudia Langaro
- Department of Crop Science, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Matheus M. Noguera
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | | | - Nilda Roma-Burgos
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
- *Correspondence: Nilda Roma-Burgos,
| |
Collapse
|
9
|
Fernández P, Alcántara R, Osuna MD, Vila-Aiub MM, Prado RD. Forward selection for multiple resistance across the non-selective glyphosate, glufosinate and oxyfluorfen herbicides in Lolium weed species. PEST MANAGEMENT SCIENCE 2017; 73:936-944. [PMID: 27447950 DOI: 10.1002/ps.4368] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 05/26/2023]
Abstract
BACKGROUND In the Mediterranean area, Lolium species have evolved resistance to glyphosate after decades of continual use without other alternative chemicals in perennial crops (olive, citrus and vineyards). In recent years, oxyfluorfen alone or mixed with glyphosate and glufosinate has been introduced as a chemical option to control dicot and grass weeds. RESULTS Dose-response studies confirmed that three glyphosate-resistant Lolium weed species (L. rigidum, L. perenne, L. multiflorum) collected from perennial crops in the Iberian Peninsula have also evolved resistance to glufosinate and oxyfluorfen herbicides, despite their recent introduction. Based on the LD50 resistance parameter, the resistance factor was similar among Lolium species and ranged from 14- to 21-fold and from ten- to 12-fold for oxyfluorfen and glufosinate respectively. Similarly, about 14-fold resistance to both oxyfluorfen and glufosinate was estimated on average for the three Lolium species when growth reduction (GR50 ) was assessed. This study identified oxyfluorfen resistance in a grass species for the first time. CONCLUSION A major threat to sustainability of perennial crops in the Iberian Peninsula is evident, as multiple resistance to non-selective glyphosate, glufosinate and oxyfluorfen herbicides has evolved in L. rigidum, L. perenne and L. multiflorum weeds. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pablo Fernández
- Departamento de Química Agrícola y Edafología, Universidad de Córdoba, Córdoba, Spain
| | - Ricardo Alcántara
- Departamento de Química Agrícola y Edafología, Universidad de Córdoba, Córdoba, Spain
| | - María D Osuna
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Guadajira-Badajoz, Spain
| | - Martin M Vila-Aiub
- IFEVA-CONICET - Departamento de Ecología, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rafael De Prado
- Departamento de Química Agrícola y Edafología, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
10
|
Park JH, Jung S. Perturbations of carotenoid and tetrapyrrole biosynthetic pathways result in differential alterations in chloroplast function and plastid signaling. Biochem Biophys Res Commun 2017; 482:672-677. [PMID: 27865844 DOI: 10.1016/j.bbrc.2016.11.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 11/30/2022]
Abstract
In this study, we used the biosynthetic inhibitors of carotenoid and tetrapyrrole biosynthetic pathways, norflurazon (NF) and oxyfluorfen (OF), as tools to gain insight into mechanisms of photooxidation in rice plants. NF resulted in bleaching symptom on leaves of the treated plants, whereas OF treatment developed a fast symptom of an apparent necrotic phenotype. Both plants exhibited decreases in photosynthetic efficiency, as indicated by Fv/Fm. NF caused severe disruption in thylakoid membranes, whereas OF-treated plants exhibited disruption of chloroplast envelope and plasma membrane. Levels of Lhca and Lhcb proteins in photosystem I (PSI) and PSII were reduced by photooxidative stress in NF- and OF-treated plants, with a greater decrease in NF plants. The down-regulation of nuclear-encoded photosynthesis genes Lhcb and rbcS was also found in both NF- and OF-treated plants, whereas plastid-encoded photosynthetic genes including RbcL, PsaC, and PsbD accumulated normally in NF plants but decreased drastically in OF plants. This proposes that the plastids in NF plants retain their potential to develop thylakoid membranes and that photobleaching is mainly controlled by nuclear genes. Distinct photooxidation patterns between NF- and OF-treated plants developed differential signaling, which might enable the plant to coordinate the expression of photosynthetic genes from the nuclear and plastidic genomes.
Collapse
Affiliation(s)
- Joon-Heum Park
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, South Korea
| | - Sunyo Jung
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, South Korea.
| |
Collapse
|
11
|
Nam KH, Park KW, Han SM, Kim SW, Lee JH, Kim CG. Compositional analysis of protoporphyrinogen oxidase-inhibiting herbicide-tolerant rice and conventional rice. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
| | - Kee Woong Park
- Department of Crop Science; Chungnam National University; Daejeon 34134 Korea
| | - Sung Min Han
- Department of Crop Science; Chungnam National University; Daejeon 34134 Korea
| | - Shin-Woo Kim
- Korea Plant Resource Institute; Paju 10863 Korea
| | - Jae-Hak Lee
- Korea Plant Resource Institute; Paju 10863 Korea
| | - Chang-Gi Kim
- Bio-Evaluation Center; KRIBB; Cheongju 28116 Korea
| |
Collapse
|
12
|
Differential Antioxidant Responses and Perturbed Porphyrin Biosynthesis after Exposure to Oxyfluorfen and Methyl Viologen in Oryza sativa. Int J Mol Sci 2015. [PMID: 26197316 PMCID: PMC4519964 DOI: 10.3390/ijms160716529] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We compared antioxidant responses and regulation of porphyrin metabolism in rice plants treated with oxyfluorfen (OF) or methyl viologen (MV). Plants treated with MV exhibited not only greater increases in conductivity and malondialdehyde but also a greater decline in Fv/Fm, compared to plants treated with OF. MV-treated plants had greater increases in activities of superoxide dismutase (SOD) and catalase (CAT) as well as transcript levels of SODA and CATA than OF-treated plants after 28 h of the treatments, whereas increases in ascorbate peroxidase (APX) activity and transcript levels of APXA and APXB were greater in OF-treated plants. Both OF- and MV-treated plants resulted in not only down-regulation of most genes involved in porphyrin biosynthesis but also disappearance of Mg-porphyrins during the late stage of photooxidative stress. By contrast, up-regulation of heme oxygenase 2 (HO2) is possibly part of an efficient antioxidant response to compensate photooxidative damage in both treatments. Our data show that down-regulated biosynthesis and degradation dynamics of porphyrin intermediates have important roles in photoprotection of plants from perturbed porphyrin biosynthesis and photosynthetic electron transport. This study suggests that porphyrin scavenging as well as strong antioxidative activities are required for mitigating reactive oxygen species (ROS) production under photooxidative stress caused by OF and MV.
Collapse
|
13
|
García-Plazaola JI, Fernández-Marín B, Duke SO, Hernández A, López-Arbeloa F, Becerril JM. Autofluorescence: Biological functions and technical applications. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:136-45. [PMID: 26025527 DOI: 10.1016/j.plantsci.2015.03.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 05/08/2023]
Abstract
Chlorophylls are the most remarkable examples of fluorophores, and their fluorescence has been intensively studied as a non-invasive tool for assessment of photosynthesis. Many other fluorophores occur in plants, such as alkaloids, phenolic compounds and porphyrins. Fluorescence could be more than just a physicochemical curiosity in the plant kingdom, as several functional roles in biocommunication occur or have been proposed. Besides, fluorescence emitted by secondary metabolites can convert damaging blue and UV into wavelengths potentially useful for photosynthesis. Detection of the fluorescence of some secondary phytochemicals may be a cue for some pollinators and/or seed dispersal organisms. Independently of their functions, plant fluorophores provide researchers with a tool that allows the visualization of some metabolites in plants and cells, complementing and overcoming some of the limitations of the use of fluorescent proteins and dyes to probe plant physiology and biochemistry. Some fluorophores are influenced by environmental interactions, allowing fluorescence to be also used as a specific stress indicator.
Collapse
Affiliation(s)
| | - Beatriz Fernández-Marín
- Dpto Biología Vegetal y Ecología, Universidad del País Vasco (UPV/EHU), Apdo. 644, 48080 Bilbao, Spain; Institute of Botany and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria
| | - Stephen O Duke
- Natural Products Utilization Research Unit, USDA, ARS, University of Mississippi, University, MS 38677, USA
| | - Antonio Hernández
- Dpto Biología Vegetal y Ecología, Universidad del País Vasco (UPV/EHU), Apdo. 644, 48080 Bilbao, Spain
| | - Fernando López-Arbeloa
- Dpto Química Física, Universidad del País Vasco (UPV/EHU), Apdo. 644, 48080 Bilbao, Spain
| | - José María Becerril
- Dpto Biología Vegetal y Ecología, Universidad del País Vasco (UPV/EHU), Apdo. 644, 48080 Bilbao, Spain
| |
Collapse
|
14
|
Phung TH, Jung S. Perturbed porphyrin biosynthesis contributes to differential herbicidal symptoms in photodynamically stressed rice (Oryza sativa) treated with 5-aminolevulinic acid and oxyfluorfen. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2014; 116:103-10. [PMID: 25454526 DOI: 10.1016/j.pestbp.2014.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 05/22/2023]
Abstract
This paper focuses on the molecular mechanism of deregulated porphyrin biosynthesis in rice plants under photodynamic stress imposed by an exogenous supply of 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). Plants treated with 5 mM ALA or 50 µM OF exhibited differential herbicidal symptoms as characterized by white and brown necrosis, respectively, with substantial increases in cellular leakage and malondialdehyde production. Protoporphyrin IX accumulated to higher levels after 1 day of ALA and OF treatment, whereas it decreased to the control level after 2 days of ALA treatment. Plants responded to OF by greatly decreasing the levels of Mg-protoporphyrin IX (MgProto IX), MgProto IX methyl ester, and protochlorophyllide to levels lower than control, whereas their levels drastically increased 1 day after ALA treatment and then disappeared 2 days after the treatment. Enzyme activity and transcript levels of HEMA1, GSA and ALAD for ALA synthesis greatly decreased in ALA- and OF-treated plants. Transcript levels of PPO1, CHLH, CHLI, and PORB genes involving Mg-porphyrin synthesis continuously decreased in ALA- and OF-treated plants, with greater decreases in ALA-treated plants. By contrast, up-regulation of FC2 and HO2 genes in Fe-porphyrin branch was noticeable in ALA and OF-treated plants 1 day and 2 days after the treatments, respectively. Decreased transcript levels of nuclear-encoded genes Lhcb1, Lhcb6, and RbcS were accompanied by disappearance of MgProto IX in ALA- and OF-treated plants after 2 days of the treatments. Under photodynamic stress imposed by ALA and OF, tight control of porphyrin biosynthesis prevents accumulation of toxic metabolic intermediates not only by down-regulation of their biosynthesis but also by photodynamic degradation. The up-regulation of FC2 and HO2 also appears to compensate for the photodynamic stress-induced damage.
Collapse
Affiliation(s)
- Thu-Ha Phung
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Sunyo Jung
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea.
| |
Collapse
|
15
|
Dayan FE, Owens DK, Tranel PJ, Preston C, Duke SO. Evolution of resistance to phytoene desaturase and protoporphyrinogen oxidase inhibitors--state of knowledge. PEST MANAGEMENT SCIENCE 2014; 70:1358-66. [PMID: 24446422 DOI: 10.1002/ps.3728] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/06/2014] [Accepted: 01/20/2014] [Indexed: 05/25/2023]
Abstract
Two major classes of herbicides include inhibitors of protoporphyrinogen oxidase (PPO) and phytoene desaturase (PDS). Plants can evolve resistance to PPO and PDS inhibitors via several mechanisms that include physical changes, resulting in reduced uptake, physiological changes, resulting in compartmentalization or altered translocation, and biochemical changes, resulting in enhanced metabolic degradation or alterations of protein structures, leading to loss of sensitivity to the herbicides. This review discusses the involvement of some of these mechanisms in the various cases of resistance to PDS- and PPO-inhibiting herbicides, and highlights unique aspects of target-site resistance to these herbicides.
Collapse
Affiliation(s)
- Franck E Dayan
- Natural Products Utilization Research Unit, United States Department of Agriculture - Agricultural Research Service, University, MS, USA
| | | | | | | | | |
Collapse
|
16
|
Camargo ER, Senseman SA, McCauley GN, Bowe S, Harden J, Guice JB. Interaction between saflufenacil and imazethapyr in red rice (Oryza ssp.) and hemp sesbania (Sesbania exaltata) as affected by light intensity. PEST MANAGEMENT SCIENCE 2012; 68:1010-8. [PMID: 22323402 DOI: 10.1002/ps.3260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 11/09/2011] [Accepted: 12/22/2011] [Indexed: 05/24/2023]
Abstract
BACKGROUND Saflufenacil is a broadleaf herbicide for preplant burndown and pre-emergence applications in various crops. This study was established to evaluate the absorption and translocation of saflufenacil in hemp sesbania and imazethapyr in red rice as a function of their post-emergence interaction and light intensity. RESULTS Imazethapyr plus saflufenacil provided a greater uptake (30%) and translocation (35%) of (14) C-imazethapyr than imazethapyr alone. In the section above treated leaf (ATL), a higher percentage of the absorbed imazethapyr (23%) was quantified in the imazethapyr plus saflufenacil treatment after 168 h. Faster basipetal movement of imazethapyr was identified under higher light availability. Absorption of (14) C-saflufenacil ranged from approximately 40 to 60% among herbicide and light intensity treatments. At 12 and 24 h after treatment (HAT) a greater percentage (15-20%) of the absorbed saflufenacil was quantified above the treated leaf at the two lower light intensities. Similar trends were observed for basipetal movement of saflufenacil. CONCLUSION Saflufenacil enhanced absorption, overall translocation and acropetal movement of imazethapyr in the TX4 red rice. Basipetal movement of imazethapyr was faster under higher light intensities. Overall, imazethapyr improved absorption of saflufenacil in hemp sesbania plants. Reduction in light intensity resulted in greater translocation of saflufenacil, promoting acropetal and basipetal distribution at the two lower light intensity treatments.
Collapse
Affiliation(s)
- Edinalvo R Camargo
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Ramel F, Sulmon C, Serra AA, Gouesbet G, Couée I. Xenobiotic sensing and signalling in higher plants. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3999-4014. [PMID: 22493519 DOI: 10.1093/jxb/ers102] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Anthropogenic changes and chemical pollution confront plant communities with various xenobiotic compounds or combinations of xenobiotics, involving chemical structures that are at least partially novel for plant species. Plant responses to chemical challenges and stimuli are usually characterized by the approaches of toxicology, ecotoxicology, and stress physiology. Development of transcriptomics and proteomics analysis has demonstrated the importance of modifications to gene expression in plant responses to xenobiotics. It has emerged that xenobiotic effects could involve not only biochemical and physiological disruption, but also the disruption of signalling pathways. Moreover, mutations affecting sensing and signalling pathways result in modifications of responses to xenobiotics, thus confirming interference or crosstalk between xenobiotic effects and signalling pathways. Some of these changes at gene expression, regulation and signalling levels suggest various mechanisms of xenobiotic sensing in higher plants, in accordance with xenobiotic-sensing mechanisms that have been characterized in other phyla (yeast, invertebrates, vertebrates). In higher plants, such sensing systems are difficult to identify, even though different lines of evidence, involving mutant studies, transcription factor analysis, or comparative studies, point to their existence. It remains difficult to distinguish between the hypothesis of direct xenobiotic sensing and indirect sensing of xenobiotic-related modifications. However, future characterization of xenobiotic sensing and signalling in higher plants is likely to be a key element for determining the tolerance and remediation capacities of plant species. This characterization will also be of interest for understanding evolutionary dynamics of stress adaptation and mechanisms of adaptation to novel stressors.
Collapse
Affiliation(s)
- Fanny Ramel
- Université de Rennes 1, Centre National de la Recherche Scientifique, UMR 6553 ECOBIO, Campus de Beaulieu, bâtiment 14A, F-35042 Rennes Cedex, France
| | | | | | | | | |
Collapse
|
18
|
Abstract
UNLABELLED The protein YfeX from Escherichia coli has been proposed to be essential for the process of iron removal from heme by carrying out a dechelation of heme without cleavage of the porphyrin macrocycle. Since this proposed reaction is unique and would represent the first instance of the biological dechelation of heme, we undertook to characterize YfeX. Our data reveal that YfeX effectively decolorizes the dyes alizarin red and Cibacron blue F3GA and has peroxidase activity with pyrogallal but not guiacol. YfeX oxidizes protoporphyrinogen to protoporphyrin in vitro. However, we were unable to detect any dechelation of heme to free porphyrin with purified YfeX or in cellular extracts of E. coli overexpressing YfeX. Additionally, Vibrio fischeri, an organism that can utilize heme as an iron source when grown under iron limitation, is able to grow with heme as the sole source of iron when its YfeX homolog is absent. Plasmid-driven expression of YfeX in V. fischeri grown with heme did not result in accumulation of protoporphyrin. We propose that YfeX is a typical dye-decolorizing peroxidase (or DyP) and not a dechelatase. The protoporphyrin reported to accumulate when YfeX is overexpressed in E. coli likely arises from the intracellular oxidation of endogenously synthesized protoporphyrinogen and not from dechelation of exogenously supplied heme. Bioinformatic analysis of bacterial YfeX homologs does not identify any connection with iron acquisition but does suggest links to anaerobic-growth-related respiratory pathways. Additionally, some genes encoding homologs of YfeX have tight association with genes encoding a bacterial cytoplasmic encapsulating protein. IMPORTANCE Acquisition of iron from the host during infection is a limiting factor for growth and survival of pathogens. Host heme is the major source of iron in infections, and pathogenic bacteria have evolved complex mechanisms to acquire heme and abstract the iron from heme. Recently Létoffé et al. (Proc. Natl. Acad. Sci. U.S.A. 106:11719-11724, 2009) reported that the protein YfeX from E. coli is able to dechelate heme to remove iron and leave an intact tetrapyrrole. This is totally unlike any other described biological system for iron removal from heme and, thus, would represent a dramatically new feature with potentially profound implications for our understanding of bacterial pathogenesis. Given that this reaction has no precedent in biological systems, we characterized YfeX and a related protein. Our data clearly demonstrate that YfeX is not a dechelatase as reported but is a peroxidase that oxidizes endogenous porphyrinogens to porphyrins.
Collapse
|
19
|
Hao GF, Tan Y, Yu NX, Yang GF. Structure–activity relationships of diphenyl-ether as protoporphyrinogen oxidase inhibitors: insights from computational simulations. J Comput Aided Mol Des 2011; 25:213-22. [DOI: 10.1007/s10822-011-9412-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 01/10/2011] [Indexed: 11/28/2022]
|
20
|
Iriti M, Castorina G, Picchi V, Faoro F, Gomarasca S. Acute exposure of the aquatic macrophyte Callitriche obtusangula to the herbicide oxadiazon: the protective role of N-acetylcysteine. CHEMOSPHERE 2009; 74:1231-1237. [PMID: 19101011 DOI: 10.1016/j.chemosphere.2008.11.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 10/26/2008] [Accepted: 11/08/2008] [Indexed: 05/27/2023]
Abstract
In this study we investigated the acute exposure of the aquatic macrophyte Callitriche obtusangula to the herbicide oxadiazon (Ronstar). The toxic effects on C. obtusangula were evaluated, 24h after exposure, by assessing visible necrotic leaf lesions and, 12 h after exposure, via analyses of dead cells and hydrogen peroxide (H2O2) deposits localized by histocytochemical analysis with Trypan blue and 3,3'-diaminobenzidine (DAB), respectively. As a result, we found that 0.1275 microg L(-1) a.i. (active ingredient) oxadiazon was the maximum concentration that produced no observable adverse effects (NOAEC) both at leaf and tissue levels, at any considered exposure time. Additionally, we assayed the protective effect of pre-treatment with 0.25 mM N-acetylcysteine (NAC), a cysteine donor, on the damage caused by the toxic herbicidal dose of 6.37 microg L(-1) a.i to C. obtusangula, correlating the NAC observed protection to the direct H2O2-scavenging and to the enhancement of glutathione parameters. NAC-treated plants showed a fourfold increase in the GSH (reduced glutathione)+GSSG (oxidised glutathione) content (149.2 nmol g(-1) FW) compared to controls (36.1 nmol g(-1) FW); in the NAC+oxadiazon treatments, the GSH+GSSG content was more than fivefold higher (202.1 nmol g(-1) FW). GSH showed a similar trend in NAC and NAC+oxadiazon treatments, being six- (130.0 nmol g(-1) FW) and eightfold (185.0 nmol g(-1) FW) higher, respectively, compared to controls (20.7 nmol g(-1) FW). Accordingly, the GSH/GSSG ratio in NAC- and NAC+oxadiazon-treated plants was significantly increased compared to controls, indicating alleviation of oxidative stress.
Collapse
Affiliation(s)
- Marcello Iriti
- Istituto di Patologia Vegetale, Università di Milano, Via Celoria 2, 20133 Milano, Italy
| | | | | | | | | |
Collapse
|
21
|
HOAGLAND ROBERTE, BOYETTE CDOUGLAS, WEAVER MARKA, ABBAS HAMEDK. BIOHERBICIDES: RESEARCH AND RISKS. TOXIN REV 2008. [DOI: 10.1080/15569540701603991] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Keum YS, Lee YJ, Kim JH. Metabolism of nitrodiphenyl ether herbicides by dioxin-degrading bacterium Sphingomonas wittichii RW1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:9146-9151. [PMID: 18778066 DOI: 10.1021/jf801362k] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Nitrodiphenyl ether herbicides, including chlomethoxyfen, nitrofen, and oxyfluorfen are potent herbicides. Some metabolites and parent compounds are considered as possible mutagens and endocrine disruptors. Both properties pose serious hygienic and environmental risks. Sphingomonas wittichii RW1 is a well-known degrader of polychlorinated dibenzo- p-dioxins, dibenzofurans, and diphenyl ethers. However, no detailed research of its metabolic activity has been performed against pesticides with a diphenyl ether scaffold. In this study, we report S. wittichii RW1 as a very potent diphenyl ether herbicide-metabolizing bacterium with broad substrate specificity. The structures of metabolites were determined by instrumental analysis and synthetic standards. Most pesticides were rapidly removed from the culture medium in the order of nitrofen > oxyfluorfen > chlomethoxyfen. In general, herbicides were degraded through the initial reduction and N-acetylation of nitro groups, followed by ether bond cleavage. Relatively low concentrations of phenolic and catecholic metabolites throughout the study suggested that these metabolites were rapidly metabolized and incorporated into primary metabolism. These results indicate that strain RW1 has very versatile metabolic activities over a wide range of environmental contaminants.
Collapse
Affiliation(s)
- Young Soo Keum
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Korea
| | | | | |
Collapse
|
23
|
Tan Y, Sun L, Xi Z, Yang GF, Jiang DQ, Yan XP, Yang X, Li HY. A capillary electrophoresis assay for recombinant Bacillus subtilis protoporphyrinogen oxidase. Anal Biochem 2008; 383:200-4. [PMID: 18834852 DOI: 10.1016/j.ab.2008.09.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 09/05/2008] [Accepted: 09/08/2008] [Indexed: 11/30/2022]
Abstract
Protoporphyrinogen oxidase (PPO) is a flavin adenine dinucleotide (FAD)-containing enzyme in the tetrapyrrole biosynthetic pathway that leads to the formation of both heme and chlorophylls, which has been identified as one of the most important action targets of commercial herbicides. The literature reports gave different PPO-catalytic kinetic parameters for the substrate protoporphyrinogen IX (K(m) of 0.1 to 10.4 miocroM) with different sources of PPO using fluorescent or HPLC methods. Herein we assayed the enzymatic activity of recombinant Bacillus subtilis PPO by using capillary electrophoresis (CE), a method with high separation efficiency, easy automation, and low sample consumption. The Michaelis constant and maximum reaction velocity were determined as 7.0+/-0.6 miocroM and 0.38+/-0.02 miocromol min(-1)miocrog(-1), respectively. The interaction between PPO and acifluorfen, a commercial PPO-inhibiting herbicide, was measured as the inhibition constant 186.9+/-9.3 miocroM EM, Cyrillic. The relationship between cofactor FAD and PPO activity can also be quantitatively studied by this CE method. The CE method used here should also be a convenient, reliable method for PPO study.
Collapse
Affiliation(s)
- Ying Tan
- State Key Laboratory of Element-Organic Chemistry and Department of Chemical Biology, Nankai University,Tianjin 300071, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Jung S, Lee HJ, Lee Y, Kang K, Kim YS, Grimm B, Back K. Toxic tetrapyrrole accumulation in protoporphyrinogen IX oxidase-overexpressing transgenic rice plants. PLANT MOLECULAR BIOLOGY 2008; 67:535-546. [PMID: 18437505 DOI: 10.1007/s11103-008-9338-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 04/12/2008] [Indexed: 05/26/2023]
Abstract
We generated transgenic rice plants (Oryza sativa cv. Dongjin) over-expressing human protoporphyrinogen IX oxidase (PPO) with the aim to increase mitochondrial PPO activity and confer herbicide resistance (Lee et al., Pestic Biochem Physiol 80:65-74, 2004). The transgenic plants showed during further leaf development the formation of severe necrotic spots and growth retardation. Several experiments were performed to examine the reasons for the formation of necrotic leaf lesions. Human PPO is normally located in mitochondria. An in vitro organellar import experiment revealed translocation of human PPO into pea chloroplasts, but not into mitochondria. Using a specific antibody raised against human PPO confirmed its plastidic localisation. The heme and chlorophyll contents were lower in necrotic leaves than wild-type leaves. Interestingly, mature and necrotic leaves of 12-week-old transgenic plants contained up to 14- and 24-fold more protoporphyrin IX, respectively, than mature wild-type leaves. Enhanced levels of Mg-Protoporphyrin IX, Mg-Protoporphyrin IX monomethyl ester and protochlorophyllide were concurrently observed in transgenic plants relative to wild type. Accumulated porphyrins and Mg-porphyrins likely act as photosensitizers and cause high formation of the reactive oxygen species. These high levels of tetrapyrrole intermediates correlated with increased rates of 5-aminolevulinic acid synthesis in transgenic plants. Tetrapyrrole-induced photooxidation was confirmed by increased lipid peroxidation and subsequent cell death. The transgenic phenotype is the consequence of a highly modified tetrapyrrole metabolism due to additional expression of human PPO. A possible regulatory role of PPO in graminaceous seedlings is discussed.
Collapse
Affiliation(s)
- Sunyo Jung
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
25
|
Lermontova I, Grimm B. Reduced activity of plastid protoporphyrinogen oxidase causes attenuated photodynamic damage during high-light compared to low-light exposure. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:499-510. [PMID: 17059408 DOI: 10.1111/j.1365-313x.2006.02894.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Protoporphyrinogen oxidase (EC 1.3.3.4, PPOX) is the last enzyme in the branched tetrapyrrole biosynthetic pathway, before its substrate protoporphyrin is directed to the Mg and Fe branches for chlorophyll and haem biosynthesis, respectively. The enzyme exists in many plants in two similar isoforms, which are either exclusively located in plastids (PPOX I) or in mitochondria and plastids (PPOX II). Antisense RNA expression inhibited the formation of PPOX I in transgenic tobacco plants, which showed reduced growth rate and necrotic leaf damage. The cytotoxic effect is attributed to accumulation of photodynamically acting protoporphyrin. The expression levels of PPOX I mRNA and protein and the cellular enzyme activities were reduced to similar extents in transgenic plants grown under low- or high-light conditions (70 and 530 mumol photons m(-2) sec(-1)). More necrotic leaf lesions were surprisingly generated under low- than under high-light exposure. Several reasons were explored to explain this paradox and the intriguing necrotic phenotype of PPOX-deficient plants under both light intensity growth conditions. The same reduction of PPOX expression and activity under both light conditions led to similar initial protoporphyrin, but to faster decrease in protoporphyrin content during high light. It is likely that a light intensity-dependent degradation of reduced and oxidized porphyrins prevents severe photodynamic leaf damage. Moreover, under high-light conditions, elevated contents of reduced and total low-molecular-weight antioxidants contribute to the protection against photosensitizing porphyrins. These reducing conditions stabilize protoporphyrinogen in plastids and allow their redirection into the metabolic pathway.
Collapse
Affiliation(s)
- Inna Lermontova
- Institute of Biology/Plant Physiology, Humboldt University, Philippstr. 13, Building 12, 10115 Berlin, Germany
| | | |
Collapse
|
26
|
Nandihalli UB, Sherman TD, Duke MV, Fisher JD, Musco VA, Becerril JM, Duke SO. Correlation of protoporphyrinogen oxidase inhibition byO-phenyl pyrrolidino- and piperidino-carbamates with their herbicidal effects. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/ps.2780350306] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Nandihalli UB, Duke MV, Ashmore JW, Musco VA, Clark RD, Duke SO. Enantioselectivity of protoporphyrinogen oxidase-inhibiting herbicides. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/ps.2780400404] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Graham MY. The diphenylether herbicide lactofen induces cell death and expression of defense-related genes in soybean. PLANT PHYSIOLOGY 2005; 139:1784-94. [PMID: 16299178 PMCID: PMC1310559 DOI: 10.1104/pp.105.068676] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2005] [Revised: 10/11/2005] [Accepted: 10/13/2005] [Indexed: 05/05/2023]
Abstract
Lactofen belongs to the diphenylether class of herbicides, which targets protoporphyrinogen oxidase, which in turn causes singlet oxygen generation. In tolerant plants like soybean (Glycine max), the chemical nonetheless causes necrotic patches called "bronzing" in contact areas. Here it is shown that such bronzing is accompanied by cell death, which was quantified from digital microscopic images using Assess Software. Cellular autofluorescence accompanied cell death, and a homolog of the cell death marker gene, Hsr203j, was induced by lactofen in treated soybean tissues. Thus, this form of chemically induced cell death shares some hallmarks of certain types of programmed cell death. In addition to the cell death phenotype, lactofen caused enhanced expressions of chalcone synthase and chalcone reductase genes, mainly in the exposed and immediately adjacent (proximal) cells. Furthermore, isoflavone synthase genes, which are wound inducible in soybean, were up-regulated by lactofen in both proximal and distal cell zones in minimally wounded cotyledons and further enhanced in wounded tissues. Moreover, if the wall glucan elicitor from Phytophthora sojae was present during lactofen treatment, the induction of isoflavone synthase was even more rapid. These results are consistent with the fact that lactofen triggers massive isoflavone accumulations and activates the capacity for glyceollin elicitation competency. In addition, lactofen induces late expression of a selective set of pathogenesis-related (PR) protein genes, including PR-1a, PR-5, and PR-10, mainly in treated proximal tissues. These various results are discussed in the context of singlet oxygen-induced responses and lactofen's potential as a disease resistance-inducing agent.
Collapse
Affiliation(s)
- Madge Y Graham
- Department of Plant Pathology and Plant Molecular Biology and Biotechnology Program, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
29
|
Li X, Nicholl D. Development of PPO inhibitor-resistant cultures and crops. PEST MANAGEMENT SCIENCE 2005; 61:277-285. [PMID: 15660355 DOI: 10.1002/ps.1011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent progress in the development of protoporphyrinogen oxidase (PPO, Protox) inhibitor-resistant plant cell cultures and crops is reviewed, with emphasis on the molecular and cellular aspects of this topic. PPO herbicide-resistant maize plants have been reported, along with the isolation of plant PPO genes and the isolation of herbicide-resistant mutants. At the same time, PPO inhibitor-resistant rice plants have been developed by expression of the Bacillus subtilis PPO gene via targeting the gene into either chloroplast or cytoplasm. Other attempts to develop PPO herbicide-resistant plants include conventional tissue culture methods, expression of modified co-factors of the protoporphyrin IX binding subunit proteins, over-expression of wild-type plant PPO gene, and engineering of P-450 monooxygenases to degrade the PPO inhibitor.
Collapse
Affiliation(s)
- Xianggan Li
- Syngenta Biotechnology, Inc, PO Box 12257, 3054 Cornwallis Road, Research Triangle Park, North Carolina 27709-2257, USA.
| | | |
Collapse
|
30
|
Li X, Volrath SL, Nicholl DBG, Chilcott CE, Johnson MA, Ward ER, Law MD. Development of protoporphyrinogen oxidase as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation of maize. PLANT PHYSIOLOGY 2003; 133:736-47. [PMID: 12972658 PMCID: PMC219048 DOI: 10.1104/pp.103.026245] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Revised: 07/01/2003] [Accepted: 07/19/2003] [Indexed: 05/18/2023]
Abstract
In this article, we report the isolation of plant protoporphyrinogen oxidase (PPO) genes and the isolation of herbicide-tolerant mutants. Subsequently, an Arabidopsis double mutant (Y426M + S305L) was used to develop a selectable marker system for Agrobacterium tumefaciens-mediated transformation of maize (Zea mays) and to obtain multiple events tolerant to the PPO family of herbicides. Maize transformants were produced via butafenacil selection using a flexible light regime to increase selection pressure. Butafenacil selection per se did not change transgene copy number distribution relative to other selectable marker systems, but the most tolerant events identified in the greenhouse were more likely to contain multiple copies of the introduced mutant PPO gene. To date, more than 2,500 independent transgenic maize events have been produced using butafenacil selection. The high frequency of A. tumefaciens-mediated transformation via PPO selection enabled us to obtain single-copy transgenic maize lines tolerant to field levels of butafenacil.
Collapse
Affiliation(s)
- Xianggan Li
- Syngenta Biotechnology, Inc., P.O. Box 12257, 3054 Cornwallis Road, Research Triangle Park, NC 27709-2257, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Yaronskaya E, Ziemann V, Walter G, Averina N, Börner T, Grimm B. Metabolic control of the tetrapyrrole biosynthetic pathway for porphyrin distribution in the barley mutant albostrians. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:512-522. [PMID: 12904213 DOI: 10.1046/j.1365-313x.2003.01825.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The barley line albostrians exhibits a severe block in chloroplast development as a result of a mutationally induced lack of plastid ribosomes. White leaves of this mutant contain undifferentiated plastids, possess only traces of chlorophyll (Chl), and are photosynthetically inactive. Chl deficiency, combined with a continuous heme requirement, should lead to drastic changes in the tetrapyrrole metabolism in white versus green leaves. We analyzed the extent to which the synthesis rate of the pathway and the porphyrin distribution toward the Chl- and heme-synthesizing bifurcation is altered in the white tissue of albostrians. Expression and activity of several distinctively regulated enzymes, such as glutamyl-tRNAglu reductase, glutamate 1-semialdehyde aminotransferase, Mg- and Fe-chelatase, and Chl synthetase, were altered in white mutant leaves in comparison to control leaves. A drastic loss in the rate-limiting formation of 5-aminolevulinate and in the Mg-chelatase and Mg-protoporphyrin IX methyltransferase activity, as well as an increase in Fe-chelatase activity, accounts for a decrease in the metabolic flux and the re-direction of metabolites. It is proposed that the tightly balanced control of activities in the pathway functions by different metabolic feedback loops and in response to developmental state and physiological requirements. This data supports the idea that the initial steps of Mg-porphyrin synthesis contribute to plastid-derived signaling toward the nucleus. The barley mutant albostrians proved to be a valuable system for studying regulation of tetrapyrrole biosynthesis and their involvement in the bi-directional communication between plastids and nucleus.
Collapse
Affiliation(s)
- Elena Yaronskaya
- Institut für Biologie/Pflanzenphysiologie, Humboldt Universität, 10155 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Cornah JE, Roper JM, Pal Singh D, Smith AG. Measurement of ferrochelatase activity using a novel assay suggests that plastids are the major site of haem biosynthesis in both photosynthetic and non-photosynthetic cells of pea (Pisum sativum L.). Biochem J 2002; 362:423-32. [PMID: 11853551 PMCID: PMC1222403 DOI: 10.1042/0264-6021:3620423] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ferrochelatase is the terminal enzyme of haem biosynthesis, catalysing the insertion of ferrous iron into the macrocycle of protoporphyrin IX, the last common intermediate of haem and chlorophyll synthesis. Its activity has been reported in both plastids and mitochondria of higher plants, but the relative amounts of the enzyme in the two organelles are unknown. Ferrochelatase is difficult to assay since ferrous iron requires strict anaerobic conditions to prevent oxidation, and in photosynthetic tissues chlorophyll interferes with the quantification of the product. Accordingly, we developed a sensitive fluorimetric assay for ferrochelatase that employs Co(2+) and deuteroporphyrin in place of the natural substrates, and measures the decrease in deuteroporphyrin fluorescence. A hexane-extraction step to remove chlorophyll is included for green tissue. The assay is linear over a range of chloroplast protein concentrations, with an average specific activity of 0.68 nmol x min(-1) x mg of protein(-1), the highest yet reported. The corresponding value for mitochondria is 0.19 nmol x min(-1) x mg of protein(-1). The enzyme is inhibited by N-methylprotoporphyrin, with an estimated IC(50) value of approximately 1 nM. Using this assay we have quantified ferrochelatase activity in plastids and mitochondria from green pea leaves, etiolated pea leaves and pea roots to determine the relative amounts in the two organelles. We found that, in all three tissues, greater than 90% of the activity was associated with plastids, but ferrochelatase was reproducibly detected in mitochondria, at levels greater than the contaminating plastid marker enzyme, and was latent. Our results indicate that plastids are the major site of haem biosynthesis in higher plant cells, but that mitochondria also have the capacity for haem production.
Collapse
Affiliation(s)
- Johanna E Cornah
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | | | | | | |
Collapse
|
33
|
Brusslan JA, Peterson MP. Tetrapyrrole regulation of nuclear gene expression. PHOTOSYNTHESIS RESEARCH 2002; 71:185-94. [PMID: 16228131 DOI: 10.1023/a:1015539109209] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Tetrapyrroles are the structural backbone of chlorophyll and heme, and are essential for primary photochemistry, light harvesting, and electron transport. The biochemistry of their synthesis has been studied extensively, and it has been suggested that some of the tetrapyrrole biochemical intermediates can affect nuclear gene expression. In this review, tetrapyrrole biosynthesis, which occurs in the chloroplast, and its regulation will be covered. An analysis of the intracellular location of tetrapyrrole intermediates will also be included. The focus will be on tetrapyrrole intermediates that have been suggested to affect gene expression. These include Mg-protoporphyrin IX and Mg-protoporphyrin IX monomethyl ester. Recent evidence also suggests a specific signaling role for the H subunit of Mg-chelatase, an enzyme that catalyzes the insertion of Mg into the tetrapyrrole ring. Since gene expression studies have been done in plants and green algae, our discussion will be limited to these organisms.
Collapse
Affiliation(s)
- Judy A Brusslan
- Department of Biological Sciences, California State University, Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840-3702, USA,
| | | |
Collapse
|
34
|
Warabi E, Usui K, Tanaka Y, Matsumoto H. Resistance of a soybean cell line to oxyfluorfen by overproduction of mitochondrial protoporphyrinogen oxidase. PEST MANAGEMENT SCIENCE 2001; 57:743-8. [PMID: 11517729 DOI: 10.1002/ps.357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2001] [Accepted: 05/01/2001] [Indexed: 05/23/2023]
Abstract
The diphenyl ether herbicide oxyfluorfen (2-chloro-4-trifluoromethylphenyl 3-ethoxy-4-nitrophenyl ether) inhibits protoporphyrinogen oxidase (Protox) which catalyzes the oxidation of protoporphyrinogen IX (Protogen) to protoporphyrin IX (Proto IX), the last step of the common pathway to chlorophyll and haeme biosynthesis. We have selected an oxyfluorfen-resistant soybean cell line by stepwise selection methods, and the resistance mechanism has been investigated. No growth inhibition was observed in resistant cells at a concentration of 10(-7) M oxyfluorfen, a concentration at which normal cells did not survive. While the degree of inhibition of total extractable Protox by oxyfluorfen was the same in both cell types, the enzyme activity in the mitochondrial fraction from non-treated resistant cells was about nine-fold higher than that from normal cells. Northern analysis of mitochondrial Protox revealed that the concentration of mitochondrial Protox mRNA was much higher in resistant cells than that in normal cells. There were no differences in the absorption and metabolic breakdown of oxyfluorfen. The growth of resistant cells was also insensitive to oxadiazon [5-tert-butyl-3-(2,4-dichloro-5-isopropoxyphenyl)-1,3,4-oxadiazol-2-(3H)- one], the other chemical class of Protox inhibitor. Therefore, the resistance of the selected soybean cell line to oxyfluorfen is probably mainly due to the overproduction of mitochondrial Protox.
Collapse
Affiliation(s)
- E Warabi
- Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | |
Collapse
|
35
|
Jacobs JM, Jacobs NJ. Measurement of protoporphyrinogen oxidase activity. CURRENT PROTOCOLS IN TOXICOLOGY 2001; Chapter 8:Unit 8.5. [PMID: 20954158 DOI: 10.1002/0471140856.tx0805s00] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Protoporphyrinogen oxidase catalyzes the oxidation of protoporphyrinogen to protophyrin. It is a membrane-bound mitochondrial enzyme and it is the target of photobleaching herbicides. The basic assay presented in this unit for measuring oxidase activity is based on oxidation of the colorless, nonfluorescent substrate, protoporphyrinogen, to the colored, fluorescent protophyrin. Alternate protocols are provided for the measuring the accumulation of protoporphyrinogen resulting from a decrease in oxidase activity due to treatment with diphenyl ether herbicides or oxidase inhibitor.
Collapse
Affiliation(s)
- J M Jacobs
- Dartmouth Medical School, Hanover, New Hampshire, USA
| | | |
Collapse
|
36
|
Che FS, Watanabe N, Iwano M, Inokuchi H, Takayama S, Yoshida S, Isogai A. Molecular characterization and subcellular localization of protoporphyrinogen oxidase in spinach chloroplasts. PLANT PHYSIOLOGY 2000; 124:59-70. [PMID: 10982422 PMCID: PMC59122 DOI: 10.1104/pp.124.1.59] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2000] [Accepted: 04/27/2000] [Indexed: 05/23/2023]
Abstract
Protoporphyrinogen oxidase (Protox) is the last common enzyme in the biosynthesis of chlorophylls and heme. In plants, there are two isoenzymes of Protox, one located in plastids and other in the mitochondria. We cloned the cDNA of spinach (Spinacia oleracea) plastidal Protox and purified plastidal Protox protein from spinach chloroplasts. Sequence analysis of the cDNA indicated that the plastid Protox of spinach is composed of 562 amino acids containing the glycine-rich motif GxGxxG previously proposed to be a dinucleotide binding site of many flavin-containing proteins. The cDNA of plastidal Protox complemented a Protox mutation in Escherichia coli. N-terminal sequence analysis of the purified enzyme revealed that the plastidal Protox precursor is processed at the N-terminal site of serine-49. The predicted transit peptide (methionine-1 to cysteine-48) was sufficient for the transport of precursors into the plastid because green fluorescent protein fused with the predicted transit peptide was transported to the chloroplast. Immunocytochemical analysis using electron microscopy showed that plastidal Protox is preferentially associated with the stromal side of the thylakoid membrane, and a small portion of the enzyme is located on the stromal side of the chloroplast inner envelope membrane.
Collapse
Affiliation(s)
- F S Che
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama Ikoma, Nara 630-0101, Japan.
| | | | | | | | | | | | | |
Collapse
|
37
|
Lermontova I, Grimm B. Overexpression of plastidic protoporphyrinogen IX oxidase leads to resistance to the diphenyl-ether herbicide acifluorfen. PLANT PHYSIOLOGY 2000; 122:75-84. [PMID: 10631251 PMCID: PMC58846 DOI: 10.1104/pp.122.1.75] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/1999] [Accepted: 10/01/1999] [Indexed: 05/18/2023]
Abstract
The use of herbicides to control undesirable vegetation has become a universal practice. For the broad application of herbicides the risk of damage to crop plants has to be limited. We introduced a gene into the genome of tobacco (Nicotiana tabacum) plants encoding the plastid-located protoporphyrinogen oxidase of Arabidopsis, the last enzyme of the common tetrapyrrole biosynthetic pathway, under the control of the cauliflower mosaic virus 35S promoter. The transformants were screened for low protoporphyrin IX accumulation upon treatment with the diphenyl ether-type herbicide acifluorfen. Leaf disc incubation and foliar spraying with acifluorfen indicated the lower susceptibility of the transformants against the herbicide. The resistance to acifluorfen is conferred by overexpression of the plastidic isoform of protoporphyrinogen oxidase. The in vitro activity of this enzyme extracted from plastids of selected transgenic lines was at least five times higher than the control activity. Herbicide treatment that is normally inhibitory to protoporphyrinogen IX oxidase did not significantly impair the catalytic reaction in transgenic plants and, therefore, did not cause photodynamic damage in leaves. Therefore, overproduction of protoporphyrinogen oxidase neutralizes the herbicidal action, prevents the accumulation of the substrate protoporphyrinogen IX, and consequently abolishes the light-dependent phytotoxicity of acifluorfen.
Collapse
Affiliation(s)
- I Lermontova
- Institut f]ur Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | | |
Collapse
|
38
|
Watanabe, Che, Iwano, Takayama, Nakano, Yoshida, Isogai. Molecular characterization of photomixotrophic tobacco cells resistant to protoporphyrinogen oxidase-inhibiting herbicides. PLANT PHYSIOLOGY 1998; 118:751-8. [PMID: 9808719 PMCID: PMC34785 DOI: 10.1104/pp.118.3.751] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/1998] [Accepted: 08/06/1998] [Indexed: 05/22/2023]
Abstract
Peroxidizing herbicides inhibit protoporphyrinogen oxidase (Protox), the last enzyme of the common branch of the chlorophyll- and heme-synthesis pathways. There are two isoenzymes of Protox, one of which is located in the plastid and the other in the mitochondria. Sequence analysis of the cloned Protox cDNAs showed that the deduced amino acid sequences of plastidial and mitochondrial Protox in wild-type cells and in herbicide-resistant YZI-1S cells are the same. The level of plastidial Protox mRNA was the same in both wild-type and YZI-1S cells, whereas the level of mitochondrial Protox mRNA YZI-1S cells was up to 10 times the level of wild-type cells. Wild-type cells were observed by fluorescence microscopy to emit strong autofluorescence from chlorophyll. Only a weak fluorescence signal was observed from chlorophyll in YZI-1S cells grown in the Protox inhibitor N-(4-chloro-2-fluoro-5-propagyloxy)-phenyl-3,4,5, 6-tetrahydrophthalimide. Staining with DiOC6 showed no visible difference in the number or strength of fluorescence between wild-type and YZI-1S mitochondria. Electron micrography of YZI-1S cells showed that, in contrast to wild-type cells, the chloroplasts of YZI-1S cells grown in the presence of N-(4-chloro-2-fluoro-5-propagyloxy)-phenyl-3,4,5, 6-tetrahydrophthalimide exhibited no grana stacking. These results suggest that the herbicide resistance of YZI-1S cells is due to the overproduction of mitochondrial Protox.
Collapse
Affiliation(s)
- Watanabe
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama Ikoma, Nara 630-0101, Japan (N.W., F.-S.C., M.I., S.T., A.I.)
| | | | | | | | | | | | | |
Collapse
|
39
|
Randolph-Anderson BL, Sato R, Johnson AM, Harris EH, Hauser CR, Oeda K, Ishige F, Nishio S, Gillham NW, Boynton JE. Isolation and characterization of a mutant protoporphyrinogen oxidase gene from Chlamydomonas reinhardtii conferring resistance to porphyric herbicides. PLANT MOLECULAR BIOLOGY 1998; 38:839-859. [PMID: 9862501 DOI: 10.1023/a:1006085026294] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In plant and algal cells, inhibition of the enzyme protoporphyrinogen oxidase (Protox) by the N-phenyl heterocyclic herbicide S-23142 causes massive protoporphyrin IX accumulation, resulting in membrane deterioration and cell lethality in the light. We have identified a 40.4 kb genomic fragment encoding S-23142 resistance by using transformation to screen an indexed cosmid library made from nuclear DNA of the dominant rs-3 mutant of Chlamydomonas reinhardtii. A 10.0 kb HindIII subclone (Hind10) of this insert yields a high frequency of herbicide-resistant transformants, consistent with frequent non-homologous integration of the complete RS-3 gene. A 3.4 kb XhoI subfragment (Xho3.4) yields rare herbicide-resistant transformants, suggestive of homologous integration of a portion of the coding sequence containing the mutation. Molecular and genetic analysis of the transformants localized the rs-3 mutation conferring S-23142 resistance to the Xho3.4 fragment, which was found to contain five putative exons encoding a protein with identity to the C-terminus of the A rabidopsis Protox enzyme. A cDNA clone containing a 1698 bp ORF that encodes a 563 amino acid peptide with 51% and 53% identity to Arabidopsis and tobacco Protox I, respectively, was isolated from a wild-type C. reinhardtii library. Comparison of the wild-type cDNA sequence with the putative exon sequences present in the mutant Xho3.4 fragment revealed a G-->A change at 291 in the first putative exon, resulting in a Val-->Met substitution at a conserved position equivalent to Val-389 of the wild-type C. reinhardtii cDNA. A sequence comparison of genomic Hind10 fragments from C. reinhardtii rs-3 and its wild-type progenitor CC-407 showed this G-->A change at the equivalent position (5751) within exon 10.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- Chlamydomonas reinhardtii/drug effects
- Chlamydomonas reinhardtii/enzymology
- Chlamydomonas reinhardtii/genetics
- Clone Cells/drug effects
- Cloning, Molecular
- Cosmids
- DNA/chemistry
- DNA/genetics
- DNA Mutational Analysis
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Drug Resistance
- Exons
- Genes/drug effects
- Genes/genetics
- Genomic Library
- Herbicides/pharmacology
- Molecular Sequence Data
- Mutation
- Nucleic Acid Hybridization
- Oxidoreductases/genetics
- Oxidoreductases Acting on CH-CH Group Donors
- Protoporphyrinogen Oxidase
- RNA/analysis
- RNA/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Transcription, Genetic
- Transformation, Genetic
Collapse
|
40
|
Dailey TA, Dailey HA. Identification of an FAD superfamily containing protoporphyrinogen oxidases, monoamine oxidases, and phytoene desaturase. Expression and characterization of phytoene desaturase of Myxococcus xanthus. J Biol Chem 1998; 273:13658-62. [PMID: 9593705 DOI: 10.1074/jbc.273.22.13658] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A large number of FAD-containing proteins have previously been shown to contain a signature sequence that is referred to as the dinucleotide binding motif. Protoporphyrinogen oxidase (PPO), the penultimate enzyme of the heme biosynthetic pathway, is an FAD-containing protein that catalyzes the six electron oxidation of protoporphyrinogen IX. Sequence analysis demonstrates the presence of the dinucleotide binding motif at the amino-terminal end of the protein. Analysis of the current data base reveals that PPO has significant sequence similarities to mammalian monoamine oxidases (MAO) A and B, as well as to bacterial and plant phytoene desaturases (PHD). Previously MAOs have been shown to contain FAD, but there are no publications demonstrating the presence of FAD in purified PHDs. We have carried out the expression and purification of PHD from the bacterium Myxococcus xanthus and demonstrate the presence of noncovalently bound FAD. Sequence analysis demonstrate that PPO is closely related to bacterial PHDs and more distantly to plant PHDs and animal MAOs. Interestingly bacterial MAOs are no more closely related to PPOs, PHDs, and animal MAO's than they are to the unrelated Pseudomonas phenyl hydroxylase. All of the related sequences contain not only the basic putative dinucleotide binding motif that is found frequently for FAD-binding proteins, but they also have high similarity in an approximately 60-residue long region that extends beyond the dinucleotide motif. This region is not found among any other proteins in the current data base and, therefore, we propose that this region is a signature motif for a superfamily of FAD-containing enzymes that is comprised of PPOs, animal MAOs, and PHDs.
Collapse
Affiliation(s)
- T A Dailey
- Department of Microbiology, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229, USA.
| | | |
Collapse
|
41
|
Dailey HA, Dailey TA. Protoporphyrinogen oxidase of Myxococcus xanthus. Expression, purification, and characterization of the cloned enzyme. J Biol Chem 1996; 271:8714-8. [PMID: 8621504 DOI: 10.1074/jbc.271.15.8714] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Protoporphyrinogen oxidase (EC 1.3.3.4) catalyzes the six electron oxidation of protoporphyrinogen IX to protoporphyrin IX. The enzyme from the bacterium Myxococcus xanthus has been cloned, expressed, purified, and characterized. The protein has been expressed in Escherichia coli using a Tac promoter-driven expression plasmid and purified to apparent homogeneity in a rapid procedure that yields approximately 10 mg of purified protein per liter of culture. Based upon the deduced amino acid sequence the molecular weight of a single subunit is 49,387. Gel permeation chromatography in the presence of 0.2% n-octyl-beta-D-glucopyranoside yields a molecular weight of approximately 100,000 while SDS gel electrophoresis shows a single band at 50,000. The native enzyme is, thus, a homodimer. The purified protein contains a non-covalently bound FAD but no detectable redox active metal. The M. xanthus enzyme utilizes protoporphyrinogen IX, but not coproporphyrinogen III, as substrate and produces 3 mol of H2O2/mol of protoporphyrin. The apparent Km and kcat for protoporphyrinogen in assays under atmospheric concentrations of oxygen are 1.6 microM and 5.2 min-1, respectively. The diphenyl ether herbicide acifluorfen at 1 microM strongly inhibits the enzyme's activity.
Collapse
Affiliation(s)
- H A Dailey
- Department of Microbiology, University of Georgia, Athens, 30602-2605, USA
| | | |
Collapse
|
42
|
Dailey TA, Dailey HA. Human protoporphyrinogen oxidase: expression, purification, and characterization of the cloned enzyme. Protein Sci 1996; 5:98-105. [PMID: 8771201 PMCID: PMC2143237 DOI: 10.1002/pro.5560050112] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Protoporphyrinogen oxidase (E.C.1.3.3.4) catalyzes the oxygen-dependent oxidation of protoporphyrinogen IX to protoporphyrin IX. The enzyme from human placenta has been cloned, sequenced, expressed in Escherichia coli, purified to homogeneity, and characterized. Northern blot analysis of eight different human tissues show evidence for only a single transcript in all tissue types and the size of this transcript is approximately 1.8 kb. The human cDNA has been inserted into an expression vector for E. coli and the protein produced at high levels in these cells. The protein is found in both membrane and cytoplasmic fractions. The enzyme was purified to homogeneity in the presence of detergents using a metal chelate affinity column. The purified protein is a homodimer composed of subunits of molecular weight of 51,000. The enzyme contains one noncovalently bound FAD per dimer, has a monomer extinction coefficient of 48,000 at 270 nm and contains no detectable redox active metals. The apparent K(m) and Kcat for protoporphyrinogen IX are 1.7 microM and 10.5 min-1, respectively. The enzyme does not use coproporphyrinogen III as a substrate and is inhibited by micromolar concentrations of the herbicide acifluorfen. Protein database searches reveal significant homology between protoporphyrinogen oxidase and monoamine oxidase.
Collapse
Affiliation(s)
- T A Dailey
- Department of Microbiology, University of Georgia, Athens 30602-2605, USA.
| | | |
Collapse
|
43
|
Camadro JM, Thome F, Brouillet N, Labbe P. Purification and properties of protoporphyrinogen oxidase from the yeast Saccharomyces cerevisiae. Mitochondrial location and evidence for a precursor form of the protein. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31604-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Matringe M, Camadro J, Joyard J, Douce R. Localization of ferrochelatase activity within mature pea chloroplasts. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36567-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
McKersie BD, Chen Y, de Beus M, Bowley SR, Bowler C, Inzé D, D'Halluin K, Botterman J. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). PLANT PHYSIOLOGY 1993; 103:1155-63. [PMID: 8290627 PMCID: PMC159101 DOI: 10.1104/pp.103.4.1155] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Activated oxygen or oxygen free radicals have been implicated in a number of physiological disorders in plants including freezing injury. Superoxide dismutase (SOD) catalyzes the dismutation of superoxide into O2 and H2O2 and thereby reduces the titer of activated oxygen molecules in the cell. To further examine the relationship between oxidative and freezing stresses, the expression of SOD was modified in transgenic alfalfa (Medicago sativa L.). The Mn-SOD cDNA from Nicotiana plumbaginifolia under the control of the cauliflower mosaic virus 35S promoter was introduced into alfalfa using Agrobacterium tumefaciens-mediated transformation. Two plasmid vectors, pMitSOD and pChlSOD, contained a chimeric Mn-SOD construct with a transit peptide for targeting to the mitochondria or one for targeting to the chloroplast, respectively. The putatively transgenic plants were selected for resistance to kanamycin and screened for neomycin phosphotransferase activity and the presence of an additional Mn-SOD isozyme. Detailed analysis of a set of four selected transformants indicated that some had enhanced SOD activity, increased tolerance to the diphenyl ether herbicide, acifluorfen, and increased regrowth after freezing stress. The F1 progeny of one line, RA3-ChlSOD-30, were analyzed by SOD isozyme activity, by polymerase chain reaction for the Mn-SOD gene, and by polymerase chain reaction for the neo gene. RA3-ChlSOD-30 had three sites of insertion of pChlSOD, but only one gave a functional Mn-SOD isozyme; the other two were apparently partial insertions. The progeny with a functional Mn-SOD transgene had more rapid regrowth following freezing stress than those progeny lacking the functional Mn-SOD transgene, suggesting that Mn-SOD serves a protective role by minimizing oxygen free radical production after freezing stress.
Collapse
Affiliation(s)
- B D McKersie
- Department of Crop Science, University of Guelph, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Lee HJ, Duke MV, Duke SO. Cellular Localization of Protoporphyrinogen-Oxidizing Activities of Etiolated Barley (Hordeum vulgare L.) Leaves (Relationship to Mechanism of Action of Protoporphyrinogen Oxidase-Inhibiting Herbicides). PLANT PHYSIOLOGY 1993; 102:881-889. [PMID: 12231874 PMCID: PMC158860 DOI: 10.1104/pp.102.3.881] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Seven-day-old, etiolated barley (Hordeum vulgare L. var Post) leaves were fractionated into crude and purified etioplast, microsomal, and plasma membrane (PM) fractions. Protoporphyrinogen oxidase (Protox) specific activities of crude etioplast, purified etioplast, microsome, and PM fractions were approximately 29, 26, 23, and 12 nmol h-1 mg-1 of protein, respectively. The herbicide acifluorfen-methyl (AFM), at 1 [mu]M, inhibited Protox activity from crude etioplasts, purified etioplasts, microsomes, and PM by 58, 59, 23, and 0% in the absence of reductants. Reductants (ascorbate, glutathione [GSH], dithiothreitol [DTT], and NADPH) individually reduced the Protox activity of all fractions, except that microsomal Protox activity was slightly stimulated by NADPH. Ascorbate, GSH, or a combination of the two reductants enhanced Protox inhibition by AFM, and AFM inhibition of Protox was greatest in all fractions with DTT. NADPH enhanced AFM inhibition significantly only in etioplast fractions. Uroporphyrinogen I (Urogen I) and coproporphyrinogen I (Coprogen I) oxidase activities were found in all fractions; however, etioplast fractions had significantly more substrate specificity for protoporphyrinogen IX (Protogen IX) than the other fractions. Urogen I and Coprogen I oxidase activities were unaffected by AFM in all fractions, and 2 mM DTT almost completely inhibited these activities from all fractions. Diethyldithiocarbamate inhibited PM Protox activity by 62% but had less effect on microsome and little or no effect on etioplast Protox. Juglone and duroquinone stimulated microsomal and PM Protox activity, whereas the lesser effect of these quinones on etioplast Protox activity was judged to be due to PM and/or microsomal contaminants. These data indicate that there are microsomal and PM Protogen IX-oxidizing activities that are not the same as those associated with the etioplast and that these activities are not inhibited in vivo by AFM. In summary, these data support the view that the primary source of high protoporphyrin IX concentrations in AFM-treated plant tissues is from Protogen IX exported by plastids and oxidized by AFM-resistant extraorganellar oxidases.
Collapse
Affiliation(s)
- H. J. Lee
- United States Department of Agriculture/Agricultural Research Service, Southern Weed Science Laboratory, Stoneville, Mississippi 38776
| | | | | |
Collapse
|
47
|
|
48
|
Hallahan BJ, Camilleri P, Smith A, Bowyer JR. Mode of Action Studies on a Chiral Diphenyl Ether Peroxidizing Herbicide: Correlation between Differential Inhibition of Protoporphyrinogen IX Oxidase Activity and Induction of Tetrapyrrole Accumulation by the Enantiomers. PLANT PHYSIOLOGY 1992; 100:1211-6. [PMID: 16653107 PMCID: PMC1075768 DOI: 10.1104/pp.100.3.1211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The nitrodiphenyl ether herbicide 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitroacetophenone oxime-O-(acetic acid, methyl ester) (DPEI) induced an abnormal accumulation of protoporphyrin IX in darkness in the green alga Chlamydomonas reinhardtii, as determined by high-performance liquid chromatography and spectrofluorimetry. It also inhibited the increase in cell density of the alga in light-grown cultures with an I(50) (concentration required to decrease cell density increase to 50% of the noninhibited control value) of 0.16 mum. The relative ability of four peroxidizing diphenyl ether herbicides to cause tetrapyrrole accumulation in C. reinhardtii correlated qualitatively with their ability to inhibit the increase in cell density in light-grown cultures. The purified S(-) enantiomer of the optically active phthalide DPE 5-[2-chloro-4-(trifluoromethyl)phenoxy]-3-methylphthalide (DPEIII), which has greater herbicidal activity than the R(+) isomer, induces a 4- to 5-fold greater tetrapyrrole accumulation than the R(+) isomer. The I(50) for inhibition of increase in cell density in light-grown cultures of C. reinhardtii by the S(-) isomer (0.019 mum) is less than 25% of that for the R(+) isomer. DPEIII inhibits protoporphyrinogen IX oxidase activity in pea (Pisum sativum) etioplast lysates, with the S(-) enantiomer showing considerably greater potency than the R(+) isomer and the racemic mixture showing a potency intermediate between the two. The results indicate that the site at which DPEs inhibit protoporphyrinogen IX oxidase shows chiral discrimination and provide further evidence for the link between inhibition of this enzyme, protoporphyrin IX accumulation, and the phytotoxicity of DPE herbicides.
Collapse
Affiliation(s)
- B J Hallahan
- Department of Biochemistry, Royal Holloway and Bedford New College, University of London, Egham Hill, Egham, Surrey, TW20 0EX, United Kingdom
| | | | | | | |
Collapse
|
49
|
Sherman TD, Becerril JM, Matsumoto H, Duke MV, Jacobs JM, Jacobs NJ, Duke SO. Physiological basis for differential sensitivities of plant species to protoporphyrinogen oxidase-inhibiting herbicides. PLANT PHYSIOLOGY 1991; 97:280-7. [PMID: 16668383 PMCID: PMC1080995 DOI: 10.1104/pp.97.1.280] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
With a leaf disc assay, 11 species were tested for effects of the herbicide acifluorfen on porphyrin accumulation in darkness and subsequent electrolyte leakage and photobleaching of chlorophyll after exposure to light. Protoporphyrin IX (Proto IX) was the only porphyrin that was substantially increased by the herbicide in any of the species. However, there was a wide range in the amount of Proto IX accumulation caused by 0.1 millimolar acifluorfen between species. Within species, there was a reduced effect of the herbicide in older tissues. Therefore, direct quantitative comparisons between species are difficult. Nevertheless, when data from different species and from tissues of different age within a species were plotted, there was a curvilinear relationship between the amount of Proto IX caused to accumulate during 20 hours of darkness and the amount of electrolyte leakage or chlorophyll photobleaching caused after 6 and 24 hours of light, respectively, following the dark period. Herbicidal damage plateaued at about 10 nanomoles of Proto IX per gram of fresh weight. Little difference was found between in vitro acifluorfen inhibition of protoporphyrinogen oxidase (Protox) of plastid preparations of mustard, cucumber, and morning glory, three species with large differences in their susceptibility at the tissue level. Mustard, a highly tolerant species, produced little Proto IX in response to the herbicide, despite having a highly susceptible Protox. Acifluorfen blocked carbon flow from delta-aminolevulinic acid to protochlorophyllide in mustard, indicating that it inhibits Protox in vivo. Increasing delta-aminolevulinic acid concentrations (33-333 micromolar) supplied to mustard with 0.1 millimolar acifluorfen increased Proto IX accumulation and herbicidal activity, demonstrating that mustard sensitivity to Proto IX was similar to other species. Differential susceptibility to acifluorfen of the species examined in this study appears to be due in large part to differences in Proto IX accumulation in response to the herbicide. In some cases, differences in Proto IX accumulation appear to be due to differences in activity of the porphyrin pathway.
Collapse
Affiliation(s)
- T D Sherman
- U.S. Department of Agriculture, Agricultural Research Service, Southern Weed Science Laboratory, P.O. Box 350, Stoneville, Mississippi 38776
| | | | | | | | | | | | | |
Collapse
|