1
|
Yamanashi T, Uchiyama T, Saito S, Higashi T, Ikeda H, Kikunaga H, Yamagami M, Ishimaru Y, Uozumi N. Potassium transporter KUP9 participates in K + distribution in roots and leaves under low K + stress. STRESS BIOLOGY 2022; 2:52. [PMID: 37676337 PMCID: PMC10441886 DOI: 10.1007/s44154-022-00074-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/09/2022] [Indexed: 09/08/2023]
Abstract
Potassium (K) is a major essential element in plant cells, and KUP/HAK/KT-type K+ transporters participate in the absorption of K+ into roots and in the long-distance transport to above-ground parts. In Arabidopsis thaliana, KUP9 is involved in the transport of K+ and Cs+ in roots. In this study, we investigated KUP9 function in relation to the K+ status of the plant. The expression of KUP9 was upregulated in older leaves on K+-depleted medium, compared to the expression of the other 12 KUP genes in the KUP/HAK/KT family in Arabidopsis. When grown on low K+ medium, the kup9 mutant had reduced chlorophyll content in seedlings and chlorosis in older rosette leaves. Tissue-specific expression of KUP9 determined by KUP9 promoter:GUS assay depended on the K+ status of the plants: In K+ sufficient medium, KUP9 was expressed in the leaf blade towards the leaf tip, whereas in K+ depleted medium expression was mainly found in the petioles. In accordance with this, K+ accumulated in the roots of kup9 plants. The short-term 43K+ tracer measurement showed that 43K was transferred at a lower rate in roots and shoots of kup9, compared to the wild type. These data show that KUP9 participates in the distribution of K+ in leaves and K+ absorption in roots under low K+ conditions.
Collapse
Affiliation(s)
- Taro Yamanashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Takeshi Uchiyama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Shunya Saito
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Taiki Higashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Hayato Ikeda
- Research Center for Electron Photon Science, Tohoku University, Sendai, 980-0826, Japan
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, 980-8578, Japan
| | - Hidetoshi Kikunaga
- Research Center for Electron Photon Science, Tohoku University, Sendai, 980-0826, Japan
| | - Mutsumi Yamagami
- Institute for Environmental Sciences, Rokkasho, Kamikita, Aomori, 039-3212, Japan
| | - Yasuhiro Ishimaru
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan.
| |
Collapse
|
2
|
Li Q, Du W, Tian X, Jiang W, Zhang B, Wang Y, Pang Y. Genome-wide characterization and expression analysis of the HAK gene family in response to abiotic stresses in Medicago. BMC Genomics 2022; 23:791. [PMID: 36456911 PMCID: PMC9714174 DOI: 10.1186/s12864-022-09009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
The high-affinity K+ transporter (HAK) family plays a vital role in K+ uptake and transport as well as in salt and drought stress responses. In the present study, we identified 22 HAK genes in each Medicago truncatula and Medicago sativa genome. Phylogenetic analysis suggested that these HAK proteins could be divided into four clades, and the members of the same subgroup share similar gene structure and conserved motifs. Many cis-acting elements related with defense and stress were found in their promoter region. In addition, gene expression profiles analyzed with genechip and transcriptome data showed that these HAK genes exhibited distinct expression pattern in different tissues, and in response to salt and drought treatments. Furthermore, co-expression analysis showed that 6 homologous HAK hub gene pairs involved in direct network interactions. RT-qPCR verified that the expression level of six HAK gene pairs was induced by NaCl and mannitol treatment to different extents. In particular, MtHK2/7/12 from M. truncatula and MsHAK2/6/7 from M. sativa were highly induced. The expression level of MsHAK1/2/11 determined by RT-qPCR showed significantly positive correlation with transcriptome data. In conclusion, our study shows that HAK genes play a key role in response to various abiotic stresses in Medicago, and the highly inducible candidate HAK genes could be used for further functional studies and molecular breeding in Medicago.
Collapse
Affiliation(s)
- Qian Li
- grid.410727.70000 0001 0526 1937Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193 Beijing, China ,grid.413251.00000 0000 9354 9799West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, 830052 Urumqi, China
| | - Wenxuan Du
- grid.410727.70000 0001 0526 1937Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Xinge Tian
- grid.262246.60000 0004 1765 430XQinghai Academy of Agriculture and Forestry Sciences, Qinghai University, 810016 Xining, Qinghai, China
| | - Wenbo Jiang
- grid.410727.70000 0001 0526 1937Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Bo Zhang
- grid.413251.00000 0000 9354 9799West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, 830052 Urumqi, China
| | - Yuxiang Wang
- grid.413251.00000 0000 9354 9799West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, 830052 Urumqi, China
| | - Yongzhen Pang
- grid.410727.70000 0001 0526 1937Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| |
Collapse
|
3
|
Wang F, Tan WF, Song W, Yang ST, Qiao S. Transcriptome analysis of sweet potato responses to potassium deficiency. BMC Genomics 2022; 23:655. [PMID: 36109727 PMCID: PMC9479357 DOI: 10.1186/s12864-022-08870-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
Background As one of three essential nutrients, potassium is regarded as a main limiting factor for growth and development in plant. Sweet potato (Ipomoea batatas L.) is one of seven major food crops grown worldwide, and is both a nutrient-rich food and a bioenergy crop. It is a typical ‘K-favoring’ crop, and the level of potassium ion (K+) supplementation directly influences its production. However, little is known about the transcriptional changes in sweet potato genes under low-K+ conditions. Here, we analyzed the transcriptomic profiles of sweet potato roots in response to K+ deficiency to determine the effect of low-K+ stress on this economically important crop. Results The roots of sweet potato seedlings with or without K+ treatment were harvested and used for transcriptome analyses. The results showed 559 differently expressed genes (DEGs) in low and high K+ groups. Among the DEGs, 336 were upregulated and 223 were downregulated. These DEGs were involved in transcriptional regulation, calcium binding, redox-signaling, biosynthesis, transport, and metabolic process. Further analysis revealed previously unknow genes involved in low-K+ stress, which could be investigated further to improve low K+ tolerance in plants. Confirmation of RNA-sequencing results using qRT-PCR displayed a high level of consistency between the two experiments. Analysis showed that many auxin-, ethylene- and jasmonic acid-related genes respond to K+ deficiency, suggesting that these hormones have important roles in K+ nutrient signaling in sweet potato. Conclusions According to the transcriptome data of sweet potato, various DEGs showed transcriptional changes in response to low-K+ stress. However, the expression level of some kinases, transporters, transcription factors (TFs), hormone-related genes, and plant defense-related genes changed significantly, suggesting that they have important roles during K+ deficiency. Thus, this study identifies potential genes for genetic improvement of responses to low-K+ stress and provides valuable insight into the molecular mechanisms regulating low K+ tolerance in sweet potato. Further research is required to clarify the function of these DEGs under low-K+ stress. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08870-5.
Collapse
|
4
|
Yeast Trk1 Potassium Transporter Gradually Changes Its Affinity in Response to Both External and Internal Signals. J Fungi (Basel) 2022; 8:jof8050432. [PMID: 35628688 PMCID: PMC9144525 DOI: 10.3390/jof8050432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 01/04/2023] Open
Abstract
Yeasts need a high intracellular concentration of potassium to grow. The main K+ uptake system in Saccharomyces cerevisiae is the Trk1 transporter, a complex protein with four MPM helical membrane motifs. Trk1 has been shown to exist in low- or high-affinity modes, which reflect the availability of potassium in the environment. However, when and how the affinity changes, and whether the potassium availability is the only signal for the affinity switch, remains unknown. Here, we characterize the Trk1 kinetic parameters under various conditions and find that Trk1’s KT and Vmax change gradually. This gliding adjustment is rapid and precisely reflects the changes in the intracellular potassium content and membrane potential. A detailed characterization of the specific mutations in the P-helices of the MPM segments reveals that the presence of proline in the P-helix of the second and third MPM domain (F820P and L949P) does not affect the function of Trk1 in general, but rather specifically prevents the transporter’s transition to a high-affinity state. The analogous mutations in the two remaining MPM domains (L81P and L1115P) result in a mislocalized and inactive protein, highlighting the importance of the first and fourth P-helices in proper Trk1 folding and activity at the plasma membrane.
Collapse
|
5
|
Shan N, Zhang Y, Xu Y, Yuan X, Wan C, Chen C, Chen J, Gan Z. Ethylene-induced potassium transporter AcKUP2 gene is involved in kiwifruit postharvest ripening. BMC PLANT BIOLOGY 2022; 22:108. [PMID: 35264115 PMCID: PMC8905847 DOI: 10.1186/s12870-022-03498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Potassium (K) is important in the regulation of plant growth and development. It is the most abundant mineral element in kiwifruit, and its content increases during fruit ripening. However, how K+ transporter works in kiwifruit postharvest maturation is not yet clear. RESULTS Here, 12 K+ transporter KT/HAK/KUP genes, AcKUP1 ~ AcKUP12, were isolated from kiwifruit, and their phylogeny, genomic structure, chromosomal location, protein properties, conserved motifs and cis-acting elements were analysed. Transcription analysis revealed that AcKUP2 expression increased rapidly and was maintained at a high level during postharvest maturation, consistent with the trend of K content; AcKUP2 expression was induced by ethylene, suggesting that AcKUP2 might play a role in ripening. Fluorescence microscopy showed that AcKUP2 is localised in the plasma membrane. Cis-elements, including DER or ethylene response element (ERE) responsive to ethylene, were found in the AcKUP2 promoter sequence, and ethylene significantly enhanced the AcKUP2 promoter activity. Furthermore, we verified that AcERF15, an ethylene response factor, directly binds to the AcKUP2 promoter to promote its expression. Thus, AcKUP2 may be an important potassium transporter gene which involved in ethylene-regulated kiwifruit postharvest ripening. CONCLUSIONS Therefore, our study establishes the first genome-wide analysis of the kiwifruit KT/HAK/KUP gene family and provides valuable information for understanding the function of the KT/HAK/KUP genes in kiwifruit postharvest ripening.
Collapse
Affiliation(s)
- Nan Shan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yupei Zhang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yunhe Xu
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xin Yuan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 330075, China
| | - Zengyu Gan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
6
|
Malakar P, Chattopadhyay D. Adaptation of plants to salt stress: the role of the ion transporters. JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY 2021; 30:668-683. [PMID: 0 DOI: 10.1007/s13562-021-00741-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/28/2021] [Indexed: 05/27/2023]
|
7
|
Lhamo D, Wang C, Gao Q, Luan S. Recent Advances in Genome-wide Analyses of Plant Potassium Transporter Families. Curr Genomics 2021; 22:164-180. [PMID: 34975289 PMCID: PMC8640845 DOI: 10.2174/1389202922666210225083634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/30/2020] [Accepted: 01/26/2021] [Indexed: 12/19/2022] Open
Abstract
Plants require potassium (K+) as a macronutrient to support numerous physiological processes. Understanding how this nutrient is transported, stored, and utilized within plants is crucial for breeding crops with high K+ use efficiency. As K+ is not metabolized, cross-membrane transport becomes a rate-limiting step for efficient distribution and utilization in plants. Several K+ transporter families, such as KUP/HAK/KT and KEA transporters and Shaker-like and TPK channels, play dominant roles in plant K+ transport processes. In this review, we provide a comprehensive contemporary overview of our knowledge about these K+ transporter families in angiosperms, with a major focus on the genome-wide identification of K+ transporter families, subcellular localization, spatial expression, function and regulation. We also expanded the genome-wide search for the K+ transporter genes and examined their tissue-specific expression in Camelina sativa, a polyploid oil-seed crop with a potential to adapt to marginal lands for biofuel purposes and contribution to sustainable agriculture. In addition, we present new insights and emphasis on the study of K+ transporters in polyploids in an effort to generate crops with high K+ Utilization Efficiency (KUE).
Collapse
Affiliation(s)
- Dhondup Lhamo
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Chao Wang
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Qifei Gao
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Sheng Luan
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
8
|
Xu Y, Liu H, Gao Y, Xiong R, Wu M, Zhang K, Xiang Y. The TCP transcription factor PeTCP10 modulates salt tolerance in transgenic Arabidopsis. PLANT CELL REPORTS 2021; 40:1971-1987. [PMID: 34392380 DOI: 10.1007/s00299-021-02765-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
PeTCP10 can be induced by salt stresses and play important regulation roles in salt stresses response in transgenic Arabidopsis. Salt stress is one of the major adverse environmental factors that affect normal plant development and growth. PeTCP10, a Class I TCP member, was markedly expressed in moso bamboo mature leaf, root and stem under normal conditions and also induced by salt stress. Overexpressed PeTCP10 was found to enhance salt tolerance of transgenic Arabidopsis at the vegetative growth stage. It was also found capable to increase relative water content, while decreasing relative electrolyte leakage and Na+ accumulation of transgenic Arabidopsis versus wild-type (WT) plants at high-salt conditions. In addition, it improved antioxidant capacity of transgenic Arabidopsis plants by promoting catalase activity and enhanced their H2O2 tolerance. In contrast to WT plants, transcriptome analysis demonstrated that multiple genes related to abscisic acid, salt and H2O2 response were induced after NaCl treatment in transgenic plants. Meanwhile, overexpressed PeTCP10 improved the tolerance of abscisic acid. Moreover, luciferase reporter assay results showed that PeTCP10 is able to directly activate the expression of BT2 in transgenic plants. In contrary, the germination rates of transgenic plants were significantly lower than those of WT plants under high-NaCl conditions. Both primary root length and survival rate at the seedling stage are also found lower in transgenic plants than in WT plants. It is concluded that overexpressed PeTCP10 enhances salt stress tolerance of transgenic plants at the vegetative growth stage, and it also improves salt sensitiveness in both germination and seedling stages. These research results will contribute to further understand the functions of TCPs in abiotic stress response.
Collapse
Affiliation(s)
- Yuzeng Xu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Huanlong Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yameng Gao
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Rui Xiong
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Kaimei Zhang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
9
|
Lhamo D, Luan S. Potential Networks of Nitrogen-Phosphorus-Potassium Channels and Transporters in Arabidopsis Roots at a Single Cell Resolution. FRONTIERS IN PLANT SCIENCE 2021; 12:689545. [PMID: 34220911 PMCID: PMC8242960 DOI: 10.3389/fpls.2021.689545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/24/2021] [Indexed: 05/08/2023]
Abstract
Nitrogen (N), phosphorus (P), and potassium (K) are three major macronutrients essential for plant life. These nutrients are acquired and transported by several large families of transporters expressed in plant roots. However, it remains largely unknown how these transporters are distributed in different cell-types that work together to transfer the nutrients from the soil to different layers of root cells and eventually reach vasculature for massive flow. Using the single cell transcriptomics data from Arabidopsis roots, we profiled the transcriptional patterns of putative nutrient transporters in different root cell-types. Such analyses identified a number of uncharacterized NPK transporters expressed in the root epidermis to mediate NPK uptake and distribution to the adjacent cells. Some transport genes showed cortex- and endodermis-specific expression to direct the nutrient flow toward the vasculature. For long-distance transport, a variety of transporters were shown to express and potentially function in the xylem and phloem. In the context of subcellular distribution of mineral nutrients, the NPK transporters at subcellular compartments were often found to show ubiquitous expression patterns, which suggests function in house-keeping processes. Overall, these single cell transcriptomic analyses provide working models of nutrient transport from the epidermis across the cortex to the vasculature, which can be further tested experimentally in the future.
Collapse
Affiliation(s)
- Dhondup Lhamo
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | | |
Collapse
|
10
|
Cai K, Zeng F, Wang J, Zhang G. Identification and characterization of HAK/KUP/KT potassium transporter gene family in barley and their expression under abiotic stress. BMC Genomics 2021; 22:317. [PMID: 33932999 PMCID: PMC8088664 DOI: 10.1186/s12864-021-07633-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 04/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND HAK/KUP/KT (High-affinity K+ transporters/K+ uptake permeases/K+ transporters) is the largest potassium transporter family in plants, and plays pivotal roles in K+ uptake and transport, as well as biotic and abiotic stress responses. However, our understanding of the gene family in barley (Hordeum vulgare L.) is quite limited. RESULTS In the present study, we identified 27 barley HAK/KUP/KT genes (hereafter called HvHAKs) through a genome-wide analysis. These HvHAKs were unevenly distributed on seven chromosomes, and could be phylogenetically classified into four clusters. All HvHAK protein sequences possessed the conserved motifs and domains. However, the substantial difference existed among HAK members in cis-acting elements and tissue expression patterns. Wheat had the most orthologous genes to barley HAKs, followed by Brachypodium distachyon, rice and maize. In addition, six barley HAK genes were selected to investigate their expression profiling in response to three abiotic stresses by qRT-PCR, and their expression levels were all up-regulated under salt, hyperosmotic and potassium deficiency treatments. CONCLUSION Twenty seven HAK genes (HvHAKs) were identified in barley, and they differ in tissue expression patterns and responses to salt stress, drought stress and potassium deficiency.
Collapse
Affiliation(s)
- Kangfeng Cai
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.,Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Fanrong Zeng
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Junmei Wang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Guoping Zhang
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Genome-wide characterization and expression analysis of HAK K + transport family in Ipomoea. 3 Biotech 2021; 11:3. [PMID: 33269187 DOI: 10.1007/s13205-020-02552-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/12/2020] [Indexed: 10/22/2022] Open
Abstract
The potassium transporter high-affinity K+ transporter/K+ uptake permease/K+ transporter (HAK/KUP/KT) family plays a vital role in potassium uptake, and potassium ion (K+)-mediated environmental stress. In the present study, we identified 22 IbHAK/KUP/KT (HAK) genes in sweet potato [Ipomoea batata (L.) Lam] and the same number of HAK genes from sweet potato wild relative Ipomoea trifida. Phylogeny analysis indicated that the HAKs can be divided into five clades. Chromosomal distribution and genome synteny analyses revealed two tandem-duplicated gene pairs IbHAK16/17 and IbHAK17/18 on chromosomes 13 and eight segmental-duplicated gene pairs on chromosomes 1, 3, 5, 8, 10, 12, 14 among the IbHAK gene family. Eleven orthologous HAK gene pairs between I. batata and I. trifida were involved in the duplication of genomic blocks based on comparative genomic analysis. The Ka/Ks ratios of these IbHAK genes ranged from 0.02 to 0.55(< 1), further indicated that purifying selection was the primary force driving the evolution of HAKs in Ipomoea. A heat map based on RNA-seq data showed that 13 HAKs in Xushu32 (a K+-tolerant sweet potato genotype) and 10 HAKs in Ningzi1 (a K+-sensitive sweet potato genotype) in response to K+ deficiency stress. Quantitative real-time PCR (qRT-PCR) analysis revealed IbHAK2, -3, -8, -10, -11, -18, -19, and -21 were induced in both Xushu32 and Ningzi1 under low K+ stress. Compared with other IbHAK genes, IbHAK8 showed more strongly upregulation after exposure to drought and salt stress. Furthermore, co-expression analysis showed that only IbHAK8 of 22 IbHAK genes involved in network interactions with 30 genes related to abiotic and biotic stresses. Taken together, these results are helpful for further functional studies on IbHAK and molecular breeding of sweet potato. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02552-3.
Collapse
|
12
|
Yang T, Lu X, Wang Y, Xie Y, Ma J, Cheng X, Xia E, Wan X, Zhang Z. HAK/KUP/KT family potassium transporter genes are involved in potassium deficiency and stress responses in tea plants (Camellia sinensis L.): expression and functional analysis. BMC Genomics 2020; 21:556. [PMID: 32791963 PMCID: PMC7430841 DOI: 10.1186/s12864-020-06948-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/24/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Tea plant is one of the most important non-alcoholic beverage crops worldwide. While potassium (K+) is an essential macronutrient and greatly affects the growth and development of plants, the molecular mechanism underlying K+ uptake and transport in tea plant root, especially under limited-K+ conditions, is still poorly understood. In plants, HAK/KUP/KT family members play a crucial role in K+ acquisition and translocation, growth and development, and response to stresses. Nevertheless, the biological functions of these genes in tea plant are still in mystery, especially their roles in K+ uptake and stress responses. RESULTS In this study, a total of 21 non-redundant HAK/KUP/KT genes (designated as CsHAKs) were identified in tea plant. Phylogenetic and structural analysis classified the CsHAKs into four clusters (I, II, III, IV), containing 4, 8, 4 and 5 genes, respectively. Three major categories of cis-acting elements were found in the promoter regions of CsHAKs. Tissue-specific expression analysis indicated extremely low expression levels in various tissues of cluster I CsHAKs with the exception of a high root expression of CsHAK4 and CsHAK5, a constitutive expression of clusters II and III CsHAKs, and a moderate cluster IV CsHAKs expression. Remarkably, the transcript levels of CsHAKs in roots were significantly induced or suppressed after exposure to K+ deficiency, salt and drought stresses, and phytohormones treatments. Also notably, CsHAK7 was highly expressed in all tissues and was further induced under various stress conditions. Therefore, functional characterization of CsHAK7 was performed, and the results demostrated that CsHAK7 locates on plasma membrane and plays a key role in K+ transport in yeast. Taken together, the results provide promising candidate CsHAKs for further functional studies and contribute to the molecular breeding for new tea plants varieties with highly efficient utilization of K+. CONCLUSION This study demonstrated the first genome-wide analysis of CsHAK family genes of tea plant and provides a foundation for understanding the classification and functions of the CsHAKs in tea plants.
Collapse
Affiliation(s)
- Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xin Lu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yunxia Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Jingzhen Ma
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xunmin Cheng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|
13
|
Hu W, Di Q, Zhang J, Liu J, Shi X. Response of grafting tobacco to low potassium stress. BMC PLANT BIOLOGY 2020; 20:286. [PMID: 32571243 PMCID: PMC7310080 DOI: 10.1186/s12870-020-02481-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND In the previous study, we investigated the alleviation effect of grafting on potassium uptake in roots and tobacco growth inhibition under low potassium stress. However, the effect of grafting on the low potassium stress perception and coping mechanism of tobacco at the whole plant level is not clear now. In order to clearly understand the impact of grafting on potassium deficit responding mechanism in tobacco, a mutual grafting experiment has been conducted in two varieties of tobacco ('Wufeng No.2' and 'Yunyan 87') in different K supply level (5 mmol L- 1 and 0.5 mmol L- 1 K). RESULTS The results show that compared with the self-rooted seedlings, grafting significantly increased the potassium content of the whole plant of Yunyan 87 (97.57 and 189.74% under normal potassium and low potassium conditions, respectively), and the increase in shoots was greater. The data of whole plant K content distribution and tobacco hypocotyls net K+ flux demonstrates that potassium stress makes plants more inclined to maintain K+ in the shoot rather than root. In addition, when K deficiency occurs, grafting could reduce the time required for downward net K+ flux in tobacco hypocotyl to decrease to stable levels. The results of net K+ flux in the roots indicated that K channel proteins and transporters play different roles in two rootstocks in terms of potassium tolerance. Transcription level analysis suggested that the increased circulating efficiency of K+ between the shoots and roots in tobacco constitutes one means to low potassium stress adaptation. CONCLUSIONS Grafting can activate more K+ channels in tobacco 'Yunyan 87', this means a more active K+ cycle, higher potassium content in shoot and faster response to low potassium stress signals in grafting tobacco. In addition, grafting can also change the K+ absorption mode of tobacco root from being dominated by HATS to being jointly responsible by HATS and LATS, greatly improving the ability of K+ transmembrane transportation on root surface under low potassium stress. These are undoubtedly the reasons why grafting tobacco performs better in coping with low potassium stress.
Collapse
Affiliation(s)
- Wei Hu
- College of Resources and Environment, Southwest University, Chongqing, 400716 China
- Vegetable and Flower Institute of Chongqing Academy of Agricultural Sciences, Chongqing, 401329 China
| | - Qing Di
- Vegetable and Flower Institute of Chongqing Academy of Agricultural Sciences, Chongqing, 401329 China
| | - Jie Zhang
- Nanchang Institute of Technology, Nanchang, 330099 China
| | - Jia Liu
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing, 400716 China
| |
Collapse
|
14
|
Feng X, Wang Y, Zhang N, Wu Z, Zeng Q, Wu J, Wu X, Wang L, Zhang J, Qi Y. Genome-wide systematic characterization of the HAK/KUP/KT gene family and its expression profile during plant growth and in response to low-K + stress in Saccharum. BMC PLANT BIOLOGY 2020; 20:20. [PMID: 31931714 PMCID: PMC6958797 DOI: 10.1186/s12870-019-2227-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/30/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Plant genomes contain a large number of HAK/KUP/KT transporters, which play important roles in potassium uptake and translocation, osmotic potential regulation, salt tolerance, root morphogenesis and plant development. Potassium deficiency in the soil of a sugarcane planting area is serious. However, the HAK/KUP/KT gene family remains to be characterized in sugarcane (Saccharum). RESULTS In this study, 30 HAK/KUP/KT genes were identified in Saccharum spontaneum. Phylogenetics, duplication events, gene structures and expression patterns were analyzed. Phylogenetic analysis of the HAK/KUP/KT genes from 15 representative plants showed that this gene family is divided into four groups (clades I-IV). Both ancient whole-genome duplication (WGD) and recent gene duplication contributed to the expansion of the HAK/KUP/KT gene family. Nonsynonymous to synonymous substitution ratio (Ka/Ks) analysis showed that purifying selection was the main force driving the evolution of HAK/KUP/KT genes. The divergence time of the HAK/KUP/KT gene family was estimated to range from 134.8 to 233.7 Mya based on Ks analysis, suggesting that it is an ancient gene family in plants. Gene structure analysis showed that the HAK/KUP/KT genes were accompanied by intron gain/loss in the process of evolution. RNA-seq data analysis demonstrated that the HAK/KUP/KT genes from clades II and III were mainly constitutively expressed in various tissues, while most genes from clades I and IV had no or very low expression in the tested tissues at different developmental stages. The expression of SsHAK1 and SsHAK21 was upregulated in response to low-K+ stress. Yeast functional complementation analysis revealed that SsHAK1 and SsHAK21 could rescue K+ uptake in a yeast mutant. CONCLUSIONS This study provided insights into the evolutionary history of HAK/KUP/KT genes. HAK7/9/18 were mainly expressed in the upper photosynthetic zone and mature zone of the stem. HAK7/9/18/25 were regulated by sunlight. SsHAK1 and SsHAK21 played important roles in mediating potassium acquisition under limited K+ supply. Our results provide valuable information and key candidate genes for further studies on the function of HAK/KUP/KT genes in Saccharum.
Collapse
Affiliation(s)
- Xiaomin Feng
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangdong Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou, 510316 China
- Guangzhou Guansheng Breeding Research Institute, Guangzhou, 511453 China
| | - Yongjun Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Nannan Zhang
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangdong Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou, 510316 China
- Guangzhou Guansheng Breeding Research Institute, Guangzhou, 511453 China
| | - Zilin Wu
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangdong Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou, 510316 China
- Guangzhou Guansheng Breeding Research Institute, Guangzhou, 511453 China
| | - Qiaoying Zeng
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangdong Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou, 510316 China
- Guangzhou Guansheng Breeding Research Institute, Guangzhou, 511453 China
| | - Jiayun Wu
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangdong Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou, 510316 China
- Guangzhou Guansheng Breeding Research Institute, Guangzhou, 511453 China
| | - Xiaobin Wu
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangdong Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou, 510316 China
- Guangzhou Guansheng Breeding Research Institute, Guangzhou, 511453 China
| | - Lei Wang
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangdong Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou, 510316 China
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yongwen Qi
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangdong Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou, 510316 China
- Guangzhou Guansheng Breeding Research Institute, Guangzhou, 511453 China
| |
Collapse
|
15
|
Tang RJ, Luan M, Wang C, Lhamo D, Yang Y, Zhao FG, Lan WZ, Fu AG, Luan S. Plant Membrane Transport Research in the Post-genomic Era. PLANT COMMUNICATIONS 2020; 1:100013. [PMID: 33404541 PMCID: PMC7747983 DOI: 10.1016/j.xplc.2019.100013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/14/2019] [Accepted: 12/06/2019] [Indexed: 05/17/2023]
Abstract
Membrane transport processes are indispensable for many aspects of plant physiology including mineral nutrition, solute storage, cell metabolism, cell signaling, osmoregulation, cell growth, and stress responses. Completion of genome sequencing in diverse plant species and the development of multiple genomic tools have marked a new era in understanding plant membrane transport at the mechanistic level. Genes coding for a galaxy of pumps, channels, and carriers that facilitate various membrane transport processes have been identified while multiple approaches are developed to dissect the physiological roles as well as to define the transport capacities of these transport systems. Furthermore, signaling networks dictating the membrane transport processes are established to fully understand the regulatory mechanisms. Here, we review recent research progress in the discovery and characterization of the components in plant membrane transport that take advantage of plant genomic resources and other experimental tools. We also provide our perspectives for future studies in the field.
Collapse
Affiliation(s)
- Ren-Jie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Mingda Luan
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Chao Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Dhondup Lhamo
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Yang Yang
- Nanjing University–Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Fu-Geng Zhao
- Nanjing University–Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wen-Zhi Lan
- Nanjing University–Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Ai-Gen Fu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Corresponding author
| |
Collapse
|
16
|
Rajappa S, Krishnamurthy P, Kumar PP. Regulation of AtKUP2 Expression by bHLH and WRKY Transcription Factors Helps to Confer Increased Salt Tolerance to Arabidopsis thaliana Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:1311. [PMID: 32983201 PMCID: PMC7477289 DOI: 10.3389/fpls.2020.01311] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/11/2020] [Indexed: 05/02/2023]
Abstract
Potassium transporters play an essential role in maintaining cellular ion homeostasis, turgor pressure, and pH, which are critical for adaptation under salt stress. We identified a salt responsive Avicennia officinalis KUP/HAK/KT transporter family gene, AoKUP2, which has high sequence similarity to its Arabidopsis ortholog AtKUP2. These genes were functionally characterized in mutant yeast cells and Arabidopsis plants. Both AoKUP2 and AtKUP2 were induced by salt stress, and AtKUP2 was primarily induced in roots. Subcellular localization revealed that AoKUP2 and AtKUP2 are localized to the plasma membrane and mitochondria. Expression of AtKUP2 and AoKUP2 in Saccharomyces cerevisiae mutant strain (BY4741 trk1Δ::loxP trk2Δ::loxP) helped to rescue the growth defect of the mutant under different NaCl and K+ concentrations. Furthermore, constitutive expression of AoKUP2 and AtKUP2 conferred enhanced salt tolerance in Arabidopsis indicated by higher germination rate, better survival, and increased root and shoot length compared to the untreated controls. Analysis of Na+ and K+ contents in the shoots and roots showed that ectopic expression lines accumulated less Na+ and more K+ than the WT. Two stress-responsive transcription factors, bHLH122 and WRKY33, were identified as direct regulators of AtKUP2 expression. Our results suggest that AtKUP2 plays a key role in enhancing salt stress tolerance by maintaining cellular ion homeostasis.
Collapse
Affiliation(s)
- Sivamathini Rajappa
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Pannaga Krishnamurthy
- NUS Environmental Research Institute (NERI), National University of Singapore, Singapore, Singapore
| | - Prakash P. Kumar
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, Singapore, Singapore
- *Correspondence: Prakash P. Kumar,
| |
Collapse
|
17
|
Cui YN, Wang FZ, Yang CH, Yuan JZ, Guo H, Zhang JL, Wang SM, Ma Q. Transcriptomic Profiling Identifies Candidate Genes Involved in the Salt Tolerance of the Xerophyte Pugionium cornutum. Genes (Basel) 2019; 10:genes10121039. [PMID: 31842449 PMCID: PMC6947847 DOI: 10.3390/genes10121039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 01/22/2023] Open
Abstract
The xerophyte Pugionium cornutum adapts to salt stress by accumulating inorganic ions (e.g., Cl−) for osmotic adjustment and enhancing the activity of antioxidant enzymes, but the associated molecular basis remains unclear. In this study, we first found that P. cornutum could also maintain cell membrane stability due to its prominent ROS-scavenging ability and exhibits efficient carbon assimilation capacity under salt stress. Then, the candidate genes associated with the important physiological traits of the salt tolerance of P. cornutum were identified through transcriptomic analysis. The results showed that after 50 mM NaCl treatment for 6 or 24 h, multiple genes encoding proteins facilitating Cl− accumulation and NO3− homeostasis, as well as the transport of other major inorganic osmoticums, were significantly upregulated in roots and shoots, which should be favorable for enhancing osmotic adjustment capacity and maintaining the uptake and transport of nutrient elements; a large number of genes related to ROS-scavenging pathways were also significantly upregulated, which might be beneficial for mitigating salt-induced oxidative damage to the cells. Meanwhile, many genes encoding components of the photosynthetic electron transport pathway and carbon fixation enzymes were significantly upregulated in shoots, possibly resulting in high carbon assimilation efficiency in P. cornutum. Additionally, numerous salt-inducible transcription factor genes that probably regulate the abovementioned processes were found. This work lays a preliminary foundation for clarifying the molecular mechanism underlying the adaptation of xerophytes to harsh environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qing Ma
- Correspondence: ; Tel.: +86-931-8913447
| |
Collapse
|
18
|
Dai F, Li A, Rao S, Chen J. Potassium Transporter LrKUP8 Is Essential for K + Preservation in Lycium ruthenicum, A Salt-Resistant Desert Shrub. Genes (Basel) 2019; 10:E600. [PMID: 31405002 PMCID: PMC6723441 DOI: 10.3390/genes10080600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 11/16/2022] Open
Abstract
Salt stress is a major constraint for many crops and trees. A wild species of Goji named Lycium ruthenicum is an important economic halophyte in China and has an extremely high tolerance to salinity. L. ruthenicum grows in saline soil and is known as a potash-rich species. However, its salt adaptation strategies and ion balance mechanism remains poorly understood. Potassium (K+) is one of the essential macronutrients for plant growth and development. In this study, a putative salt stress-responsive gene encoding a HAK (high-affinity K+)/KUP (K+ uptake)/KT (K+ transporter) transporter was cloned and designated as LrKUP8. This gene belongs to the cluster II group of the KT/HAK/KUP family. The expression of LrKUP8 was strongly induced under high NaCl concentrations. The OE-LrKUP8 calli grew significantly better than the vector control calli under salt stress conditions. Further estimation by ion content and micro-electrode ion flux indicated a relative weaker K+ efflux in the OE-LrKUP8 calli than in the control. Thus, a key gene involved in K+ uptake under salt condition was functionally characterized using a newly established L. ruthenicum callus transformation system. The importance of K+ regulation in L. ruthenicum under salt tolerance was highlighted.
Collapse
Affiliation(s)
- Fengbin Dai
- College of Biological Sciences and technology, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
| | - Aijia Li
- College of Biological Sciences and technology, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
| | - Shupei Rao
- College of Biological Sciences and technology, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
| | - Jinhuan Chen
- College of Biological Sciences and technology, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China.
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China.
| |
Collapse
|
19
|
Liu J, Liu J, Liu J, Cui M, Huang Y, Tian Y, Chen A, Xu G. The Potassium Transporter SlHAK10 Is Involved in Mycorrhizal Potassium Uptake. PLANT PHYSIOLOGY 2019; 180:465-479. [PMID: 30760639 PMCID: PMC6501096 DOI: 10.1104/pp.18.01533] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/05/2019] [Indexed: 05/27/2023]
Abstract
Most terrestrial plants form a root symbiosis with arbuscular mycorrhizal (AM) fungi, which receive fixed carbon from the plant and enhance the plant's uptake of mineral nutrients. AM symbiosis improves the phosphorous and nitrogen nutrition of host plants; however, little is known about the role of AM symbiosis in potassium (K+) nutrition. Here, we report that inoculation with the AM fungus Rhizophagus irregularis improved tomato (Solanum lycopersicum) plant growth and K+ acquisition and that K+ deficiency has a negative effect on root growth and AM colonization. Based on its homology to a Lotus japonicus AM-induced K+ transporter, we identified a mycorrhiza-specific tomato K+ transporter, SlHAK10 (Solanum lycopersicum High-affinity Potassium Transporter10), that was exclusively expressed in arbuscule-containing cells. SlHAK10 could restore a yeast K+ uptake-defective mutant in the low-affinity concentration range. Loss of function of SlHAK10 led to a significant decrease in mycorrhizal K+ uptake and AM colonization rate under low-K+ conditions but did not affect arbuscule development. Overexpressing SlHAK10 from the constitutive cauliflower mosaic virus 35S promoter or the AM-specific Solanum melongena Phosphate Transporter4 not only improved plant growth and K+ uptake but also increased AM colonization efficiency and soluble sugar content in roots supplied with low K+ Our results indicate that tomato plants have a SlHAK10-mediated mycorrhizal K+ uptake pathway and that improved plant K+ nutrition could increase carbohydrate accumulation in roots, which facilitates AM fungal colonization.
Collapse
Affiliation(s)
- Jianjian Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Junli Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinhui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Miaomiao Cui
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiqun Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
20
|
Locascio A, Andrés-Colás N, Mulet JM, Yenush L. Saccharomyces cerevisiae as a Tool to Investigate Plant Potassium and Sodium Transporters. Int J Mol Sci 2019; 20:E2133. [PMID: 31052176 PMCID: PMC6539216 DOI: 10.3390/ijms20092133] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
Sodium and potassium are two alkali cations abundant in the biosphere. Potassium is essential for plants and its concentration must be maintained at approximately 150 mM in the plant cell cytoplasm including under circumstances where its concentration is much lower in soil. On the other hand, sodium must be extruded from the plant or accumulated either in the vacuole or in specific plant structures. Maintaining a high intracellular K+/Na+ ratio under adverse environmental conditions or in the presence of salt is essential to maintain cellular homeostasis and to avoid toxicity. The baker's yeast, Saccharomyces cerevisiae, has been used to identify and characterize participants in potassium and sodium homeostasis in plants for many years. Its utility resides in the fact that the electric gradient across the membrane and the vacuoles is similar to plants. Most plant proteins can be expressed in yeast and are functional in this unicellular model system, which allows for productive structure-function studies for ion transporting proteins. Moreover, yeast can also be used as a high-throughput platform for the identification of genes that confer stress tolerance and for the study of protein-protein interactions. In this review, we summarize advances regarding potassium and sodium transport that have been discovered using the yeast model system, the state-of-the-art of the available techniques and the future directions and opportunities in this field.
Collapse
Affiliation(s)
- Antonella Locascio
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - Nuria Andrés-Colás
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - José Miguel Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| |
Collapse
|
21
|
Hu W, Di Q, Wang Z, Zhang Y, Zhang J, Liu J, Shi X. Grafting alleviates potassium stress and improves growth in tobacco. BMC PLANT BIOLOGY 2019; 19:130. [PMID: 30961523 PMCID: PMC6454764 DOI: 10.1186/s12870-019-1706-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/11/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Potassium is a nutrient element necessary for tobacco growth. Tobacco leaves with high potassium content are elastic and tough, rich in oil. And the same time, potassium can also improve the scent and aromatic value of flue-cured tobacco by regulating the synthesis of aromatic hydrocarbons in leaves.. It is an important quality indicator for flue-cured tobacco. However, the potassium concentration in tobacco leaves in most areas of China is generally lower than the global standard for high quality tobacco. Two tobacco genotypes were grafted to each other under different potassium levels to test whether potassium content and plant growth can be improved by grafting in tobacco. RESULTS The growth of tobacco in all treatments was inhibited under potassium starvation, and grafting significantly alleviated this potassium stress in 'Yunyan 87'. The trends in whole plant K+ uptake and K+ transfer efficiency to the leaves corresponded to the growth results of the different grafts. The nutrient depletion test results showed that the roots of 'Wufeng No.2' had higher K+ absorption potential, K+ affinity, and K+ inward flow rate. K+ enrichment circles appeared at the endoderm of the root section in the energy dispersive X-ray figure, indicating that the formation of Casparian strips may be partly responsible for the lower rate of lateral movement of K+ in the roots of 'Yunyan 87'. Gene expression analysis suggested that energy redistribution at the whole plant level might constitute one strategy for coping with potassium starvation. The feedback regulation effects between scion 'Wufeng No.2' and rootstock 'Yunyan 87' indicated that the transmission of certain signaling substances had occurred during grafting. CONCLUSIONS 'Wufeng No.2' tobacco rootstock grafting can increase the K+ uptake and transport efficiency of 'Yunyan 87' and enhance plant growth under potassium stress. The physiological mechanism of the improved performance of grafted tobacco is related to higher K+ uptake and utilization ability, improved xylem K+ loading capacity, and up-regulated expression of genes related to energy supply systems.
Collapse
Affiliation(s)
- Wei Hu
- College of Resources and Environment, Southwest University, Chongqing, 400716 China
| | - Qing Di
- Vegetable and Flower Institute of Chongqing Academy of Agricultural Sciences, Chongqing, 401329 China
| | - Zhijin Wang
- Vegetable and Flower Institute of Chongqing Academy of Agricultural Sciences, Chongqing, 401329 China
| | - Yimo Zhang
- Vegetable and Flower Institute of Chongqing Academy of Agricultural Sciences, Chongqing, 401329 China
| | - Jie Zhang
- Nanchang Institute of Technology, Nanchang, 330099 China
| | - Jia Liu
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing, 400716 China
| |
Collapse
|
22
|
The Complex Fine-Tuning of K⁺ Fluxes in Plants in Relation to Osmotic and Ionic Abiotic Stresses. Int J Mol Sci 2019; 20:ijms20030715. [PMID: 30736441 PMCID: PMC6387338 DOI: 10.3390/ijms20030715] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 12/19/2022] Open
Abstract
As the main cation in plant cells, potassium plays an essential role in adaptive responses, especially through its involvement in osmotic pressure and membrane potential adjustments. K+ homeostasis must, therefore, be finely controlled. As a result of different abiotic stresses, especially those resulting from global warming, K⁺ fluxes and plant distribution of this ion are disturbed. The hormone abscisic acid (ABA) is a key player in responses to these climate stresses. It triggers signaling cascades that ultimately lead to modulation of the activities of K⁺ channels and transporters. After a brief overview of transcriptional changes induced by abiotic stresses, this review deals with the post-translational molecular mechanisms in different plant organs, in Arabidopsis and species of agronomical interest, triggering changes in K⁺ uptake from the soil, K⁺ transport and accumulation throughout the plant, and stomatal regulation. These modifications involve phosphorylation/dephosphorylation mechanisms, modifications of targeting, and interactions with regulatory partner proteins. Interestingly, many signaling pathways are common to K⁺ and Cl-/NO3- counter-ion transport systems. These cross-talks are also addressed.
Collapse
|
23
|
Dreyer I, Michard E. High- and Low-Affinity Transport in Plants From a Thermodynamic Point of View. FRONTIERS IN PLANT SCIENCE 2019; 10:1797. [PMID: 32082350 PMCID: PMC7002434 DOI: 10.3389/fpls.2019.01797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/23/2019] [Indexed: 05/17/2023]
Abstract
Plants have to absorb essential nutrients from the soil and do this via specialized membrane proteins. Groundbreaking studies about half a century ago led to the identification of different nutrient uptake systems in plant roots. Historically, they have been characterized as "high-affinity" uptake systems acting at low nutrient concentrations or as "low-affinity" uptake systems acting at higher concentrations. Later this "high- and low-affinity" concept was extended by "dual-affinity" transporters. Here, in this study it is now demonstrated that the affinity concept based on enzyme kinetics does not have proper scientific grounds. Different computational cell biology scenarios show that affinity analyses, as they are often performed in wet-lab experiments, are not suited for reliably characterizing transporter proteins. The new insights provided here clearly indicate that the classification of transporters on the basis of enzyme kinetics is largely misleading, thermodynamically in no way justified and obsolete.
Collapse
Affiliation(s)
- Ingo Dreyer
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
- *Correspondence: Ingo Dreyer,
| | - Erwan Michard
- Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|
24
|
Heydarian Z, Yu M, Gruber M, Coutu C, Robinson SJ, Hegedus DD. Changes in gene expression in Camelina sativa roots and vegetative tissues in response to salinity stress. Sci Rep 2018; 8:9804. [PMID: 29955098 PMCID: PMC6023900 DOI: 10.1038/s41598-018-28204-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 06/14/2018] [Indexed: 12/19/2022] Open
Abstract
The response of Camelina sativa to salt stress was examined. Salt reduced shoot, but not root length. Root and shoot weight were affected by salt, as was photosynthetic capacity. Salt did not alter micro-element concentration in shoots, but increased macro-element (Ca and Mg) levels. Gene expression patterns in shoots indicated that salt stress may have led to shuttling of Na+ from the cytoplasm to the tonoplast and to an increase in K+ and Ca+2 import into the cytoplasm. In roots, gene expression patterns indicated that Na+ was exported from the cytoplasm by the SOS pathway and that K+ was imported in response to salt. Genes involved in chelation and storage were up-regulated in shoots, while metal detoxification appeared to involve various export mechanisms in roots. In shoots, genes involved in secondary metabolism leading to lignin, anthocyanin and wax production were up-regulated. Partial genome partitioning was observed in roots and shoots based on the expression of homeologous genes from the three C. sativa sub-genomes. Sub-genome I and II were involved in the response to salinity stress to about the same degree, while about 10% more differentially-expressed genes were associated with sub-genome III.
Collapse
Affiliation(s)
- Zohreh Heydarian
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
- Department of Biotechnology, School of Agriculture, University of Shiraz, Bajgah, Shiraz, Fars, Iran
| | - Min Yu
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Margaret Gruber
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Stephen J Robinson
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada.
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
25
|
Guan P. Dancing with Hormones: A Current Perspective of Nitrate Signaling and Regulation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:1697. [PMID: 29033968 PMCID: PMC5625010 DOI: 10.3389/fpls.2017.01697] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/15/2017] [Indexed: 05/18/2023]
Abstract
In nature and agriculture, nitrate availability is a main environmental cue for plant growth, development and stress responses. Nitrate signaling and regulation are hence at the center of communications between plant intrinsic programs and the environment. It is also well known that endogenous phytohormones play numerous critical roles in integrating extrinsic cues and intrinsic responses, regulating and refining almost all aspects of plant growth, development and stress responses. Therefore, interaction between nitrate and phytohormones, such as auxins, cytokinins, abscisic acid, gibberellins, and ethylene, is prevalent. The growing evidence indicates that biosynthesis, de-conjugation, transport, and signaling of hormones are partly controlled by nitrate signaling. Recent advances with nitrate signaling and transcriptional regulation in Arabidopsis give rise to new paradigms. Given the comprehensive nitrate transport, sensing, signaling and regulations at the level of the cell and organism, nitrate itself is a local and long-distance signal molecule, conveying N status at the whole-plant level. A direct molecular link between nitrate signaling and cell cycle progression was revealed with TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1-20 (TCP20) - NIN-LIKE PROTEIN 6/7 (NLP6/7) regulatory nexus. NLPs are key regulators of nitrogen responses in plants. TCPs function as the main regulators of plant morphology and architecture, with the emerging role as integrators of plant developmental responses to the environment. By analogy with auxin being proposed as a plant morphogen, nitrate may be an environmental morphogen. The morphogen-gradient-dependent and cell-autonomous mechanisms of nitrate signaling and regulation are an integral part of cell growth and cell identification. This is especially true in root meristem growth that is regulated by intertwined nitrate, phytohormones, and glucose-TOR signaling pathways. Furthermore, the nitrate transcriptional hierarchy is emerging. Nitrate regulators in primary nitrate signaling can individually and combinatorially control downstream transcriptional networks and hormonal pathways for signal propagation and amplification. Under the new paradigms, nitrate-induced hormone metabolism and signaling deserve fresh examination. The close interplay and convergent regulation of nitrate and hormonal signaling at morphological, physiological, and molecular levels have significant effects on important agronomic traits, especially nutrient-dependent adaptive root system growth and architecture.
Collapse
|
26
|
Brauer EK, Ahsan N, Dale R, Kato N, Coluccio AE, Piñeros MA, Kochian LV, Thelen JJ, Popescu SC. The Raf-like Kinase ILK1 and the High Affinity K+ Transporter HAK5 Are Required for Innate Immunity and Abiotic Stress Response. PLANT PHYSIOLOGY 2016; 171:1470-84. [PMID: 27208244 PMCID: PMC4902592 DOI: 10.1104/pp.16.00035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 04/29/2016] [Indexed: 05/04/2023]
Abstract
Plant perception of pathogen-associated molecular patterns (PAMPs) and other environmental stresses trigger transient ion fluxes at the plasma membrane. Apart from the role of Ca(2+) uptake in signaling, the regulation and significance of PAMP-induced ion fluxes in immunity remain unknown. We characterized the functions of INTEGRIN-LINKED KINASE1 (ILK1) that encodes a Raf-like MAP2K kinase with functions insufficiently understood in plants. Analysis of ILK1 mutants impaired in the expression or kinase activity revealed that ILK1 contributes to plant defense to bacterial pathogens, osmotic stress sensitivity, and cellular responses and total ion accumulation in the plant upon treatment with a bacterial-derived PAMP, flg22. The calmodulin-like protein CML9, a negative modulator of flg22-triggered immunity, interacted with, and suppressed ILK1 kinase activity. ILK1 interacted with and promoted the accumulation of HAK5, a putative (H(+))/K(+) symporter that mediates a high-affinity uptake during K(+) deficiency. ILK1 or HAK5 expression was required for several flg22 responses including gene induction, growth arrest, and plasma membrane depolarization. Furthermore, flg22 treatment induced a rapid K(+) efflux at both the plant and cellular levels in wild type, while mutants with impaired ILK1 or HAK5 expression exhibited a comparatively increased K(+) loss. Taken together, our results position ILK1 as a link between plant defense pathways and K(+) homeostasis.
Collapse
Affiliation(s)
- Elizabeth K Brauer
- The Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211 (N.A., J.T.T.); Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (R.D., N.K.); and Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, New York 14853 (A.E.C., M.A.P., L.V.K.)
| | - Nagib Ahsan
- The Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211 (N.A., J.T.T.); Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (R.D., N.K.); and Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, New York 14853 (A.E.C., M.A.P., L.V.K.)
| | - Renee Dale
- The Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211 (N.A., J.T.T.); Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (R.D., N.K.); and Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, New York 14853 (A.E.C., M.A.P., L.V.K.)
| | - Naohiro Kato
- The Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211 (N.A., J.T.T.); Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (R.D., N.K.); and Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, New York 14853 (A.E.C., M.A.P., L.V.K.)
| | - Alison E Coluccio
- The Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211 (N.A., J.T.T.); Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (R.D., N.K.); and Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, New York 14853 (A.E.C., M.A.P., L.V.K.)
| | - Miguel A Piñeros
- The Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211 (N.A., J.T.T.); Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (R.D., N.K.); and Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, New York 14853 (A.E.C., M.A.P., L.V.K.)
| | - Leon V Kochian
- The Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211 (N.A., J.T.T.); Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (R.D., N.K.); and Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, New York 14853 (A.E.C., M.A.P., L.V.K.)
| | - Jay J Thelen
- The Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211 (N.A., J.T.T.); Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (R.D., N.K.); and Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, New York 14853 (A.E.C., M.A.P., L.V.K.)
| | - Sorina C Popescu
- The Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211 (N.A., J.T.T.); Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (R.D., N.K.); and Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, New York 14853 (A.E.C., M.A.P., L.V.K.)
| |
Collapse
|
27
|
Nath M, Tuteja N. NPKS uptake, sensing, and signaling and miRNAs in plant nutrient stress. PROTOPLASMA 2016; 253:767-786. [PMID: 26085375 DOI: 10.1007/s00709-015-0845-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 06/08/2015] [Indexed: 05/24/2023]
Abstract
Sessile nature of higher plants consequently makes it highly adaptable for nutrient absorption and acquisition from soil. Plants require 17 essential elements for their growth and development which include 14 minerals (macronutrients: N, P, K, Mg, Ca, S; micronutrients: Cl, Fe, B, Mn, Zn, Cu, Ni, Mo) and 3 non-mineral (C, H, O) elements. The roots of higher plants must acquire these macronutrients and micronutrients from rhizosphere and further allocate to other plant parts for completing their life cycle. Plants evolved an intricate series of signaling and sensing cascades to maintain nutrient homeostasis and to cope with nutrient stress/availability. The specific receptors for nutrients in root, root system architecture, and internal signaling pathways help to develop plasticity in response to the nutrient starvation. Nitrogen (N), phosphorus (P), potassium (K), and sulfur (S) are essential for various metabolic processes, and their deficiency negatively effects the plant growth and yield. Genes coding for transporters and receptors for nutrients as well as some small non-coding RNAs have been implicated in nutrient uptake and signaling. This review summarizes the N, P, K, and S uptake, sensing and signaling events in nutrient stress condition especially in model plant Arabidopsis thaliana and involvement of microRNAs in nutrient deficiency. This article also provides a framework of uptake, sensing, signaling and to highlight the microRNA as an emerging major players in nutrient stress condition. Nutrient-plant-miRNA cross talk may help plant to cope up nutrient stress, and understanding their precise mechanism(s) will be necessary to develop high yielding smart crop with low nutrient input.
Collapse
Affiliation(s)
- Manoj Nath
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067, New Delhi, India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067, New Delhi, India.
| |
Collapse
|
28
|
Sun Y, Kong X, Li C, Liu Y, Ding Z. Potassium Retention under Salt Stress Is Associated with Natural Variation in Salinity Tolerance among Arabidopsis Accessions. PLoS One 2015; 10:e0124032. [PMID: 25993093 PMCID: PMC4438003 DOI: 10.1371/journal.pone.0124032] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/27/2015] [Indexed: 01/09/2023] Open
Abstract
Plants are exposed to various environmental stresses during their life cycle such as salt, drought and cold. Natural variation mediated plant growth adaptation has been employed as an effective approach in response to the diverse environmental cues such as salt stress. However, the molecular mechanism underlying this process is not well understood. In the present study, a collection of 82 Arabidopsis thaliana accessions (ecotypes) was screened with a view to identify variation for salinity tolerance. Seven accessions showed a higher level of tolerance than Col-0. The young seedlings of the tolerant accessions demonstrated a higher K(+) content and a lower Na(+)/K(+) ratio when exposed to salinity stress, but its Na(+) content was the same as that of Col-0. The K(+) transporter genes AtHAK5, AtCHX17 and AtKUP1 were up-regulated significantly in almost all the tolerant accessions, even in the absence of salinity stress. There was little genetic variation or positive transcriptional variation between the selections and Col-0 with respect to Na+-related transporter genes, as AtSOS genes, AtNHX1 and AtHKT1;1. In addition, under salinity stress, these selections accumulated higher compatible solutes and lower reactive oxygen species than did Col-0. Taken together, our results showed that natural variation in salinity tolerance of Arabidopsis seems to have been achieved by the strong capacity of K(+) retention.
Collapse
Affiliation(s)
- Yanling Sun
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, College of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, 250100, Shandong, China
| | - Xiangpei Kong
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, College of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, 250100, Shandong, China
| | - Cuiling Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, College of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, 250100, Shandong, China
| | - Yongxiu Liu
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, College of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, 250100, Shandong, China
| |
Collapse
|
29
|
Ayadi A, David P, Arrighi JF, Chiarenza S, Thibaud MC, Nussaume L, Marin E. Reducing the genetic redundancy of Arabidopsis PHOSPHATE TRANSPORTER1 transporters to study phosphate uptake and signaling. PLANT PHYSIOLOGY 2015; 167:1511-26. [PMID: 25670816 PMCID: PMC4378149 DOI: 10.1104/pp.114.252338] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/09/2015] [Indexed: 05/18/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) absorbs inorganic phosphate (Pi) from the soil through an active transport process mediated by the nine members of the PHOSPHATE TRANSPORTER1 (PHT1) family. These proteins share a high level of similarity (greater than 61%), with overlapping expression patterns. The resulting genetic and functional redundancy prevents the analysis of their specific roles. To overcome this difficulty, our approach combined several mutations with gene silencing to inactivate multiple members of the PHT1 family, including a cluster of genes localized on chromosome 5 (PHT1;1, PHT1;2, and PHT1;3). Physiological analyses of these lines established that these three genes, along with PHT1;4, are the main contributors to Pi uptake. Furthermore, PHT1;1 plays an important role in translocation from roots to leaves in high phosphate conditions. These genetic tools also revealed that some PHT1 transporters likely exhibit a dual affinity for phosphate, suggesting that their activity is posttranslationally controlled. These lines display significant phosphate deficiency-related phenotypes (e.g. biomass and yield) due to a massive (80%-96%) reduction in phosphate uptake activities. These defects limited the amount of internal Pi pool, inducing compensatory mechanisms triggered by the systemic Pi starvation response. Such reactions have been uncoupled from PHT1 activity, suggesting that systemic Pi sensing is most probably acting downstream of PHT1.
Collapse
Affiliation(s)
- Amal Ayadi
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); andLaboratoire des Symbioses Tropicales et Méditerranéennes, TA A-82/J Campus International de Baillarguet, 34398 Montpellier cedex 5, France (J.-F.A.)
| | - Pascale David
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); andLaboratoire des Symbioses Tropicales et Méditerranéennes, TA A-82/J Campus International de Baillarguet, 34398 Montpellier cedex 5, France (J.-F.A.)
| | - Jean-François Arrighi
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); andLaboratoire des Symbioses Tropicales et Méditerranéennes, TA A-82/J Campus International de Baillarguet, 34398 Montpellier cedex 5, France (J.-F.A.)
| | - Serge Chiarenza
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); andLaboratoire des Symbioses Tropicales et Méditerranéennes, TA A-82/J Campus International de Baillarguet, 34398 Montpellier cedex 5, France (J.-F.A.)
| | - Marie-Christine Thibaud
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); andLaboratoire des Symbioses Tropicales et Méditerranéennes, TA A-82/J Campus International de Baillarguet, 34398 Montpellier cedex 5, France (J.-F.A.)
| | - Laurent Nussaume
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); andLaboratoire des Symbioses Tropicales et Méditerranéennes, TA A-82/J Campus International de Baillarguet, 34398 Montpellier cedex 5, France (J.-F.A.)
| | - Elena Marin
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); andLaboratoire des Symbioses Tropicales et Méditerranéennes, TA A-82/J Campus International de Baillarguet, 34398 Montpellier cedex 5, France (J.-F.A.)
| |
Collapse
|
30
|
Yang T, Zhang S, Hu Y, Wu F, Hu Q, Chen G, Cai J, Wu T, Moran N, Yu L, Xu G. The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. PLANT PHYSIOLOGY 2014; 166:945-59. [PMID: 25157029 PMCID: PMC4213120 DOI: 10.1104/pp.114.246520] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In plants, K transporter (KT)/high affinity K transporter (HAK)/K uptake permease (KUP) is the largest potassium (K) transporter family; however, few of the members have had their physiological functions characterized in planta. Here, we studied OsHAK5 of the KT/HAK/KUP family in rice (Oryza sativa). We determined its cellular and tissue localization and analyzed its functions in rice using both OsHAK5 knockout mutants and overexpression lines in three genetic backgrounds. A β-glucuronidase reporter driven by the OsHAK5 native promoter indicated OsHAK5 expression in various tissue organs from root to seed, abundantly in root epidermis and stele, the vascular tissues, and mesophyll cells. Net K influx rate in roots and K transport from roots to aerial parts were severely impaired by OsHAK5 knockout but increased by OsHAK5 overexpression in 0.1 and 0.3 mm K external solution. The contribution of OsHAK5 to K mobilization within the rice plant was confirmed further by the change of K concentration in the xylem sap and K distribution in the transgenic lines when K was removed completely from the external solution. Overexpression of OsHAK5 increased the K-sodium concentration ratio in the shoots and salt stress tolerance (shoot growth), while knockout of OsHAK5 decreased the K-sodium concentration ratio in the shoots, resulting in sensitivity to salt stress. Taken together, these results demonstrate that OsHAK5 plays a major role in K acquisition by roots faced with low external K and in K upward transport from roots to shoots in K-deficient rice plants.
Collapse
Affiliation(s)
- Tianyuan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.) and Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.), Nanjing Agricultural University, Nanjing 210095, China; andR.H. Smith Institute of Plant Sciences and Genetics in Agriculture, R.H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.M.)
| | - Song Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.) and Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.), Nanjing Agricultural University, Nanjing 210095, China; andR.H. Smith Institute of Plant Sciences and Genetics in Agriculture, R.H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.M.)
| | - Yibing Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.) and Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.), Nanjing Agricultural University, Nanjing 210095, China; andR.H. Smith Institute of Plant Sciences and Genetics in Agriculture, R.H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.M.)
| | - Fachi Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.) and Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.), Nanjing Agricultural University, Nanjing 210095, China; andR.H. Smith Institute of Plant Sciences and Genetics in Agriculture, R.H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.M.)
| | - Qingdi Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.) and Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.), Nanjing Agricultural University, Nanjing 210095, China; andR.H. Smith Institute of Plant Sciences and Genetics in Agriculture, R.H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.M.)
| | - Guang Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.) and Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.), Nanjing Agricultural University, Nanjing 210095, China; andR.H. Smith Institute of Plant Sciences and Genetics in Agriculture, R.H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.M.)
| | - Jing Cai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.) and Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.), Nanjing Agricultural University, Nanjing 210095, China; andR.H. Smith Institute of Plant Sciences and Genetics in Agriculture, R.H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.M.)
| | - Ting Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.) and Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.), Nanjing Agricultural University, Nanjing 210095, China; andR.H. Smith Institute of Plant Sciences and Genetics in Agriculture, R.H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.M.)
| | - Nava Moran
- State Key Laboratory of Crop Genetics and Germplasm Enhancement (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.) and Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.), Nanjing Agricultural University, Nanjing 210095, China; andR.H. Smith Institute of Plant Sciences and Genetics in Agriculture, R.H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.M.)
| | - Ling Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.) and Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.), Nanjing Agricultural University, Nanjing 210095, China; andR.H. Smith Institute of Plant Sciences and Genetics in Agriculture, R.H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.M.)
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.) and Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.), Nanjing Agricultural University, Nanjing 210095, China; andR.H. Smith Institute of Plant Sciences and Genetics in Agriculture, R.H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.M.)
| |
Collapse
|
31
|
Abstract
Potassium is a macronutrient that is crucial for healthy plant growth. Potassium availability, however, is often limited in agricultural fields and thus crop yields and quality are reduced. Therefore, improving the efficiency of potassium uptake and transport, as well as its utilization, in plants is important for agricultural sustainability. This review summarizes the current knowledge on the molecular mechanisms involved in potassium uptake and transport in plants, and the molecular response of plants to different levels of potassium availability. Based on this information, four strategies for improving potassium use efficiency in plants are proposed; 1) increased root volume, 2) increasing efficiency of potassium uptake from the soil and translocation in planta, 3) increasing mobility of potassium in soil, and 4) molecular breeding new varieties with greater potassium efficiency through marker assisted selection which will require identification and utilization of potassium associated quantitative trait loci.
Collapse
Affiliation(s)
- Ryoung Shin
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045,
Japan
| |
Collapse
|
32
|
Coskun D, Britto DT, Li M, Oh S, Kronzucker HJ. Capacity and plasticity of potassium channels and high-affinity transporters in roots of barley and Arabidopsis. PLANT PHYSIOLOGY 2013; 162:496-511. [PMID: 23553635 PMCID: PMC3641226 DOI: 10.1104/pp.113.215913] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/31/2013] [Indexed: 05/03/2023]
Abstract
The role of potassium (K(+)) transporters in high- and low-affinity K(+) uptake was examined in roots of intact barley (Hordeum vulgare) and Arabidopsis (Arabidopsis thaliana) plants by use of (42)K radiotracing, electrophysiology, pharmacology, and mutant analysis. Comparisons were made between results from barley and five genotypes of Arabidopsis, including single and double knockout mutants for the high-affinity transporter, AtHAK5, and the Shaker-type channel, AtAKT1. In Arabidopsis, steady-state K(+) influx at low external K(+) concentration ([K(+)]ext = 22.5 µm) was predominantly mediated by AtAKT1 when high-affinity transport was inhibited by ammonium, whereas in barley, by contrast, K(+) channels could not operate below 100 µm. Withdrawal of ammonium resulted in an immediate and dramatic stimulation of K(+) influx in barley, indicating a shift from active to passive K(+) uptake at low [K(+)]ext and yielding fluxes as high as 36 µmol g (root fresh weight)(-1) h(-1) at 5 mm [K(+)]ext, among the highest transporter-mediated K(+) fluxes hitherto reported. This ammonium-withdrawal effect was also established in all Arabidopsis lines (the wild types, atakt1, athak5, and athak5 atakt1) at low [K(+)]ext, revealing the concerted involvement of several transport systems. The ammonium-withdrawal effect coincided with a suppression of K(+) efflux and a significant hyperpolarization of the plasma membrane in all genotypes except athak5 atakt1, could be sustained over 24 h, and resulted in increased tissue K(+) accumulation. We discuss key differences and similarities in K(+) acquisition between two important model systems and reveal novel aspects of K(+) transport in planta.
Collapse
Affiliation(s)
- Devrim Coskun
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4
| | - Dev T. Britto
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4
| | - Mingyuan Li
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4
| | - Saehong Oh
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4
| | - Herbert J. Kronzucker
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4
| |
Collapse
|
33
|
Prochlorococcus can use the Pro1404 transporter to take up glucose at nanomolar concentrations in the Atlantic Ocean. Proc Natl Acad Sci U S A 2013; 110:8597-602. [PMID: 23569224 DOI: 10.1073/pnas.1221775110] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prochlorococcus is responsible for a significant part of CO2 fixation in the ocean. Although it was long considered an autotrophic cyanobacterium, the uptake of organic compounds has been reported, assuming they were sources of limited biogenic elements. We have shown in laboratory experiments that Prochlorococcus can take up glucose. However, the mechanisms of glucose uptake and its occurrence in the ocean have not been shown. Here, we report that the gene Pro1404 confers capability for glucose uptake in Prochlorococcus marinus SS120. We used a cyanobacterium unable to take up glucose to engineer strains that express the Pro1404 gene. These recombinant strains were capable of specific glucose uptake over a wide range of glucose concentrations, showing multiphasic transport kinetics. The Ks constant of the high affinity phase was in the nanomolar range, consistent with the average concentration of glucose in the ocean. Furthermore, we were able to observe glucose uptake by Prochlorococcus in the central Atlantic Ocean, where glucose concentrations were 0.5-2.7 nM. Our results suggest that Prochlorococcus are primary producers capable of tuning their metabolism to energetically benefit from environmental conditions, taking up not only organic compounds with key limiting elements in the ocean, but also molecules devoid of such elements, like glucose.
Collapse
|
34
|
Osakabe Y, Arinaga N, Umezawa T, Katsura S, Nagamachi K, Tanaka H, Ohiraki H, Yamada K, Seo SU, Abo M, Yoshimura E, Shinozaki K, Yamaguchi-Shinozaki K. Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. THE PLANT CELL 2013; 25:609-624. [PMID: 23396830 DOI: 10.2307/41812291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Osmotic adjustment plays a fundamental role in water stress responses and growth in plants; however, the molecular mechanisms governing this process are not fully understood. Here, we demonstrated that the KUP potassium transporter family plays important roles in this process, under the control of abscisic acid (ABA) and auxin. We generated Arabidopsis thaliana multiple mutants for K(+) uptake transporter 6 (KUP6), KUP8, KUP2/SHORT HYPOCOTYL3, and an ABA-responsive potassium efflux channel, guard cell outward rectifying K(+) channel (GORK). The triple mutants, kup268 and kup68 gork, exhibited enhanced cell expansion, suggesting that these KUPs negatively regulate turgor-dependent growth. Potassium uptake experiments using (86)radioactive rubidium ion ((86)Rb(+)) in the mutants indicated that these KUPs might be involved in potassium efflux in Arabidopsis roots. The mutants showed increased auxin responses and decreased sensitivity to an auxin inhibitor (1-N-naphthylphthalamic acid) and ABA in lateral root growth. During water deficit stress, kup68 gork impaired ABA-mediated stomatal closing, and kup268 and kup68 gork decreased survival of drought stress. The protein kinase SNF1-related protein kinases 2E (SRK2E), a key component of ABA signaling, interacted with and phosphorylated KUP6, suggesting that KUP functions are regulated directly via an ABA signaling complex. We propose that the KUP6 subfamily transporters act as key factors in osmotic adjustment by balancing potassium homeostasis in cell growth and drought stress responses.
Collapse
Affiliation(s)
- Yuriko Osakabe
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Osakabe Y, Arinaga N, Umezawa T, Katsura S, Nagamachi K, Tanaka H, Ohiraki H, Yamada K, Seo SU, Abo M, Yoshimura E, Shinozaki K, Yamaguchi-Shinozaki K. Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. THE PLANT CELL 2013; 25:609-24. [PMID: 23396830 PMCID: PMC3608781 DOI: 10.1105/tpc.112.105700] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Osmotic adjustment plays a fundamental role in water stress responses and growth in plants; however, the molecular mechanisms governing this process are not fully understood. Here, we demonstrated that the KUP potassium transporter family plays important roles in this process, under the control of abscisic acid (ABA) and auxin. We generated Arabidopsis thaliana multiple mutants for K(+) uptake transporter 6 (KUP6), KUP8, KUP2/SHORT HYPOCOTYL3, and an ABA-responsive potassium efflux channel, guard cell outward rectifying K(+) channel (GORK). The triple mutants, kup268 and kup68 gork, exhibited enhanced cell expansion, suggesting that these KUPs negatively regulate turgor-dependent growth. Potassium uptake experiments using (86)radioactive rubidium ion ((86)Rb(+)) in the mutants indicated that these KUPs might be involved in potassium efflux in Arabidopsis roots. The mutants showed increased auxin responses and decreased sensitivity to an auxin inhibitor (1-N-naphthylphthalamic acid) and ABA in lateral root growth. During water deficit stress, kup68 gork impaired ABA-mediated stomatal closing, and kup268 and kup68 gork decreased survival of drought stress. The protein kinase SNF1-related protein kinases 2E (SRK2E), a key component of ABA signaling, interacted with and phosphorylated KUP6, suggesting that KUP functions are regulated directly via an ABA signaling complex. We propose that the KUP6 subfamily transporters act as key factors in osmotic adjustment by balancing potassium homeostasis in cell growth and drought stress responses.
Collapse
Affiliation(s)
- Yuriko Osakabe
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Gene Discovery Research Group, RIKEN Plant Science Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Naoko Arinaga
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Taishi Umezawa
- Gene Discovery Research Group, RIKEN Plant Science Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Shogo Katsura
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keita Nagamachi
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hidenori Tanaka
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Haruka Ohiraki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kohji Yamada
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - So-Uk Seo
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mitsuru Abo
- Laboratory of Analytical Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Etsuro Yoshimura
- Laboratory of Analytical Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Plant Science Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
- Address correspondence to
| |
Collapse
|
36
|
Abstract
As one of the most important mineral nutrient elements, potassium (K(+)) participates in many plant physiological processes and determines the yield and quality of crop production. In this review, we summarize K(+) signaling processes and K(+) transport regulation in higher plants, especially in plant responses to K(+)-deficiency stress. Plants perceive external K(+) fluctuations and generate the initial K(+) signal in root cells. This signal is transduced into the cytoplasm and encoded as Ca(2+) and reactive oxygen species signaling. K(+)-deficiency-induced signals are subsequently decoded by cytoplasmic sensors, which regulate the downstream transcriptional and posttranslational responses. Eventually, plants produce a series of adaptive events in both physiological and morphological alterations that help them survive K(+) deficiency.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, National Center of Plant Gene Research (Beijing), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | |
Collapse
|
37
|
Genome-wide analysis and identification of HAK potassium transporter gene family in maize (Zea mays L.). Mol Biol Rep 2012; 39:8465-73. [PMID: 22711305 DOI: 10.1007/s11033-012-1700-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 06/06/2012] [Indexed: 01/19/2023]
Abstract
The high-affinity K(+) (HAK) transporter gene family constitutes the largest family that functions as potassium transporter in plant and is important for various cellular processes of plant life. In spite of their physiological importance, systematic analyses of ZmHAK genes have not yet been investigated. In this paper, we indicated the isolation and characterization of ZmHAK genes in whole-genome wide by using bioinformatics methods. A total of 27 members (ZmHAK1-ZmHAK27) of this family were identified in maize genome. ZmHAK genes were distributed in all the maize 10 chromosomes. These genes expanded in the maize genome partly due to tandem and segmental duplication events. Multiple alignment and motif display results revealed major maize ZmHAK proteins share all the three conserved domains. Phylogenetic analysis indicated ZmHAK family can be divided into six subfamilies. Putative cis-elements involved in Ca(2+) response, abiotic stress adaption, light and circadian rhythms regulation and seed development were observed in the promoters of ZmHAK genes. Expression data mining suggested maize ZmHAK genes have temporal and spatial expression pattern. In all, these results will provide molecular insights into the potassium transporter research in maize.
Collapse
|
38
|
Brini F, Masmoudi K. Ion Transporters and Abiotic Stress Tolerance in Plants. ISRN MOLECULAR BIOLOGY 2012; 2012:927436. [PMID: 27398240 PMCID: PMC4907263 DOI: 10.5402/2012/927436] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 04/10/2012] [Indexed: 11/23/2022]
Abstract
Adaptation of plants to salt stress requires cellular ion homeostasis involving net intracellular Na+ and Cl− uptake and subsequent vacuolar compartmentalization without toxic ion accumulation in the cytosol. Sodium ions can enter the cell through several low- and high-affinity K+ carriers. Some members of the HKT family function as sodium transporter and contribute to Na+ removal from the ascending xylem sap and recirculation from the leaves to the roots via the phloem vasculature. Na+ sequestration into the vacuole depends on expression and activity of Na+/H+ antiporter that is driven by electrochemical gradient of protons generated by the vacuolar H+-ATPase and the H+-pyrophosphatase. Sodium extrusion at the root-soil interface is presumed to be of critical importance for the salt tolerance. Thus, a very rapid efflux of Na+ from roots must occur to control net rates of influx. The Na+/H+ antiporter SOS1 localized to the plasma membrane is the only Na+ efflux protein from plants characterized so far. In this paper, we analyze available data related to ion transporters and plant abiotic stress responses in order to enhance our understanding about how salinity and other abiotic stresses affect the most fundamental processes of cellular function which have a substantial impact on plant growth development.
Collapse
Affiliation(s)
- Faïçal Brini
- Plant Protection and Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Khaled Masmoudi
- Plant Protection and Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| |
Collapse
|
39
|
Liu B, Feng D, Zhang B, Mu P, Zhang Y, He Y, Qi K, Wang J, Wang H. Musa paradisica RCI complements AtRCI and confers Na+ tolerance and K+ sensitivity in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 184:102-11. [PMID: 22284714 DOI: 10.1016/j.plantsci.2011.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 11/24/2011] [Accepted: 12/05/2011] [Indexed: 05/23/2023]
Abstract
The mechanisms involved in Na⁺/K⁺ uptake and extrusion are important in plant salt tolerance. In this study, we investigated the physiological role of a plasma membrane (PM)-localized protein, MpRCI, from plantain in transgenic Arabidopsis under NaCl and KCl stress and determined its effect on PM fluidity and H⁺-ATPase activity. The MpRCI gene exhibited high homology to the AtRCI2 gene family in Arabidopsis and was therefore able to complement for loss of the yeast AtRCI2-related PMP3 gene. Results of phenotypic espial and atomic emission spectrophotometer (AES) assays indicated that MpRCI overexpression in the AtRCI2A knockout mutant with reduced shoot Na⁺ and increased K⁺ exhibited increased Na⁺-tolerance and K⁺-sensitivity under NaCl or KCl treatments, respectively. Furthermore, comparisons of PM fluidity and H⁺-ATPase activity in shoots, with expression or absence of MpRCI/AtRCI2A expression under NaCl or KCl stress, showed MpRCI maintained PM fluidity and H⁺-ATPase activity under stress conditions. Results suggest that MpRCI plays an essential role in Na⁺/K⁺ flux in plant cells.
Collapse
Affiliation(s)
- Bing Liu
- Guangdong Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol and Key Laboratory of Gene Engineering of Ministry of Education, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gomez-Porras JL, Riaño-Pachón DM, Benito B, Haro R, Sklodowski K, Rodríguez-Navarro A, Dreyer I. Phylogenetic analysis of k(+) transporters in bryophytes, lycophytes, and flowering plants indicates a specialization of vascular plants. FRONTIERS IN PLANT SCIENCE 2012; 3:167. [PMID: 22876252 PMCID: PMC3410407 DOI: 10.3389/fpls.2012.00167] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/05/2012] [Indexed: 05/18/2023]
Abstract
As heritage from early evolution, potassium (K(+)) is absolutely necessary for all living cells. It plays significant roles as stabilizer in metabolism and is important for enzyme activation, stabilization of protein synthesis, and neutralization of negative charges on cellular molecules as proteins and nucleic acids. Land plants even enlarged this spectrum of K(+) utilization after having gone ashore, despite the fact that K(+) is far less available in their new oligotrophic habitats than in sea water. Inevitably, plant cells had to improve and to develop unique transport systems for K(+) accumulation and distribution. In the past two decades a manifold of K(+) transporters from flowering plants has been identified at the molecular level. The recently published genome of the fern ally Selaginella moellendorffii now helps in providing a better understanding on the molecular changes involved in the colonization of land and the development of the vasculature and the seeds. In this article we present an inventory of K(+) transporters of this lycophyte and pigeonhole them together with their relatives from the moss Physcomitrella patens, the monocotyledon Oryza sativa, and two dicotyledonous species, the herbaceous plant Arabidopsis thaliana, and the tree Populus trichocarpa. Interestingly, the transition of green plants from an aqueous to a dry environment coincides with a dramatic reduction in the diversity of voltage-gated potassium channels followed by a diversification on the basis of one surviving K(+) channel class. The first appearance of K(+) release (K(out)) channels in S. moellendorffii that were shown in Arabidopsis to be involved in xylem loading and guard cell closure coincides with the specialization of vascular plants and may indicate an important adaptive step.
Collapse
Affiliation(s)
| | - Diego Mauricio Riaño-Pachón
- Grupo de Biología Computacional y Evolutiva, Departamento de Ciencias Biológicas, Universidad de los AndesBogotá D.C., Colombia
| | - Begoña Benito
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de MadridMadrid, Spain
| | - Rosario Haro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de MadridMadrid, Spain
| | - Kamil Sklodowski
- Institut für Biochemie und Biologie, Universität PotsdamPotsdam, Germany
- Max-Planck-Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| | | | - Ingo Dreyer
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de MadridMadrid, Spain
- Institut für Biochemie und Biologie, Universität PotsdamPotsdam, Germany
- *Correspondence: Ingo Dreyer, Plant Biophysics, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M-40, km 37.7, E-28223-Pozuelo de Alarcón (Madrid), Spain. e-mail:
| |
Collapse
|
41
|
Conde A, Chaves MM, Gerós H. Membrane transport, sensing and signaling in plant adaptation to environmental stress. PLANT & CELL PHYSIOLOGY 2011; 52:1583-602. [PMID: 21828102 DOI: 10.1093/pcp/pcr107] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plants are generally well adapted to a wide range of environmental conditions. Even though they have notably prospered in our planet, stressful conditions such as salinity, drought and cold or heat, which are increasingly being observed worldwide in the context of the ongoing climate changes, limit their growth and productivity. Behind the remarkable ability of plants to cope with these stresses and still thrive, sophisticated and efficient mechanisms to re-establish and maintain ion and cellular homeostasis are involved. Among the plant arsenal to maintain homeostasis are efficient stress sensing and signaling mechanisms, plant cell detoxification systems, compatible solute and osmoprotectant accumulation and a vital rearrangement of solute transport and compartmentation. The key role of solute transport systems and signaling proteins in cellular homeostasis is addressed in the present work. The full understanding of the plant cell complex defense mechanisms under stress may allow for the engineering of more tolerant plants or the optimization of cultivation practices to improve yield and productivity, which is crucial at the present time as food resources are progressively scarce.
Collapse
Affiliation(s)
- Artur Conde
- Centro de Investigacão e de Tecnologias Agro-Ambientais e Biológicas, Portugal
| | | | | |
Collapse
|
42
|
Horie T, Brodsky DE, Costa A, Kaneko T, Lo Schiavo F, Katsuhara M, Schroeder JI. K+ transport by the OsHKT2;4 transporter from rice with atypical Na+ transport properties and competition in permeation of K+ over Mg2+ and Ca2+ ions. PLANT PHYSIOLOGY 2011; 156:1493-507. [PMID: 21610181 PMCID: PMC3135959 DOI: 10.1104/pp.110.168047] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 05/20/2011] [Indexed: 05/18/2023]
Abstract
Members of class II of the HKT transporters, which have thus far only been isolated from grasses, were found to mediate Na(+)-K(+) cotransport and at high Na(+) concentrations preferred Na(+)-selective transport, depending on the ionic conditions. But the physiological functions of this K(+)-transporting class II of HKT transporters remain unknown in plants, with the exception of the unique class II Na(+) transporter OsHKT2;1. The genetically tractable rice (Oryza sativa; background Nipponbare) possesses two predicted K(+)-transporting class II HKT transporter genes, OsHKT2;3 and OsHKT2;4. In this study, we have characterized the ion selectivity of the class II rice HKT transporter OsHKT2;4 in yeast and Xenopus laevis oocytes. OsHKT2;4 rescued the growth defect of a K(+) uptake-deficient yeast mutant. Green fluorescent protein-OsHKT2;4 is targeted to the plasma membrane in transgenic plant cells. OsHKT2;4-expressing oocytes exhibited strong K(+) permeability. Interestingly, however, K(+) influx in OsHKT2;4-expressing oocytes did not require stimulation by extracellular Na(+), in contrast to other class II HKT transporters. Furthermore, OsHKT2;4-mediated currents exhibited permeabilities to both Mg(2+) and Ca(2+) in the absence of competing K(+) ions. Comparative analyses of Ca(2+) and Mg(2+) permeabilities in several HKT transporters, including Arabidopsis thaliana HKT1;1 (AtHKT1;1), Triticum aestivum HKT2;1 (TaHKT2;1), OsHKT2;1, OsHKT2;2, and OsHKT2;4, revealed that only OsHKT2;4 and to a lesser degree TaHKT2;1 mediate Mg(2+) transport. Interestingly, cation competition analyses demonstrate that the selectivity of both of these class II HKT transporters for K(+) is dominant over divalent cations, suggesting that Mg(2+) and Ca(2+) transport via OsHKT2;4 may be small and would depend on competing K(+) concentrations in plants.
Collapse
|
43
|
Xu RR, Qi SD, Lu LT, Chen CT, Wu CA, Zheng CC. A DExD/H box RNA helicase is important for K+ deprivation responses and tolerance in Arabidopsis thaliana. FEBS J 2011; 278:2296-306. [DOI: 10.1111/j.1742-4658.2011.08147.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Kong XQ, Gao XH, Sun W, An J, Zhao YX, Zhang H. Cloning and functional characterization of a cation-chloride cotransporter gene OsCCC1. PLANT MOLECULAR BIOLOGY 2011; 75:567-78. [PMID: 21369877 DOI: 10.1007/s11103-011-9744-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 01/21/2011] [Indexed: 05/05/2023]
Abstract
Potassium (K+) and chloride (Cl-) are two essential elements for plant growth and development. While it is known that plants possess specific membrane transporters for transporting K+ and Cl-, it remains unclear if they actively use K+-coupled Cl- cotransporters (KCC), as used in animals, to transport K+ and Cl-. We have cloned an Oryza sativa cDNA encoding for a member of the cation-Cl- cotransporter (CCC) family. Phylogenetic analysis revealed that plant CCC proteins are highly conserved and that they have greater sequence similarity to the sub-family of animal K--Cl- cotransporters than to other cation-Cl- cotransporters. Real-time PCR revealed that the O. sativa cDNA, which was named OsCCC1, can be induced by KCl in the shoot and root and that the expression level was higher in the leaf and root tips than in any other part of the rice plant. The OsCCC1 protein was located not only in onion plasma membrane but also in O. sativa plasma membrane. The OsCCC1 gene-silenced plants grow more slowly than wild-type (WT) plants, especially under the KCl treatment regime. After 1 month of KCl treatment, the leaf tips of the gene-silenced lines were necrosed. In addition, seed germination, root length, and fresh and dry weight were distinctly lower in the gene-silenced lines than in WT plants, especially after KCl treatment. Analysis of Na+, K+, and Cl- contents of the gene-silenced lines and WT plants grown under the NaCl and KCl treatment regimes revealed that the former accumulated relatively less K+ and Cl- than the latter but that they did not differ in terms of Na+ contents, suggesting OsCCC1 may be involved in K+ and Cl- transport. Results from different tests indicated that the OsCCC1 plays a significant role in K+ and Cl- homeostasis and rice plant development.
Collapse
Affiliation(s)
- Xiang-Qiang Kong
- Kay Laborarory of Plant Stress Research, School of Life Science, Shandong Normal University, Jinan, Shandong Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
45
|
Horie T, Sugawara M, Okada T, Taira K, Kaothien-Nakayama P, Katsuhara M, Shinmyo A, Nakayama H. Rice sodium-insensitive potassium transporter, OsHAK5, confers increased salt tolerance in tobacco BY2 cells. J Biosci Bioeng 2011; 111:346-56. [PMID: 21084222 DOI: 10.1016/j.jbiosc.2010.10.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 10/14/2010] [Accepted: 10/21/2010] [Indexed: 12/14/2022]
Abstract
Potassium ion (K(+)) plays vital roles in many aspects of cellular homeostasis including competing with sodium ion (Na(+)) during potassium starvation and salt stress. Therefore, one way to engineer plant cells with improved salt tolerance is to enhance K(+) uptake activity of the cells, while keeping Na(+) out during salt stress. Here, in search for Na(+)-insensitive K(+) transporter for this purpose, bacterial expression system was used to characterize two K(+) transporters, OsHAK2 and OsHAK5, isolated from rice (Oryza sativa cv. Nipponbare). The two OsHAK transporters are members of a KT/HAK/KUP transporter family, which is one of the major K(+) transporter families in bacteria, fungi and plants. When expressed in an Escherichia coli K(+) transport mutant strain LB2003, both OsHAK transporters rescued the growth defect in K(+)-limiting conditions by significantly increasing the K(+) content of the cells. Under the condition with a large amount of extracellular Na(+), we found that OsHAK5 functions as a Na(+)-insensitive K(+) transporter, while OsHAK2 is sensitive to extracellular Na(+) and exhibits higher Na(+) over K(+) transport activities. Moreover, constitutive expression of OsHAK5 in cultured-tobacco BY2 (Nicotiana tabacum cv. Bright Yellow 2) cells enhanced the accumulation of K(+) but not Na(+) in the cells during salt stress and conferred increased salt tolerance to the cells. Transient expression experiment indicated that OsHAK5 is localized to the plant plasma membrane. These results suggest that the plasma-membrane localized Na(+) insensitive K(+) transporters, similar to OsHAK5 identified here, could be used as a tool to enhance salt tolerance in plant cells.
Collapse
Affiliation(s)
- Tomoaki Horie
- Group of Molecular and Functional Plant Biology, Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Kanter U, Hauser A, Michalke B, Dräxl S, Schäffner AR. Caesium and strontium accumulation in shoots of Arabidopsis thaliana: genetic and physiological aspects. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3995-4009. [PMID: 20624763 PMCID: PMC2935873 DOI: 10.1093/jxb/erq213] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 06/16/2010] [Accepted: 06/21/2010] [Indexed: 05/18/2023]
Abstract
Due to the physico-chemical similarities of caesium (Cs(+)) to potassium (K(+)) on the one hand and strontium (Sr(2+)) to calcium (Ca(2+)) on the other hand, both elements can easily be taken up by plants and thus enter the food chain. This could be detrimental when radionuclides such as (137)Cs and (90)Sr are involved. In this study, both genetic and physiological aspects of Cs(+) and Sr(2+) accumulation in Arabidopsis thaliana were investigated using 86 Arabidopsis accessions and a segregating F(2) population of the low Cs(+) accumulating Sq-1 (Ascot, UK) crossed with the high uptaking Sorbo (Khurmatov, Tajikistan). Hydroponically grown plants were exposed to subtoxic levels of Cs(+) and Sr(2+) using radioactive isotopes as tracers. In the natural accessions shoot concentration of Cs(+) as well as Sr(2+) varied about 2-fold, whereas its heritability ranged for both ions between 0.60 and 0.73. Shoot accumulation of Cs(+) and Sr(2+) could be compromised by increasing concentrations of their essential analogues K(+) and Ca(2+), respectively, causing a reduction of up to 80%. In the case of the segregating F(2)/F(3) population Sq-1×Sorbo, this study identified several QTL for the trait Cs(+) and Sr(2+) accumulation, with main QTL on chromosomes 1 and 5. According to the correlation and discrimination surveys combined with QTL-analysis Cs(+) and Sr(2+) uptake seemed to be mediated mostly via non-selective cation channels. A polymorphism, affecting amino acids close to the K(+)-pore of one candidate, CYCLIC-NUCLEOTIDE-GATED CHANNEL 1 (CNGC1), was identified in Sorbo and associated with high Cs(+) concentrating accessions.
Collapse
Affiliation(s)
- Ulrike Kanter
- Institute of Radiation Protection, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany.
| | | | | | | | | |
Collapse
|
47
|
Pyo YJ, Gierth M, Schroeder JI, Cho MH. High-affinity K(+) transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low-potassium conditions. PLANT PHYSIOLOGY 2010; 153:863-75. [PMID: 20413648 PMCID: PMC2879780 DOI: 10.1104/pp.110.154369] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 04/16/2010] [Indexed: 05/17/2023]
Abstract
Potassium (K(+)) is a major plant nutrient required for growth and development. It is generally accepted that plant roots absorb K(+) through uptake systems operating at low concentrations (high-affinity transport) and/or high external concentrations (low-affinity transport). To understand the molecular basis of high-affinity K(+) uptake in Arabidopsis (Arabidopsis thaliana), we analyzed loss-of-function mutants in AtHAK5 and AKT1, two transmembrane proteins active in roots. Compared with the wild type under NH(4)(+)-free growth conditions, athak5 mutant plants exhibited growth defects at 10 mum K(+), but at K(+) concentrations of 20 mum and above, athak5 mutants were visibly indistinguishable from the wild type. While germination, scored as radicle emergence, was only slightly decreased in athak5 akt1 double mutants on low-K(+) medium, double mutants failed to grow on medium containing up to 100 mum K(+) and growth was impaired at concentrations up to 450 mum K(+). Moreover, transfer of 3-d-old plants from high to low K(+) concentrations led to growth defects and leaf chlorosis at 10 mum K(+) in athak5 akt1 double mutant plants. Determination of Rb(+)(K(+)) uptake kinetics in wild-type and mutant roots using rubidium ((86)Rb(+)) as a tracer for K(+) revealed that high-affinity Rb(+)(K(+)) uptake into roots is almost completely abolished in double mutants and impaired in single mutants. These results strongly indicate that AtHAK5 and AKT1 are the two major, physiologically relevant molecular entities mediating high-affinity K(+) uptake into roots during seedling establishment and postgermination growth and that residual Rb(+)(K(+)) uptake measured in athak5 akt1 double mutant roots is insufficient to enable plant growth.
Collapse
Affiliation(s)
| | | | | | - Myeon Haeng Cho
- Department of Biology, Yonsei University, Seoul 120–749, Republic of Korea (Y.J.P., M.H.C.); Department of Botany II, University of Cologne, 50674 Cologne, Germany (M.G.); Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093–0116 (J.I.S.)
| |
Collapse
|
48
|
Ion Channels and Plant Stress: Past, Present, and Future. ION CHANNELS AND PLANT STRESS RESPONSES 2010. [DOI: 10.1007/978-3-642-10494-7_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
49
|
Yao X, Horie T, Xue S, Leung HY, Katsuhara M, Brodsky DE, Wu Y, Schroeder JI. Differential sodium and potassium transport selectivities of the rice OsHKT2;1 and OsHKT2;2 transporters in plant cells. PLANT PHYSIOLOGY 2010; 152:341-55. [PMID: 19889878 PMCID: PMC2799368 DOI: 10.1104/pp.109.145722] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 10/26/2009] [Indexed: 05/18/2023]
Abstract
Na(+) and K(+) homeostasis are crucial for plant growth and development. Two HKT transporter/channel classes have been characterized that mediate either Na(+) transport or Na(+) and K(+) transport when expressed in Xenopus laevis oocytes and yeast. However, the Na(+)/K(+) selectivities of the K(+)-permeable HKT transporters have not yet been studied in plant cells. One study expressing 5' untranslated region-modified HKT constructs in yeast has questioned the relevance of cation selectivities found in heterologous systems for selectivity predictions in plant cells. Therefore, here we analyze two highly homologous rice (Oryza sativa) HKT transporters in plant cells, OsHKT2;1 and OsHKT2;2, that show differential K(+) permeabilities in heterologous systems. Upon stable expression in cultured tobacco (Nicotiana tabacum) Bright-Yellow 2 cells, OsHKT2;1 mediated Na(+) uptake, but little Rb(+) uptake, consistent with earlier studies and new findings presented here in oocytes. In contrast, OsHKT2;2 mediated Na(+)-K(+) cotransport in plant cells such that extracellular K(+) stimulated OsHKT2;2-mediated Na(+) influx and vice versa. Furthermore, at millimolar Na(+) concentrations, OsHKT2;2 mediated Na(+) influx into plant cells without adding extracellular K(+). This study shows that the Na(+)/K(+) selectivities of these HKT transporters in plant cells coincide closely with the selectivities in oocytes and yeast. In addition, the presence of external K(+) and Ca(2+) down-regulated OsHKT2;1-mediated Na(+) influx in two plant systems, Bright-Yellow 2 cells and intact rice roots, and also in Xenopus oocytes. Moreover, OsHKT transporter selectivities in plant cells are shown to depend on the imposed cationic conditions, supporting the model that HKT transporters are multi-ion pores.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Julian I. Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093–0116 (X.Y., T.H., S.X., H.-Y.L., D.E.B., J.I.S.); Key Laboratory of Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China (X.Y., Y.W.); and Group of Molecular and Functional Plant Biology, Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710–0046, Japan (T.H., M.K.)
| |
Collapse
|
50
|
Ligaba A, Katsuhara M. Insights into the salt tolerance mechanism in barley (Hordeum vulgare) from comparisons of cultivars that differ in salt sensitivity. JOURNAL OF PLANT RESEARCH 2010; 123:105-118. [PMID: 19902321 DOI: 10.1007/s10265-009-0272-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 09/21/2009] [Indexed: 05/28/2023]
Abstract
Although barley (Hordeum vulgare L.) is a salt-tolerant crop, the underlying physiological and molecular mechanisms of salt tolerance remain to be elucidated. Therefore, we investigated the response of salt-tolerant (K305) and salt-sensitive (I743) cultivars to salt stress at both physiological and molecular levels. Salt treatment increased xylem sap osmolarity, which was attributed primarily to a rise in Na(+) and Cl(-) concentration; enhanced accumulation of the ions in shoots; and reduced plant growth more severely in I743 than K305. The concentration of K(+) in roots and shoots decreased during 8 h of salt treatment in both cultivars but with no marked difference between cultivars. Hence, the severe growth reduction in I743 is attributed to the elevated levels of (mainly) Na(+) in shoots. Analysis of gene expression using quantitative RT-PCR showed that transcripts of K(+)-transporters (HvHAK1 and HvAKT1), vacuolar H(+)-ATPase and inorganic pyrophosphatase (HvHVA/68 and HvHVP1) were more abundant in shoots of K305 than in shoots of I743. Expression of HvHAK1 and Na(+)/H(+) antiporters (HvNHX1, HvNHX3 and HvNHX4) was higher in roots of K305 than in I743 with prolonged exposure to salt. Taken together, these results suggest that the better performance of K305 compared to I743 during salt stress may be related to its greater ability to sequester Na(+) into sub-cellular compartments and/or maintain K(+) homeostasis.
Collapse
Affiliation(s)
- Ayalew Ligaba
- Robert Holley Center for Agriculture and Health, US Department of Agriculture, Cornell University, Ithaca, NY 14853-2901, USA.
| | | |
Collapse
|