1
|
Sanchez‐Lucas R, Bosanquet JL, Henderson J, Catoni M, Pastor V, Luna E. Elicitor Specific Mechanisms of Defence Priming in Oak Seedlings Against Powdery Mildew. PLANT, CELL & ENVIRONMENT 2025; 48:4455-4474. [PMID: 40001308 PMCID: PMC12050401 DOI: 10.1111/pce.15419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025]
Abstract
Defence priming sensitises plant defences to enable a faster and/or stronger response to subsequent stress. Various chemicals can trigger priming; however, the response remains unexplored in oak. Here, we characterise salicylic acid (SA)-, jasmonic acid (JA)-, and β-aminobutyric acid (BABA)-induced priming of oak seedlings against the causal agent of powdery mildew (Erysiphe alphitoides, PM). Whilst JA had no effects, BABA and SA enhanced resistance by priming callose deposition and SA-dependent gene expression, respectively. Untargeted transcriptome and metabolome analyses revealed genes and metabolites uniquely primed by BABA, SA, and JA. Enrichment analyses demonstrated a limited number of pathways differentiating the three treatments or the resistance-inducing elicitors BABA and SA. However, a similar mode of action between BABA and JA was identified. Moreover, our analyses revealed a lack of crosstalk between SA and JA. Interestingly, priming by BABA was linked to alkaloid, lignan, phenylpropanoid, and indolitic compounds biosynthesis. Moreover, integration of the omics analyses revealed the role of ubiquitination and protein degradation in priming by BABA. Our results confirm the existence of chemical-induced priming in oak and has identified specific molecular markers associated with well-characterised elicitors.
Collapse
Affiliation(s)
- Rosa Sanchez‐Lucas
- Birmingham Institute of Forest Research, School of BiosciencesUniversity of BirminghamBirminghamWest MidlandsUK
| | - Jack L. Bosanquet
- Birmingham Institute of Forest Research, School of BiosciencesUniversity of BirminghamBirminghamWest MidlandsUK
| | - James Henderson
- Birmingham Institute of Forest Research, School of BiosciencesUniversity of BirminghamBirminghamWest MidlandsUK
| | - Marco Catoni
- Birmingham Institute of Forest Research, School of BiosciencesUniversity of BirminghamBirminghamWest MidlandsUK
| | - Victoria Pastor
- Metabolic Integration and Cell Signalling GroupUniversity Jaume ICastellonValencian RegionSpain
| | - Estrella Luna
- Birmingham Institute of Forest Research, School of BiosciencesUniversity of BirminghamBirminghamWest MidlandsUK
| |
Collapse
|
2
|
Wang K, Xiang F, Liao Q, Li J, Lei C, Xia Y, Li C. Critical role of TCP7 in mediating RBH-induced fungal resistance in postharvest grape berries. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 225:110026. [PMID: 40388857 DOI: 10.1016/j.plaphy.2025.110026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/21/2025]
Abstract
(R)-β-homoserine (RBH) is a structural analogue of β-aminobutyric acid (BABA) that can enhance plant resistance to a wide range of pathogens. Here, we investigated the regulatory role of VvTCP7 on the RBH-induced priming response against Botrytis cinerea in grapes. The results showed that RBH primed a defense mechanism in grape berries and enhanced their response to fungal infection. RBH upregulated the expression of a group of genes involved in SA synthesis, thus inducing SA accumulation in grapes. VvTCP7 has high homology to AtCHE in Arabidopsis thaliana and is recognized to be a nucleus-localized protein that promotes SA synthesis. Notably, RBH elevated VvTCP7 expression in harvested grape berries, which was accompanied by enhanced expression of VvNPR1, a master regulator of SAR, as well as the SA-responsive PR genes. Additionally, Y1H, EMSA and DLR assays confirmed that VvTCP7 has the ability to bind directly to the GGNCCC motif within the VvICS promoter to induce VvICS transcription and SA synthesis. Overexpression of VvTCP7 in Arabidopsis led to a marked increase in the transcription of PR genes, enhancing defensive response to B. cinerea. However, the VvTCP7 knockout led to a decrease in PR gene expression and increased susceptibility to the fungus. Collectively, the data suggest that VvTCP7 contributes to RBH-induced SAR priming by activating the SA synthesis and resultant enhances SAR defenses to combat fungal invasion.
Collapse
Affiliation(s)
- Kaituo Wang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, PR China.
| | - Fei Xiang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, PR China
| | - Qinhong Liao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, PR China; Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, PR China
| | - Jiahao Li
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, PR China
| | - Changyi Lei
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, PR China
| | - Yijia Xia
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, PR China
| | - Chunhong Li
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, PR China
| |
Collapse
|
3
|
Chen Y, Gao W, Zhu Y, Qiu S, Qiu Z, Dong C, Liu Z, Du Y, Li J, Huang Z, Li X, Liu L, Liu L, Wang X. Cr3a, a candidate gene conferring fruit cracking resistance, was fine-mapped in an introgression line of Solanum lycopersicum L. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70184. [PMID: 40318064 PMCID: PMC12047205 DOI: 10.1111/tpj.70184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/07/2025] [Accepted: 04/12/2025] [Indexed: 05/07/2025]
Abstract
In the cultivation and production of tomato (Solanum lycopersicum L.), fruit cracking is a prevalent and detrimental issue that significantly impacts the esthetic quality and commercial value of the fruit. The complexity of the trait has resulted in a slow advancement in research aimed at identifying genes that influence tomato fruit cracking and the underlying regulatory mechanisms. In this study, a sub-introgression population for tomato crack-resistant fruit has been constructed from the cross between S. lycopersicum 1052 and Solanum pennellii LA0716, followed by 11 generations of selfing. Utilizing specifically designed InDel markers, the tomato crack-resistant gene, Cr3a, was fine-mapped, cloned, and its functionality was confirmed through transgenic and gene-knockout approaches. The precise localization of Cr3a was delineated to a 30 kb genomic region on chromosome 3, corresponding to the gene Sopen03g034650 in S. pennellii and Solyc03g115660.3 in the Heinz1706 variety. An integrated transcriptomic and metabolomic analysis of fruits with and without the Cr3a gene was finally conducted to elucidate the intricate regulatory mechanisms associated with Cr3a. The findings revealed a molecular regulatory network for tomato fruit crack resistance, characterized by 7 key metabolites, 13 pivotal genes, and 4 critical pathways: the phenylpropanoid biosynthesis pathway, the phenylalanine, tyrosine, and tryptophan biosynthesis pathway, the linolenic acid metabolism pathway, and the cysteine and methionine metabolism pathway. In summary, this research provides novel insights into the molecular underpinnings of tomato fruit crack resistance and holds substantial promise for accelerating the molecular breeding of tomatoes with enhanced fruit crack resistance.
Collapse
Affiliation(s)
- Yifan Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
- College of HorticultureNanjing Agricultural UniversityNanjing210095China
| | - Wenzheng Gao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Yu Zhu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Shuliang Qiu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Zhuoyao Qiu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Chenchen Dong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Ziteng Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Yongchen Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Junming Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Zejun Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Xin Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Lei Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Liwang Liu
- College of HorticultureNanjing Agricultural UniversityNanjing210095China
| | - Xiaoxuan Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| |
Collapse
|
4
|
Li C, Wang K, Lei C, Zou Y, Yang S, Xiang F, Li M, Zheng Y. β-Aminobutyric acid-induced resistance in postharvest peach fruit involves interaction between the MAPK cascade and SNARE13 protein in the salicylic acid-dependent pathway. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1202-1229. [PMID: 39495671 DOI: 10.1093/jxb/erae448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/01/2024] [Indexed: 11/06/2024]
Abstract
The inducer β-aminobutyric acid (BABA) participates in the immune response in various plants. However, the specific mitogen-activated protein kinase (MAPK) cascade involved in BABA-induced resistance (BABA-IR) has not yet been elucidated. Here, peach (Prunus persica) fruits treated with the BABA exhibited pattern-triggered immunity defense against Rhizopus stolonifer, accompanied by the generation of reactive oxygen species and activation of a MAPK cascade. Transcriptome sequencing suggested that a total of 15 MAPK kinase kinase (PpMAPKKK)/MAPK kinase (PpMAPKK)/PpMAPK genes were involved in BABA-IR in peach fruit. Further qRT-PCR analysis showed that the transcript profiles of PpMAPKKK3, PpMAPKK5, and PpMAPK1 were elevated. Subsequently, yeast two-hybrid, luciferase complementation imaging, pull-down, and in vitro phosphorylation assays were conducted to characterize the complete MAPK cascade (PpMAPKKK3-PpMAPKK5-PpMAPK1) involved in peach fruit. Moreover, the downstream events of MAPK1 include the involvement of SNARE13 and the corresponding NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1)-responsive defense. Single silencing of MAPKKK3, MAPKK5, or MAPK1 and double silencing of MAPKKK3 and MAPKK5 or MAPKK5 and MAPK1 resulted in enhanced susceptibility to the fungus R. stolonifer in mutants and attenuated salicylic acid (SA)-dependent defense gene expression. In contrast, the homologous or heterologous overexpression of PpSNARE13 in peach fruit or Arabidopsis led to an enhanced SA pool and elevated expression of pathogenesis related (PR) genes. Reciprocally, the ppsnare13cas9 mutants were generally compromised in the priming of SA-dependent resistance. Therefore, the MAPKKK3-MAPKK5-MAPK1 cascade contributed to pattern-triggered immunity signal transduction in BABA-elicited peach fruit, by combination with downstream events such as SNARE13, NPR1, and SA-dependent signaling.
Collapse
Affiliation(s)
- Chunhong Li
- Institute of Fruit Function and Disease Management, Department of Public Health and Management, Chongqing Three Gorges Medical College, Chongqing 404000, P.R. China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P.R. China
| | - Kaituo Wang
- Institute of Fruit Function and Disease Management, Department of Public Health and Management, Chongqing Three Gorges Medical College, Chongqing 404000, P.R. China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, P.R. China
| | - Changyi Lei
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, P.R. China
| | - Yanyu Zou
- Institute of Fruit Function and Disease Management, Department of Public Health and Management, Chongqing Three Gorges Medical College, Chongqing 404000, P.R. China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P.R. China
| | - Sisi Yang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, P.R. China
| | - Fei Xiang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, P.R. China
| | - Meilin Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P.R. China
- College of Food, Shenyang Agricultural University, Shenyang 110866 Liaoning, P.R. China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P.R. China
| |
Collapse
|
5
|
Stevens K, Roberts MR, Jeynes‐Cupper K, Majeed L, Pastor V, Catoni M, Luna E. Developmentally regulated generation of a systemic signal for long-lasting defence priming in tomato. THE NEW PHYTOLOGIST 2025; 245:1145-1157. [PMID: 39562729 PMCID: PMC11711926 DOI: 10.1111/nph.20288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024]
Abstract
Tomato is a major global crop. However, its production is limited by Botrytis cinerea. Due to the toxicity of postharvest pesticide application, alternative control methods such as priming are being investigated. Plants were treated with β-aminobutyric acid (BABA) at two developmental stages and resistance against B. cinerea was tested in fruit tissue and in progenies. DNA methylation and RNA sequencing were conducted to characterise the (epi)genetic changes associated with long-lasting resistance. Grafting experiments were done to assess the systemic nature of this signal, which was further characterised by small RNA (sRNA) sequencing of scions. Only BABA-treated seedlings displayed induced resistance (IR). DNA methylation analysis revealed seedling-specific changes, which occurred in the context of lower basal methylation. BABA-IR was found to be transmissible from primed rootstock to grafted unprimed scions. In these scions, we identified a subset of mobile 24 nt sRNAs associated with genes showing primed expression during infection in fruit. Our results demonstrate the functional association of a systemic signal with long-lasting IR and priming. Through integrated omics approaches, we have identified markers of long-lasting priming in tomato fruit which could also serve as targets for durable resistance in other crops.
Collapse
Affiliation(s)
- Katie Stevens
- School of BiosciencesUniversity of BirminghamBirminghamB15 2TTUK
- Present address:
Department of Plant BreedingSwedish University of Agricultural Sciences234 56AlnarpSweden
| | | | | | - Lamya Majeed
- School of BiosciencesUniversity of BirminghamBirminghamB15 2TTUK
| | - Victoria Pastor
- Plant Immunity and Biochemistry Laboratory, Biology, Biochemistry and Natural Sciences DepartmentUniversity Jaume I12071CastellonSpain
| | - Marco Catoni
- School of BiosciencesUniversity of BirminghamBirminghamB15 2TTUK
| | - Estrella Luna
- School of BiosciencesUniversity of BirminghamBirminghamB15 2TTUK
| |
Collapse
|
6
|
Wang K, Li C, Cao S, Lei C, Ji N, Zou Y, Tan M, Wang J, Zheng Y, Gao H. VOZ-dependent priming of salicylic acid-dependent defense against Rhizopus stolonifer by β-aminobutyric acid requires the TCP protein TCP2 in peach fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17176. [PMID: 39621553 DOI: 10.1111/tpj.17176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 11/02/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Vascular plant one-zinc finger (VOZ) transcription factors (TFs) play crucial roles in plant immunity. Nevertheless, how VOZs modulate defense signaling in response to elicitor-induced resistance is not fully understood. Here, the defense elicitor β-aminobutyric acid (BABA) resulted in the visible suppression of Rhizopus rot disease of peach fruit caused by Rhizopus stolonifer. Defense priming by BABA was notably associated with increased levels of salicylic acid (SA) and SA-dependent gene expression. Data-independent acquisition proteomic analysis revealed that two VOZ proteins (PpVOZ1 and PpVOZ2) were substantially upregulated in BABA-induced resistance (BABA-IR). Furthermore, the interaction of PpVOZ1 and PpVOZ2 and their potential target of the TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP)-family protein PpTCP2 screened from protein-protein interaction networks was confirmed by yeast two-hybrid (Y2H), luciferase complementation imaging and glutathione S-transferase pull-down assays. Furthermore, subcellular localization, yeast one-hybrid, electrophoretic mobility shift assay and dual-luciferase reporter assays demonstrated that nuclear localization of both PpVOZ1 and PpVOZ2 was critical for their contribution to BABA-IR, as these proteins potentiated the PpTCP2-mediated transcriptional activation of isochorismate synthase genes (ICS1/2). The overexpression of both PpVOZ1 and PpVOZ2 could activate the transcription of SA-dependent genes and provide disease resistance in transgenic Arabidopsis. In contrast, the ppvoz1cas9 and ppvoz2cas9 loss-of-function mutations and the voz1cas9 voz2cas9 double mutation attenuated BABA-IR against R. stolonifer. Therefore, the three identified positive TFs, PpVOZ1, PpVOZ2, and PpTCP2, synergistically contribute to the BABA-activated priming of systemic acquired resistance in postharvest peach fruit by a VOZ-TCP-ICS regulatory module.
Collapse
Affiliation(s)
- Kaituo Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, P.R. China
| | - Chunhong Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
| | - Shifeng Cao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, Zhejiang, P.R. China
| | - Changyi Lei
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
| | - Nana Ji
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Yanyu Zou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
| | - Meilin Tan
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
| | - Jinsong Wang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Haiyan Gao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, P.R. China
| |
Collapse
|
7
|
Virág E, Nagy Á, Tóth BB, Kutasy B, Pallos JP, Szigeti ZM, Máthé C, Kardos G, Hegedűs G. Master Regulatory Transcription Factors in β-Aminobutyric Acid-Induced Resistance (BABA-IR): A Perspective on Phytohormone Biosynthesis and Signaling in Arabidopsis thaliana and Hordeum vulgare. Int J Mol Sci 2024; 25:9179. [PMID: 39273128 PMCID: PMC11395473 DOI: 10.3390/ijms25179179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
The endogenous stress metabolite β-aminobutyric acid (BABA) primes plants for enhanced resistance against abiotic and biotic stress by activating a complex phytohormone signaling network that includes abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), and ethylene (ET). In this study, through stringent filtering, we identify 14 master regulatory transcription factors (TFs) from the DOF, AHL, and ERF families that potentially regulate the biosynthesis and signaling of these phytohormones. Transcriptional analysis of BABA-treated Arabidopsis thaliana and Hordeum vulgare suggests that DOF family TFs play a crucial role in stress response regulation in both species. BABA treatment in A. thaliana upregulates the TFs MNB1A and PBF and enhances the expression of the genes ICS1, EDS5, and WIN3 in the SA biosynthesis pathway, potentially boosting NPR1 and PR1 in the SA signaling pathway. Conversely, in H. vulgare, the BABA-induced upregulation of TF DOF5.8 may negatively regulate SA biosynthesis by downregulating ICS1, EDS5, and PR1. Additionally, in A. thaliana, BABA triggers the expression of TF PBF, which may result in the decreased expression of MYC2, a key gene in JA signaling. In contrast, H. vulgare exhibits increased expression of ERF2 TF, which could positively regulate the JA biosynthesis genes LOX and Tify9, along with the COI1 and JAZ genes involved in the JA signaling pathway. These findings offer new perspectives on the transcriptional regulation of phytohormones during plant priming.
Collapse
Affiliation(s)
- Eszter Virág
- Research Institute for Medicinal Plants and Herbs Ltd., 2011 Budakalász, Hungary
- Institute of One Health, Faculty of Health Science, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| | - Ágnes Nagy
- Research Institute for Medicinal Plants and Herbs Ltd., 2011 Budakalász, Hungary
| | - Beáta B Tóth
- Institute of One Health, Faculty of Health Science, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| | - Barbara Kutasy
- Research Institute for Medicinal Plants and Herbs Ltd., 2011 Budakalász, Hungary
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Festetics Str 7, 8360 Keszthely, Hungary
| | - József Péter Pallos
- Research Institute for Medicinal Plants and Herbs Ltd., 2011 Budakalász, Hungary
| | | | - Csaba Máthé
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| | - Gábor Kardos
- Institute of One Health, Faculty of Health Science, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| | - Géza Hegedűs
- Department of Information Technology and Its Applications, Faculty of Information Technology, University of Pannonia, Gasparich Márk Str. 18/A, 8900 Zalaegerszeg, Hungary
| |
Collapse
|
8
|
Tripathi DK, Bhat JA, Antoniou C, Kandhol N, Singh VP, Fernie AR, Fotopoulos V. Redox Regulation by Priming Agents Toward a Sustainable Agriculture. PLANT & CELL PHYSIOLOGY 2024; 65:1087-1102. [PMID: 38591871 PMCID: PMC11287215 DOI: 10.1093/pcp/pcae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024]
Abstract
Plants are sessile organisms that are often subjected to a multitude of environmental stresses, with the occurrence of these events being further intensified by global climate change. Crop species therefore require specific adaptations to tolerate climatic variability for sustainable food production. Plant stress results in excess accumulation of reactive oxygen species leading to oxidative stress and loss of cellular redox balance in the plant cells. Moreover, enhancement of cellular oxidation as well as oxidative signals has been recently recognized as crucial players in plant growth regulation under stress conditions. Multiple roles of redox regulation in crop production have been well documented, and major emphasis has focused on key redox-regulated proteins and non-protein molecules, such as NAD(P)H, glutathione, peroxiredoxins, glutaredoxins, ascorbate, thioredoxins and reduced ferredoxin. These have been widely implicated in the regulation of (epi)genetic factors modulating growth and health of crop plants, with an agricultural context. In this regard, priming with the employment of chemical and biological agents has emerged as a fascinating approach to improve plant tolerance against various abiotic and biotic stressors. Priming in plants is a physiological process, where prior exposure to specific stressors induces a state of heightened alertness, enabling a more rapid and effective defense response upon subsequent encounters with similar challenges. Priming is reported to play a crucial role in the modulation of cellular redox homeostasis, maximizing crop productivity under stress conditions and thus achieving yield security. By taking this into consideration, the present review is an up-to-date critical evaluation of promising plant priming technologies and their role in the regulation of redox components toward enhanced plant adaptations to extreme unfavorable environmental conditions. The challenges and opportunities of plant priming are discussed, with an aim of encouraging future research in this field toward effective application of priming in stress management in crops including horticultural species.
Collapse
Affiliation(s)
- Durgesh Kumar Tripathi
- Crop Nano Biology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, AUUP Campus Sector-125, Noida 201313, India
| | | | - Chrystalla Antoniou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Nidhi Kandhol
- Crop Nano Biology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, AUUP Campus Sector-125, Noida 201313, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj 211002, India
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| |
Collapse
|
9
|
Decsi K, Ahmed M, Rizk R, Abdul-Hamid D, Kovács GP, Tóth Z. Emerging Trends in Non-Protein Amino Acids as Potential Priming Agents: Implications for Stress Management Strategies and Unveiling Their Regulatory Functions. Int J Mol Sci 2024; 25:6203. [PMID: 38892391 PMCID: PMC11172521 DOI: 10.3390/ijms25116203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Plants endure the repercussions of environmental stress. As the advancement of global climate change continues, it is increasingly crucial to protect against abiotic and biotic stress effects. Some naturally occurring plant compounds can be used effectively to protect the plants. By externally applying priming compounds, plants can be prompted to trigger their defensive mechanisms, resulting in improved immune system effectiveness. This review article examines the possibilities of utilizing exogenous alpha-, beta-, and gamma-aminobutyric acid (AABA, BABA, and GABA), which are non-protein amino acids (NPAAs) that are produced naturally in plants during instances of stress. The article additionally presents a concise overview of the studies' discoveries on this topic, assesses the particular fields in which they might be implemented, and proposes new avenues for future investigation.
Collapse
Affiliation(s)
- Kincső Decsi
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (R.R.); (Z.T.)
| | - Mostafa Ahmed
- Festetics Doctoral School, Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary;
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Roquia Rizk
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (R.R.); (Z.T.)
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Donia Abdul-Hamid
- Heavy Metals Department, Central Laboratory for The Analysis of Pesticides and Heavy Metals in Food (QCAP), Dokki, Cairo 12311, Egypt;
| | - Gergő Péter Kovács
- Institute of Agronomy, Szent István Campus, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary;
| | - Zoltán Tóth
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (R.R.); (Z.T.)
| |
Collapse
|
10
|
Nehela Y, Mazrou YSA, El_Gammal NA, Atallah O, Xuan TD, Elzaawely AA, El-Zahaby HM, Abdelrhim AS, Behiry SI, Hafez EM, Makhlouf AH, Hussain WAM. Non-proteinogenic amino acids mitigate oxidative stress and enhance the resistance of common bean plants against Sclerotinia sclerotiorum. FRONTIERS IN PLANT SCIENCE 2024; 15:1385785. [PMID: 38711604 PMCID: PMC11070507 DOI: 10.3389/fpls.2024.1385785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024]
Abstract
White mold, caused by the necrotrophic fungus Sclerotinia sclerotiorum, is a challenging disease to common bean cultivation worldwide. In the current study, two non-proteinogenic amino acids (NPAAs), γ-aminobutyric acid (GABA) and ß-alanine, were suggested as innovative environmentally acceptable alternatives for more sustainable management of white mold disease. In vitro, GABA and ß-alanine individually demonstrated potent dose-dependent fungistatic activity and effectively impeded the radial growth and development of S. sclerotiorum mycelium. Moreover, the application of GABA or ß-alanine as a seed treatment followed by three root drench applications efficiently decreased the disease severity, stimulated plant growth, and boosted the content of photosynthetic pigments of treated S. sclerotiorum-infected plants. Furthermore, although higher levels of hydrogen peroxide (H2O2), superoxide anion (O2 •-), and malondialdehyde (MDA) indicated that S. sclerotiorum infection had markedly triggered oxidative stress in infected bean plants, the exogenous application of both NPAAs significantly reduced the levels of the three studied oxidative stress indicators. Additionally, the application of GABA and ß-alanine increased the levels of both non-enzymatic (total soluble phenolics and flavonoids), as well as enzymatic (catalase [CAT], peroxidases [POX], and polyphenol oxidase [PPO]) antioxidants in the leaves of S. sclerotiorum-infected plants and improved their scavenging activity and antioxidant efficiency. Applications of GABA and ß-alanine also raised the proline and total amino acid content of infected bean plants. Lastly, the application of both NPAAs upregulated the three antioxidant-related genes PvCAT1, PvCuZnSOD1, and PvGR. Collectively, the fungistatic activity of NPAAs, coupled with their ability to alleviate oxidative stress, enhance antioxidant defenses, and stimulate plant growth, establishes them as promising eco-friendly alternatives for white mold disease management for sustainable bean production.
Collapse
Affiliation(s)
- Yasser Nehela
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Yasser S. A. Mazrou
- Business Administration Department, Community College, King Khalid University, Abha, Saudi Arabia
| | - Nehad A. El_Gammal
- Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Osama Atallah
- Department of Plant Pathology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Tran Dang Xuan
- Transdisciplinary Science and Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Japan
- Center for the Planetary Health and Innovation Science (PHIS), The International Development and Cooperation (IDEC) Institute, Hiroshima University, Higashi-Hiroshima, Japan
| | | | - Hassan M. El-Zahaby
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | | | - Said I. Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Emad M. Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Abeer H. Makhlouf
- Department of Agricultural Botany, Faculty of Agriculture, Minufiya University, Shibin El-Kom, Egypt
| | - Warda A. M. Hussain
- Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
11
|
Tao CN, Ton J. Role of PMR4 and PDLP1 in priming of early acting penetration defense by resistance-inducing β-amino acids. iScience 2024; 27:109299. [PMID: 38482498 PMCID: PMC10933464 DOI: 10.1016/j.isci.2024.109299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/28/2023] [Accepted: 02/16/2024] [Indexed: 11/02/2024] Open
Abstract
R-β-homoserine (RBH) and β-aminobutyric acid (BABA) induce resistance against the oomycete Hyaloperonospora arabidopsidis (Hpa) in Arabidopsis, which is based on priming of multiple defense layers, including early acting penetration resistance at the cell wall. Here, we have examined the molecular basis of RBH- and BABA-primed defense by cell wall papillae against Hpa. Three-dimensional reconstruction of Hpa-induced papillae by confocal microscopy revealed no structural differences between control-, RBH-, and BABA-treated plants after Hpa challenge. However, mutations affecting POWDERY MILDEW RESISTANCE 4 or PLASMODESMATA LOCATED PROTEINs (PDLPs) only impaired BABA-induced penetration resistance and not RBH-induced penetration resistance. Furthermore, PDLP1 over-expression mimicked primed penetration resistance, while the intensity of GFP-tagged PDLP1 at germinating Hpa conidiospores was increased in BABA-primed plants but not RBH-primed plants. Our study reveals new regulatory layers of immune priming by β-amino acids and supports the notion that penetration resistance is a multifaceted defense layer that can be achieved through seperate pathways.
Collapse
Affiliation(s)
- Chia-Nan Tao
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield S10 2TN, UK
| | - Jurriaan Ton
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
12
|
Zhu F, Cao MY, Zhang QP, Mohan R, Schar J, Mitchell M, Chen H, Liu F, Wang D, Fu ZQ. Join the green team: Inducers of plant immunity in the plant disease sustainable control toolbox. J Adv Res 2024; 57:15-42. [PMID: 37142184 PMCID: PMC10918366 DOI: 10.1016/j.jare.2023.04.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Crops are constantly attacked by various pathogens. These pathogenic microorganisms, such as fungi, oomycetes, bacteria, viruses, and nematodes, threaten global food security by causing detrimental crop diseases that generate tremendous quality and yield losses worldwide. Chemical pesticides have undoubtedly reduced crop damage; however, in addition to increasing the cost of agricultural production, the extensive use of chemical pesticides comes with environmental and social costs. Therefore, it is necessary to vigorously develop sustainable disease prevention and control strategies to promote the transition from traditional chemical control to modern green technologies. Plants possess sophisticated and efficient defense mechanisms against a wide range of pathogens naturally. Immune induction technology based on plant immunity inducers can prime plant defense mechanisms and greatly decrease the occurrence and severity of plant diseases. Reducing the use of agrochemicals is an effective way to minimize environmental pollution and promote agricultural safety. AIM OF REVIEW The purpose of this workis to offer valuable insights into the current understanding and future research perspectives of plant immunity inducers and their uses in plant disease control, ecological and environmental protection, and sustainable development of agriculture. KEY SCIENTIFIC CONCEPTS OF REVIEW In this work, we have introduced the concepts of sustainable and environment-friendly concepts of green disease prevention and control technologies based on plant immunity inducers. This article comprehensively summarizes these recent advances, emphasizes the importance of sustainable disease prevention and control technologies for food security, and highlights the diverse functions of plant immunity inducers-mediated disease resistance. The challenges encountered in the potential applications of plant immunity inducers and future research orientation are also discussed.
Collapse
Affiliation(s)
- Feng Zhu
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Meng-Yao Cao
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qi-Ping Zhang
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | | | - Jacob Schar
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | | | - Huan Chen
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
13
|
Wu L, Wang K, Chen M, Su W, Liu Z, Guo X, Ma M, Qian S, Deng Y, Wang H, Mao C, Zhang Z, Xu X. ALLENE OXIDE SYNTHASE ( AOS) induces petal senescence through a novel JA-associated regulatory pathway in Arabidopsis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:199-212. [PMID: 38623171 PMCID: PMC11016053 DOI: 10.1007/s12298-024-01425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 04/17/2024]
Abstract
Flowers are crucial for the reproduction of flowering plants and their senescence has drastic effects on plant-animal interactions as well as pollination. Petal senescence is the final phase of flower development which is regulated by hormones and genes. Among these, jasmonic acid (JA) has emerged as a major contributor to petal senescence, but its molecular mechanisms remain elusive. Here, the role of JA in petal senescence in Arabidopsis was investigated. We showed that petal senescence in aos mutant was significantly delayed, which also affected petal cell size and proliferation. Similar significant delays in petal senescence were observed in dad1 and coi1 mutants. However, MYB21/24 and MYC2/3/4, known downstream regulators of JA in flower development, played no role in petal senescence. This indicated that JA regulates petal senescence by modulating other unknown transcription factors. Transcriptomic analysis revealed that AOS altered the expression of 3681 genes associated, and identified groups of differentially expressed transcription factors, highlighting the potential involvement of AP-2, WRKY and NAC. Furthermore, bHLH13, bHLH17 and URH2 were identified as potential new regulators of JA-mediated petal senescence. In conclusion, our findings suggest a novel genetic pathway through which JA regulates petal senescence in Arabidopsis. This pathway operates independently of stamen development and leaf senescence, suggesting the evolution of specialized mechanisms for petal senescence. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01425-w.
Collapse
Affiliation(s)
- Liuqing Wu
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Kaiqi Wang
- College of Biological and Environmental Engineering, Jingdezhen University, Jiangxi, 333000 China
| | - Mengyi Chen
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Wenxin Su
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zheng Liu
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaoying Guo
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Mengqian Ma
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shuangjie Qian
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yuqi Deng
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Haihan Wang
- School of Biological Science, University of California Irvine, Irvine, USA
| | - Chanjuan Mao
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zaibao Zhang
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang China
| | - Xiaofeng Xu
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
14
|
Peng J, Wang X, Wang H, Li X, Zhang Q, Wang M, Yan J. Advances in understanding grapevine downy mildew: From pathogen infection to disease management. MOLECULAR PLANT PATHOLOGY 2024; 25:e13401. [PMID: 37991155 PMCID: PMC10788597 DOI: 10.1111/mpp.13401] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/29/2023] [Indexed: 11/23/2023]
Abstract
Plasmopara viticola is geographically widespread in grapevine-growing regions. Grapevine downy mildew disease, caused by this biotrophic pathogen, leads to considerable yield losses in viticulture annually. Because of the great significance of grapevine production and wine quality, research on this disease has been widely performed since its emergence in the 19th century. Here, we review and discuss recent understanding of this pathogen from multiple aspects, including its infection cycle, disease symptoms, genome decoding, effector biology, and management and control strategies. We highlight the identification and characterization of effector proteins with their biological roles in host-pathogen interaction, with a focus on sustainable control methods against P. viticola, especially the use of biocontrol agents and environmentally friendly compounds.
Collapse
Affiliation(s)
- Junbo Peng
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Xuncheng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Hui Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Xinghong Li
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Qi Zhang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Meng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Jiye Yan
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| |
Collapse
|
15
|
Lee KT, Liao HS, Hsieh MH. Glutamine Metabolism, Sensing and Signaling in Plants. PLANT & CELL PHYSIOLOGY 2023; 64:1466-1481. [PMID: 37243703 DOI: 10.1093/pcp/pcad054] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Glutamine (Gln) is the first amino acid synthesized in nitrogen (N) assimilation in plants. Gln synthetase (GS), converting glutamate (Glu) and NH4+ into Gln at the expense of ATP, is one of the oldest enzymes in all life domains. Plants have multiple GS isoenzymes that work individually or cooperatively to ensure that the Gln supply is sufficient for plant growth and development under various conditions. Gln is a building block for protein synthesis and an N-donor for the biosynthesis of amino acids, nucleic acids, amino sugars and vitamin B coenzymes. Most reactions using Gln as an N-donor are catalyzed by Gln amidotransferase (GAT) that hydrolyzes Gln to Glu and transfers the amido group of Gln to an acceptor substrate. Several GAT domain-containing proteins of unknown function in the reference plant Arabidopsis thaliana suggest that some metabolic fates of Gln have yet to be identified in plants. In addition to metabolism, Gln signaling has emerged in recent years. The N regulatory protein PII senses Gln to regulate arginine biosynthesis in plants. Gln promotes somatic embryogenesis and shoot organogenesis with unknown mechanisms. Exogenous Gln has been implicated in activating stress and defense responses in plants. Likely, Gln signaling is responsible for some of the new Gln functions in plants.
Collapse
Affiliation(s)
- Kim-Teng Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
16
|
Sanchez-Lucas R, Mayoral C, Raw M, Mousouraki MA, Luna E. Elevated CO2 alters photosynthesis, growth and susceptibility to powdery mildew of oak seedlings. Biochem J 2023; 480:1429-1443. [PMID: 37497606 PMCID: PMC10586781 DOI: 10.1042/bcj20230002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 07/28/2023]
Abstract
Elevated CO2 (eCO2) is a determinant factor of climate change and is known to alter plant processes such as physiology, growth and resistance to pathogens. Quercus robur, a tree species integrated in most forest regeneration strategies, shows high vulnerability to powdery mildew (PM) disease at the seedling stage. PM is present in most oak forests and it is considered a bottleneck for oak woodland regeneration. Our study aims to decipher the effect of eCO2 on plant responses to PM. Oak seedlings were grown in controlled environment at ambient (aCO2, ∼400 ppm) and eCO2 (∼1000 ppm), and infected with Erysiphe alphitoides, the causal agent of oak PM. Plant growth, physiological parameters and disease progression were monitored. In addition, to evaluate the effect of eCO2 on induced resistance (IR), these parameters were assessed after treatments with IR elicitor β-aminobutyric acid (BABA). Our results show that eCO2 increases photosynthetic rates and aerial growth but in contrast, reduces root length. Importantly, under eCO2 seedlings were more susceptible to PM. Treatments with BABA protected seedlings against PM and this protection was maintained under eCO2. Moreover, irrespectively of the concentration of CO2, BABA did not significantly change aerial growth but resulted in longer radicular systems, thus mitigating the effect of eCO2 in root shortening. Our results demonstrate the impact of eCO2 in plant physiology, growth and defence, and warrant further biomolecular studies to unravel the mechanisms by which eCO2 increases oak seedling susceptibility to PM.
Collapse
Affiliation(s)
- Rosa Sanchez-Lucas
- Birmingham Institute of Forest Research, School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Carolina Mayoral
- Birmingham Institute of Forest Research, School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Mark Raw
- Birmingham Institute of Forest Research, School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Maria-Anna Mousouraki
- Birmingham Institute of Forest Research, School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
- School of Life Sciences, University of Warwick, Gibber Hill Campus, Coventry CV4 7AL, U.K
| | - Estrella Luna
- Birmingham Institute of Forest Research, School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
| |
Collapse
|
17
|
Ruiz-Galea M, Kremer C, Friero E, Hernández I. Tolerant Epitypes of Elicited Holm Oak Somatic Embryos Could Be Revealed by Challenges in Dual Culture with Phytophthora cinnamomi Rands. PLANTS (BASEL, SWITZERLAND) 2023; 12:3056. [PMID: 37687303 PMCID: PMC10489650 DOI: 10.3390/plants12173056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Holm oaks (Quercus ilex L.) can suffer severe infection by the oomycete Phytophthora cinnamomi Rands; the production of more tolerant plants is, therefore, required. Embryo formation is a key period in the establishment of epigenetic memory. Somatic embryos from three holm oak genotypes were elicited, either over 3 days or 60 days, with methyl-jasmonate, salicylic acid (SA), β-aminobutyric acid (BABA), or benzothiadiazole (all at 50 μM and 100 μM), or 10% and 30% of a filtered oomycete extract (FILT10 and FILT30) to activate plant immune responses. The number of embryos produced and conversion rate under all conditions were recorded. Some elicited embryos were then exposed to P. cinnamomi in dual culture, and differential mycelial growth and the progression of necrosis were measured. The same was performed with the roots of germinated embryos. Within genotypes, significant differences were seen among the elicitation treatments in terms of both variables. Embryos and roots of 60-day BABA, SA, or FILT10 treatments inhibited mycelium growth. The 3-day BABA (either concentration) and 60-day FILT10 induced the greatest inhibition of necrosis. Mycelium and necrosis inhibition were compared with those of tolerant trees. Both inhibitions might be a defense response maintained after primed embryo germination, thus increasing the likelihood of tolerance to infection.
Collapse
Affiliation(s)
- Mar Ruiz-Galea
- Department of Agroenvironmental Research, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), Alcalá de Henares, 28805 Madrid, Spain; (C.K.); (E.F.); (I.H.)
| | | | | | | |
Collapse
|
18
|
Feng CH, Niu MX, Zhao S, Guo S, Yin W, Xia X, Su Y. Aspartyl tRNA-synthetase (AspRS) gene family enhances drought tolerance in poplar through BABA-PtrIBIs-PtrVOZ signaling module. BMC Genomics 2023; 24:473. [PMID: 37605104 PMCID: PMC10441740 DOI: 10.1186/s12864-023-09556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Drought stress is a prevalent abiotic stress that significantly hinders the growth and development of plants. According to studies, β-aminobutyric acid (BABA) can influence the ABA pathway through the AtIBI1 receptor gene to enhance cold resistance in Arabidopsis. However, the Aspartate tRNA-synthetase (AspRS) gene family, which acts as the receptor for BABA, has not yet been investigated in poplar. Particularly, it is uncertain how the AspRS gene family (PtrIBIs)r can resist drought stress after administering various concentrations of BABA to poplar. RESULTS In this study, we have identified 12 AspRS family genes and noted that poplar acquired four PtrIBI pairs through whole genome duplication (WGD). We conducted cis-action element analysis and found a significant number of stress-related action elements on different PtrIBI genes promoters. The expression of most PtrIBI genes was up-regulated under beetle and mechanical damage stresses, indicating their potential role in responding to leaf damage stress. Our results suggest that a 50 mM BABA treatment can alleviate the damage caused by drought stress in plants. Additionally, via transcriptome sequencing, we observed that the partial up-regulation of BABA receptor genes, PtrIBI2/4/6/8/11, in poplars after drought treatment. We hypothesize that poplar responds to drought stress through the BABA-PtrIBIs-PtrVOZ coordinated ABA signaling pathway. Our research provides molecular evidence for understanding how plants respond to drought stress through external application of BABA. CONCLUSIONS In summary, our study conducted genome-wide analysis of the AspRS family of P. trichocarpa and identified 12 PtrIBI genes. We utilized genomics and bioinformatics to determine various characteristics of PtrIBIs such as chromosomal localization, evolutionary tree, gene structure, gene doubling, promoter cis-elements, and expression profiles. Our study found that certain PtrIBI genes are regulated by drought, beetle, and mechanical damage implying their crucial role in enhancing poplar stress tolerance. Additionally, we observed that external application of low concentrations of BABA increased plant drought resistance under drought stress. Through the BABA-PtrIBIs-PtrVOZ signaling module, poplar plants were able to transduce ABA signaling and regulate their response to drought stress. These results suggest that the PtrIBI genes in poplar have the potential to improve drought tolerance in plants through the topical application of low concentrations of BABA.
Collapse
Affiliation(s)
- Cong-Hua Feng
- College of Agronomy, Liaocheng University, Liaocheng, 252000, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Meng-Xue Niu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shilei Zhao
- College of Agronomy, Liaocheng University, Liaocheng, 252000, China
| | - Shangjing Guo
- College of Agronomy, Liaocheng University, Liaocheng, 252000, China
| | - Weilun Yin
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinli Xia
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yanyan Su
- College of Agronomy, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
19
|
Castro C, Massonnet M, Her N, DiSalvo B, Jablonska B, Jeske DR, Cantu D, Roper MC. Priming grapevine with lipopolysaccharide confers systemic resistance to Pierce's disease and identifies a peroxidase linked to defense priming. THE NEW PHYTOLOGIST 2023; 239:687-704. [PMID: 37149885 DOI: 10.1111/nph.18945] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/05/2023] [Indexed: 05/09/2023]
Abstract
Priming is an adaptive mechanism that fortifies plant defense by enhancing activation of induced defense responses following pathogen challenge. Microorganisms have signature microbe-associated molecular patterns (MAMPs) that induce the primed state. The lipopolysaccharide (LPS) MAMP isolated from the xylem-limited pathogenic bacterium, Xylella fastidiosa, acts as a priming stimulus in Vitis vinifera grapevines. Grapevines primed with LPS developed significantly less internal tyloses and external disease symptoms than naive vines. Differential gene expression analysis indicated major transcriptomic reprogramming during the priming and postpathogen challenge phases. Furthermore, the number of differentially expressed genes increased temporally and spatially in primed vines, but not in naive vines during the postpathogen challenge phase. Using a weighted gene co-expression analysis, we determined that primed vines have more genes that are co-expressed in both local and systemic petioles than naive vines indicating an inherent synchronicity that underlies the systemic response to this vascular pathogen specific to primed plants. We identified a cationic peroxidase, VviCP1, that was upregulated during the priming and postpathogen challenge phases in an LPS-dependent manner. Transgenic expression of VviCP1 conferred significant disease resistance, thus, demonstrating that grapevine is a robust model for mining and expressing genes linked to defense priming and disease resistance.
Collapse
Affiliation(s)
- Claudia Castro
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Mélanie Massonnet
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
| | - Nancy Her
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Biagio DiSalvo
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Barbara Jablonska
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Daniel R Jeske
- Department of Statistics, University of California, Riverside, CA, 92521, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
| | - M Caroline Roper
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
20
|
Ma H, Zou F, Li D, Wan Y, Zhang Y, Zhao Z, Wang X, Gao H. Transcription Factor MdbHLH093 Enhances Powdery Mildew Resistance by Promoting Salicylic Acid Signaling and Hydrogen Peroxide Accumulation. Int J Mol Sci 2023; 24:ijms24119390. [PMID: 37298341 DOI: 10.3390/ijms24119390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Powdery mildew is an apple disease caused by the obligate trophic fungus Podosphaera leucotricha. Basic helix-loop-helix (bHLH) transcription factors play important roles in plant development and stress responses, and they have been widely studied in model plants such as Arabidopsis thaliana. However, their role in the stress response of perennial fruit trees remains unclear. Here, we investigated the role of MdbHLH093 in the powdery mildew of apples. The expression of MdbHLH093 was significantly induced during the infection of apples with powdery mildew, and the allogenic overexpression of MdbHLH093 in A. thaliana enhanced the resistance to powdery mildew by increasing the accumulation of hydrogen peroxide (H2O2) and activating the salicylic acid (SA) signaling pathway. The transient overexpression of MdbHLH093 in apple leaves increased the resistance to powdery mildew. Conversely, when MdbHLH093 expression was silenced, the sensitivity of apple leaves to powdery mildew was increased. The physical interaction between MdbHLH093 and MdMYB116 was demonstrated by yeast two-hybrid, bi-molecular fluorescence complementation, and split luciferase experiments. Collectively, these results indicate that MdbHLH093 interacts with MdMYB116 to improve apple resistance to powdery mildew by increasing the accumulation of H2O2 and activating the SA signaling pathway, as well as by providing a new candidate gene for resistance molecular breeding.
Collapse
Affiliation(s)
- Hai Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Fuyan Zou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Dongmei Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Ye Wan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Yiping Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Zhengyang Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Hua Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
21
|
Miranda de la Torre JO, Peppino Margutti MY, Lescano López I, Cambiagno DA, Alvarez ME, Cecchini NM. The Arabidopsis chromatin regulator MOM1 is a negative component of the defense priming induced by AZA, BABA and PIP. FRONTIERS IN PLANT SCIENCE 2023; 14:1133327. [PMID: 37229135 PMCID: PMC10203520 DOI: 10.3389/fpls.2023.1133327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
In plants, the establishment of broad and long-lasting immunity is based on programs that control systemic resistance and immunological memory or "priming". Despite not showing activated defenses, a primed plant induces a more efficient response to recurrent infections. Priming might involve chromatin modifications that allow a faster/stronger activation of defense genes. The Arabidopsis chromatin regulator "Morpheus Molecule 1" (MOM1) has been recently suggested as a priming factor affecting the expression of immune receptor genes. Here, we show that mom1 mutants exacerbate the root growth inhibition response triggered by the key defense priming inducers azelaic acid (AZA), β-aminobutyric acid (BABA) and pipecolic acid (PIP). Conversely, mom1 mutants complemented with a minimal version of MOM1 (miniMOM1 plants) are insensitive. Moreover, miniMOM1 is unable to induce systemic resistance against Pseudomonas sp. in response to these inducers. Importantly, AZA, BABA and PIP treatments reduce the MOM1 expression, but not miniMOM1 transcript levels, in systemic tissues. Consistently, several MOM1-regulated immune receptor genes are upregulated during the activation of systemic resistance in WT plants, while this effect is not observed in miniMOM1. Taken together, our results position MOM1 as a chromatin factor that negatively regulates the defense priming induced by AZA, BABA and PIP.
Collapse
Affiliation(s)
- Julián O. Miranda de la Torre
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Química Biológica-Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Micaela Y. Peppino Margutti
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Química Biológica-Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ignacio Lescano López
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Química Biológica-Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Damián Alejandro Cambiagno
- Unidad de Estudios Agropecuarios (UDEA), Instituto Nacional de Tecnología Agropecuaria (INTA)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Química Biológica-Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María E. Alvarez
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Química Biológica-Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolás M. Cecchini
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Química Biológica-Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
22
|
Hönig M, Roeber VM, Schmülling T, Cortleven A. Chemical priming of plant defense responses to pathogen attacks. FRONTIERS IN PLANT SCIENCE 2023; 14:1146577. [PMID: 37223806 PMCID: PMC10200928 DOI: 10.3389/fpls.2023.1146577] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023]
Abstract
Plants can acquire an improved resistance against pathogen attacks by exogenous application of natural or artificial compounds. In a process called chemical priming, application of these compounds causes earlier, faster and/or stronger responses to pathogen attacks. The primed defense may persist over a stress-free time (lag phase) and may be expressed also in plant organs that have not been directly treated with the compound. This review summarizes the current knowledge on the signaling pathways involved in chemical priming of plant defense responses to pathogen attacks. Chemical priming in induced systemic resistance (ISR) and systemic acquired resistance (SAR) is highlighted. The roles of the transcriptional coactivator NONEXPRESSOR OF PR1 (NPR1), a key regulator of plant immunity, induced resistance (IR) and salicylic acid signaling during chemical priming are underlined. Finally, we consider the potential usage of chemical priming to enhance plant resistance to pathogens in agriculture.
Collapse
Affiliation(s)
- Martin Hönig
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Venja M. Roeber
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Anne Cortleven
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
23
|
Lee S, Choi J, Park J, Hong CP, Choi D, Han S, Choi K, Roh TY, Hwang D, Hwang I. DDM1-mediated gene body DNA methylation is associated with inducible activation of defense-related genes in Arabidopsis. Genome Biol 2023; 24:106. [PMID: 37147734 PMCID: PMC10161647 DOI: 10.1186/s13059-023-02952-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/24/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Plants memorize previous pathogen attacks and are "primed" to produce a faster and stronger defense response, which is critical for defense against pathogens. In plants, cytosines in transposons and gene bodies are reported to be frequently methylated. Demethylation of transposons can affect disease resistance by regulating the transcription of nearby genes during defense response, but the role of gene body methylation (GBM) in defense responses remains unclear. RESULTS Here, we find that loss of the chromatin remodeler decrease in DNA methylation 1 (ddm1) synergistically enhances resistance to a biotrophic pathogen under mild chemical priming. DDM1 mediates gene body methylation at a subset of stress-responsive genes with distinct chromatin properties from conventional gene body methylated genes. Decreased gene body methylation in loss of ddm1 mutant is associated with hyperactivation of these gene body methylated genes. Knockout of glyoxysomal protein kinase 1 (gpk1), a hypomethylated gene in ddm1 loss-of-function mutant, impairs priming of defense response to pathogen infection in Arabidopsis. We also find that DDM1-mediated gene body methylation is prone to epigenetic variation among natural Arabidopsis populations, and GPK1 expression is hyperactivated in natural variants with demethylated GPK1. CONCLUSIONS Based on our collective results, we propose that DDM1-mediated GBM provides a possible regulatory axis for plants to modulate the inducibility of the immune response.
Collapse
Affiliation(s)
- Seungchul Lee
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Jaemyung Choi
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
- Department of Cell & Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Jihwan Park
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Chang Pyo Hong
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Daeseok Choi
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 37673, Korea
| | - Soeun Han
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Kyuha Choi
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Tae-Young Roh
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea.
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Ildoo Hwang
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea.
| |
Collapse
|
24
|
New plant immunity elicitors from a sugar beet byproduct protect wheat against Zymoseptoria tritici. Sci Rep 2023; 13:90. [PMID: 36596821 PMCID: PMC9810720 DOI: 10.1038/s41598-022-26800-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
The current worldwide context promoting agroecology and green agriculture require the discovery of new ecofriendly and sustainable plant protection tools. Plant resistance inducers, called also elicitors, are one of the most promising alternatives fitting with such requirements. We produced here a set of 30 molecules from pyroglutamic acid, bio-sourced from sugar beet byproducts, and examined for their biological activity on the major agro-economically pathosystem wheat-Zymoseptoria tritici. Foliar application of the molecules provided significant protection rates (up to 63% disease severity reduction) for 16 among them. Structure-activity relationship analysis highlighted the importance of all chemical groups of the pharmacophore in the bioactivity of the molecules. Further investigations using in vitro and in planta antifungal bioassays as well as plant molecular biomarkers revealed that the activity of the molecules did not rely on direct biocide activity towards the pathogen, but rather on the activation of plant defense mechanisms dependent on lipoxygenase, phenylalanine ammonia-lyase, peroxidase, and pathogenesis-related protein pathways. This study reports a new family of bio-sourced resistance inducers and provides new insights into the valorization of agro-resources to develop the sustainable agriculture of tomorrow.
Collapse
|
25
|
Singh RR, Ameye M, Haesaert G, Deveux M, Spanoghe P, Audenaert K, Rabasse JM, Kyndt T. β-Aminobutyric acid induced phytotoxicity and effectiveness against nematode is stereomer-specific and dose-dependent in tomato. PHYSIOLOGIA PLANTARUM 2023; 175:e13862. [PMID: 36690578 DOI: 10.1111/ppl.13862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/10/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
β-Aminobutyric acid (BABA) induces resistance to a/biotic stress but is associated with phytotoxicity in some plant species. There are two enantiomers of BABA, the R and S enantiomers. We evaluated the phytotoxicity caused by the RS BABA (racemic mixture of R and S BABA), evaluating the dose-response effect and different modes of application on tomato. Results show that RS BABA-induced phytotoxicity in tomato is dose-dependent and stronger with foliar applications than with soil drench. We further evaluated the phytotoxicity of the two enantiomers separately and observed that BABA-induced phytotoxicity is stereomer-specific. In comparison with less phytotoxic effects induced by S BABA, R BABA induces dose-dependent and systemic phytotoxic symptoms. To investigate the possible physiological causes of this phytotoxicity, we measured levels of oxidative stress and anthocyanins and validated the findings with gene expression analyses. Our results show that high doses of RS and R BABA induce hydrogen peroxide, lipid peroxidation, and anthocyanin accumulation in tomato leaves, while this response is milder and more transient upon S BABA application. Next, we evaluated BABA induced resistance against root-knot nematode Meloidogyne incognita in tomato. BABA-induced resistance was found to be stereomer-specific and dependent on dose and mode of application. R or RS BABA multiple soil drench application at low doses induces resistance to nematodes with less phytotoxic effects. Taken together, our data provide useful knowledge on how BABA can be applied in crop production by enhancing stress tolerance and limiting phytotoxicity.
Collapse
Affiliation(s)
| | - Maarten Ameye
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Geert Haesaert
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Melissa Deveux
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Pieter Spanoghe
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Kris Audenaert
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | | | - Tina Kyndt
- Department of Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
26
|
Tao CN, Buswell W, Zhang P, Walker H, Johnson I, Field K, Schwarzenbacher R, Ton J. A single amino acid transporter controls the uptake of priming-inducing beta-amino acids and the associated tradeoff between induced resistance and plant growth. THE PLANT CELL 2022; 34:4840-4856. [PMID: 36040205 PMCID: PMC9709968 DOI: 10.1093/plcell/koac271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Selected β-amino acids, such as β-aminobutyric acid (BABA) and R-β-homoserine (RBH), can prime plants for resistance against a broad spectrum of diseases. Here, we describe a genome-wide screen of fully annotated Arabidopsis thaliana T-DNA insertion lines for impaired in RBH-induced immunity (iri) mutants against the downy mildew pathogen Hyaloperonospora arabidopsidis, yielding 104 lines that were partially affected and four lines that were completely impaired in RBH-induced resistance (IR). We confirmed the iri1-1 mutant phenotype with an independent T-DNA insertion line in the same gene, encoding the high-affinity amino acid transporter LYSINE HISTIDINE TRANSPORTER 1 (LHT1). Uptake experiments with yeast cells expressing LHT1 and mass spectrometry-based quantification of RBH and BABA in leaves of lht1 mutant and LHT1 overexpression lines revealed that LHT1 acts as the main transporter for cellular uptake and systemic distribution of RBH and BABA. Subsequent characterization of lht1 mutant and LHT1 overexpression lines for IR and growth responses revealed that the levels of LHT1-mediated uptake determine the tradeoff between IR and plant growth by RBH and BABA.
Collapse
Affiliation(s)
- Chia-Nan Tao
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Will Buswell
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Peijun Zhang
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Heather Walker
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
- Department of Animal and Plant Sciences, biOMICS Facility, University of Sheffield, Sheffield, S10 2TN, UK
| | - Irene Johnson
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Katie Field
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Roland Schwarzenbacher
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Jurriaan Ton
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
27
|
Transcriptome Profiling of Stem-Differentiating Xylem in Response to Abiotic Stresses Based on Hybrid Sequencing in Cunninghamia lanceolata. Int J Mol Sci 2022; 23:ijms232213986. [PMID: 36430463 PMCID: PMC9695776 DOI: 10.3390/ijms232213986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/22/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Cunninghamia lanceolata (C. lanceolata) belongs to Gymnospermae, which are fast-growing and have desirable wood properties. However, C. lanceolata's stress resistance is little understood. To unravel the physiological and molecular regulation mechanisms under environmental stresses in the typical gymnosperm species of C. lanceolata, three-year-old plants were exposed to simulated drought stress (polyethylene glycol 8000), salicylic acid, and cold treatment at 4 °C for 8 h, 32 h, and 56 h, respectively. Regarding the physiological traits, we observed a decreased protein content and increased peroxidase upon salicylic acid and polyethylene glycol treatment. Superoxide dismutase activity either decreased or increased at first and then returned to normal under the stresses. Regarding the molecular regulation, we used both nanopore direct RNA sequencing and short-read sequencing to reveal a total of 5646 differentially expressed genes in response to different stresses, of which most had functions in lignin catabolism, pectin catabolism, and xylan metabolism, indicating that the development of stem-differentiating xylem was affected upon stress treatment. Finally, we identified a total of 51 AP2/ERF, 29 NAC, and 37 WRKY transcript factors in C. lanceolata. The expression of most of the NAC TFs increased under cold stress, and the expression of most of the WRKY TFs increased under cold and SA stress. These results revealed the transcriptomics responses in C. lanceolata to short-term stresses under this study's experimental conditions and provide preliminary clues about stem-differentiating xylem changes associated with different stresses.
Collapse
|
28
|
Janotík A, Dadáková K, Lochman J, Zapletalová M. L-Aspartate and L-Glutamine Inhibit Beta-Aminobutyric Acid-Induced Resistance in Tomatoes. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212908. [PMID: 36365361 PMCID: PMC9655027 DOI: 10.3390/plants11212908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/09/2022] [Accepted: 10/27/2022] [Indexed: 05/31/2023]
Abstract
Plant diseases caused by pathogens lead to economic and agricultural losses, while plant resistance is defined by robustness and timing of defence response. Exposure to microbial-associated molecular patterns or specific chemical compounds can promote plants into a primed state with more robust defence responses. β-aminobutyric acid (BABA) is an endogenous stress metabolite that induces resistance, thereby protecting various plants' diverse stresses by induction of non-canonical activity after binding into aspartyl-tRNA synthetase (AspRS). In this study, by integrating BABA-induced changes in selected metabolites and transcript data, we describe the molecular processes involved in BABA-induced resistance (BABA-IR) in tomatoes. BABA significantly restricted the growth of the pathogens P. syringae pv. tomato DC3000 and was related to the accumulation of transcripts for pathogenesis-related proteins and jasmonic acid signalling but not salicylic acid signalling in Arabidopsis. The resistance was considerably reduced by applying amino acids L-Asp and L-Gln when L-Gln prevents general amino acid inhibition in plants. Analysis of amino acid changes suggests that BABA-IR inhibition by L-Asp is due to its rapid metabolisation to L-Gln and not its competition with BABA for the aspartyl-tRNA synthetase (AspRS) binding site. Our results showed differences between the effect of BABA on tomatoes and other model plants. They highlighted the importance of comparative studies between plants of agronomic interest subjected to treatment with BABA.
Collapse
|
29
|
Kang H, Fan T, Wu J, Zhu Y, Shen WH. Histone modification and chromatin remodeling in plant response to pathogens. FRONTIERS IN PLANT SCIENCE 2022; 13:986940. [PMID: 36262654 PMCID: PMC9574397 DOI: 10.3389/fpls.2022.986940] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
As sessile organisms, plants are constantly exposed to changing environments frequently under diverse stresses. Invasion by pathogens, including virus, bacterial and fungal infections, can severely impede plant growth and development, causing important yield loss and thus challenging food/feed security worldwide. During evolution, plants have adapted complex systems, including coordinated global gene expression networks, to defend against pathogen attacks. In recent years, growing evidences indicate that pathogen infections can trigger local and global epigenetic changes that reprogram the transcription of plant defense genes, which in turn helps plants to fight against pathogens. Here, we summarize up plant defense pathways and epigenetic mechanisms and we review in depth current knowledge's about histone modifications and chromatin-remodeling factors found in the epigenetic regulation of plant response to biotic stresses. It is anticipated that epigenetic mechanisms may be explorable in the design of tools to generate stress-resistant plant varieties.
Collapse
Affiliation(s)
- Huijia Kang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
- Institut de Biologie Moléculaire des Plantes (IBMP), CNRS, Université de Strasbourg, Strasbourg, France
| | - Tianyi Fan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiabing Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yan Zhu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes (IBMP), CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
30
|
Cai J, Aharoni A. Amino acids and their derivatives mediating defense priming and growth tradeoff. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102288. [PMID: 35987012 DOI: 10.1016/j.pbi.2022.102288] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Plant response to pathogens attacks generally comes at the expense of growth. Defense priming is widely accepted as an efficient strategy used for augmenting resistance with reduced fitness in terms of growth and yield. Plant-derived small molecules, both primary as well as secondary metabolites, can function as activators to prime plant defense. Amino acids and their derivatives regulate numerous aspects of plant growth and development, and biotic and abiotic stress responses. In this review, we discuss the recent progress in understanding the roles of amino acids and related molecules in defense priming and their link with plant growth. We also highlight some of the outstanding questions and provide an outlook on the prospects of 'engineering' the tradeoff between defense and growth in plants.
Collapse
Affiliation(s)
- Jianghua Cai
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
31
|
Yi SY, Lee M, Park SK, Lu L, Lee G, Kim SG, Kang SY, Lim YP. Jasmonate regulates plant resistance to Pectobacterium brasiliense by inducing indole glucosinolate biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:964092. [PMID: 36247644 PMCID: PMC9559233 DOI: 10.3389/fpls.2022.964092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/08/2022] [Indexed: 05/31/2023]
Abstract
Pectobacterium brasiliense (P. brasiliense) is a necrotrophic bacterium that causes the soft rot disease in Brassica rapa. However, the mechanisms underlying plant immune responses against necrotrophic bacterial pathogens with a broad host range are still not well understood. Using a flg22-triggered seedling growth inhibition (SGI) assay with 455 Brassica rapa inbred lines, we selected six B. rapa flagellin-insensitive lines (Brfin2-7) and three B. rapa flagellin-sensitive lines (Brfs1-3). Brfin lines showed compromised flg22-induced immune responses (oxidative burst, mitogen-activated protein kinase (MAPK) activation, and seedling growth inhibition) compared to the control line R-o-18; nevertheless, they were resistant to P. brasiliense. To explain this, we analyzed the phytohormone content and found that most Brfin lines had higher P. brasiliense-induced jasmonic acid (JA) than Brfs lines. Moreover, MeJA pretreatment enhanced the resistance of B. rapa to P. brasiliense. To explain the correlation between the resistance of Brfin lines to P. brasiliense and activated JA signaling, we analyzed pathogen-induced glucosinolate (GS) content in B. rapa. Notably, in Brfin7, the neoglucobrassicin (NGBS) content among indole glucosinolates (IGS) was significantly higher than that in Brfs2 following P. brasiliense inoculation, and genes involved in IGSs biosynthesis were also highly expressed. Furthermore, almost all Brfin lines with high JA levels and resistance to P. brasiliense had higher P. brasiliense-induced NGBS levels than Brfs lines. Thus, our results show that activated JA-mediated signaling attenuates flg22-triggered immunity but enhances resistance to P. brasiliense by inducing indole glucosinolate biosynthesis in Brassica rapa. This study provides novel insights into the role of JA-mediated defense against necrotrophic bacterial pathogens within a broad host range.
Collapse
Affiliation(s)
- So Young Yi
- Institute of Agricultural Science, Chungnam National University, Daejeon, South Korea
- Research Center of Crop Breeding for Omics and Artificial Intelligence, Kongju National University, Yesan, South Korea
| | - Myungjin Lee
- Institute of Agricultural Science, Chungnam National University, Daejeon, South Korea
| | - Sun Kyu Park
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, South Korea
| | - Lu Lu
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, South Korea
| | - Gisuk Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Si-Yong Kang
- Department of Horticulture, College of Industrial Sciences, Kongju National University, Yesan, South Korea
- Research Center of Crop Breeding for Omics and Artificial Intelligence, Kongju National University, Yesan, South Korea
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
32
|
Gabriel-Ortega J, Chonillo Pionce P, Narváez Campana W, Fuentes Figueroa T, Ayón Villao F. Evaluación de cuatro bioestimulantes en la inducción de la resistencia sistémica en pepino ( Cucumis sativus L.) y tomate ( Solanum lycopersicum Mill.) en monocultivo y cultivo asociado en invernadero. JOURNAL OF THE SELVA ANDINA RESEARCH SOCIETY 2022. [DOI: 10.36610/j.jsars.2022.130200069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Gabriel-Ortega J, Chonillo Pionce P, Narváez Campana W, Fuentes Figueroa T, Ayón Villao F. Evaluation of four biostimulants for the induction of systemic resistance in cucumber ( Cucumis sativus L.) and tomato ( Solanum lycopersicum Mill.) in monoculture and associated greenhouse cultivation. JOURNAL OF THE SELVA ANDINA RESEARCH SOCIETY 2022. [DOI: 10.36610/j.jsars.2022.130200069x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Li C, Lei C, Wang K, Tan M, Xu F, Wang J, Zheng Y. MADS2 regulates priming defence in postharvest peach through combined salicylic acid and abscisic acid signaling. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3787-3806. [PMID: 35266534 DOI: 10.1093/jxb/erac099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
MADS-box genes play well-documented roles in plant development, but relatively little is known regarding their involvement in defence responses. In this study, pre-treatment of peach (Prunus persica) fruit with β-aminobutyric acid (BABA) activated resistance against Rhizopus stolonifer, leading to a significant delay in the symptomatic appearance of disease. This was associated with an integrated defence response that included a H2O2 burst, ABA accumulation, and callose deposition. cDNA library screening identified nucleus-localized MADS2 as an interacting partner with NPR1, and this was further confirmed by yeast two-hybrid, luciferase complementation imaging, and co-immunoprecipitation assays. The DNA-binding activity of NPR1 conferred by the NPR1-MADS2 complex was required for the transcription of SA-dependent pathogenesis-related (PR) and ABA-inducible CalS genes in order to gain the BABA-induced resistance, in which MAPK1-induced post-translational modification of MADS2 was also involved. In accordance with this, overexpression of PpMADS2 in Arabidopsis potentiated the transcription of a group of PR genes and conferred fungal resistance in the transgenic plants. Conversely, Arabidopsis mads2-knockout lines showed high sensitivity to the fungal pathogen. Our results indicate that MADS2 positively participates in BABA-elicited defence in peach through a combination of SA-dependent NPR1 activation and ABA signaling-induced callose accumulation, and that this defence is also related to the post-translational modification of MADS2 by MAPK1 for signal amplification.
Collapse
Affiliation(s)
- Chunhong Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P.R. China
- College of Biology and Food Science, Chongqing Three Gorges University, Chongqing 404000, P.R. China
| | - Changyi Lei
- College of Biology and Food Science, Chongqing Three Gorges University, Chongqing 404000, P.R. China
| | - Kaituo Wang
- College of Biology and Food Science, Chongqing Three Gorges University, Chongqing 404000, P.R. China
| | - Meilin Tan
- College of Biology and Food Science, Chongqing Three Gorges University, Chongqing 404000, P.R. China
| | - Feng Xu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, P.R. China
| | - Jinsong Wang
- College of Biology and Food Science, Chongqing Three Gorges University, Chongqing 404000, P.R. China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P.R. China
| |
Collapse
|
35
|
Sharma M, Kumar P, Verma V, Sharma R, Bhargava B, Irfan M. Understanding plant stress memory response for abiotic stress resilience: Molecular insights and prospects. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:10-24. [PMID: 35305363 DOI: 10.1016/j.plaphy.2022.03.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/02/2022] [Accepted: 03/05/2022] [Indexed: 05/25/2023]
Abstract
As sessile species and without the possibility of escape, plants constantly face numerous environmental stresses. To adapt in the external environmental cues, plants adjust themselves against such stresses by regulating their physiological, metabolic and developmental responses to external environmental cues. Certain environmental stresses rarely occur during plant life, while others, such as heat, drought, salinity, and cold are repetitive. Abiotic stresses are among the foremost environmental variables that have hindered agricultural production globally. Through distinct mechanisms, these stresses induce various morphological, biochemical, physiological, and metabolic changes in plants, directly impacting their growth, development, and productivity. Subsequently, plant's physiological, metabolic, and genetic adjustments to the stress occurrence provide necessary competencies to adapt, survive and nurture a condition known as "memory." This review emphasizes the advancements in various epigenetic-related chromatin modifications, DNA methylation, histone modifications, chromatin remodeling, phytohormones, and microRNAs associated with abiotic stress memory. Plants have the ability to respond quickly to stressful situations and can also improve their defense systems by retaining and sustaining stressful memories, allowing for stronger or faster responses to repeated stressful situations. Although there are relatively few examples of such memories, and no clear understanding of their duration, taking into consideration plenty of stresses in nature. Understanding these mechanisms in depth could aid in the development of genetic tools to improve breeding techniques, resulting in higher agricultural yield and quality under changing environmental conditions.
Collapse
Affiliation(s)
- Megha Sharma
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Pankaj Kumar
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India.
| | - Vipasha Verma
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Rajnish Sharma
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Bhavya Bhargava
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
36
|
Khan A, Khan V, Pandey K, Sopory SK, Sanan-Mishra N. Thermo-Priming Mediated Cellular Networks for Abiotic Stress Management in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:866409. [PMID: 35646001 PMCID: PMC9136941 DOI: 10.3389/fpls.2022.866409] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/25/2022] [Indexed: 05/05/2023]
Abstract
Plants can adapt to different environmental conditions and can survive even under very harsh conditions. They have developed elaborate networks of receptors and signaling components, which modulate their biochemistry and physiology by regulating the genetic information. Plants also have the abilities to transmit information between their different parts to ensure a holistic response to any adverse environmental challenge. One such phenomenon that has received greater attention in recent years is called stress priming. Any milder exposure to stress is used by plants to prime themselves by modifying various cellular and molecular parameters. These changes seem to stay as memory and prepare the plants to better tolerate subsequent exposure to severe stress. In this review, we have discussed the various ways in which plants can be primed and illustrate the biochemical and molecular changes, including chromatin modification leading to stress memory, with major focus on thermo-priming. Alteration in various hormones and their subsequent role during and after priming under various stress conditions imposed by changing climate conditions are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
37
|
Tyśkiewicz R, Nowak A, Ozimek E, Jaroszuk-Ściseł J. Trichoderma: The Current Status of Its Application in Agriculture for the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth. Int J Mol Sci 2022; 23:2329. [PMID: 35216444 PMCID: PMC8875981 DOI: 10.3390/ijms23042329] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Rhizosphere filamentous fungi of the genus Trichoderma, a dominant component of various soil ecosystem mycobiomes, are characterized by the ability to colonize plant roots. Detailed knowledge of the properties of Trichoderma, including metabolic activity and the type of interaction with plants and other microorganisms, can ensure its effective use in agriculture. The growing interest in the application of Trichoderma results from their direct and indirect biocontrol potential against a wide range of soil phytopathogens. They act through various complex mechanisms, such as mycoparasitism, the degradation of pathogen cell walls, competition for nutrients and space, and induction of plant resistance. With the constant exposure of plants to a variety of pathogens, especially filamentous fungi, and the increased resistance of pathogens to chemical pesticides, the main challenge is to develop biological protection alternatives. Among non-pathogenic microorganisms, Trichoderma seems to be the best candidate for use in green technologies due to its wide biofertilization and biostimulatory potential. Most of the species from the genus Trichoderma belong to the plant growth-promoting fungi that produce phytohormones and the 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme. In the present review, the current status of Trichoderma is gathered, which is especially relevant in plant growth stimulation and the biocontrol of fungal phytopathogens.
Collapse
Affiliation(s)
- Renata Tyśkiewicz
- Analytical Laboratory, Łukasiewicz Research Network–New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
| | - Artur Nowak
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Science, Maria-Curie Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (E.O.); (J.J.-Ś.)
| | - Ewa Ozimek
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Science, Maria-Curie Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (E.O.); (J.J.-Ś.)
| | - Jolanta Jaroszuk-Ściseł
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Science, Maria-Curie Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (E.O.); (J.J.-Ś.)
| |
Collapse
|
38
|
Cyclin-Dependent Kinases and CTD Phosphatases in Cell Cycle Transcriptional Control: Conservation across Eukaryotic Kingdoms and Uniqueness to Plants. Cells 2022; 11:cells11020279. [PMID: 35053398 PMCID: PMC8774115 DOI: 10.3390/cells11020279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Cell cycle control is vital for cell proliferation in all eukaryotic organisms. The entire cell cycle can be conceptually separated into four distinct phases, Gap 1 (G1), DNA synthesis (S), G2, and mitosis (M), which progress sequentially. The precise control of transcription, in particular, at the G1 to S and G2 to M transitions, is crucial for the synthesis of many phase-specific proteins, to ensure orderly progression throughout the cell cycle. This mini-review highlights highly conserved transcriptional regulators that are shared in budding yeast (Saccharomyces cerevisiae), Arabidopsis thaliana model plant, and humans, which have been separated for more than a billion years of evolution. These include structurally and/or functionally conserved regulators cyclin-dependent kinases (CDKs), RNA polymerase II C-terminal domain (CTD) phosphatases, and the classical versus shortcut models of Pol II transcriptional control. A few of CDKs and CTD phosphatases counteract to control the Pol II CTD Ser phosphorylation codes and are considered critical regulators of Pol II transcriptional process from initiation to elongation and termination. The functions of plant-unique CDKs and CTD phosphatases in relation to cell division are also briefly summarized. Future studies towards testing a cooperative transcriptional mechanism, which is proposed here and involves sequence-specific transcription factors and the shortcut model of Pol II CTD code modulation, across the three eukaryotic kingdoms will reveal how individual organisms achieve the most productive, large-scale transcription of phase-specific genes required for orderly progression throughout the entire cell cycle.
Collapse
|
39
|
Babenko LM, Kosakivska IV, Romanenko КО. Molecular mechanisms of N-acyl homoserine lactone signals perception by plants. Cell Biol Int 2021; 46:523-534. [PMID: 34937124 DOI: 10.1002/cbin.11749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/29/2021] [Accepted: 12/19/2021] [Indexed: 11/12/2022]
Abstract
N-acyl homoserine lactones (AHLs) belong to the class of bacterial quorum sensing signal molecules involved in distance signal transduction between Gram-negative bacteria colonizers of the rhizosphere, as well as bacteria and plants. AHLs synchronize the activity of genes from individual cells, allowing the bacterial population to act as a multicellular organism, and establish a symbiotic or antagonistic relationship with the host plant. Although the effect of AHLs on plants has been studied for more than ten years, the mechanisms of plant perception of AHL signals are not fully understood. The specificity of the reactions caused by AHL indicates the existence of appropriate mechanisms for their perception by plants. In the current review, we summarize available data on the molecular mechanisms of AHL-signal perception in plants, its effect on plant growth, development, and stress resistance. We describe the latest research demonstrating direct (on plants) and indirect (on rhizosphere microflora) effects of AHLs, as well as the prospects of using these compounds in biotechnology to increase plant resistance to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Lidia M Babenko
- Phytohormonology Department, M.G. Kholodny Institute of Botany National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Iryna V Kosakivska
- Phytohormonology Department, M.G. Kholodny Institute of Botany National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Кateryna О Romanenko
- Phytohormonology Department, M.G. Kholodny Institute of Botany National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
40
|
Giglione C, Meinnel T. Mapping the myristoylome through a complete understanding of protein myristoylation biochemistry. Prog Lipid Res 2021; 85:101139. [PMID: 34793862 DOI: 10.1016/j.plipres.2021.101139] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/22/2022]
Abstract
Protein myristoylation is a C14 fatty acid modification found in all living organisms. Myristoylation tags either the N-terminal alpha groups of cysteine or glycine residues through amide bonds or lysine and cysteine side chains directly or indirectly via glycerol thioester and ester linkages. Before transfer to proteins, myristate must be activated into myristoyl coenzyme A in eukaryotes or, in bacteria, to derivatives like phosphatidylethanolamine. Myristate originates through de novo biosynthesis (e.g., plants), from external uptake (e.g., human tissues), or from mixed origins (e.g., unicellular organisms). Myristate usually serves as a molecular anchor, allowing tagged proteins to be targeted to membranes and travel across endomembrane networks in eukaryotes. In this review, we describe and discuss the metabolic origins of protein-bound myristate. We review strategies for in vivo protein labeling that take advantage of click-chemistry with reactive analogs, and we discuss new approaches to the proteome-wide discovery of myristate-containing proteins. The machineries of myristoylation are described, along with how protein targets can be generated directly from translating precursors or from processed proteins. Few myristoylation catalysts are currently described, with only N-myristoyltransferase described to date in eukaryotes. Finally, we describe how viruses and bacteria hijack and exploit myristoylation for their pathogenicity.
Collapse
Affiliation(s)
- Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
41
|
Li C, Wang K, Lei C, Cao S, Huang Y, Ji N, Xu F, Zheng Y. Alterations in Sucrose and Phenylpropanoid Metabolism Affected by BABA-Primed Defense in Postharvest Grapes and the Associated Transcriptional Mechanism. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1250-1266. [PMID: 34410840 DOI: 10.1094/mpmi-06-21-0142-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Defense elicitors can induce fruit disease resistance to control postharvest decay but may incur quality impairment. Our present work aimed to investigate the resistance against Botrytis cinerea induced by the elicitor β-aminobutyric acid (BABA) and to elucidate the specific transcriptional mechanism implicated in defense-related metabolic regulations. The functional dissection results demonstrated that, after inoculation with the fungal necrotroph B. cinerea, a suite of critical genes encoding enzymes related to the sucrose metabolism and phenylpropanoid pathway in priming defense in grapes were transcriptionally induced by treatment with 10 mM BABA. In contrast, more UDP-glucose, a shared precursor of phenylpropanoid and sucrose metabolism, may be redirected to the phenylpropanoid pathway for the synthesis of phytoalexins, including trans-resveratrol and ɛ-viniferin, in 100 mM BABA-treated grapes, resulting in direct resistance but compromised soluble sugar contents. An R2R3-type MYB protein from Vitis vinifera, VvMYB44, was isolated and characterized. VvMYB44 expression was significantly induced upon the grapes expressed defensive reaction. Subcellular localization, yeast two-hybrid, and coimmunoprecipitation assays revealed that the nuclear-localized VvMYB44 physically interacted with the salicylic acid-responsive transcription coactivator NPR1 in vivo for defense expression. In addition, VvMYB44 directly bound to the promoter regions of sucrose and phenylpropanoid metabolism-related genes and transactivated their expression, thus tipping the balance of antifungal compound accumulation and soluble sugar maintenance. Hence, these results suggest that 2R-type VvMYB44 might be a potential positive participant in BABA-induced priming defense in grape berries that contributes to avoiding the excessive consumption of soluble sugars during the postharvest storage.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Chunhong Li
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Kaituo Wang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
| | - Changyi Lei
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
| | - Shifeng Cao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315211, China
| | - Yixiao Huang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
- College of Arts and Sciences, University of Miami, Coral Gables, FL 33143, U.S.A
| | - Nana Ji
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Feng Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| |
Collapse
|
42
|
Non-Targeted Metabolite Profiling Reveals Host Metabolomic Reprogramming during the Interaction of Black Pepper with Phytophthora capsici. Int J Mol Sci 2021; 22:ijms222111433. [PMID: 34768864 PMCID: PMC8583951 DOI: 10.3390/ijms222111433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 01/04/2023] Open
Abstract
Phytophthora capsici is one of the most destructive pathogens causing quick wilt (foot rot) disease in black pepper (Piper nigrum L.) to which no effective resistance has been defined. To better understand the P. nigrum-P. capsici pathosystem, we employed metabolomic approaches based on flow-infusion electrospray-high-resolution mass spectrometry. Changes in the leaf metabolome were assessed in infected and systemic tissues at 24 and 48 hpi. Principal Component Analysis of the derived data indicated that the infected leaves showed a rapid metabolic response by 24 hpi whereas the systemic leaves took 48 hpi to respond to the infection. The major sources of variations between infected leaf and systemic leaf were identified, and enrichment pathway analysis indicated, major shifts in amino acid, tricarboxylic acid cycle, nucleotide and vitamin B6 metabolism upon infection. Moreover, the individual metabolites involved in defensive phytohormone signalling were identified. RT-qPCR analysis of key salicylate and jasmonate biosynthetic genes indicated a transient reduction of expression at 24 hpi but this increased subsequently. Exogenous application of jasmonate and salicylate reduced P. capsici disease symptoms, but this effect was suppressed with the co-application of abscisic acid. The results are consistent with abscisic acid reprogramming, salicylate and jasmonate defences in infected leaves to facilitate the formation of disease. The augmentation of salicylate and jasmonate defences could represent an approach through which quick wilt disease could be controlled in black pepper.
Collapse
|
43
|
Chung PJ, Singh GP, Huang CH, Koyyappurath S, Seo JS, Mao HZ, Diloknawarit P, Ram RJ, Sarojam R, Chua NH. Rapid Detection and Quantification of Plant Innate Immunity Response Using Raman Spectroscopy. FRONTIERS IN PLANT SCIENCE 2021; 12:746586. [PMID: 34745179 PMCID: PMC8566886 DOI: 10.3389/fpls.2021.746586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
We have developed a rapid Raman spectroscopy-based method for the detection and quantification of early innate immunity responses in Arabidopsis and Choy Sum plants. Arabidopsis plants challenged with flg22 and elf18 elicitors could be differentiated from mock-treated plants by their Raman spectral fingerprints. From the difference Raman spectrum and the value of p at each Raman shift, we derived the Elicitor Response Index (ERI) as a quantitative measure of the response whereby a higher ERI value indicates a more significant elicitor-induced immune response. Among various Raman spectral bands contributing toward the ERI value, the most significant changes were observed in those associated with carotenoids and proteins. To validate these results, we investigated several characterized Arabidopsis pattern-triggered immunity (PTI) mutants. Compared to wild type (WT), positive regulatory mutants had ERI values close to zero, whereas negative regulatory mutants at early time points had higher ERI values. Similar to elicitor treatments, we derived an analogous Infection Response Index (IRI) as a quantitative measure to detect the early PTI response in Arabidopsis and Choy Sum plants infected with bacterial pathogens. The Raman spectral bands contributing toward a high IRI value were largely identical to the ERI Raman spectral bands. Raman spectroscopy is a convenient tool for rapid screening for Arabidopsis PTI mutants and may be suitable for the noninvasive and early diagnosis of pathogen-infected crop plants.
Collapse
Affiliation(s)
- Pil Joong Chung
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
- Disruptive and Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Gajendra P. Singh
- Disruptive and Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Chung-Hao Huang
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
- Disruptive and Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Sayuj Koyyappurath
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
- Disruptive and Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Jun Sung Seo
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
| | - Hui-Zhu Mao
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
| | - Piyarut Diloknawarit
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
| | - Rajeev J. Ram
- Disruptive and Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Rajani Sarojam
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
- Disruptive and Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Nam-Hai Chua
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
- Disruptive and Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| |
Collapse
|
44
|
Yassin M, Ton J, Rolfe SA, Valentine TA, Cromey M, Holden N, Newton AC. The rise, fall and resurrection of chemical-induced resistance agents. PEST MANAGEMENT SCIENCE 2021; 77:3900-3909. [PMID: 33729685 DOI: 10.1002/ps.6370] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 05/23/2023]
Abstract
Since the discovery that the plant immune system could be augmented for improved deployment against biotic stressors through the exogenous application of chemicals that lead to induced resistance (IR), many such IR-eliciting agents have been identified. Initially it was hoped that these chemical IR agents would be a benign alternative to traditional chemical biocides. However, owing to low efficacy and/or a realization that their benefits sometimes come at the cost of growth and yield penalties, chemical IR agents fell out of favour and were seldom used as crop protection products. Despite the lack of interest in agricultural use, researchers have continued to explore the efficacy and mechanisms of chemical IR. Moreover, as we move away from the approach of 'zero tolerance' toward plant pests and pathogens toward integrated pest management, chemical IR agents could have a place in the plant protection product list. In this review, we chart the rise and fall of chemical IR agents, and then explore a variety of strategies used to improve their efficacy and remediate their negative adverse effects. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Mustafa Yassin
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, UK
- James Hutton Institute, Dundee, UK
| | - Jurriaan Ton
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, UK
| | - Stephen A Rolfe
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, UK
| | | | - Matthew Cromey
- Department of Plant Health, Royal Horticultural Society, Woking, UK
| | - Nicola Holden
- Scotland's Rural Colleges, Craibstone Estate, Aberdeen, UK
| | | |
Collapse
|
45
|
Wang K, Li C, Lei C, Zou Y, Li Y, Zheng Y, Fang Y. Dual function of VvWRKY18 transcription factor in the β-aminobutyric acid-activated priming defense in grapes. PHYSIOLOGIA PLANTARUM 2021; 172:1477-1492. [PMID: 33483982 DOI: 10.1111/ppl.13341] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/13/2020] [Accepted: 01/15/2021] [Indexed: 05/18/2023]
Abstract
Induction of phytoalexin production after invading pathogens is recognized as an essential aspect of the plant-induced resistance. The WRKY family includes plant-specific transcriptional factors associated with plant defense responses, but the comprehensive mechanisms are poorly understood. Here, we attempted to elaborate the regulatory function of VvWRKY18 from the group IIa of WRKY transcription factor (TF) from Vitis vinifera, in the regulation of β-aminobutyric acid (BABA)-activated stilbene phytoalexins biosynthesis and PATHOGENESIS-RELATED (PR) genes expressions in grapes. BABA at 10 mmol L-1 triggered a priming protection in grapes and conferred a potentiation of the expression levels of VvWRKY18, VvNPR1, and several salicylic acid (SA)-responsive genes, which was accompanied by enhanced stilbene production upon Botrytis cinerea infection. In addition, a physical interaction between VvWRKY18 and the regulatory protein VvNPR1 was detected in vivo and in vitro by yeast-2-hybrid (Y2H), pull-down and co-immunoprecipitation assay (Co-IP) assays. Furthermore, yeast-1-hybrid (Y1H) and dual-luciferase reporter (DLR) assays indicated that VvWRKY18 activated the transcription of STILBENE SYNTHASE (STS) genes, including VvSTS1 and VvSTS2, by directly binding the W-box elements within the specific promoters and resultantly enhancing stilbene phytoalexins biosynthesis. Further investigation demonstrated that heterologous expression of VvWRKY18 elevated the transcriptions of STS and PR genes, thus contributing to potentiating the defense of transgenic Arabidopsis thaliana plants and resultantly inhibiting B. cinerea invasion. Hence, VvWRKY18 serves as a singular effector involved in the synthesis of stilbene phytoalexins in grapes and its interaction with VvNPR1 provided DNA binding ability required for VvNPR1 to initiate systemic acquired resistance (SAR) defense.
Collapse
Affiliation(s)
- Kaituo Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- Institute of Three Gorges Research, Chongqing Three Gorges University, Wanzhou, China
| | - Chunhong Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- Institute of Three Gorges Research, Chongqing Three Gorges University, Wanzhou, China
| | - Changyi Lei
- Institute of Three Gorges Research, Chongqing Three Gorges University, Wanzhou, China
| | - Yanyu Zou
- Institute of Three Gorges Research, Chongqing Three Gorges University, Wanzhou, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Yanjie Li
- Institute of Three Gorges Research, Chongqing Three Gorges University, Wanzhou, China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
46
|
Yu RM, Suo YY, Yang R, Chang YN, Tian T, Song YJ, Wang HJ, Wang C, Yang RJ, Liu HL, Gao G. StMBF1c positively regulates disease resistance to Ralstonia solanacearum via it's primary and secondary upregulation combining expression of StTPS5 and resistance marker genes in potato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 307:110877. [PMID: 33902863 DOI: 10.1016/j.plantsci.2021.110877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Multiprotein bridging factor 1 (MBF1) is a transcription coactivator that has a general defense response to pathogens. However, the regulatory mechanisms of MBF1 resistance bacterial wilt remain largely unknown. Here, the role of StMBF1c in potato resistance to Ralstonia solanacearum infection was characterized. qRT-PCR assays indicated that StMBF1c could was elicited by SA, MJ and ABA and the time-course expression pattern of the StMBF1c gene induced by R. solanacearum was found to be twice significant upregulated expression during the early and middle stages of bacterial wilt. Combined with the co-expression analysis of disease-resistant marker genes, gain-of-function and loss-of-function assays demonstrated that StMBF1c was associated with defence priming. Overexpression or silencing the MBF1c could enhance plants resistance or sensitivity to R. solanacearum through inducing or reducing NPR and PR genes related to SA signal pathway. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) experiment results confirmed the interaction of StMBF1c with StTPS5 which played a key role in ABA signal pathway in potato. It is speculated that by combining StTPS5 and resistance marker genes, StMBF1c is activated twice to participate in potato bacterial wilt resistance, in which EPI, PTI involved.
Collapse
Affiliation(s)
- Rui-Min Yu
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| | - Yan-Yun Suo
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| | - Rui Yang
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| | - Yan-Nan Chang
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| | - Tian Tian
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| | - Yan-Jie Song
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| | - Huan-Jun Wang
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| | - Cong Wang
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| | - Ru-Jie Yang
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| | - Hong-Liang Liu
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| | - Gang Gao
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| |
Collapse
|
47
|
Kumari VV, Roy A, Vijayan R, Banerjee P, Verma VC, Nalia A, Pramanik M, Mukherjee B, Ghosh A, Reja MH, Chandran MAS, Nath R, Skalicky M, Brestic M, Hossain A. Drought and Heat Stress in Cool-Season Food Legumes in Sub-Tropical Regions: Consequences, Adaptation, and Mitigation Strategies. PLANTS 2021; 10:plants10061038. [PMID: 34063988 PMCID: PMC8224053 DOI: 10.3390/plants10061038] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022]
Abstract
Drought and heat stress are two major abiotic stresses that challenge the sustainability of agriculture to a larger extend. The changing and unpredictable climate further aggravates the efforts made by researchers as well as farmers. The stresses during the terminal stage of cool-season food legumes may affect numerous physiological and biochemical reactions that may result in poor yield. The plants possess a good number of adaptative and avoiding mechanisms to sustain the adverse situation. The various agronomic and breeding approaches may help in stress-induced alteration. The physiological and biochemical response of crops to any adverse situation is very important to understand to develop mechanisms and approaches for tolerance in plants. Agronomic approaches like altering the planting time, seed priming, foliar application of various macro and micro nutrients, and the application of rhizobacteria may help in mitigating the adverse effect of heat and drought stress to some extent. Breeding approaches like trait-based selection, inheritance studies of marker-based selection, genetic approaches using the transcriptome and metabolome may further pave the way to select and develop crops with better heat and drought stress adaptation and mitigation.
Collapse
Affiliation(s)
- Venugopalan Visha Kumari
- Department of Agronomy, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India; (V.V.K.); (A.R.); (P.B.); (A.N.); (M.P.); (B.M.); (A.G.); (M.H.R.); (M.A.S.C.); (R.N.)
| | - Anirban Roy
- Department of Agronomy, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India; (V.V.K.); (A.R.); (P.B.); (A.N.); (M.P.); (B.M.); (A.G.); (M.H.R.); (M.A.S.C.); (R.N.)
| | - Roshni Vijayan
- AINP (Arid Legumes), Division of Pulses, Regional Agricultural Research Station—Central Zone, Kerala Agricultural University, Pattambi, Melepattambi P.O., Palakkad Kerala 679306, India;
| | - Purabi Banerjee
- Department of Agronomy, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India; (V.V.K.); (A.R.); (P.B.); (A.N.); (M.P.); (B.M.); (A.G.); (M.H.R.); (M.A.S.C.); (R.N.)
| | | | - Arpita Nalia
- Department of Agronomy, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India; (V.V.K.); (A.R.); (P.B.); (A.N.); (M.P.); (B.M.); (A.G.); (M.H.R.); (M.A.S.C.); (R.N.)
| | - Madhusri Pramanik
- Department of Agronomy, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India; (V.V.K.); (A.R.); (P.B.); (A.N.); (M.P.); (B.M.); (A.G.); (M.H.R.); (M.A.S.C.); (R.N.)
| | - Bishal Mukherjee
- Department of Agronomy, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India; (V.V.K.); (A.R.); (P.B.); (A.N.); (M.P.); (B.M.); (A.G.); (M.H.R.); (M.A.S.C.); (R.N.)
| | - Ananya Ghosh
- Department of Agronomy, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India; (V.V.K.); (A.R.); (P.B.); (A.N.); (M.P.); (B.M.); (A.G.); (M.H.R.); (M.A.S.C.); (R.N.)
| | - Md. Hasim Reja
- Department of Agronomy, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India; (V.V.K.); (A.R.); (P.B.); (A.N.); (M.P.); (B.M.); (A.G.); (M.H.R.); (M.A.S.C.); (R.N.)
| | - Malamal Alickal Sarath Chandran
- Department of Agronomy, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India; (V.V.K.); (A.R.); (P.B.); (A.N.); (M.P.); (B.M.); (A.G.); (M.H.R.); (M.A.S.C.); (R.N.)
| | - Rajib Nath
- Department of Agronomy, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India; (V.V.K.); (A.R.); (P.B.); (A.N.); (M.P.); (B.M.); (A.G.); (M.H.R.); (M.A.S.C.); (R.N.)
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia
- Correspondence: (M.B.); (A.H.)
| | - Akbar Hossain
- Department of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
- Correspondence: (M.B.); (A.H.)
| |
Collapse
|
48
|
Ogawa D, Suzuki Y, Yokoo T, Katoh E, Teruya M, Muramatsu M, Ma JF, Yoshida Y, Isaji S, Ogo Y, Miyao M, Kim JM, Kojima M, Takebayashi Y, Sakakibara H, Takeda S, Okada K, Mori N, Seki M, Habu Y. Acetic-acid-induced jasmonate signaling in root enhances drought avoidance in rice. Sci Rep 2021; 11:6280. [PMID: 33737547 PMCID: PMC7973560 DOI: 10.1038/s41598-021-85355-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/18/2021] [Indexed: 01/18/2023] Open
Abstract
Conferring drought resistant traits to crops is one of the major aims of current breeding programs in response to global climate changes. We previously showed that exogenous application of acetic acid to roots of various plants could induce increased survivability under subsequent drought stress conditions, but details of the metabolism of exogenously applied acetic acid, and the nature of signals induced by its application, have not been unveiled. In this study, we show that rice rapidly induces jasmonate signaling upon application of acetic acid, resulting in physiological changes similar to those seen under drought. The major metabolite of the exogenously applied acetic acid in xylem sap was determined as glutamine-a common and abundant component of xylem sap-indicating that acetic acid is not the direct agent inducing the observed physiological responses in shoots. Expression of drought-responsive genes in shoot under subsequent drought conditions was attenuated by acetic acid treatment. These data suggest that acetic acid activates root-to-shoot jasmonate signals that partially overlap with those induced by drought, thereby conferring an acclimated state on shoots prior to subsequent drought.
Collapse
Affiliation(s)
- Daisuke Ogawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8602, Japan.,Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, 305-8517, Japan
| | - Yuya Suzuki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8602, Japan
| | - Takayuki Yokoo
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8602, Japan
| | - Etsuko Katoh
- Advanced Analysis Center, National Agriculture and Food Research Organization, Tsukuba, 305-8517, Japan
| | - Miyu Teruya
- Biotechnology Research Center, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Masayuki Muramatsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8602, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Yuri Yoshida
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8602, Japan
| | - Shunsaku Isaji
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yuko Ogo
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, 305-8517, Japan
| | - Mitsue Miyao
- Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Jong-Myong Kim
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.,Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Mikiko Kojima
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Yumiko Takebayashi
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Hitoshi Sakakibara
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.,Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Shin Takeda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan.,Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601, Japan
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Naoki Mori
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.,Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, 351-0198, Japan
| | - Yoshiki Habu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8602, Japan. .,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8577, Japan.
| |
Collapse
|
49
|
Trapet PL, Verbon EH, Bosma RR, Voordendag K, Van Pelt JA, Pieterse CMJ. Mechanisms underlying iron deficiency-induced resistance against pathogens with different lifestyles. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2231-2241. [PMID: 33188427 DOI: 10.1093/jxb/eraa535] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/10/2020] [Indexed: 05/10/2023]
Abstract
Iron (Fe) is a poorly available mineral nutrient which affects the outcome of many cross-kingdom interactions. In Arabidopsis thaliana, Fe starvation limits infection by necrotrophic pathogens. Here, we report that Fe deficiency also reduces disease caused by the hemi-biotrophic bacterium Pseudomonas syringae and the biotrophic oomycete Hyaloperonospora arabidopsidis, indicating that Fe deficiency-induced resistance is effective against pathogens with different lifestyles. Furthermore, we show that Fe deficiency-induced resistance is not caused by withholding Fe from the pathogen but is a plant-mediated defense response that requires activity of ethylene and salicylic acid. Because rhizobacteria-induced systemic resistance (ISR) is associated with a transient up-regulation of the Fe deficiency response, we tested whether Fe deficiency-induced resistance and ISR are similarly regulated. However, Fe deficiency-induced resistance functions independently of the ISR regulators MYB72 and BGLU42, indicating that both types of induced resistance are regulated in a different manner. Mutants opt3 and frd1, which display misregulated Fe homeostasis under Fe-sufficient conditions, show disease resistance levels comparable with those of Fe-starved wild-type plants. Our results suggest that disturbance of Fe homeostasis, through Fe starvation stress or other non-homeostatic conditions, is sufficient to prime the plant immune system for enhanced defense.
Collapse
Affiliation(s)
- Pauline L Trapet
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan, CH Utrecht, The Netherlands
| | - Eline H Verbon
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan, CH Utrecht, The Netherlands
| | - Renda R Bosma
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan, CH Utrecht, The Netherlands
| | - Kirsten Voordendag
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan, CH Utrecht, The Netherlands
| | - Johan A Van Pelt
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan, CH Utrecht, The Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan, CH Utrecht, The Netherlands
| |
Collapse
|
50
|
Secretion-Based Modes of Action of Biocontrol Agents with a Focus on Pseudozyma aphidis. PLANTS 2021; 10:plants10020210. [PMID: 33499173 PMCID: PMC7912694 DOI: 10.3390/plants10020210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 01/18/2023]
Abstract
Plant pathogens challenge our efforts to maximize crop production due to their ability to rapidly develop resistance to pesticides. Fungal biocontrol agents have become an important alternative to chemical fungicides, due to environmental concerns related to the latter. Here we review the complex modes of action of biocontrol agents in general and epiphytic yeasts belonging to the genus Pseudozyma specifically and P. aphidis in particular. Biocontrol agents act through multiple direct and indirect mechanisms, which are mainly based on their secretions. We discuss the direct modes of action, such as antibiosis, reactive oxygen species-producing, and cell wall-degrading enzyme secretions which can also play a role in mycoparasitism. In addition, we discuss indirect modes of action, such as hyperbiotrophy, induced resistance and growth promotion based on the secretion of effectors and elicitors from the biocontrol agent. Due to their unique characteristics, epiphytic yeasts hold great potential for use as biocontrol agents, which may be more environmentally friendly than conventional pesticides and provide a way to reduce our dependency on fungicides based on increasingly expensive fossil fuels. No less important, the complex mode of action of Pseudozyma-based biocontrol agents can also reduce the frequency of resistance developed by pathogens to these agents.
Collapse
|