1
|
Chaowongdee S, Vannatim N, Malichan S, Kuncharoen N, Tongyoo P, Siriwan W. Roles of WRKY Transcription Factors in Response to Sri Lankan Cassava Mosaic Virus Infection in Susceptible and Tolerant Cassava Cultivars. PLANTS (BASEL, SWITZERLAND) 2025; 14:1159. [PMID: 40284047 PMCID: PMC12030686 DOI: 10.3390/plants14081159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Cassava mosaic disease (CMD) is caused by viruses such as Sri Lankan cassava mosaic virus (SLCMV). It poses a significant threat to the cassava (Manihot esculenta) yield in Southeast Asia. Here, we investigated the expression of WRKY transcription factors (TFs) in SLCMV-infected cassava cultivars KU 50 (tolerant) and R 11 (susceptible) at 21, 32, and 67 days post-inoculation (dpi), representing the early, middle/recovery, and late infection stages, respectively. The 34 identified WRKYs were classified into the following six groups based on the functions of their homologs in the model plant Arabidopsis thaliana (AtWRKYs): plant defense; plant development; hormone signaling (abscisic, salicylic, and jasmonic acid); reactive oxygen species production; basal immune mechanisms; and other related hormones, metabolites, and abiotic stress responses. Regarding the protein interactions of the identified WRKYs, based on the interactions of their homologs (AtWRKYs), WRKYs increased reactive oxygen species production, leading to salicylic acid accumulation and systemic acquired resistance (SAR) against SLCMV. Additionally, some WRKYs were involved in defense-related mitogen-activated protein kinase signaling and abiotic stress responses. Furthermore, crosstalk among WRKYs reflected the robustly restricted viral multiplication in the tolerant cultivar, contributing to CMD recovery. This study highlights the crucial roles of WRKYs in transcriptional reprogramming, innate immunity, and responses to geminivirus infections in cassava, providing valuable insights to enhance disease resistance in cassava and, potentially, other crops.
Collapse
Affiliation(s)
- Somruthai Chaowongdee
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand; (S.C.); (N.V.); (S.M.); (N.K.)
| | - Nattachai Vannatim
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand; (S.C.); (N.V.); (S.M.); (N.K.)
| | - Srihunsa Malichan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand; (S.C.); (N.V.); (S.M.); (N.K.)
| | - Nattakorn Kuncharoen
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand; (S.C.); (N.V.); (S.M.); (N.K.)
| | - Pumipat Tongyoo
- Center of Excellence on Agricultural Biotechnology (AG-BIO/MHESI), Bangkok 10900, Thailand;
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom 73140, Thailand
| | - Wanwisa Siriwan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand; (S.C.); (N.V.); (S.M.); (N.K.)
| |
Collapse
|
2
|
Zhang W, Maksym R, Georgii E, Geist B, Schäffner AR. SA and NHP glucosyltransferase UGT76B1 affects plant defense in both SID2- and NPR1-dependent and independent manner. PLANT CELL REPORTS 2024; 43:149. [PMID: 38780624 PMCID: PMC11116260 DOI: 10.1007/s00299-024-03228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
KEY MESSAGE The small-molecule glucosyltransferase loss-of-function mutant ugt76b1 exhibits both SID2- or NPR1-dependent and independent facets of enhanced plant immunity, whereupon FMO1 is required for the SID2 and NPR1 independence. The small-molecule glucosyltransferase UGT76B1 inactivates salicylic acid (SA), isoleucic acid (ILA), and N-hydroxypipecolic acid (NHP). ugt76b1 loss-of-function plants manifest an enhanced defense status. Thus, we were interested how UGT76B1 genetically integrates in defense pathways and whether all impacts depend on SA and NHP. We study the integration of UGT76B1 by transcriptome analyses of ugt76b1. The comparison of transcripts altered by the loss of UGT76B1 with public transcriptome data reveals both SA-responsive, ISOCHORISMATE SYNTHASE 1/SALICYLIC ACID INDUCTION DEFICIENT 2 (ICS1/SID2)- and NON EXPRESSOR OF PR GENES 1 (NPR1)-dependent, consistent with the role of UGT76B1 in glucosylating SA, and SA-non-responsive, SID2/NPR1-independent genes. We also discovered that UGT76B1 impacts on a group of genes showing non-SA-responsiveness and regulation by infections independent from SID2/NPR1. Enhanced resistance of ugt76b1 against Pseudomonas syringae is partially independent from SID2 and NPR1. In contrast, the ugt76b1-activated resistance is completely dependent on FMO1 encoding the NHP-synthesizing FLAVIN-DEPENDENT MONOOXYGENASE 1). Moreover, FMO1 ranks top among the ugt76b1-induced SID2- and NPR1-independent pathogen responsive genes, suggesting that FMO1 determines the SID2- and NPR1-independent effect of ugt76b1. Furthermore, the genetic study revealed that FMO1, ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), SID2, and NPR1 are required for the SA-JA crosstalk and senescence development of ugt76b1, indicating that EDS1 and FMO1 have a similar effect like stress-induced SA biosynthesis (SID2) or the key SA signaling regulator NPR1. Thus, UGT76B1 influences both SID2/NPR1-dependent and independent plant immunity, and the SID2/NPR1 independence is relying on FMO1 and its product NHP, another substrate of UGT76B1.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany.
- College of Life Sciences, Jiangsu University, Jiangsu, People's Republic of China.
| | - Rafał Maksym
- Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| | - Elisabeth Georgii
- Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| | - Birgit Geist
- Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anton R Schäffner
- Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
3
|
Shi PQ, Wang L, Chen XY, Wang K, Wu QJ, Turlings TCJ, Zhang PJ, Qiu BL. Rickettsia transmission from whitefly to plants benefits herbivore insects but is detrimental to fungal and viral pathogens. mBio 2024; 15:e0244823. [PMID: 38315036 PMCID: PMC10936170 DOI: 10.1128/mbio.02448-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Bacterial endosymbionts play important roles in the life histories of herbivorous insects by impacting their development, survival, reproduction, and stress tolerance. How endosymbionts may affect the interactions between plants and insect herbivores is still largely unclear. Here, we show that endosymbiotic Rickettsia belli can provide mutual benefits also outside of their hosts when the sap-sucking whitefly Bemisia tabaci transmits them to plants. This transmission facilitates the spread of Rickettsia but is shown to also enhance the performance of the whitefly and co-infesting caterpillars. In contrast, Rickettsia infection enhanced plant resistance to several pathogens. Inside the plants, Rickettsia triggers the expression of salicylic acid-related genes and the two pathogen-resistance genes TGA 2.1 and VRP, whereas they repressed genes of the jasmonic acid pathway. Performance experiments using wild type and mutant tomato plants confirmed that Rickettsia enhances the plants' suitability for insect herbivores but makes them more resistant to fungal and viral pathogens. Our results imply that endosymbiotic Rickettsia of phloem-feeding insects affects plant defenses in a manner that facilitates their spread and transmission. This novel insight into how insects can exploit endosymbionts to manipulate plant defenses also opens possibilities to interfere with their ability to do so as a crop protection strategy. IMPORTANCE Most insects are associated with symbiotic bacteria in nature. These symbionts play important roles in the life histories of herbivorous insects by impacting their development, survival, reproduction as well as stress tolerance. Rickettsia is one important symbiont to the agricultural pest whitefly Bemisia tabaci. Here, for the first time, we revealed that the persistence of Rickettsia symbionts in tomato leaves significantly changed the defense pattern of tomato plants. These changes benefit both sap-feeding and leaf-chewing herbivore insects, such as increasing the fecundity of whitefly adults, enhancing the growth and development of the noctuid Spodoptera litura, but reducing the pathogenicity of Verticillium fungi and TYLCV virus to tomato plants distinctively. Our study unraveled a new horizon for the multiple interaction theories among plant-insect-bacterial symbionts.
Collapse
Affiliation(s)
- Pei-Qiong Shi
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| | - Lei Wang
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| | - Xin-Yi Chen
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Qing-Jun Wu
- Institute of Vegetables & Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ted C. J. Turlings
- FARCE Laboratory, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Peng-Jun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Huangzhou, China
| | - Bao-Li Qiu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| |
Collapse
|
4
|
Baggs EL, Tiersma MB, Abramson BW, Michael TP, Krasileva KV. Characterization of defense responses against bacterial pathogens in duckweeds lacking EDS1. THE NEW PHYTOLOGIST 2022; 236:1838-1855. [PMID: 36052715 PMCID: PMC9828482 DOI: 10.1111/nph.18453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/19/2022] [Indexed: 05/19/2023]
Abstract
ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) mediates the induction of defense responses against pathogens in most angiosperms. However, it has recently been shown that a few species have lost EDS1. It is unknown how defense against disease unfolds and evolves in the absence of EDS1. We utilize duckweeds; a collection of aquatic species that lack EDS1, to investigate this question. We established duckweed-Pseudomonas pathosystems and used growth curves and microscopy to characterize pathogen-induced responses. Through comparative genomics and transcriptomics, we show that the copy number of infection-associated genes and the infection-induced transcriptional responses of duckweeds differ from other model species. Pathogen defense in duckweeds has evolved along different trajectories than in other plants, including genomic and transcriptional reprogramming. Specifically, the miAMP1 domain-containing proteins, which are absent in Arabidopsis, showed pathogen responsive upregulation in duckweeds. Despite such divergence between Arabidopsis and duckweed species, we found conservation of upregulation of certain genes and the role of hormones in response to disease. Our work highlights the importance of expanding the pool of model species to study defense responses that have evolved in the plant kingdom independent of EDS1.
Collapse
Affiliation(s)
- Erin L. Baggs
- Department of Plant and Microbial BiologyUniversity of California BerkeleyBerkeleyCA94720USA
| | - Meije B. Tiersma
- Department of Plant and Microbial BiologyUniversity of California BerkeleyBerkeleyCA94720USA
| | - Brad W. Abramson
- Plant Molecular and Cellular Biology LaboratoryThe Salk Institute for Biological StudiesLa JollaCA92037USA
| | - Todd P. Michael
- Plant Molecular and Cellular Biology LaboratoryThe Salk Institute for Biological StudiesLa JollaCA92037USA
| | - Ksenia V. Krasileva
- Department of Plant and Microbial BiologyUniversity of California BerkeleyBerkeleyCA94720USA
| |
Collapse
|
5
|
Sun L, Xu S, Tang Y, Zhou Y, Wang M, Tian Y, Li G, Zhu X, Bao N, Sun L. Disposable stainless steel working electrodes for sensitive and simultaneous detection of indole-3-acetic acid and salicylic acid in Arabidopsis thaliana leaves under biotic stresses. Anal Bioanal Chem 2022; 414:7721-7730. [PMID: 36068347 DOI: 10.1007/s00216-022-04303-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022]
Abstract
The detection of phytohormones in real time has attracted increasing attention because of their critical roles in regulating the development and signaling of plants, especially in defense against biotic stresses. Herein, stainless steel sheet electrodes modified with carbon cement were coupled with paper-based analysis devices for direct and simultaneous detection of salicylic acid (SA) and indole-3-acetic acid (IAA) in plants. We demonstrated that the excellent conductivity of stainless steel sheet electrodes enabled us to simultaneously differentiate IAA and SA at a level of 10 nM. With our approach, the content of IAA and SA in Arabidopsis thaliana leaves infected or not infected with Pst DC3000 could be rapidly quantified at the same time. Our experimental results on differentiation of IAA and SA at different time points showed that there were antagonistic interactions between the IAA and SA after infection of Arabidopsis leaves with Pst DC3000. By offering a cost-effective approach for rapid and sensitive detection of IAA and SA, this study suggests that electrochemical detection can be used in the study and development of precision agriculture technology.
Collapse
Affiliation(s)
- Ling Sun
- School of Life Sciences, Nantong University, 9 Seyuan Rd, Nantong, 226019, Jiangsu, China
| | - Songzhi Xu
- School of Life Sciences, Nantong University, 9 Seyuan Rd, Nantong, 226019, Jiangsu, China
| | - Yihui Tang
- School of Life Sciences, Nantong University, 9 Seyuan Rd, Nantong, 226019, Jiangsu, China
| | - Yuhang Zhou
- School of Life Sciences, Nantong University, 9 Seyuan Rd, Nantong, 226019, Jiangsu, China
| | - Meng Wang
- School of Life Sciences, Nantong University, 9 Seyuan Rd, Nantong, 226019, Jiangsu, China
| | - Yiran Tian
- School of Life Sciences, Nantong University, 9 Seyuan Rd, Nantong, 226019, Jiangsu, China
| | - Guangxi Li
- School of Life Sciences, Nantong University, 9 Seyuan Rd, Nantong, 226019, Jiangsu, China
| | - Xinyu Zhu
- School of Life Sciences, Nantong University, 9 Seyuan Rd, Nantong, 226019, Jiangsu, China.
| | - Ning Bao
- School of Public Health, Nantong University, 9 Seyuan Rd, Nantong, 226019, Jiangsu, China.
| | - Lijun Sun
- School of Life Sciences, Nantong University, 9 Seyuan Rd, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
6
|
Singh A, Sharma A, Singh N, Nandi AK. MTO1-RESPONDING DOWN 1 (MRD1) is a transcriptional target of OZF1 for promoting salicylic acid-mediated defense in Arabidopsis. PLANT CELL REPORTS 2022; 41:1319-1328. [PMID: 35325291 DOI: 10.1007/s00299-022-02861-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
OZF1 promotes the transcription of MRD1, which is essential for SA-mediated defense against virulent and avirulent bacterial pathogens in Arabidopsis. Salicylic acid (SA) is critical for defense against biotrophic pathogens. A trans-activator protein NPR1 plays significant roles in SA-signaling. However, evidences suggest the existence of NPR1-independent pathways for SA signaling in plants. Previously, we reported Arabidopsis OXIDATION-RELATED ZN-FINGER PROTEIN1 (OZF1) as a positive regulator of NPR1-independent SA-signaling. However, the mechanism or components of OZF1-mediated SA signaling was not known. Through the analysis of differentially expressing genes, we report the identification of MTO1-RESPONDING DOWN 1 (MRD1) as a transcriptional target of OZF1. Expressions of MRD1 and its overlapping gene in Arabidopsis genome, HEI10 increase upon pathogen inoculation in an OZF1-dependent manner. Their mutants are susceptible to both virulent and avirulent bacterial pathogens and show compromised SA-mediated immunity. Overexpression of MRD1 but not the HEI10 rescues the loss-of-resistance phenotype of the ozf1 mutant. OZF1 physically associates at the MRD1 promoter area upon pathogen inoculation. Results altogether support that MRD1 is a transcriptional target of OZF1 for promoting SA-mediated defense in Arabidopsis.
Collapse
Affiliation(s)
- Anupriya Singh
- 415, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Akash Sharma
- 415, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Nidhi Singh
- 415, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashis Kumar Nandi
- 415, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
7
|
Yang C, Ancona V. An Overview of the Mechanisms Against " Candidatus Liberibacter asiaticus": Virulence Targets, Citrus Defenses, and Microbiome. Front Microbiol 2022; 13:850588. [PMID: 35391740 PMCID: PMC8982080 DOI: 10.3389/fmicb.2022.850588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/18/2022] [Indexed: 12/01/2022] Open
Abstract
Citrus Huanglongbing (HLB) or citrus greening, is the most destructive disease for citrus worldwide. It is caused by the psyllid-transmitted, phloem-limited bacteria "Candidatus Liberibacter asiaticus" (CLas). To date, there are still no effective practical strategies for curing citrus HLB. Understanding the mechanisms against CLas can contribute to the development of effective approaches for combatting HLB. However, the unculturable nature of CLas has hindered elucidating mechanisms against CLas. In this review, we summarize the main aspects that contribute to the understanding about the mechanisms against CLas, including (1) CLas virulence targets, focusing on inhibition of virulence genes; (2) activation of citrus host defense genes and metabolites of HLB-tolerant citrus triggered by CLas, and by agents; and (3) we also review the role of citrus microbiome in combatting CLas. Finally, we discuss novel strategies to continue studying mechanisms against CLas and the relationship of above aspects.
Collapse
Affiliation(s)
- Chuanyu Yang
- Department of Agriculture, Agribusiness, and Environmental Sciences, Citrus Center, Texas A&M University-Kingsville, Weslaco, TX, United States
| | - Veronica Ancona
- Department of Agriculture, Agribusiness, and Environmental Sciences, Citrus Center, Texas A&M University-Kingsville, Weslaco, TX, United States
| |
Collapse
|
8
|
Kacprzyk J, Burke R, Schwarze J, McCabe PF. Plant programmed cell death meets auxin signalling. FEBS J 2021; 289:1731-1745. [PMID: 34543510 DOI: 10.1111/febs.16210] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/26/2021] [Accepted: 09/17/2021] [Indexed: 11/28/2022]
Abstract
Both auxin signalling and programmed cell death (PCD) are essential components of a normally functioning plant. Auxin underpins plant growth and development, as well as regulating plant defences against environmental stresses. PCD, a genetically controlled pathway for selective elimination of redundant, damaged or infected cells, is also a key element of many developmental processes and stress response mechanisms in plants. An increasing body of evidence suggests that auxin signalling and PCD regulation are often connected. While generally auxin appears to suppress cell death, it has also been shown to promote PCD events, most likely via stimulation of ethylene biosynthesis. Intriguingly, certain cells undergoing PCD have also been suggested to control the distribution of auxin in plant tissues, by either releasing a burst of auxin or creating an anatomical barrier to auxin transport and distribution. These recent findings indicate novel roles of localized PCD events in the context of plant development such as control of root architecture, or tissue regeneration following injury, and suggest exciting possibilities for incorporation of this knowledge into crop improvement strategies.
Collapse
Affiliation(s)
- Joanna Kacprzyk
- School of Biology and Environmental Science, Science Centre, University College Dublin, Dublin, Ireland
| | - Rory Burke
- School of Biology and Environmental Science, Science Centre, University College Dublin, Dublin, Ireland
| | - Johanna Schwarze
- School of Biology and Environmental Science, Science Centre, University College Dublin, Dublin, Ireland
| | - Paul F McCabe
- School of Biology and Environmental Science, Science Centre, University College Dublin, Dublin, Ireland
| |
Collapse
|
9
|
Hu M, Zhang H, Wang B, Song Z, Gao Y, Yuan C, Huang C, Zhao L, Zhang Y, Wang L, Zou C, Sui X. Transcriptomic analysis provides insights into the AUXIN RESPONSE FACTOR 6-mediated repression of nicotine biosynthesis in tobacco (Nicotiana tabacum L.). PLANT MOLECULAR BIOLOGY 2021; 107:21-36. [PMID: 34302568 DOI: 10.1007/s11103-021-01175-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE NtARF6 overexpression represses nicotine biosynthesis in tobacco. Transcriptome analysis suggests that NtARF6 acts as a regulatory hub that connect different phytohormone signaling pathways to antagonize the jasmonic acid-induced nicotine biosynthesis. Plant specialized metabolic pathways are regulated by a plethora of molecular regulators that form complex networks. In Nicotiana tabacum, nicotine biosynthesis is regulated by transcriptional activators, such as NtMYC2 and the NIC2-locus ERFs. However, the underlying molecular mechanism of the regulatory feedback is largely unknown. Previous research has shown that NbARF1, a nicotine synthesis repressor, reduces nicotine accumulation in N. benthamiana. In this study, we demonstrated that overexpression of NtARF6, an ortholog of NbARF1, was able to reduce pyridine alkaloid accumulation in tobacco. We found that NtARF6 could not directly repress the transcriptional activities of the key nicotine pathway structural gene promoters. Transcriptomic analysis suggested that this NtARF6-induced deactivation of alkaloid biosynthesis might be achieved by the antagonistic effect between jasmonic acid (JA) and other plant hormone signaling pathways, such as ethylene (ETH), salicylic acid (SA), abscisic acid (ABA). The repression of JA biosynthesis is accompanied by the induction of ETH, ABA, and SA signaling and pathogenic infection defensive responses, resulting in counteracting JA-induced metabolic reprogramming and decreasing the expression of nicotine biosynthetic genes in vivo. This study provides transcriptomic evidence for the regulatory mechanism of the NtARF6-mediated repression of alkaloid biosynthesis and indicates that this ARF transcription factor might act as a regulatory hub to connect different hormone signaling pathways in tobacco.
Collapse
Affiliation(s)
- Mengyang Hu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Hongbo Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, Shandong, China
| | - Bingwu Wang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China
| | - Zhongbang Song
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China
| | - Yulong Gao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China
| | - Cheng Yuan
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China
| | - Changjun Huang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China
| | - Lu Zhao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China
| | - Yihan Zhang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China
| | - Longchang Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Congming Zou
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China
| | - Xueyi Sui
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China.
| |
Collapse
|
10
|
Pfeilmeier S, Petti GC, Bortfeld-Miller M, Daniel B, Field CM, Sunagawa S, Vorholt JA. The plant NADPH oxidase RBOHD is required for microbiota homeostasis in leaves. Nat Microbiol 2021; 6:852-864. [PMID: 34194036 PMCID: PMC7612668 DOI: 10.1038/s41564-021-00929-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
The plant microbiota consists of a multitude of microorganisms that can affect plant health and fitness. However, it is currently unclear how the plant shapes its leaf microbiota and what role the plant immune system plays in this process. Here, we evaluated Arabidopsis thaliana mutants with defects in different parts of the immune system for an altered bacterial community assembly using a gnotobiotic system. While higher-order mutants in receptors that recognize microbial features and in defence hormone signalling showed substantial microbial community alterations, the absence of the plant NADPH oxidase RBOHD caused the most pronounced change in the composition of the leaf microbiota. The rbohD knockout resulted in an enrichment of specific bacteria. Among these, we identified Xanthomonas strains as opportunistic pathogens that colonized wild-type plants asymptomatically but caused disease in rbohD knockout plants. Strain dropout experiments revealed that the lack of RBOHD unlocks the pathogenicity of individual microbiota members driving dysbiosis in rbohD knockout plants. For full protection, healthy plants require both a functional immune system and a microbial community. Our results show that the NADPH oxidase RBOHD is essential for microbiota homeostasis and emphasizes the importance of the plant immune system in controlling the leaf microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Julia A. Vorholt
- Corresponding author: Correspondence should be addressed to J.A.V. ()
| |
Collapse
|
11
|
Ha CM, Rao X, Saxena G, Dixon RA. Growth-defense trade-offs and yield loss in plants with engineered cell walls. THE NEW PHYTOLOGIST 2021; 231:60-74. [PMID: 33811329 DOI: 10.1111/nph.17383] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/29/2021] [Indexed: 05/18/2023]
Abstract
As a major component of plant secondary cell walls, lignin provides structural integrity and rigidity, and contributes to primary defense by providing a physical barrier to pathogen ingress. Genetic modification of lignin biosynthesis has been adopted to reduce the recalcitrance of lignified cell walls to improve biofuel production, tree pulping properties and forage digestibility. However, lignin-modification is often, but unpredictably, associated with dwarf phenotypes. Hypotheses suggested to explain this include: collapsed vessels leading to defects in water and solute transport; accumulation of molecule(s) that are inhibitory to plant growth or deficiency of metabolites that are critical for plant growth; activation of defense pathways linked to cell wall integrity sensing. However, there is still no commonly accepted underlying mechanism for the growth defects. Here, we discuss recent data on transcriptional reprogramming in plants with modified lignin content and their corresponding suppressor mutants, and evaluate growth-defense trade-offs as a factor underlying the growth phenotypes. New approaches will be necessary to estimate how gross changes in transcriptional reprogramming may quantitatively affect growth. Better understanding of the basis for yield drag following cell wall engineering is important for the biotechnological exploitation of plants as factories for fuels and chemicals.
Collapse
Affiliation(s)
- Chan Man Ha
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Xiaolan Rao
- College of Life Sciences, Hubei University, No. 28 Nanli Road, Hong-shan District, Wuchang, Wuhan, Hubei Province, 430068, China
| | - Garima Saxena
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
12
|
Arenas-Alfonseca L, Gotor C, Romero LC, García I. Mutation in Arabidopsis β-cyanoalanine synthase overcomes NADPH oxidase action in response to pathogens. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4535-4547. [PMID: 33770168 DOI: 10.1093/jxb/erab137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Plant responses to pathogens comprise a complex process, implying a plethora of signals and reactions. Among them, endogenous production of hydrogen cyanide (HCN) has been shown to induce resistance in Arabidopsis to the hemibiotrophic bacterium Pseudomonas syringae pv. tomato (Pst) DC3000. β-cyanoalanine synthase (CAS-C1) is responsible for the detoxification of HCN in Arabidopsis mitochondria. Here, we show that green fluorescent protein-tagged CAS-C1 is transiently reduced in leaves infected with an avirulent strain of Pst during early interactions and increased in leaves infected with a virulent strain of Pst, supporting previous transcriptional data. Genetic crosses show that mutation in CAS-C1 in Arabidopsis resembles the action of the NADPH oxidase RbohD independently of reactive oxygen species production and that the accumulation of salicylic acid is required for HCN-stimulated resistance to Pst. Finally, we show that the cas-c1 mutation acts on the salicylic acid-dependent response to pathogens by mechanisms other than protein ubiquitination or the increase of monomerization and entry to the nucleus of NPR1, the central regulator of the salicylic acid-mediated response. Considering these results, we propose new mechanisms for modulation of the immune response by HCN.
Collapse
Affiliation(s)
- Lucía Arenas-Alfonseca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain
| | - Irene García
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
13
|
Bernacki MJ, Czarnocka W, Zaborowska M, Różańska E, Labudda M, Rusaczonek A, Witoń D, Karpiński S. EDS1-Dependent Cell Death and the Antioxidant System in Arabidopsis Leaves is Deregulated by the Mammalian Bax. Cells 2020; 9:cells9112454. [PMID: 33182774 PMCID: PMC7698216 DOI: 10.3390/cells9112454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Cell death is the ultimate end of a cell cycle that occurs in all living organisms during development or responses to biotic and abiotic stresses. In the course of evolution, plants and animals evolve various molecular mechanisms to regulate cell death; however, some of them are conserved among both these kingdoms. It was found that mammalian proapoptotic BCL-2 associated X (Bax) protein, when expressed in plants, induces cell death, similar to hypersensitive response (HR). It was also shown that changes in the expression level of genes encoding proteins involved in stress response or oxidative status regulation mitigate Bax-induced plant cell death. In our study, we focused on the evolutional compatibility of animal and plant cell death molecular mechanisms. Therefore, we studied the deregulation of reactive oxygen species burst and HR-like propagation in Arabidopsis thaliana expressing mammalian Bax. We were able to diminish Bax-induced oxidative stress and HR progression through the genetic cross with plants mutated in ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), which is a plant-positive HR regulator. Plants expressing the mouse Bax gene in eds1-1 null mutant background demonstrated less pronounced cell death and exhibited higher antioxidant system efficiency compared to Bax-expressing plants. Moreover, eds1/Bax plants did not show HR marker genes induction, as in the case of the Bax-expressing line. The present study indicates some common molecular features between animal and plant cell death regulation and can be useful to better understand the evolution of cell death mechanisms in plants and animals.
Collapse
Affiliation(s)
- Maciej Jerzy Bernacki
- Institute of Technology and Life Sciences, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland;
| | - Weronika Czarnocka
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (W.C.); (M.Z.); (A.R.); (D.W.)
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Magdalena Zaborowska
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (W.C.); (M.Z.); (A.R.); (D.W.)
| | - Elżbieta Różańska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Anna Rusaczonek
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (W.C.); (M.Z.); (A.R.); (D.W.)
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Damian Witoń
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (W.C.); (M.Z.); (A.R.); (D.W.)
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (W.C.); (M.Z.); (A.R.); (D.W.)
- Correspondence:
| |
Collapse
|
14
|
Fonseca JP, Lee HK, Boschiero C, Griffiths M, Lee S, Zhao P, York LM, Mysore KS. Iron-Sulfur Cluster Protein NITROGEN FIXATION S-LIKE1 and Its Interactor FRATAXIN Function in Plant Immunity. PLANT PHYSIOLOGY 2020; 184:1532-1548. [PMID: 32943465 PMCID: PMC7608151 DOI: 10.1104/pp.20.00950] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/09/2020] [Indexed: 05/24/2023]
Abstract
Iron-sulfur (Fe-S) clusters are inorganic cofactors that are present in all kingdoms of life as part of a large number of proteins involved in several cellular processes, including DNA replication and metabolism. In this work, we demonstrate an additional role for two Fe-S cluster genes in biotic stress responses in plants. Eleven Fe-S cluster genes, including the NITROGEN FIXATION S-LIKE1 (NFS1) and its interactor FRATAXIN (FH), when silenced in Nicotiana benthamiana, compromised nonhost resistance to Pseudomonas syringae pv. tomato T1. NbNFS1 expression was induced by pathogens and salicylic acid. Arabidopsis (Arabidopsis thaliana) atnfs and atfh mutants, with reduced AtNFS1 or AtFH gene expression, respectively, showed increased susceptibility to both host and nonhost pathogen infection. Arabidopsis AtNFS1 and AtFH overexpressor lines displayed decreased susceptibility to infection by host pathogen P syringae pv. tomato DC3000. The AtNFS1 overexpression line exhibited constitutive upregulation of several defense-related genes and enrichment of gene ontology terms related to immunity and salicylic acid responses. Our results demonstrate that NFS1 and its interactor FH are involved not only in nonhost resistance but also in basal resistance, suggesting a new role of the Fe-S cluster pathway in plant immunity.
Collapse
Affiliation(s)
| | - Hee-Kyung Lee
- Noble Research Institute LLC, Ardmore, Oklahoma 73401
| | | | | | - Seonghee Lee
- Noble Research Institute LLC, Ardmore, Oklahoma 73401
| | - Patrick Zhao
- Noble Research Institute LLC, Ardmore, Oklahoma 73401
| | - Larry M York
- Noble Research Institute LLC, Ardmore, Oklahoma 73401
| | | |
Collapse
|
15
|
Lortzing T, Kunze R, Steppuhn A, Hilker M, Lortzing V. Arabidopsis, tobacco, nightshade and elm take insect eggs as herbivore alarm and show similar transcriptomic alarm responses. Sci Rep 2020; 10:16281. [PMID: 33004864 PMCID: PMC7530724 DOI: 10.1038/s41598-020-72955-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Plants respond to insect eggs with transcriptional changes, resulting in enhanced defence against hatching larvae. However, it is unknown whether phylogenetically distant plant species show conserved transcriptomic responses to insect eggs and subsequent larval feeding. We used Generally Applicable Gene set Enrichment (GAGE) on gene ontology terms to answer this question and analysed transcriptome data from Arabidopsis thaliana, wild tobacco (Nicotiana attenuata), bittersweet nightshade (Solanum dulcamara) and elm trees (Ulmus minor) infested by different insect species. The different plant-insect species combinations showed considerable overlap in their transcriptomic responses to both eggs and larval feeding. Within these conformable responses across the plant-insect combinations, the responses to eggs and feeding were largely analogous, and about one-fifth of these analogous responses were further enhanced when egg deposition preceded larval feeding. This conserved transcriptomic response to eggs and larval feeding comprised gene sets related to several phytohormones and to the phenylpropanoid biosynthesis pathway, of which specific branches were activated in different plant-insect combinations. Since insect eggs and larval feeding activate conserved sets of biological processes in different plant species, we conclude that plants with different lifestyles share common transcriptomic alarm responses to insect eggs, which likely enhance their defence against hatching larvae.
Collapse
Affiliation(s)
- Tobias Lortzing
- Molecular Ecology, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Molecular Botany, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Reinhard Kunze
- Applied Genetics, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Anke Steppuhn
- Molecular Ecology, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Molecular Botany, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Monika Hilker
- Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Vivien Lortzing
- Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
16
|
Liu X, Cai WJ, Yin X, Yang D, Dong T, Feng YQ, Wu Y. Two SLENDER AND CRINKLY LEAF dioxygenases play an essential role in rice shoot development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1387-1401. [PMID: 31701152 PMCID: PMC7031069 DOI: 10.1093/jxb/erz501] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
It is clear that 2-oxoglutarate-dependent dioxygenases have critical functions in salicylic acid (SA) metabolism in plants, yet their role in SA biosynthesis is poorly understood. Here, we report that two dioxygenase-encoding genes, SLENDER AND CRINKLY LEAF1 (SLC1) and SLC2, play essential roles in shoot development and SA production in rice. Overexpression of SLC1 (SLC1-OE) or SLC2 (SLC2-OE) in rice produced infertile plants with slender and crinkly leaves. Disruption of SLC1 or SLC2 led to dwarf plants, while simultaneous down-regulation of SLC1 and SLC2 resulted in a severe defect in early leaf development. Enhanced SA levels in SLC1-OE plants and decreased SA levels in slc1 and slc2 mutants were observed. Accordingly, these lines all showed altered expression of a set of SA-related genes. We demonstrated that SLC1 interacts with homeobox1 (OSH1), and that either the knotted1-like homeobox (KNOX1) or glutamate, leucine, and lysine (ELK) domain of OSH1 is sufficient for accomplishing this interaction. Collectively, our data reveal the importance of SLC1 and SLC2 in rice shoot development.
Collapse
Affiliation(s)
- Xiong Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wen-Jing Cai
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Xiaoming Yin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Di Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tian Dong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Tan S, Abas M, Verstraeten I, Glanc M, Molnár G, Hajný J, Lasák P, Petřík I, Russinova E, Petrášek J, Novák O, Pospíšil J, Friml J. Salicylic Acid Targets Protein Phosphatase 2A to Attenuate Growth in Plants. Curr Biol 2020; 30:381-395.e8. [PMID: 31956021 PMCID: PMC6997888 DOI: 10.1016/j.cub.2019.11.058] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/22/2019] [Accepted: 11/19/2019] [Indexed: 01/04/2023]
Abstract
Plants, like other multicellular organisms, survive through a delicate balance between growth and defense against pathogens. Salicylic acid (SA) is a major defense signal in plants, and the perception mechanism as well as downstream signaling activating the immune response are known. Here, we identify a parallel SA signaling that mediates growth attenuation. SA directly binds to A subunits of protein phosphatase 2A (PP2A), inhibiting activity of this complex. Among PP2A targets, the PIN2 auxin transporter is hyperphosphorylated in response to SA, leading to changed activity of this important growth regulator. Accordingly, auxin transport and auxin-mediated root development, including growth, gravitropic response, and lateral root organogenesis, are inhibited. This study reveals how SA, besides activating immunity, concomitantly attenuates growth through crosstalk with the auxin distribution network. Further analysis of this dual role of SA and characterization of additional SA-regulated PP2A targets will provide further insights into mechanisms maintaining a balance between growth and defense. SA modulates root development independently of NPR1-mediated canonical signaling SA attenuates growth through crosstalk with the auxin transport network SA upregulates the phosphorylation status of PIN auxin efflux carriers through PP2A SA directly targets A subunits of PP2A, inhibiting the activity of the complex
Collapse
Affiliation(s)
- Shutang Tan
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Melinda Abas
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria; Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Inge Verstraeten
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Matouš Glanc
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria; Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Gergely Molnár
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria; Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Jakub Hajný
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria; Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Faculty of Science, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Pavel Lasák
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Faculty of Science, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Ivan Petřík
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Faculty of Science, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jan Petrášek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic; Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Faculty of Science, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jiří Pospíšil
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Faculty of Science, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; Department of Organic Chemistry, Faculty of Science, Palacký University, tř. 17. listopadu 1192/12, CZ-771 46 Olomouc, Czech Republic
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
18
|
Ding Y, Dommel MR, Wang C, Li Q, Zhao Q, Zhang X, Dai S, Mou Z. Differential Quantitative Requirements for NPR1 Between Basal Immunity and Systemic Acquired Resistance in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:570422. [PMID: 33072146 PMCID: PMC7530841 DOI: 10.3389/fpls.2020.570422] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/03/2020] [Indexed: 05/13/2023]
Abstract
Non-expressor of pathogenesis-related (PR) genes1 (NPR1) is a key transcription coactivator of plant basal immunity and systemic acquired resistance (SAR). Two mutant alleles, npr1-1 and npr1-3, have been extensively used for dissecting the role of NPR1 in various signaling pathways. However, it is unknown whether npr1-1 and npr1-3 are null mutants. Moreover, the NPR1 transcript levels are induced two- to threefold upon pathogen infection or salicylic acid (SA) treatment, but the biological relevance of the induction is unclear. Here, we used molecular and biochemical approaches including quantitative PCR, immunoblot analysis, site-directed mutagenesis, and CRISPR/Cas9-mediated gene editing to address these questions. We show that npr1-3 is a potential null mutant, whereas npr1-1 is not. We also demonstrated that a truncated npr1 protein longer than the hypothesized npr1-3 protein is not active in SA signaling. Furthermore, we revealed that TGACG-binding (TGA) factors are required for NPR1 induction, but the reverse TGA box in the 5'UTR of NPR1 is dispensable for the induction. Finally, we show that full induction of NPR1 is required for basal immunity, but not for SAR, whereas sufficient basal transcription is essential for full-scale establishment of SAR. Our results indicate that induced transcript accumulation may be differentially required for different functions of a specific gene. Moreover, as npr1-1 is not a null mutant, we recommend that future research should use npr1-3 and potential null T-DNA insertion mutants for dissecting NPR1's function in various physiopathological processes.
Collapse
Affiliation(s)
- Yezhang Ding
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Matthew R. Dommel
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Chenggang Wang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Qi Li
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Qi Zhao
- Alkali Soil Natural Environmental Science Center, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Xudong Zhang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Shaojun Dai
- Alkali Soil Natural Environmental Science Center, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
- *Correspondence: Zhonglin Mou,
| |
Collapse
|
19
|
Man Ha C, Fine D, Bhatia A, Rao X, Martin MZ, Engle NL, Wherritt DJ, Tschaplinski TJ, Sumner LW, Dixon RA. Ectopic Defense Gene Expression Is Associated with Growth Defects in Medicago truncatula Lignin Pathway Mutants. PLANT PHYSIOLOGY 2019; 181:63-84. [PMID: 31289215 PMCID: PMC6716239 DOI: 10.1104/pp.19.00533] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/26/2019] [Indexed: 05/04/2023]
Abstract
Lignin provides essential mechanical support for plant cell walls but decreases the digestibility of forage crops and increases the recalcitrance of biofuel crops. Attempts to modify lignin content and/or composition by genetic modification often result in negative growth effects. Although several studies have attempted to address the basis for such effects in individual transgenic lines, no common mechanism linking lignin modification with perturbations in plant growth and development has yet been identified. To address whether a common mechanism exists, we have analyzed transposon insertion mutants resulting in independent loss of function of five enzymes of the monolignol pathway, as well as one double mutant, in the model legume Medicago truncatula These plants exhibit growth phenotypes from essentially wild type to severely retarded. Extensive phenotypic, transcriptomic, and metabolomics analyses, including structural characterization of differentially expressed compounds, revealed diverse phenotypic consequences of lignin pathway perturbation that were perceived early in plant development but were not predicted by lignin content or composition alone. Notable phenotypes among the mutants with severe growth impairment were increased trichome numbers, accumulation of a variety of triterpene saponins, and extensive but differential ectopic expression of defense response genes. No currently proposed model explains the observed phenotypes across all lines. We propose that reallocation of resources into defense pathways is linked to the severity of the final growth phenotype in monolignol pathway mutants of M. truncatula, although it remains unclear whether this is a cause or an effect of the growth impairment.
Collapse
Affiliation(s)
- Chan Man Ha
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76201
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Dennis Fine
- Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Anil Bhatia
- Department of Biochemistry and MU Metabolomics Center, University of Missouri, Columbia, Missouri 65201
| | - Xiaolan Rao
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76201
- Bioenergy Sciences Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Madhavi Z Martin
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
- Bioenergy Sciences Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
- BioSciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Nancy L Engle
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
- Bioenergy Sciences Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
- BioSciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Daniel J Wherritt
- Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
- University of Texas at San Antonio, San Antonio, Texas 78249
| | - Timothy J Tschaplinski
- Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
- University of Texas at San Antonio, San Antonio, Texas 78249
| | - Lloyd W Sumner
- Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
- Department of Biochemistry and MU Metabolomics Center, University of Missouri, Columbia, Missouri 65201
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76201
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
- Bioenergy Sciences Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| |
Collapse
|
20
|
Chen J, Mohan R, Zhang Y, Li M, Chen H, Palmer IA, Chang M, Qi G, Spoel SH, Mengiste T, Wang D, Liu F, Fu ZQ. NPR1 Promotes Its Own and Target Gene Expression in Plant Defense by Recruiting CDK8. PLANT PHYSIOLOGY 2019; 181:289-304. [PMID: 31110139 PMCID: PMC6716257 DOI: 10.1104/pp.19.00124] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/10/2019] [Indexed: 05/19/2023]
Abstract
NPR1 (NONEXPRESSER OF PR GENES1) functions as a master regulator of the plant hormone salicylic acid (SA) signaling and plays an essential role in plant immunity. In the nucleus, NPR1 interacts with transcription factors to induce the expression of PR (PATHOGENESIS-RELATED) genes and thereby promote defense responses. However, the underlying molecular mechanism of PR gene activation is poorly understood. Furthermore, despite the importance of NPR1 in plant immunity, the regulation of NPR1 expression has not been extensively studied. Here, we show that SA promotes the interaction of NPR1 with both CDK8 (CYCLIN-DEPENDENT KINASE8) and WRKY18 (WRKY DNA-BINDING PROTEIN18) in Arabidopsis (Arabidopsis thaliana). NPR1 recruits CDK8 and WRKY18 to the NPR1 promoter, facilitating its own expression. Intriguingly, CDK8 and its associated Mediator subunits positively regulate NPR1 and PR1 expression and play a pivotal role in local and systemic immunity. Moreover, CDK8 interacts with WRKY6, WRKY18, and TGA transcription factors and brings RNA polymerase II to NPR1 and PR1 promoters and coding regions to facilitate their expression. Our studies reveal a mechanism in which NPR1 recruits CDK8, WRKY18, and TGA transcription factors along with RNA polymerase II in the presence of SA and thereby facilitates its own and target gene expression for the establishment of plant immunity.
Collapse
Affiliation(s)
- Jian Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, People's Republic of China
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208
| | - Rajinikanth Mohan
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Yuqiang Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Min Li
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208
| | - Huan Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, People's Republic of China
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208
| | - Ian Arthur Palmer
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208
| | - Ming Chang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, People's Republic of China
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208
| | - Guang Qi
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Steven H Spoel
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, People's Republic of China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208
| |
Collapse
|
21
|
Chen C, Feng S, Zhou M, Ji C, Que L, Wang W. Development of a structure-switching aptamer-based nanosensor for salicylic acid detection. Biosens Bioelectron 2019; 140:111342. [PMID: 31153018 DOI: 10.1016/j.bios.2019.111342] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 11/26/2022]
Abstract
Salicylic acid (SA) is a phytohormone regulating immune responses against pathogens. SA and its derivatives can be found in diverse food products, medicines, cosmetics and preservatives. While salicylates have potential disease-preventative activity, they can also cause health problems to people who are hypersensitive. The current SA detection methods are costly, labor-intensive and require bulky instruments. In this study, a structure-switching aptamer-based nanopore thin film sensor was developed for cost-effective, rapid, sensitive and simple detection of SA in both buffer and plant extracts. SA is a challenging target for aptamer selection using conventional systemic evolution of ligands by exponential enrichment (SELEX) due to its small size and scarcity of reactive groups for immobilization. By immobilizing the SELEX library instead of SA and screening the library using a structure-switching SELEX approach, a high affinity SA aptamer was identified. The nanopore thin film sensor platform can detect as low as 0.1 μM SA. This is much better than the sensitivity of antibody-based detection method. This nanosensor also exhibited good selectivity among SA and its common metabolites and can detect SA in Arabidopsis and rice using only about 1 μl plant extracts within less than 30 min. The integration of SA aptamer and nanopore thin film sensor provides a promising solution for low-cost, rapid, sensitive on-site detection of SA.
Collapse
Affiliation(s)
- Changtian Chen
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Silu Feng
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA
| | - Mian Zhou
- School of Life Sciences, Capital Normal University, Beijing, China
| | - Chonghui Ji
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Long Que
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA.
| | - Wei Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China; Peking University - Tsinghua University Joint Center for Life Sciences, Beijing, China; Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
22
|
Tian X, Fang X, Huang JQ, Wang LJ, Mao YB, Chen XY. A gossypol biosynthetic intermediate disturbs plant defence response. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180319. [PMID: 30967019 PMCID: PMC6367145 DOI: 10.1098/rstb.2018.0319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2018] [Indexed: 11/12/2022] Open
Abstract
Plant secondary metabolites and their biosynthesis have attracted great interest, but investigations of the activities of hidden intermediates remain rare. Gossypol and related sesquiterpenes are the major phytoalexins in cotton. Among the six biosynthetic intermediates recently identified, 8-hydroxy-7-keto-δ-cadinene (C234) crippled the plant disease resistance when accumulated upon gene silencing. C234 harbours an α,β-unsaturated carbonyl thus is a reactive electrophile species. Here, we show that C234 application also dampened the Arabidopsis resistance against the bacterial pathogen Pseudomonas syringae pv. maculicola ( Psm). We treated Arabidopsis with C234, Psm and ( Psm+C234), and analysed the leaf transcriptomes. While C234 alone exerted a mild effect, it greatly stimulated an over-response to the pathogen. Of the 7335 genes affected in the ( Psm+C234)-treated leaves, 3476 were unresponsive without the chemical, in which such functional categories as 'nucleotides transport', 'vesicle transport', 'MAP kinases', 'G-proteins', 'protein assembly and cofactor ligation' and 'light reaction' were enriched, suggesting that C234 disturbed certain physiological processes and the protein complex assembly, leading to distorted defence response and decreased disease resistance. As C234 is efficiently metabolized by CYP71BE79, plants of cotton lineage have evolved a highly active enzyme to prevent the phytotoxic intermediate accumulation during gossypol pathway evolution. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Xiu Tian
- School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Xin Fang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Jin-Quan Huang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Ling-Jian Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Ying-Bo Mao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
23
|
Lortzing V, Oberländer J, Lortzing T, Tohge T, Steppuhn A, Kunze R, Hilker M. Insect egg deposition renders plant defence against hatching larvae more effective in a salicylic acid-dependent manner. PLANT, CELL & ENVIRONMENT 2019; 42:1019-1032. [PMID: 30252928 DOI: 10.1111/pce.13447] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/15/2018] [Indexed: 05/06/2023]
Abstract
Plants can improve their antiherbivore defence by taking insect egg deposition as cue of impending feeding damage. Previous studies showed that Pieris brassicae larvae feeding upon egg-deposited Brassicaceae perform worse and gain less weight than larvae on egg-free plants. We investigated how P. brassicae oviposition on Arabidopsis thaliana affects the plant's molecular and chemical responses to larvae. A transcriptome comparison of feeding-damaged leaves without and with prior oviposition revealed about 200 differently expressed genes, including enhanced expression of PR5, which is involved in salicylic acid (SA)-signalling. SA levels were induced by larval feeding to a slightly greater extent in egg-deposited than egg-free plants. The adverse effect of egg-deposited wild-type (WT) plants on larval weight was absent in an egg-deposited PR5-deficient mutant or other mutants impaired in SA-mediated signalling, that is, sid2/ics1, ald1, and pad4. In contrast, the adverse effect of egg-deposited WT plants on larvae was retained in egg-deposited npr1 and wrky70 mutants impaired further downstream in SA-signalling. Oviposition induced accumulation of flavonols in WT plants with and without feeding damage, but not in the PR5-deficient mutant. We demonstrated that egg-mediated improvement of A. thaliana's antiherbivore defence involves SA-signalling in an NPR1-independent manner and is associated with accumulation of flavonols.
Collapse
Affiliation(s)
- Vivien Lortzing
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Jana Oberländer
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Tobias Lortzing
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Department Secondary Metabolism, Potsdam, Germany
| | - Anke Steppuhn
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Reinhard Kunze
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Monika Hilker
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
24
|
Qi M, Zheng W, Zhao X, Hohenstein JD, Kandel Y, O'Conner S, Wang Y, Du C, Nettleton D, MacIntosh GC, Tylka GL, Wurtele ES, Whitham SA, Li L. QQS orphan gene and its interactor NF-YC4 reduce susceptibility to pathogens and pests. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:252-263. [PMID: 29878511 PMCID: PMC6330549 DOI: 10.1111/pbi.12961] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/04/2018] [Indexed: 05/19/2023]
Abstract
Enhancing the nutritional quality and disease resistance of crops without sacrificing productivity is a key issue for developing varieties that are valuable to farmers and for simultaneously improving food security and sustainability. Expression of the Arabidopsis thaliana species-specific AtQQS (Qua-Quine Starch) orphan gene or its interactor, NF-YC4 (Nuclear Factor Y, subunit C4), has been shown to increase levels of leaf/seed protein without affecting the growth and yield of agronomic species. Here, we demonstrate that overexpression of AtQQS and NF-YC4 in Arabidopsis and soybean enhances resistance/reduces susceptibility to viruses, bacteria, fungi, aphids and soybean cyst nematodes. A series of Arabidopsis mutants in starch metabolism were used to explore the relationships between QQS expression, carbon and nitrogen partitioning, and defense. The enhanced basal defenses mediated by QQS were independent of changes in protein/carbohydrate composition of the plants. We demonstrate that either AtQQS or NF-YC4 overexpression in Arabidopsis and in soybean reduces susceptibility of these plants to pathogens/pests. Transgenic soybean lines overexpressing NF-YC4 produce seeds with increased protein while maintaining healthy growth. Pull-down studies reveal that QQS interacts with human NF-YC, as well as with Arabidopsis NF-YC4, and indicate two QQS binding sites near the NF-YC-histone-binding domain. A new model for QQS interaction with NF-YC is speculated. Our findings illustrate the potential of QQS and NF-YC4 to increase protein and improve defensive traits in crops, overcoming the normal growth-defense trade-offs.
Collapse
Affiliation(s)
- Mingsheng Qi
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Wenguang Zheng
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIAUSA
| | - Xuefeng Zhao
- Laurence H. Baker Center for Bioinformatics and Biological StatisticsIowa State UniversityAmesIAUSA
| | - Jessica D. Hohenstein
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular BiologyIowa State UniversityAmesIAUSA
| | - Yuba Kandel
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Seth O'Conner
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIAUSA
- Department of Biological SciencesMississippi State UniversityStarkvilleMSUSA
| | - Yifan Wang
- Department of StatisticsIowa State UniversityAmesIAUSA
| | - Chuanlong Du
- Department of StatisticsIowa State UniversityAmesIAUSA
| | - Dan Nettleton
- Department of StatisticsIowa State UniversityAmesIAUSA
| | - Gustavo C. MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular BiologyIowa State UniversityAmesIAUSA
| | - Gregory L. Tylka
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Eve S. Wurtele
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIAUSA
- Center for Metabolic BiologyIowa State UniversityAmesIAUSA
| | - Steven A. Whitham
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Ling Li
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIAUSA
- Department of Biological SciencesMississippi State UniversityStarkvilleMSUSA
- Center for Metabolic BiologyIowa State UniversityAmesIAUSA
| |
Collapse
|
25
|
Moon SJ, Park HJ, Kim TH, Kang JW, Lee JY, Cho JH, Lee JH, Park DS, Byun MO, Kim BG, Shin D. OsTGA2 confers disease resistance to rice against leaf blight by regulating expression levels of disease related genes via interaction with NH1. PLoS One 2018; 13:e0206910. [PMID: 30444888 PMCID: PMC6239283 DOI: 10.1371/journal.pone.0206910] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/22/2018] [Indexed: 11/21/2022] Open
Abstract
How plants defend themselves from microbial infection is one of the most critical issues for sustainable crop production. Some TGA transcription factors belonging to bZIP superfamily can regulate disease resistance through NPR1-mediated immunity mechanisms in Arabidopsis. Here, we examined biological roles of OsTGA2 (grouped into the same subclade as Arabidopsis TGAs) in bacterial leaf blight resistance. Transcriptional level of OsTGA2 was accumulated after treatment with salicylic acid, methyl jasmonate, and Xathomonas oryzae pv. Oryzae (Xoo), a bacterium causing serious blight of rice. OsTGA2 formed homo- and hetero-dimer with OsTGA3 and OsTGA5 and interacted with rice NPR1 homologs 1 (NH1) in rice. Results of quadruple 9-mer protein-binding microarray analysis indicated that OsTGA2 could bind to TGACGT DNA sequence. Overexpression of OsTGA2 increased resistance of rice to bacterial leaf blight, although overexpression of OsTGA3 resulted in disease symptoms similar to wild type plant upon Xoo infection. Overexpression of OsTGA2 enhanced the expression of defense related genes containing TGA binding cis-element in the promoter such as AP2/EREBP 129, ERD1, and HOP1. These results suggest that OsTGA2 can directly regulate the expression of defense related genes and increase the resistance of rice against bacterial leaf blight disease.
Collapse
Affiliation(s)
- Seok-Jun Moon
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, Republic of Korea
| | - Hee Jin Park
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
- Institute of Glocal Disease Control, Konkuk University, Seoul, Republic of Korea
| | - Tae-Heon Kim
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Ju-Won Kang
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Ji-Yoon Lee
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Jun-Hyun Cho
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Jong-Hee Lee
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Dong-Soo Park
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Myung-Ok Byun
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, Republic of Korea
| | - Beom-Gi Kim
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, Republic of Korea
| | - Dongjin Shin
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
- * E-mail:
| |
Collapse
|
26
|
Zhang W, Corwin JA, Copeland D, Feusier J, Eshbaugh R, Chen F, Atwell S, Kliebenstein DJ. Plastic Transcriptomes Stabilize Immunity to Pathogen Diversity: The Jasmonic Acid and Salicylic Acid Networks within the Arabidopsis/ Botrytis Pathosystem. THE PLANT CELL 2017; 29:2727-2752. [PMID: 29042403 PMCID: PMC5728128 DOI: 10.1105/tpc.17.00348] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/22/2017] [Accepted: 10/13/2017] [Indexed: 05/20/2023]
Abstract
To respond to pathogen attack, selection and associated evolution has led to the creation of plant immune system that are a highly effective and inducible defense system. Central to this system are the plant defense hormones jasmonic acid (JA) and salicylic acid (SA) and crosstalk between the two, which may play an important role in defense responses to specific pathogens or even genotypes. Here, we used the Arabidopsis thaliana-Botrytis cinerea pathosystem to test how the host's defense system functions against genetic variation in a pathogen. We measured defense-related phenotypes and transcriptomic responses in Arabidopsis wild-type Col-0 and JA- and SA-signaling mutants, coi1-1 and npr1-1, individually challenged with 96 diverse B. cinerea isolates. Those data showed genetic variation in the pathogen influences on all components within the plant defense system at the transcriptional level. We identified four gene coexpression networks and two vectors of defense variation triggered by genetic variation in B. cinerea This showed that the JA and SA signaling pathways functioned to constrain/canalize the range of virulence in the pathogen population, but the underlying transcriptomic response was highly plastic. These data showed that plants utilize major defense hormone pathways to buffer disease resistance, but not the metabolic or transcriptional responses to genetic variation within a pathogen.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Plant Sciences, University of California, Davis, California 95616
- National and Local Joint Engineering Laboratory for Energy Plant Bio-oil Production and Application, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, P.R. China
| | - Jason A Corwin
- Department of Ecology and Evolution Biology, University of Colorado, Boulder, Colorado 80309-0334
| | - Daniel Copeland
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Julie Feusier
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Robert Eshbaugh
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Fang Chen
- National and Local Joint Engineering Laboratory for Energy Plant Bio-oil Production and Application, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, P.R. China
| | - Susana Atwell
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, California 95616
- DynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
27
|
Kong P, McDowell JM, Hong C. Zoospore exudates from Phytophthora nicotianae affect immune responses in Arabidopsis. PLoS One 2017; 12:e0180523. [PMID: 28662148 PMCID: PMC5491255 DOI: 10.1371/journal.pone.0180523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/17/2017] [Indexed: 11/19/2022] Open
Abstract
Zoospore exudates play important roles in promoting zoospore communication, homing and germination during plant infection by Phytophthora. However, it is not clear whether exudates affect plant immunity. Zoospore-free fluid (ZFF) and zoospores of P. nicotianae were investigated comparatively for effects on resistance of Arabidopsis thaliana Col-0 and mutants that affect signaling mediated by salicylic acid (SA) and jasmonic acid (JA): eds16 (enhanced disease susceptibility16), pad4 (phytoalexin deficient4), and npr1 (nonexpressor of pathogenesis-related genes1). Col-0 attracted more zoospores and had severe tissue damage when flooded with a zoospore suspension in ZFF. Mutants treated with ZFF alone developed disease symptoms similar to those inoculated with zoospores and requirements of EDS16 and PAD4 for plant responses to zoospores and the exudates was apparent. Zoospore and ZFFs also induced expression of the PR1 and PDF1.2 marker genes for defense regulated by SA and JA, respectively. However, ZFF affected more JA defense signaling, down regulating PR1 when SA signaling or synthesis is deficient, which may be responsible for Arabidopsis mutant plants more susceptible to infection by high concentration of P. nicotianae zoospores. These results suggest that zoospore exudates can function as virulence factors and inducers of plant immune responses during plant infection by Phytophthora.
Collapse
Affiliation(s)
- Ping Kong
- Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, Virginia, United States of America
- * E-mail:
| | - John M. McDowell
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Chuanxue Hong
- Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, Virginia, United States of America
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
28
|
An C, Wang C, Mou Z. The Arabidopsis Elongator complex is required for nonhost resistance against the bacterial pathogens Xanthomonas citri subsp. citri and Pseudomonas syringae pv. phaseolicola NPS3121. THE NEW PHYTOLOGIST 2017; 214:1245-1259. [PMID: 28134437 DOI: 10.1111/nph.14442] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/16/2016] [Indexed: 05/17/2023]
Abstract
Although in recent years nonhost resistance has attracted considerable attention for its broad spectrum and durability, the genetic and mechanistic components of nonhost resistance have not been fully understood. We used molecular and histochemical approaches including quantitative PCR, chromatin immunoprecipitation, and 3,3'-diaminobenzidine and aniline blue staining. The evolutionarily conserved histone acetyltransferase complex Elongator was identified as a major component of nonhost resistance against Xanthomonas citri subsp. citri (Xcc) and Pseudomonas syringae pv. phaseolicola (Psp) NPS3121. Mutations in Elongator genes inhibit Xcc-, Psp NPS3121- and/or flg22-induced defense responses including defense gene expression, callose deposition, and reactive oxygen species (ROS) and salicylic acid (SA) accumulation. Mutations in Elongator also attenuate the ROS-SA amplification loop. We show that suppressed ROS and SA accumulation in Elongator mutants is correlated with reduced expression of the Arabidopsis respiratory burst oxidase homologue AtrbohD and the SA biosynthesis gene ISOCHORISMATE SYNTHASE1 (ICS1). Furthermore, we found that the Elongator subunit ELP2 is associated with the chromatin of AtrbohD and ICS1 and is required for maintaining basal histone H3 acetylation levels in these key defense genes. As both AtrbohD and ICS1 contribute to nonhost resistance against Xcc, our results reveal an epigenetic mechanism by which Elongator regulates nonhost resistance in Arabidopsis.
Collapse
Affiliation(s)
- Chuanfu An
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA
| | - Chenggang Wang
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA
| |
Collapse
|
29
|
Zhang R, Qi H, Sun Y, Xiao S, Lim BL. Transgenic Arabidopsis thaliana containing increased levels of ATP and sucrose is more susceptible to Pseudomonas syringae. PLoS One 2017; 12:e0171040. [PMID: 28152090 PMCID: PMC5289510 DOI: 10.1371/journal.pone.0171040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/13/2017] [Indexed: 12/01/2022] Open
Abstract
Disease resistance exerts a fitness cost on plants, presumably due to the extra consumption of energy and carbon. In this study, we examined whether transgenic Arabidopsis thaliana with increased levels of ATP and sucrose is more resistant or susceptible to pathogen infection. Lines of A. thaliana over-expressing purple acid phosphatase 2 (AtPAP2) (OE lines) contain increased levels of ATP and sucrose, with improved growth rate and seed production. Compared to wild type (WT) and pap2 lines, the OE lines were more susceptible to several Pseudomonas syringae pv. tomato (Pst) strains carrying AvrRpm1, AvrRpt2 AvrRps4, AvrPtoB, HrcC and WT strain DC3000. The increased susceptibility of the OE lines to Pst strains cannot solely be attributed to the suppressed expression of R-genes but must also be attributed to the suppression of downstream signaling components, such as MOS2, EDS1 and EDS5. Before infection, the levels of salicylic acid (SA) and jasmonic acid (JA) precursor OPDA were similar in the leaves of OE, pap2 and WT plants, whereas the levels of JA and its derivative JA-Ile were significantly lower in the leaves of OE lines and higher in the pap2 line. The expression of JA marker defense gene PDF1.2 was up-regulated in the OE lines compared to the WT prior to Pst DC3000 infection, but its expression was lower in the OE lines after infection. In summary, high fitness Arabidopsis thaliana exhibited altered JA metabolism and broad suppression of R-genes and downstream genes as well as a higher susceptibility to Pst infections.
Collapse
Affiliation(s)
- Renshan Zhang
- School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hua Qi
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuzhe Sun
- School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Boon Leong Lim
- School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- * E-mail:
| |
Collapse
|
30
|
Berriri S, Gangappa SN, Kumar SV. SWR1 Chromatin-Remodeling Complex Subunits and H2A.Z Have Non-overlapping Functions in Immunity and Gene Regulation in Arabidopsis. MOLECULAR PLANT 2016; 9:1051-65. [PMID: 27131447 PMCID: PMC4938710 DOI: 10.1016/j.molp.2016.04.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/28/2016] [Accepted: 04/10/2016] [Indexed: 05/17/2023]
Abstract
Incorporation of the histone variant H2A.Z into nucleosomes by the SWR1 chromatin remodeling complex is a critical step in eukaryotic gene regulation. In Arabidopsis, SWR1c and H2A.Z have been shown to control gene expression underlying development and environmental responses. Although they have been implicated in defense, the specific roles of the complex subunits and H2A.Z in immunity are not well understood. In this study, we analyzed the roles of the SWR1c subunits, PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1 (PIE1), ACTIN-RELATED PROTEIN6 (ARP6), and SWR1 COMPLEX 6 (SWC6), as well as H2A.Z, in defense and gene regulation. We found that SWR1c components play different roles in resistance to different pathogens. Loss of PIE1 and SWC6 function as well as depletion of H2A.Z led to reduced basal resistance, while loss of ARP6 fucntion resulted in enhanced resistance. We found that mutations in PIE1 and SWC6 resulted in impaired effector-triggered immunity. Mutation in SWR1c components and H2A.Z also resulted in compromised jasmonic acid/ethylene-mediated immunity. Genome-wide expression analyses similarly reveal distinct roles for H2A.Z and SWR1c components in gene regulation, and suggest a potential role for PIE1 in the regulation of the cross talk between defense signaling pathways. Our data show that although they are part of the same complex, Arabidopsis SWR1c components could have non-redundant functions in plant immunity and gene regulation.
Collapse
Affiliation(s)
- Souha Berriri
- Cell and Developmental Biology Department, John Innes Centre, Norwich NR4 7UH, UK
| | | | - S Vinod Kumar
- Cell and Developmental Biology Department, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
31
|
An C, Ding Y, Zhang X, Wang C, Mou Z. Elongator Plays a Positive Role in Exogenous NAD-Induced Defense Responses in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:396-404. [PMID: 26926998 DOI: 10.1094/mpmi-01-16-0005-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Extracellular NAD is emerging as an important signal molecule in animal cells, but its role in plants has not been well-established. Although it has been shown that exogenous NAD(+) activates defense responses in Arabidopsis, components in the exogenous NAD(+)-activated defense pathway remain to be fully discovered. In a genetic screen for mutants insensitive to exogenous NAD(+) (ien), we isolated a mutant named ien2. Map-based cloning revealed that IEN2 encodes ELONGATA3 (ELO3)/AtELP3, a subunit of the Arabidopsis Elongator complex, which functions in multiple biological processes, including histone modification, DNA (de)methylation, and transfer RNA modification. Mutations in the ELO3/AtELP3 gene compromise exogenous NAD(+)-induced expression of pathogenesis-related (PR) genes and resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola ES4326, and transgenic expression of the coding region of ELO3/AtELP3 in elo3/Atelp3 restores NAD(+) responsiveness to the mutant plants, demonstrating that ELO3/AtELP3 is required for exogenous NAD(+)-induced defense responses. Furthermore, mutations in genes encoding the other five Arabidopsis Elongator subunits (ELO2/AtELP1, AtELP2, ELO1/AtELP4, AtELP5, and AtELP6) also compromise exogenous NAD(+)-induced PR gene expression and resistance to P. syringae pv. maculicola ES4326. These results indicate that the Elongator complex functions as a whole in exogenous NAD(+)-activated defense signaling in Arabidopsis.
Collapse
Affiliation(s)
- Chuanfu An
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611, U.S.A
| | - Yezhang Ding
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611, U.S.A
| | - Xudong Zhang
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611, U.S.A
| | - Chenggang Wang
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611, U.S.A
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611, U.S.A
| |
Collapse
|
32
|
Ding Y, Dommel M, Mou Z. Abscisic acid promotes proteasome-mediated degradation of the transcription coactivator NPR1 in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:20-34. [PMID: 26865090 DOI: 10.1111/tpj.13141] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 01/12/2016] [Accepted: 02/04/2016] [Indexed: 05/20/2023]
Abstract
Proteasome-mediated turnover of the transcription coactivator NPR1 is pivotal for efficient activation of the broad-spectrum plant immune responses known as localized acquired resistance (LAR) and systemic acquired resistance (SAR) in adjacent and systemic tissues, respectively, and requires the CUL3-based E3 ligase and its adaptor proteins, NPR3 and NPR4, which are receptors for the signaling molecule salicylic acid (SA). It has been shown that SA prevents NPR1 turnover under non-inducing and LAR/SAR-inducing conditions, but how cellular NPR1 homeostasis is maintained remains unclear. Here, we show that the phytohormone abscisic acid (ABA) and SA antagonistically influence cellular NPR1 protein levels. ABA promotes NPR1 degradation via the CUL3(NPR) (3/) (NPR) (4) complex-mediated proteasome pathway, whereas SA may protect NPR1 from ABA-promoted degradation through phosphorylation. Furthermore, we demonstrate that the timing and strength of SA and ABA signaling are critical in modulating NPR1 accumulation and target gene expression. Perturbing ABA or SA signaling in adjacent tissues alters the temporal dynamic pattern of NPR1 accumulation and target gene transcription. Finally, we show that sequential SA and ABA treatment leads to dynamic changes in NPR1 protein levels and target gene expression. Our results revealed a tight correlation between sequential SA and ABA signaling and dynamic changes in NPR1 protein levels and NPR1-dependent transcription in plant immune responses.
Collapse
Affiliation(s)
- Yezhang Ding
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| | - Matthew Dommel
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| |
Collapse
|
33
|
Dong OX, Meteignier LV, Plourde MB, Ahmed B, Wang M, Jensen C, Jin H, Moffett P, Li X, Germain H. Arabidopsis TAF15b Localizes to RNA Processing Bodies and Contributes to snc1-Mediated Autoimmunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:247-57. [PMID: 26713351 DOI: 10.1094/mpmi-11-15-0246-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In both animals and plants, messenger (m)RNA export has been shown to contribute to immune response regulation. The Arabidopsis nuclear protein MOS11, along with the nucleoporins MOS3/Nup96/SAR3 and Nup160/SAR1 are components of the mRNA export machinery and contribute to immunity mediated by nucleotide binding leucine-rich repeat immune receptors (NLR). The human MOS11 ortholog CIP29 is part of a small protein complex with three additional members: the RNA helicase DDX39, ALY, and TAF15b. We systematically assessed the biological roles of the Arabidopsis homologs of these proteins in toll interleukin 1 receptor-type NLR (TNL)-mediated immunity using reverse genetics. Although mutations in ALY and DDX39 did not result in obvious defects, taf15b mutation partially suppressed the autoimmune phenotypes of a gain-of-function TNL mutant, snc1. An additive effect on snc1 suppression was observed in mos11-1 taf15b snc1 triple mutant plants, suggesting that MOS11 and TAF15b have independent functions. TAF15b-GFP fusion protein, which fully complemented taf15b mutant phenotypes, localized to nuclei similarly to MOS11. However, it was also targeted to cytosolic granules identified as processing bodies. In addition, we observed no change in SNC1 mRNA levels, whereas less SNC1 protein accumulated in taf15b mutant, suggesting that TAF15b contributes to SNC1 homeostasis through posttranscriptional mechanisms. In summary, this study highlights the importance of posttranscriptional RNA processing mediated by TAF15b in the regulation of TNL-mediated immunity.
Collapse
Affiliation(s)
- Oliver X Dong
- 1 Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- 2 Michael Smith Laboratories, University of British Columbia
| | | | - Melodie B Plourde
- 4 Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, QC, G9A 5H7, Canada
- 5 Groupe de Recherche en Biologie Végétale (GRBV), Université du Québec à Trois-Rivières; and
| | - Bulbul Ahmed
- 4 Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, QC, G9A 5H7, Canada
- 5 Groupe de Recherche en Biologie Végétale (GRBV), Université du Québec à Trois-Rivières; and
| | - Ming Wang
- 6 Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, U.S.A
| | | | - Hailing Jin
- 6 Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, U.S.A
| | - Peter Moffett
- 3 Department of Biology, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Xin Li
- 1 Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- 2 Michael Smith Laboratories, University of British Columbia
| | - Hugo Germain
- 4 Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, QC, G9A 5H7, Canada
- 5 Groupe de Recherche en Biologie Végétale (GRBV), Université du Québec à Trois-Rivières; and
| |
Collapse
|
34
|
Chen M, Ji M, Wen B, Liu L, Li S, Chen X, Gao D, Li L. GOLDEN 2-LIKE Transcription Factors of Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1509. [PMID: 27757121 PMCID: PMC5048441 DOI: 10.3389/fpls.2016.01509] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/22/2016] [Indexed: 05/18/2023]
Abstract
Golden2-like (GLK) transcription factors are members of the GARP family of Myb transcription factors with an established relationship to chloroplast development in the plant kingdom. In the last century, Golden2 was proposed as a second golden producing factor and identified as controlling cellular differentiation in maize leaves. Then, GLKs were also found to play roles in disease defense and their function is conserved in regulating chloroplast development. Recently, research on GLKs has rapidly increased and shown that GLKs control chloroplast development in green and non-green tissues. Moreover, links between phytohormones and GLKs were verified. In this mini-review, we summarize the history, conservation, function, potential targets and degradation of GLKs.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
| | - Meiling Ji
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
| | - Binbin Wen
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
| | - Li Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
| | - Shaoxuan Li
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
| | - Xiude Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
| | - Dongsheng Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
- *Correspondence: Dongsheng Gao, Ling Li,
| | - Ling Li
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTaian, China
- College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTaian, China
- *Correspondence: Dongsheng Gao, Ling Li,
| |
Collapse
|
35
|
van Wersch R, Li X, Zhang Y. Mighty Dwarfs: Arabidopsis Autoimmune Mutants and Their Usages in Genetic Dissection of Plant Immunity. FRONTIERS IN PLANT SCIENCE 2016; 7:1717. [PMID: 27909443 PMCID: PMC5112265 DOI: 10.3389/fpls.2016.01717] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/01/2016] [Indexed: 05/17/2023]
Abstract
Plants lack the adaptive immune system possessed by mammals. Instead they rely on innate immunity to defend against pathogen attacks. Genomes of higher plants encode a large number of plant immune receptors belonging to different protein families, which are involved in the detection of pathogens and activation of downstream defense pathways. Plant immunity is tightly controlled to avoid activation of defense responses in the absence of pathogens, as failure to do so can lead to autoimmunity that compromises plant growth and development. Many autoimmune mutants have been reported, most of which are associated with dwarfism and often spontaneous cell death. In this review, we summarize previously reported Arabidopsis autoimmune mutants, categorizing them based on their functional groups. We also discuss how their obvious morphological phenotypes make them ideal tools for epistatic analysis and suppressor screens, and summarize genetic screens that have been carried out in various autoimmune mutant backgrounds.
Collapse
Affiliation(s)
- Rowan van Wersch
- Department of Botany, University of British Columbia, VancouverBC, Canada
| | - Xin Li
- Department of Botany, University of British Columbia, VancouverBC, Canada
- The Michael Smith Laboratories, University of British Columbia, VancouverBC, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, VancouverBC, Canada
- *Correspondence: Yuelin Zhang,
| |
Collapse
|
36
|
Kato H, Komeda Y, Saito T, Ito H, Kato A. Role of the ACL2 locus in flower stalk elongation in Arabidopsis thaliana. Genes Genet Syst 2015; 90:163-74. [PMID: 26510571 DOI: 10.1266/ggs.90.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The acaulis2 (acl2) mutant of Arabidopsis thaliana shows a defect in flower stalk elongation. We identified the mutation point of acl2 by map-based cloning. The ACL2 locus is located within an approximately 320-kb region at around 100 map units on chromosome 1. One nucleotide substitution was detected in this region in the acl2 mutant, but no significant open reading frames were found around this mutation point. When wild-type DNA fragments containing the mutation point were introduced into acl2 mutant plants, some transgenic plants partially or almost completely recovered from the defect in flower stalk elongation. 3'-RACE experiments showed that bidirectional transcripts containing the acl2 mutation point were expressed, and the Plant MPSS database revealed that several small RNAs were produced from this region. Microarray analysis showed that transcription of many genes is activated in flower stalks of acl2 mutant plants. Overexpression of some of these genes caused a dwarf phenotype in wild-type plants. These results suggest the following novel mechanism for control of the elongation of flower stalks. Bidirectional non-coding RNAs are transcribed from the ACL2 locus, and small RNAs are generated from them in flower stalks. These small RNAs repress the transcription of a set of genes whose expression represses flower stalk elongation, and flower stalks are therefore fully elongated.
Collapse
Affiliation(s)
- Hiroaki Kato
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University
| | | | | | | | | |
Collapse
|
37
|
Dutt M, Barthe G, Irey M, Grosser J. Transgenic Citrus Expressing an Arabidopsis NPR1 Gene Exhibit Enhanced Resistance against Huanglongbing (HLB; Citrus Greening). PLoS One 2015; 10:e0137134. [PMID: 26398891 PMCID: PMC4580634 DOI: 10.1371/journal.pone.0137134] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 08/12/2015] [Indexed: 11/18/2022] Open
Abstract
Commercial sweet orange cultivars lack resistance to Huanglongbing (HLB), a serious phloem limited bacterial disease that is usually fatal. In order to develop sustained disease resistance to HLB, transgenic sweet orange cultivars ‘Hamlin’ and ‘Valencia’ expressing an Arabidopsis thaliana NPR1 gene under the control of a constitutive CaMV 35S promoter or a phloem specific Arabidopsis SUC2 (AtSUC2) promoter were produced. Overexpression of AtNPR1 resulted in trees with normal phenotypes that exhibited enhanced resistance to HLB. Phloem specific expression of NPR1 was equally effective for enhancing disease resistance. Transgenic trees exhibited reduced diseased severity and a few lines remained disease-free even after 36 months of planting in a high-disease pressure field site. Expression of the NPR1 gene induced expression of several native genes involved in the plant defense signaling pathways. The AtNPR1 gene being plant derived can serve as a component for the development of an all plant T-DNA derived consumer friendly GM tree.
Collapse
Affiliation(s)
- Manjul Dutt
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
- * E-mail:
| | - Gary Barthe
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Michael Irey
- Southern Gardens Citrus, Clewiston, Florida, United States of America
| | - Jude Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| |
Collapse
|
38
|
Naseem M, Kaltdorf M, Dandekar T. The nexus between growth and defence signalling: auxin and cytokinin modulate plant immune response pathways. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4885-96. [PMID: 26109575 DOI: 10.1093/jxb/erv297] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plants deploy a finely tuned balance between growth and defence responses for better fitness. Crosstalk between defence signalling hormones such as salicylic acid (SA) and jasmonates (JAs) as well as growth regulators plays a significant role in mediating the trade-off between growth and defence in plants. Here, we specifically discuss how the mutual antagonism between the signalling of auxin and SA impacts on plant growth and defence. Furthermore, the synergism between auxin and JA benefits a class of plant pathogens. JA signalling also poses growth cuts through auxin. We discuss how the effect of cytokinins (CKs) is multifaceted and is effective against a broad range of pathogens in mediating immunity. The synergism between CKs and SA promotes defence against biotrophs. Reciprocally, SA inhibits CK-mediated growth responses. Recent reports show that CKs promote JA responses; however, in a feedback loop, JA suppresses CK responses. We also highlight crosstalk between auxin and CKs and discuss their antagonistic effects on plant immunity. Efforts to minimize the negative effects of auxin on immunity and a reduction in SA- and JA-mediated growth losses should lead to better sustainable plant protection strategies.
Collapse
Affiliation(s)
- Muhammad Naseem
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, D-97074 Wuerzburg, Germany
| | - Martin Kaltdorf
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, D-97074 Wuerzburg, Germany
| | - Thomas Dandekar
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, D-97074 Wuerzburg, Germany
| |
Collapse
|
39
|
Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Malfatti S, Glavina del Rio T, Jones CD, Tringe SG, Dangl JL. PLANT MICROBIOME. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 2015; 349:860-4. [PMID: 26184915 DOI: 10.1126/science.aaa8764] [Citation(s) in RCA: 661] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/26/2015] [Indexed: 12/29/2022]
Abstract
Immune systems distinguish "self" from "nonself" to maintain homeostasis and must differentially gate access to allow colonization by potentially beneficial, nonpathogenic microbes. Plant roots grow within extremely diverse soil microbial communities but assemble a taxonomically limited root-associated microbiome. We grew isogenic Arabidopsis thaliana mutants with altered immune systems in a wild soil and also in recolonization experiments with a synthetic bacterial community. We established that biosynthesis of, and signaling dependent on, the foliar defense phytohormone salicylic acid is required to assemble a normal root microbiome. Salicylic acid modulates colonization of the root by specific bacterial families. Thus, plant immune signaling drives selection from the available microbial communities to sculpt the root microbiome.
Collapse
Affiliation(s)
- Sarah L Lebeis
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, USA. Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| | - Sur Herrera Paredes
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Derek S Lundberg
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Natalie Breakfield
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Jase Gehring
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Meredith McDonald
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Stephanie Malfatti
- Joint Genome Institute, U.S. Department of Energy, Walnut Creek, CA, USA
| | | | - Corbin D Jones
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Susannah G Tringe
- Joint Genome Institute, U.S. Department of Energy, Walnut Creek, CA, USA
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC 27599-3280, USA. Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| |
Collapse
|
40
|
Ye S, Jiang Y, Duan Y, Karim A, Fan D, Yang L, Zhao X, Yin J, Luo K. Constitutive expression of the poplar WRKY transcription factor PtoWRKY60 enhances resistance to Dothiorella gregaria Sacc. in transgenic plants. TREE PHYSIOLOGY 2014; 34:1118-29. [PMID: 25281841 DOI: 10.1093/treephys/tpu079] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
WRKY proteins are involved in various physiological processes in plants, especially in coping with diverse biotic and abiotic stresses. However, limited information is available on the roles of specific WRKY transcription factors in poplar defense. In this study, we reported the characterization of PtoWRKY60, a Group IIa WRKY member, from Populus tomentosa Carr. The gene expression profile of PtoWRKY60 in various tissues showed that it significantly accumulated in old leaves. Phylogenetic analyses revealed that PtoWRKY60 had a close relationship with AtWRKY18, AtWRKY40 and AtWRKY60. PtoWRKY60 was induced mainly by salicylic acid (SA) and slightly by Dothiorella gregaria Sacc., jasmonic acid, wounding treatment, low temperature and salinity stresses. Overexpression of PtoWRKY60 in poplar resulted in increased resistance to D. gregaria. The defense-associated genes, such as PR5.1, PR5.2, PR5.4, PR5.5 and CPR5, were markedly up-regulated in transgenic plants overexpressing PtoWRKY60. These results indicate that PtoWRKY60 might be partly involved in the signal transduction pathway initiated by SA in Populus.
Collapse
Affiliation(s)
- Shenglong Ye
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Yuanzhong Jiang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Yanjiao Duan
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Abdul Karim
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Di Fan
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Li Yang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Xin Zhao
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Jia Yin
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Keming Luo
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| |
Collapse
|
41
|
Giri MK, Swain S, Gautam JK, Singh S, Singh N, Bhattacharjee L, Nandi AK. The Arabidopsis thaliana At4g13040 gene, a unique member of the AP2/EREBP family, is a positive regulator for salicylic acid accumulation and basal defense against bacterial pathogens. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:860-7. [PMID: 24612849 DOI: 10.1016/j.jplph.2013.12.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 05/09/2023]
Abstract
The Arabidopsis genome contains a large number of putative transcription factors, containing a DNA binding domain similar to APETALA2/ethylene response element binding protein (AP2/EREBP), for most of which a function is not known. Phylogenetic analysis divides the Apetala 2 (AP2) super-family into 5 major groups: AP2, RAV, ethylene response factor (ERF), dehydration response element binding protein (DREB) and At4g13040. Similar to ERF and DREB, the At4g13040 protein contains only one AP2 domain; however, its structural uniqueness places it into a distinct group. In this article, we report that At4g13040 (referred herein as Apetala 2 family protein involved in SA mediated disease defense 1 - APD1) is an important regulator for SA mediated plant defense. The APD1 gene is upregulated upon pathogen inoculation, exogenous SA application and in the mutant that constitutively activates SA signaling. The T-DNA insertion lines (inserted in the APD1 promoter), which fail to induce expression upon pathogen inoculation, are compromised for resistance against virulent bacterial pathogens and show reduced induction of pathogenesis related 1 gene. Our results suggest that APD1 functions downstream of PAD4 in Arabidopsis and promotes pathogen-induced SA accumulation. Exogenous SA application completely restores the loss-of-resistance phenotype of the apd1 mutant. Thus, APD1 is a positive regulator of disease defense that functions upstream of SA accumulation.
Collapse
Affiliation(s)
- Mrunmay Kumar Giri
- Room #415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Swadhin Swain
- Room #415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Janesh Kumar Gautam
- Room #415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Subaran Singh
- Room #415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nidhi Singh
- Room #415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Lipika Bhattacharjee
- Room #415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashis Kumar Nandi
- Room #415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
42
|
Ghosh Dasgupta M, George BS, Bhatia A, Sidhu OP. Characterization of Withania somnifera leaf transcriptome and expression analysis of pathogenesis-related genes during salicylic acid signaling. PLoS One 2014; 9:e94803. [PMID: 24739900 PMCID: PMC3989240 DOI: 10.1371/journal.pone.0094803] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/19/2014] [Indexed: 12/20/2022] Open
Abstract
Withania somnifera (L.) Dunal is a valued medicinal plant with pharmaceutical applications. The present study was undertaken to analyze the salicylic acid induced leaf transcriptome of W. somnifera. A total of 45.6 million reads were generated and the de novo assembly yielded 73,523 transcript contig with average transcript contig length of 1620 bp. A total of 71,062 transcripts were annotated and 53,424 of them were assigned GO terms. Mapping of transcript contigs to biological pathways revealed presence of 182 pathways. Seventeen genes representing 12 pathogenesis-related (PR) families were mined from the transcriptome data and their pattern of expression post 17 and 36 hours of salicylic acid treatment was documented. The analysis revealed significant up-regulation of all families of PR genes by 36 hours post treatment except WsPR10. The relative fold expression of transcripts ranged from 1 fold to 6,532 fold. The two families of peroxidases including the lignin-forming anionic peroxidase (WsL-PRX) and suberization-associated anionic peroxidase (WsS-PRX) recorded maximum expression of 377 fold and 6532 fold respectively, while the expression of WsPR10 was down-regulated by 14 fold. Additionally, the most stable reference gene for normalization of qRT-PCR data was also identified. The effect of SA on the accumulation of major secondary metabolites of W. somnifera including withanoside V, withaferin A and withanolide A was also analyzed and an increase in content of all the three metabolites were detected. This is the first report on expression patterns of PR genes during salicylic acid signaling in W. somnifera.
Collapse
Affiliation(s)
- Modhumita Ghosh Dasgupta
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, Tamil Nadu, India
- * E-mail:
| | - Blessan Santhosh George
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, Tamil Nadu, India
| | - Anil Bhatia
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Om Prakash Sidhu
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| |
Collapse
|
43
|
Kato H, Saito T, Ito H, Komeda Y, Kato A. Overexpression of the TIR-X gene results in a dwarf phenotype and activation of defense-related gene expression in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:382-8. [PMID: 24594389 DOI: 10.1016/j.jplph.2013.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/30/2013] [Accepted: 12/03/2013] [Indexed: 05/03/2023]
Abstract
The Arabidopsis genome encodes various proteins with a Toll/interleukin-1 receptor (TIR) domain. Many of these proteins also contain nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains and function as resistance (R) proteins. However, the protein encoded by At2g32140 (a TIR-X gene) contains a TIR domain but lacks NBS and LRR domains. We found that transgenic plants overexpressing At2g32140 displayed a dwarf phenotype and showed increased expression of defense-related genes. In general, the growth defect caused by activation of defense responses is suppressed under high-temperature conditions. However, transgenic plants overexpressing At2g32140 displayed a much stronger dwarf phenotype at 28°C than at 22°C. This dwarf phenotype was suppressed under the combination with known salicylic-acid pathway mutants. These findings suggest that At2g32140 encodes a protein involved in the plant defense response.
Collapse
Affiliation(s)
- Hiroaki Kato
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tamao Saito
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda-ku, Tokyo 120-8554, Japan
| | - Hidetaka Ito
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Yoshibumi Komeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Atsushi Kato
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
44
|
Murmu J, Wilton M, Allard G, Pandeya R, Desveaux D, Singh J, Subramaniam R. Arabidopsis GOLDEN2-LIKE (GLK) transcription factors activate jasmonic acid (JA)-dependent disease susceptibility to the biotrophic pathogen Hyaloperonospora arabidopsidis, as well as JA-independent plant immunity against the necrotrophic pathogen Botrytis cinerea. MOLECULAR PLANT PATHOLOGY 2014; 15:174-84. [PMID: 24393452 PMCID: PMC6638812 DOI: 10.1111/mpp.12077] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Arabidopsis thaliana GOLDEN2-LIKE (GLK1 and 2) transcription factors regulate chloroplast development in a redundant manner. Overexpression of AtGLK1 (35S:AtGLK1) in Arabidopsis also confers resistance to the cereal pathogen Fusarium graminearum. To further elucidate the role of GLK transcription factors in plant defence, the Arabidopsis glk1 glk2 double-mutant and 35S:AtGLK1 plants were challenged with the virulent oomycete pathogen Hyaloperonospora arabidopsidis (Hpa) Noco2. Compared with Col-0, glk1 glk2 plants were highly resistant to Hpa Noco2, whereas 35S:AtGLK1 plants showed enhanced susceptibility to this pathogen. Genetic studies suggested that AtGLK-mediated plant defence to Hpa Noco2 was partially dependent on salicylic acid (SA) accumulation, but independent of the SA signalling protein NONEXPRESSOR OF PATHOGENESIS-RELATED 1 (NPR1). Pretreatment with jasmonic acid (JA) dramatically reversed Hpa Noco2 resistance in the glk1 glk2 double mutant, but only marginally affected the 35S:AtGLK1 plants. In addition, overexpression of AtGLK1 in the JA signalling mutant coi1-16 did not increase susceptibility to Hpa Noco2. Together, our GLK gain-of-function and loss-of-function experiments suggest that GLK acts upstream of JA signalling in disease susceptibility to Hpa Noco2. In contrast, glk1 glk2 plants were more susceptible to the necrotrophic fungal pathogen Botrytis cinerea, whereas 35S:AtGLK1 plants exhibited heightened resistance which could be maintained in the absence of JA signalling. Together, the data reveal that AtGLK1 is involved in JA-dependent susceptibility to the biotrophic pathogen Hpa Noco2 and in JA-independent resistance to the necrotrophic pathogen B. cinerea.
Collapse
Affiliation(s)
- Jhadeswar Murmu
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, Canada, K1A 0C6
| | | | | | | | | | | | | |
Collapse
|
45
|
De Vleesschauwer D, Xu J, Höfte M. Making sense of hormone-mediated defense networking: from rice to Arabidopsis. FRONTIERS IN PLANT SCIENCE 2014; 5:611. [PMID: 25426127 PMCID: PMC4227482 DOI: 10.3389/fpls.2014.00611] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/20/2014] [Indexed: 05/19/2023]
Abstract
Phytohormones are not only essential for plant growth and development but also play central roles in triggering the plant immune signaling network. Historically, research aimed at elucidating the defense-associated role of hormones has tended to focus on the use of experimentally tractable dicot plants such as Arabidopsis thaliana. Emerging from these studies is a picture whereby complex crosstalk and induced hormonal changes mold plant health and disease, with outcomes largely dependent on the lifestyle and infection strategy of invading pathogens. However, recent studies in monocot plants are starting to provide additional important insights into the immune-regulatory roles of hormones, often revealing unique complexities. In this review, we address the latest discoveries dealing with hormone-mediated immunity in rice, one of the most important food crops and an excellent model for molecular genetic studies in monocots. Moreover, we highlight interactions between hormone signaling, rice defense and pathogen virulence, and discuss the differences and similarities with findings in Arabidopsis. Finally, we present a model for hormone defense networking in rice and describe how detailed knowledge of hormone crosstalk mechanisms can be used for engineering durable rice disease resistance.
Collapse
Affiliation(s)
- David De Vleesschauwer
- *Correspondence: David De Vleesschauwer, Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium e-mail:
| | | | | |
Collapse
|
46
|
Ding Y, Shaholli D, Mou Z. A large-scale genetic screen for mutants with altered salicylic acid accumulation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2014; 5:763. [PMID: 25610446 PMCID: PMC4285869 DOI: 10.3389/fpls.2014.00763] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/10/2014] [Indexed: 05/03/2023]
Abstract
Salicylic acid (SA) is a key defense signal molecule against biotrophic and hemibiotrophic pathogens in plants, but how SA is synthesized in plant cells still remains elusive. Identification of new components involved in pathogen-induced SA accumulation would help address this question. To this end, we performed a large-scale genetic screen for mutants with altered SA accumulation during pathogen infection in Arabidopsis using a bacterial biosensor Acinetobacter sp. ADPWH_lux-based SA quantification method. A total of 35,000 M2 plants in the npr1-3 mutant background have been individually analyzed for the bacterial pathogen Pseudomonas syringae pv. maculicola (Psm) ES4326-induced SA accumulation. Among the mutants isolated, 19 had SA levels lower than npr1 (sln) and two exhibited increased SA accumulation in npr1 (isn). Complementation tests revealed that seven of the sln mutants are new alleles of eds5/sid1, two are sid2/eds16 alleles, one is allelic to pad4, and the remaining seven sln and two isn mutants are new non-allelic SA accumulation mutants. Interestingly, a large group of mutants (in the npr1-3 background), in which Psm ES4326-induced SA levels were similar to those in the wild-type Columbia plants, were identified, suggesting that the signaling network fine-tuning pathogen-induced SA accumulation is complex. We further characterized the sln1 single mutant and found that Psm ES4326-induced defense responses were compromised in this mutant. These defense response defects could be rescued by exogenous SA, suggesting that SLN1 functions upstream of SA. The sln1 mutation was mapped to a region on the north arm of chromosome I, which contains no known genes regulating pathogen-induced SA accumulation, indicating that SLN1 likely encodes a new regulator of SA biosynthesis. Thus, the new sln and isn mutants identified in this genetic screen are valuable for dissecting the molecular mechanisms underlying pathogen-induced SA accumulation in plants.
Collapse
Affiliation(s)
| | | | - Zhonglin Mou
- *Correspondence: Zhonglin Mou, Department of Microbiology and Cell Science, University of Florida, Museum Road, Building 981, Gainesville, FL 32611, USA e-mail:
| |
Collapse
|
47
|
Zhang X, Yao J, Zhang Y, Sun Y, Mou Z. The Arabidopsis Mediator complex subunits MED14/SWP and MED16/SFR6/IEN1 differentially regulate defense gene expression in plant immune responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:484-97. [PMID: 23607369 DOI: 10.1111/tpj.12216] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/17/2013] [Accepted: 04/19/2013] [Indexed: 05/20/2023]
Abstract
Pathogen infection in plants triggers large-scale transcriptional changes, both locally and systemically. Emerging evidence suggests that the Arabidopsis Mediator complex plays a crucial role in these transcriptional changes. Mediator is highly conserved in eukaryotes, and its core comprises more than 20 subunits organized into three modules named head, middle and tail. The head and middle modules interact with general transcription factors and RNA polymerase II, whereas the tail module associates with activators, and signals through the head and middle modules to the basal transcription machinery. In Arabidopsis, three tail module subunits, MED14, MED15 and MED16, have been identified. Both MED15 and MED16 have been implicated in plant immunity, but the role of MED14 has not been established. Here, we report the characterization of an Arabidopsis T-DNA insertion mutant of the MED14 gene. Similarly to the med15 and/or med16 mutations, the med14 mutation significantly suppresses salicylic acid-induced defense responses, alters transcriptional changes induced by the avirulent bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000/avrRpt2, and renders plants susceptible to both Pst DC3000/avrRpt2 and Pst DC3000. The med14 mutation also completely compromises biological induction of systemic acquired resistance (SAR), indicating that the tail module as a whole is essential for SAR. Interestingly, unlike the med16 mutation, which differentially affects expression of several SAR positive and negative regulators, med14 inhibits induction of a large group of defense genes, including both SAR positive and negative regulators, suggesting that individual subunits of the Mediator tail module employ distinct mechanisms to regulate plant immune responses.
Collapse
Affiliation(s)
- Xudong Zhang
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| | | | | | | | | |
Collapse
|
48
|
DeFraia CT, Wang Y, Yao J, Mou Z. Elongator subunit 3 positively regulates plant immunity through its histone acetyltransferase and radical S-adenosylmethionine domains. BMC PLANT BIOLOGY 2013; 13:102. [PMID: 23856002 PMCID: PMC3728140 DOI: 10.1186/1471-2229-13-102] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/12/2013] [Indexed: 05/17/2023]
Abstract
BACKGROUND Pathogen infection triggers a large-scale transcriptional reprogramming in plants, and the speed of this reprogramming affects the outcome of the infection. Our understanding of this process has significantly benefited from mutants that display either delayed or accelerated defense gene induction. In our previous work we demonstrated that the Arabidopsis Elongator complex subunit 2 (AtELP2) plays an important role in both basal immunity and effector-triggered immunity (ETI), and more recently showed that AtELP2 is involved in dynamic changes in histone acetylation and DNA methylation at several defense genes. However, the function of other Elongator subunits in plant immunity has not been characterized. RESULTS In the same genetic screen used to identify Atelp2, we found another Elongator mutant, Atelp3-10, which mimics Atelp2 in that it exhibits a delay in defense gene induction following salicylic acid treatment or pathogen infection. Similarly to AtELP2, AtELP3 is required for basal immunity and ETI, but not for systemic acquired resistance (SAR). Furthermore, we demonstrate that both the histone acetyltransferase and radical S-adenosylmethionine domains of AtELP3 are essential for its function in plant immunity. CONCLUSION Our results indicate that the entire Elongator complex is involved in basal immunity and ETI, but not in SAR, and support that Elongator may play a role in facilitating the transcriptional induction of defense genes through alterations to their chromatin.
Collapse
Affiliation(s)
- Christopher T DeFraia
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611, USA
- Current address: Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Yongsheng Wang
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611, USA
| | - Jiqiang Yao
- Interdisciplinary Center for Biotechnology Research, University of Florida, P.O. Box 103622, Gainesville, FL 32610, USA
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611, USA
| |
Collapse
|
49
|
Zhang PJ, Xu CX, Zhang JM, Lu YB, Wei JN, Liu YQ, David A, Boland W, Turlings TCJ. Phloem-feeding whiteflies can fool their host plants, but not their parasitoids. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12132] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Peng-Jun Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Plant Protection and Microbiology; Zhejiang Academy of Agricultural Sciences; Hangzhou 310021, China
| | - Cai-Xia Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops; Ministry of Agriculture; Beijing China
| | - Jin-Ming Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Plant Protection and Microbiology; Zhejiang Academy of Agricultural Sciences; Hangzhou 310021, China
| | - Yao-Bin Lu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Plant Protection and Microbiology; Zhejiang Academy of Agricultural Sciences; Hangzhou 310021, China
| | - Jia-Ning Wei
- State Key Laboratory of Integrated Management of Pest Insects & Rodents; Institute of Zoology; Chinese Academy of Sciences; Beijing 100080, China
| | - Yin-Quan Liu
- Institute of Insect Sciences; Zhejiang University; Hangzhou 310029, China
| | - Anja David
- Max Planck Institute for Chemical Ecology; Hans-Knoell-Strasse 8 07745 Jena Germany
| | - Wilhelm Boland
- Max Planck Institute for Chemical Ecology; Hans-Knoell-Strasse 8 07745 Jena Germany
| | - Ted C. J. Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology (FARCE); University of Neuchâtel; CH-2000 Neuchâtel Switzerland
| |
Collapse
|
50
|
Derksen H, Rampitsch C, Daayf F. Signaling cross-talk in plant disease resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 207:79-87. [PMID: 23602102 DOI: 10.1016/j.plantsci.2013.03.004] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 05/21/2023]
Abstract
Hormone signaling crosstalk plays a major role in plant defense against a wide range of both biotic and abiotic stresses. While many reviews on plant-microbe interactions have well described the general trends of signaling pathways in shaping host responses to pathogens, few discussions have considered a synthesis of positive versus negative interactions among such pathways, or variations in the signaling molecules themselves. This review deals with the interaction trends between salicylic, jasmonic, and abscisic acids in the signaling pathways, as well as exceptions to such trends. Here we focused on antagonistic versus cooperative interactions between salicylic and jasmonic acids, two major disease resistance signaling molecules, and some interactions with abscisic acid, a known abiotic stress hormone, and another player in plant defense mechanisms. We provide a set of examples materializing either antagonism or cooperation for each interaction between two pathways, thereby showing the trends and pinpointing the exceptions. Such analyses are practical for researchers working on the subject and essential for a better exploitation of the data already available in plant disease resistance signaling, both in Arabidopsis and crop species, toward the development of better disease management strategies for economically important crops.
Collapse
Affiliation(s)
- Holly Derksen
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB R3T 2N2, Canada
| | | | | |
Collapse
|