1
|
Zhang D, Gan Y, Le L, Pu L. Epigenetic variation in maize agronomical traits for breeding and trait improvement. J Genet Genomics 2024:S1673-8527(24)00028-6. [PMID: 38310944 DOI: 10.1016/j.jgg.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
Epigenetics-mediated breeding (Epibreeding) involves engineering crop traits and stress responses through the targeted manipulation of key epigenetic features to enhance agricultural productivity. While conventional breeding methods raise concerns about reduced genetic diversity, epibreeding propels crop improvement through epigenetic variations that regulate gene expression, ultimately impacting crop yield. Epigenetic regulation in crops encompasses various modes, including histone modification, DNA modification, RNA modification, non-coding RNA, and chromatin remodeling. This review summarizes the epigenetic mechanisms underlying major agronomic traits in maize and identifies candidate epigenetic landmarks in the maize breeding process. We propose a valuable strategy for improving maize yield through epibreeding, combining CRISPR/Cas-based epigenome editing technology and Synthetic Epigenetics (SynEpi). Finally, we discuss the challenges and opportunities associated with maize trait improvement through epibreeding.
Collapse
Affiliation(s)
- Daolei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021, China
| | - Yujun Gan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Le
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Wang C, Li H, Long Y, Dong Z, Wang J, Liu C, Wei X, Wan X. A Systemic Investigation of Genetic Architecture and Gene Resources Controlling Kernel Size-Related Traits in Maize. Int J Mol Sci 2023; 24:1025. [PMID: 36674545 PMCID: PMC9865405 DOI: 10.3390/ijms24021025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Grain yield is the most critical and complex quantitative trait in maize. Kernel length (KL), kernel width (KW), kernel thickness (KT) and hundred-kernel weight (HKW) associated with kernel size are essential components of yield-related traits in maize. With the extensive use of quantitative trait locus (QTL) mapping and genome-wide association study (GWAS) analyses, thousands of QTLs and quantitative trait nucleotides (QTNs) have been discovered for controlling these traits. However, only some of them have been cloned and successfully utilized in breeding programs. In this study, we exhaustively collected reported genes, QTLs and QTNs associated with the four traits, performed cluster identification of QTLs and QTNs, then combined QTL and QTN clusters to detect consensus hotspot regions. In total, 31 hotspots were identified for kernel size-related traits. Their candidate genes were predicted to be related to well-known pathways regulating the kernel developmental process. The identified hotspots can be further explored for fine mapping and candidate gene validation. Finally, we provided a strategy for high yield and quality maize. This study will not only facilitate causal genes cloning, but also guide the breeding practice for maize.
Collapse
Affiliation(s)
- Cheng Wang
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Huangai Li
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Yan Long
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Zhenying Dong
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Jianhui Wang
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Chang Liu
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xun Wei
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xiangyuan Wan
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| |
Collapse
|
3
|
Consonni G, Castorina G, Varotto S. The Italian Research on the Molecular Characterization of Maize Kernel Development. Int J Mol Sci 2022; 23:11383. [PMID: 36232684 PMCID: PMC9570349 DOI: 10.3390/ijms231911383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
The study of the genetic control of maize seed development and seed-related pathways has been one of the most important themes approached by the Italian scientific community. Maize has always attracted the interest of the Italian community of agricultural genetics since its beginning, as some of its founders based their research projects on and developed their "schools" by adopting maize as a reference species. Some of them spent periods in the United States, where maize was already becoming a model system, to receive their training. In this manuscript we illustrate the research work carried out in Italy by different groups that studied maize kernels and underline their contributions in elucidating fundamental aspects of caryopsis development through the characterization of maize mutants. Since the 1980s, most of the research projects aimed at the comprehension of the genetic control of seed development and the regulation of storage products' biosyntheses and accumulation, and have been based on forward genetics approaches. We also document that for some decades, Italian groups, mainly based in Northern Italy, have contributed to improve the knowledge of maize genomics, and were both fundamental for further international studies focused on the correct differentiation and patterning of maize kernel compartments and strongly contributed to recent advances in maize research.
Collapse
Affiliation(s)
- Gabriella Consonni
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Giulia Castorina
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Serena Varotto
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Università degli Studi di Padova, Viale dell'Università 16, 35020 Legnaro, Italy
| |
Collapse
|
4
|
Hou J, Zheng X, Ren R, Shi Q, Xiao H, Chen Z, Yue M, Wu Y, Hou H, Li L. The histone deacetylase 1/GSK3/SHAGGY-like kinase 2/BRASSINAZOLE-RESISTANT 1 module controls lateral root formation in rice. PLANT PHYSIOLOGY 2022; 189:858-873. [PMID: 35078247 PMCID: PMC9157092 DOI: 10.1093/plphys/kiac015] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/04/2022] [Indexed: 05/10/2023]
Abstract
Lateral roots (LRs) are a main component of the root system of rice (Oryza sativa) that increases root surface area, enabling efficient absorption of water and nutrients. However, the molecular mechanism regulating LR formation in rice remains largely unknown. Here, we report that histone deacetylase 1 (OsHDAC1) positively regulates LR formation in rice. Rice OsHDAC1 RNAi plants produced fewer LRs than wild-type plants, whereas plants overexpressing OsHDAC1 exhibited increased LR proliferation by promoting LR primordia formation. Brassinosteroid treatment increased the LR number, as did mutation of GSK3/SHAGGY-like kinase 2 (OsGSK2), whereas overexpression of OsGSK2 decreased the LR number. Importantly, OsHDAC1 could directly interact with and deacetylate OsGSK2, inhibiting its activity. OsGSK2 deacetylation attenuated the interaction between OsGSK2 and BRASSINAZOLE-RESISTANT 1 (OsBZR1), leading to accumulation of OsBZR1. The overexpression of OsBZR1 increased LR formation by regulating Auxin/IAA signaling genes. Taken together, the results indicate that OsHDAC1 regulates LR formation in rice by deactivating OsGSK2, thereby preventing degradation of OsBZR1, a positive regulator of LR primordia formation. Our findings suggest that OsHDAC1 is a breeding target in rice that can improve resource capture.
Collapse
Affiliation(s)
- Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xueke Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ruifei Ren
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qipeng Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huangzhuo Xiao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhenfei Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mengxia Yue
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yequn Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Author for correspondence:
| |
Collapse
|
5
|
Comprehensive Genome-Wide Analysis of Histone Acetylation Genes in Roses and Expression Analyses in Response to Heat Stress. Genes (Basel) 2022; 13:genes13060980. [PMID: 35741743 PMCID: PMC9222719 DOI: 10.3390/genes13060980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Roses have high economic values as garden plants and for cut-flower and cosmetics industries. The growth and development of rose plants is affected by exposure to high temperature. Histone acetylation plays an important role in plant development and responses to various stresses. It is a dynamic and reversible process mediated by histone deacetylases (HDAC) and histone acetyltransferases (HAT). However, information on HDAC and HAT genes of roses is scarce. Here, 23 HDAC genes and 10 HAT genes were identified in the Rosa chinensis ‘Old Blush’ genome. Their gene structures, conserved motifs, physicochemical properties, phylogeny, and synteny were assessed. Analyses of the expression of HDAC and HAT genes using available RNAseq data showed that these genes exhibit different expression patterns in different organs of the three analyzed rose cultivars. After heat stress, while the expression of most HDAC genes tend to be down-regulated, that of HAT genes was up-regulated when rose plants were grown at high-temperature conditions. These data suggest that rose likely respond to high-temperature exposure via modification in histone acetylation, and, thus, paves the way to more studies in order to elucidate in roses the molecular mechanisms underlying rose plants development and flowering.
Collapse
|
6
|
Canton M, Farinati S, Forestan C, Joseph J, Bonghi C, Varotto S. An efficient chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in peach reproductive tissues. PLANT METHODS 2022; 18:43. [PMID: 35361223 PMCID: PMC8973749 DOI: 10.1186/s13007-022-00876-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/15/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND Perennial fruit trees display a growth behaviour characterized by annual cycling between growth and dormancy, with complex physiological features. Rosaceae fruit trees represent excellent models for studying not only the fruit growth/patterning but also the progression of the reproductive cycle depending upon the impact of climate conditions. Additionally, current developments in high-throughput technologies have impacted Rosaceae tree research while investigating genome structure and function as well as (epi)genetic mechanisms involved in important developmental and environmental response processes during fruit tree growth. Among epigenetic mechanisms, chromatin remodelling mediated by histone modifications and other chromatin-related processes play a crucial role in gene modulation, controlling gene expression. Chromatin immunoprecipitation is an effective technique to investigate chromatin dynamics in plants. This technique is generally applied for studies on chromatin states and enrichment of post-transcriptional modifications (PTMs) in histone proteins. RESULTS Peach is considered a model organism among climacteric fruits in the Rosaceae family for studies on bud formation, dormancy, and organ differentiation. In our work, we have primarily established specific protocols for chromatin extraction and immunoprecipitation in reproductive tissues of peach (Prunus persica). Subsequently, we focused our investigations on the role of two chromatin marks, namely the trimethylation of histone H3 at lysine in position 4 (H3K4me3) and trimethylation of histone H3 at lysine 27 (H3K27me3) in modulating specific gene expression. Bud dormancy and fruit growth were investigated in a nectarine genotype called Fantasia as our model system. CONCLUSIONS We present general strategies to optimize ChIP protocols for buds and mesocarp tissues of peach and analyze the correlation between gene expression and chromatin mark enrichment/depletion. The procedures proposed may be useful to evaluate any involvement of histone modifications in the regulation of gene expression during bud dormancy progression and core ripening in fruits.
Collapse
Affiliation(s)
- Monica Canton
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, PD Italy
| | - Silvia Farinati
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, PD Italy
| | - Cristian Forestan
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Justin Joseph
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, PD Italy
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, PD Italy
| | - Serena Varotto
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, PD Italy
| |
Collapse
|
7
|
CaSWC4 regulates the immunity-thermotolerance tradeoff by recruiting CabZIP63/CaWRKY40 to target genes and activating chromatin in pepper. PLoS Genet 2022; 18:e1010023. [PMID: 35226664 PMCID: PMC8884482 DOI: 10.1371/journal.pgen.1010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/10/2022] [Indexed: 11/19/2022] Open
Abstract
Pepper (Capsicum annuum) responds differently to high temperature stress (HTS) and Ralstonia solanacearum infection (RSI) but employs some shared transcription factors (TFs), such as CabZIP63 and CaWRKY40, in both cases. How the plant activates and balances these distinct responses, however, was unclear. Here, we show that the protein CaSWC4 interacts with CaRUVBL2 and CaTAF14b and they all act positively in pepper response to RSI and thermotolerance. CaSWC4 activates chromatin of immunity or thermotolerance related target genes of CaWRKY40 or CabZIP63 by promoting deposition of H2A.Z, H3K9ac and H4K5ac, simultaneously recruits CabZIP63 and CaWRKY40 through physical interaction and brings them to their targets (immunity- or thermotolerance-related genes) via binding AT-rich DNA element. The above process relies on the recruitment of CaRUVBL2 and TAF14 by CaSWC4 via physical interaction, which occurs at loci of immunity related target genes only when the plants are challenged with RSI, and at loci of thermotolerance related target genes only upon HTS. Collectively, our data suggest that CaSWC4 regulates rapid, accurate responses to both RSI and HTS by modulating chromatin of specific target genes opening and recruiting the TFs, CaRUVBL2 and CaTAF14b to the specific target genes, thereby helping achieve the balance between immunity and thermotolerance.
Collapse
|
8
|
Gupta C, Salgotra RK. Epigenetics and its role in effecting agronomical traits. FRONTIERS IN PLANT SCIENCE 2022; 13:925688. [PMID: 36046583 PMCID: PMC9421166 DOI: 10.3389/fpls.2022.925688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/11/2022] [Indexed: 05/16/2023]
Abstract
Climate-resilient crops with improved adaptation to the changing climate are urgently needed to feed the growing population. Hence, developing high-yielding crop varieties with better agronomic traits is one of the most critical issues in agricultural research. These are vital to enhancing yield as well as resistance to harsh conditions, both of which help farmers over time. The majority of agronomic traits are quantitative and are subject to intricate genetic control, thereby obstructing crop improvement. Plant epibreeding is the utilisation of epigenetic variation for crop development, and has a wide range of applications in the field of crop improvement. Epigenetics refers to changes in gene expression that are heritable and induced by methylation of DNA, post-translational modifications of histones or RNA interference rather than an alteration in the underlying sequence of DNA. The epigenetic modifications influence gene expression by changing the state of chromatin, which underpins plant growth and dictates phenotypic responsiveness for extrinsic and intrinsic inputs. Epigenetic modifications, in addition to DNA sequence variation, improve breeding by giving useful markers. Also, it takes epigenome diversity into account to predict plant performance and increase crop production. In this review, emphasis has been given for summarising the role of epigenetic changes in epibreeding for crop improvement.
Collapse
|
9
|
Regulation of Fruit Growth in a Peach Slow Ripening Phenotype. Genes (Basel) 2021; 12:genes12040482. [PMID: 33810423 PMCID: PMC8066772 DOI: 10.3390/genes12040482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 01/25/2023] Open
Abstract
Consumers' choices are mainly based on fruit external characteristics such as the final size, weight, and shape. The majority of edible fruit are by tree fruit species, among which peach is the genomic and genetic reference for Prunus. In this research, we used a peach with a slow ripening (SR) phenotype, identified in the Fantasia (FAN) nectarine, associated with misregulation of genes involved in mesocarp identity and showing a reduction of final fruit size. By investigating the ploidy level, we observed a progressive increase in endoreduplication in mesocarp, which occurred in the late phases of FAN fruit development, but not in SR fruit. During fruit growth, we also detected that genes involved in endoreduplication were differentially modulated in FAN compared to SR. The differential transcriptional outputs were consistent with different chromatin states at loci of endoreduplication genes. The impaired expression of genes controlling cell cycle and endocycle as well as those claimed to play a role in fruit tissue identity result in the small final size of SR fruit.
Collapse
|
10
|
Hu G, Huang B, Wang K, Frasse P, Maza E, Djari A, Benhamed M, Gallusci P, Li Z, Zouine M, Bouzayen M. Histone posttranslational modifications rather than DNA methylation underlie gene reprogramming in pollination-dependent and pollination-independent fruit set in tomato. THE NEW PHYTOLOGIST 2021; 229:902-919. [PMID: 32875585 PMCID: PMC7821339 DOI: 10.1111/nph.16902] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/10/2020] [Indexed: 05/10/2023]
Abstract
Fruit formation comprises a series of developmental transitions among which the fruit set process is essential in determining crop yield. Yet, our understanding of the epigenetic landscape remodelling associated with the flower-to-fruit transition remains poor. We investigated the epigenetic and transcriptomic reprogramming underlying pollination-dependent and auxin-induced flower-to-fruit transitions in the tomato (Solanum lycopersicum) using combined genomewide transcriptomic profiling, global ChIP-sequencing and whole genomic DNA bisulfite sequencing (WGBS). Variation in the expression of the overwhelming majority of genes was associated with change in histone mark distribution, whereas changes in DNA methylation concerned a minor fraction of differentially expressed genes. Reprogramming of genes involved in processes instrumental to fruit set correlated with their H3K9ac or H3K4me3 marking status but not with changes in cytosine methylation, indicating that histone posttranslational modifications rather than DNA methylation are associated with the remodelling of the epigenetic landscape underpinning the flower-to-fruit transition. Given the prominent role previously assigned to DNA methylation in reprogramming key genes of the transition to ripening, the outcome of the present study supports the idea that the two main developmental transitions in fleshy fruit and the underlying transcriptomic reprogramming are associated with different modes of epigenetic regulations.
Collapse
Affiliation(s)
- Guojian Hu
- UMR990 Génomique et Biotechnologie des FruitsINRAe/INP ToulouseUniversité de ToulouseAvenue de l’AgrobiopoleCastanet‐TolosanCS32607, F‐31326France
| | - Baowen Huang
- UMR990 Génomique et Biotechnologie des FruitsINRAe/INP ToulouseUniversité de ToulouseAvenue de l’AgrobiopoleCastanet‐TolosanCS32607, F‐31326France
| | - Keke Wang
- UMR990 Génomique et Biotechnologie des FruitsINRAe/INP ToulouseUniversité de ToulouseAvenue de l’AgrobiopoleCastanet‐TolosanCS32607, F‐31326France
| | - Pierre Frasse
- UMR990 Génomique et Biotechnologie des FruitsINRAe/INP ToulouseUniversité de ToulouseAvenue de l’AgrobiopoleCastanet‐TolosanCS32607, F‐31326France
| | - Elie Maza
- UMR990 Génomique et Biotechnologie des FruitsINRAe/INP ToulouseUniversité de ToulouseAvenue de l’AgrobiopoleCastanet‐TolosanCS32607, F‐31326France
| | - Anis Djari
- UMR990 Génomique et Biotechnologie des FruitsINRAe/INP ToulouseUniversité de ToulouseAvenue de l’AgrobiopoleCastanet‐TolosanCS32607, F‐31326France
| | - Moussa Benhamed
- Institute of Plant Sciences Paris‐SaclayCNRSINRAUniversity Paris‐SudUniversity of EvryUniversity Paris‐DiderotSorbonne Paris‐CiteUniversity of Paris‐SaclayBatiment 630Orsay91405France
| | - Philippe Gallusci
- UMR EGFVBordeaux Sciences AgroINRAUniversité de Bordeaux210 Chemin de Leysotte, CS 50008Villenave d’Ornon33882France
| | - Zhengguo Li
- Center of Plant Functional GenomicsInstitute of Advanced Interdisciplinary StudiesChongqing UniversityChongqing401331China
| | - Mohamed Zouine
- UMR990 Génomique et Biotechnologie des FruitsINRAe/INP ToulouseUniversité de ToulouseAvenue de l’AgrobiopoleCastanet‐TolosanCS32607, F‐31326France
| | - Mondher Bouzayen
- UMR990 Génomique et Biotechnologie des FruitsINRAe/INP ToulouseUniversité de ToulouseAvenue de l’AgrobiopoleCastanet‐TolosanCS32607, F‐31326France
- Center of Plant Functional GenomicsInstitute of Advanced Interdisciplinary StudiesChongqing UniversityChongqing401331China
| |
Collapse
|
11
|
Dai D, Ma Z, Song R. Maize kernel development. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:2. [PMID: 37309525 PMCID: PMC10231577 DOI: 10.1007/s11032-020-01195-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/03/2020] [Indexed: 06/14/2023]
Abstract
Maize (Zea mays) is a leading cereal crop in the world. The maize kernel is the storage organ and the harvest portion of this crop and is closely related to its yield and quality. The development of maize kernel is initiated by the double fertilization event, leading to the formation of a diploid embryo and a triploid endosperm. The embryo and endosperm are then undergone independent developmental programs, resulting in a mature maize kernel which is comprised of a persistent endosperm, a large embryo, and a maternal pericarp. Due to the well-characterized morphogenesis and powerful genetics, maize kernel has long been an excellent model for the study of cereal kernel development. In recent years, with the release of the maize reference genome and the development of new genomic technologies, there has been an explosive expansion of new knowledge for maize kernel development. In this review, we overviewed recent progress in the study of maize kernel development, with an emphasis on genetic mapping of kernel traits, transcriptome analysis during kernel development, functional gene cloning of kernel mutants, and genetic engineering of kernel traits.
Collapse
Affiliation(s)
- Dawei Dai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444 China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
12
|
The Interplay between Toxic and Essential Metals for Their Uptake and Translocation Is Likely Governed by DNA Methylation and Histone Deacetylation in Maize. Int J Mol Sci 2020; 21:ijms21186959. [PMID: 32971934 PMCID: PMC7555519 DOI: 10.3390/ijms21186959] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022] Open
Abstract
The persistent nature of lead (Pb) and cadmium (Cd) in the environment severely affects plant growth and yield. Conversely, plants acquire zinc (Zn) from the soil for their vital physiological and biochemical functions. However, the interplay and coordination between essential and toxic metals for their uptake and translocation and the putative underlying epigenetic mechanisms have not yet been investigated in maize. Here, we report that the presence of Zn facilitates the accumulation and transport of Pb and Cd in the aerial parts of the maize plants. Moreover, the Zn, Pb, and Cd interplay specifically interferes with the uptake and translocation of other divalent metals, such as calcium and magnesium. Zn, Pb, and Cd, individually and in combinations, differentially regulate the expression of DNA methyltransferases, thus alter the DNA methylation levels at the promoter of Zinc-regulated transporters, Iron-regulated transporter-like Protein (ZIP) genes to regulate their expression. Furthermore, the expression of histone deacetylases (HDACs) varies greatly in response to individual and combined metals, and HDACs expression showed a negative correlation with ZIP transporters. Our study highlights the implication of DNA methylation and histone acetylation in regulating the metal stress tolerance dynamics through Zn transporters and warns against the excessive use of Zn fertilizers in metal contaminated soils.
Collapse
|
13
|
Yu J, Xu F, Wei Z, Zhang X, Chen T, Pu L. Epigenomic landscape and epigenetic regulation in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1467-1489. [PMID: 31965233 DOI: 10.1007/s00122-020-03549-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 01/14/2020] [Indexed: 05/12/2023]
Abstract
Epigenetic regulation has been implicated in the control of multiple agronomic traits in maize. Here, we review current advances in our understanding of epigenetic regulation, which has great potential for improving agronomic traits and the environmental adaptability of crops. Epigenetic regulation plays vital role in the control of complex agronomic traits. Epigenetic variation could contribute to phenotypic diversity and can be used to improve the quality and productivity of crops. Maize (Zea mays L.), one of the most widely cultivated crops for human food, animal feed, and ethanol biofuel, is a model plant for genetic studies. Recent advances in high-throughput sequencing technology have made possible the study of epigenetic regulation in maize on a genome-wide scale. In this review, we discuss recent epigenetic studies in maize many achieved by Chinese research groups. These studies have explored the roles of DNA methylation, posttranslational modifications of histones, chromatin remodeling, and noncoding RNAs in the regulation of gene expression in plant development and environment response. We also provide our future prospects for manipulating epigenetic regulation to improve crops.
Collapse
Affiliation(s)
- Jia Yu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ziwei Wei
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xiangxiang Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
14
|
Zhang K, Yu L, Pang X, Cao H, Si H, Zang J, Xing J, Dong J. In silico analysis of maize HDACs with an emphasis on their response to biotic and abiotic stresses. PeerJ 2020; 8:e8539. [PMID: 32095360 PMCID: PMC7023831 DOI: 10.7717/peerj.8539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/09/2020] [Indexed: 01/20/2023] Open
Abstract
Histone deacetylases (HDACs) are key epigenetic factors in regulating chromatin structure and gene expression in multiple aspects of plant growth, development, and response to abiotic or biotic stresses. Many studies on systematic analysis and molecular function of HDACs in Arabidopsis and rice have been conducted. However, systematic analysis of HDAC gene family and gene expression in response to abiotic and biotic stresses has not yet been reported. In this study, a systematic analysis of the HDAC gene family in maize was performed and 18 ZmHDACs distributed on nine chromosomes were identified. Phylogenetic analysis of ZmHDACs showed that this gene family could be divided into RPD3/HDA1, SIR2, and HD2 groups. Tissue-specific expression results revealed that ZmHDACs exhibited diverse expression patterns in different tissues, indicating that these genes might have diversified functions in growth and development. Expression pattern of ZmHDACs in hormone treatment and inoculation experiment suggested that several ZmHDACs might be involved in jasmonic acid or salicylic acid signaling pathway and defense response. Interestingly, HDAC genes were downregulated under heat stress, and immunoblotting results demonstrated that histones H3K9ac and H4K5ac levels were increased under heat stress. These results provide insights into ZmHDACs, which could help to reveal their functions in controlling maize development and responses to abiotic or biotic stresses.
Collapse
Affiliation(s)
- Kang Zhang
- College of Life Science, Hebei Agricultrual University, Baoding, Hebei, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultrual University, Baoding, Hebei, China
| | - Lu Yu
- College of Life Science, Hebei Agricultrual University, Baoding, Hebei, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultrual University, Baoding, Hebei, China
| | - Xi Pang
- College of Life Science, Hebei Agricultrual University, Baoding, Hebei, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultrual University, Baoding, Hebei, China
| | - Hongzhe Cao
- College of Life Science, Hebei Agricultrual University, Baoding, Hebei, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultrual University, Baoding, Hebei, China
| | - Helong Si
- College of Life Science, Hebei Agricultrual University, Baoding, Hebei, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultrual University, Baoding, Hebei, China
| | - Jinping Zang
- College of Life Science, Hebei Agricultrual University, Baoding, Hebei, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultrual University, Baoding, Hebei, China
| | - Jihong Xing
- College of Life Science, Hebei Agricultrual University, Baoding, Hebei, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultrual University, Baoding, Hebei, China
| | - Jingao Dong
- College of Life Science, Hebei Agricultrual University, Baoding, Hebei, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultrual University, Baoding, Hebei, China
| |
Collapse
|
15
|
Zhang Z, Wang B, Wang S, Lin T, Yang L, Zhao Z, Zhang Z, Huang S, Yang X. Genome-wide Target Mapping Shows Histone Deacetylase Complex1 Regulates Cell Proliferation in Cucumber Fruit. PLANT PHYSIOLOGY 2020; 182:167-184. [PMID: 31378719 PMCID: PMC6945849 DOI: 10.1104/pp.19.00532] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/22/2019] [Indexed: 05/13/2023]
Abstract
Histone deacetylase (HDAC) proteins participate in diverse and tissue-specific developmental processes by forming various corepressor complexes with different regulatory subunits. An important HDAC machinery hub, the Histone Deacetylase Complex1 (HDC1) protein, participates in multiple protein-protein interactions and regulates organ size in plants. However, the mechanistic basis for this regulation remains unclear. Here, we identified a cucumber (Cucumis sativus) short-fruit mutant (sf2) with a phenotype that includes repressed cell proliferation. SF2 encodes an HDC1 homolog, and its expression is enriched in meristematic tissues, consistent with a role in regulating cell proliferation through the HDAC complex. A weak sf2 allele impairs HDAC targeting to chromatin, resulting in elevated levels of histone acetylation. Genome-wide mapping revealed that SF2 directly targets and promotes histone deacetylation associated with key genes involved in multiple phytohormone pathways and cell cycle regulation, by either directly repressing or activating their expression. We further show that SF2 controls fruit cell proliferation through targeting the biosynthesis and metabolism of cytokinin and polyamines. Our findings reveal a complex regulatory network of fruit cell proliferation mediated by HDC1 and elucidate patterns of HDC1-mediated regulation of gene expression.
Collapse
Affiliation(s)
- Zhen Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Bowen Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Sino-Dutch Joint Lab of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- China Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Shenhao Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Tao Lin
- College of Horticulture, China Agricultural University, Beijing 100094, China
| | - Li Yang
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
| | - Zunlian Zhao
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Zhonghua Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Sino-Dutch Joint Lab of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sanwen Huang
- China Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xueyong Yang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Sino-Dutch Joint Lab of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
16
|
Jiang Z, Jin F, Shan X, Li Y. iTRAQ-Based Proteomic Analysis Reveals Several Strategies to Cope with Drought Stress in Maize Seedlings. Int J Mol Sci 2019; 20:ijms20235956. [PMID: 31779286 PMCID: PMC6928945 DOI: 10.3390/ijms20235956] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
Drought stress, especially during the seedling stage, seriously limits the growth of maize and reduces production in the northeast of China. To investigate the molecular mechanisms of drought response in maize seedlings, proteome changes were analyzed. Using an isotopic tagging relative quantitation (iTRAQ) based method, a total of 207 differentially accumulated protein species (DAPS) were identified under drought stress in maize seedlings. The DAPS were classified into ten essential groups and analyzed thoroughly, which involved in signaling, osmotic regulation, protein synthesis and turnover, reactive oxygen species (ROS) scavenging, membrane trafficking, transcription related, cell structure and cell cycle, fatty acid metabolism, carbohydrate and energy metabolism, as well as photosynthesis and photorespiration. The enhancements of ROS scavenging, osmotic regulation, protein turnover, membrane trafficking, and photosynthesis may play important roles in improving drought tolerance of maize seedlings. Besides, the inhibitions of some protein synthesis and slowdown of cell division could reduce the growth rate and avoid excessive water loss, which is possible to be the main reasons for enhancing drought avoidance of maize seedlings. The incongruence between protein and transcript levels was expectedly observed in the process of confirming iTRAQ data by quantitative real-time polymerase chain reaction (qRT-PCR) analysis, which further indicated that the multiplex post-transcriptional regulation and post-translational modification occurred in drought-stressed maize seedlings. Finally, a hypothetical strategy was proposed that maize seedlings coped with drought stress by improving drought tolerance (via. promoting osmotic adjustment and antioxidant capacity) and enhancing drought avoidance (via. reducing water loss). Our study provides valuable insight to mechanisms underlying drought response in maize seedlings.
Collapse
Affiliation(s)
- Zhilei Jiang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Changchun 130033, China; (Z.J.); (F.J.)
| | - Fengxue Jin
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Changchun 130033, China; (Z.J.); (F.J.)
| | - Xiaohui Shan
- College of Plant Science, Jilin University, Changchun 130062, China
- Correspondence: (X.S.); (Y.L.)
| | - Yidan Li
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Changchun 130033, China; (Z.J.); (F.J.)
- Correspondence: (X.S.); (Y.L.)
| |
Collapse
|
17
|
Tong B, Xia D, Lv S, Ma X. Cloning and expression analysis of PtHDT903, a HD2-type histone deacetylase gene in Populus trichocarpa. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1478749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Botong Tong
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, PR China
| | - Dean Xia
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, PR China
| | - Shibo Lv
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, PR China
| | - Xujun Ma
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, PR China
| |
Collapse
|
18
|
Forestan C, Farinati S, Rouster J, Lassagne H, Lauria M, Dal Ferro N, Varotto S. Control of Maize Vegetative and Reproductive Development, Fertility, and rRNAs Silencing by HISTONE DEACETYLASE 108. Genetics 2018; 208:1443-1466. [PMID: 29382649 DOI: 10.1534/genetics.117.300625/-/dc1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/28/2018] [Indexed: 05/28/2023] Open
Abstract
Histone deacetylases (HDACs) catalyze the removal of acetyl groups from acetylated histone tails that consequently interact more closely with DNA, leading to chromatin state refractory to transcription. Zea mays HDA108 belongs to the Rpd3/HDA1 HDAC family and is ubiquitously expressed during development. The newly isolated hda108/hda108 insertional mutant exhibited many developmental defects: significant reduction in plant height, alterations of shoot and leaf development, and alterations of inflorescence patterning and fertility. Western blot analyses and immunolocalization experiments revealed an evident increase in histone acetylation, accompanied by a marked reduction in H3K9 dimethylation, in mutant nuclei. The DNA methylation status, in the CHG sequence context, and the transcript level of ribosomal sequences were also affected in hda108 mutants, while enrichment in H3 and H4 acetylation characterizes both repetitive and nonrepetitive transcriptional up-regulated loci. RNA-Seq of both young leaf and anthers indicated that transcription factor expression is highly affected and that the pollen developmental program is disrupted in hda108 mutants. Crosses between hda108/hda108 and epiregulator mutants did not produce any double mutant progeny indicating possible genetic interactions of HDA108 with distinct epigenetic pathways. Our findings indicate that HDA108 is directly involved in regulation of maize development, fertility, and epigenetic regulation of genome activity.
Collapse
Affiliation(s)
- Cristian Forestan
- Department of Agronomy Food Natural Resources, Animals and Environment (DAFNAE) Agripolis, University of Padova, 35020 Legnaro (PD), Italy
| | - Silvia Farinati
- Department of Agronomy Food Natural Resources, Animals and Environment (DAFNAE) Agripolis, University of Padova, 35020 Legnaro (PD), Italy
| | - Jacques Rouster
- GM Trait Cereals, Biogemma, Centre de Research de Chappes, 63720 Chappes, France
| | - Hervé Lassagne
- GM Trait Cereals, Biogemma, Centre de Research de Chappes, 63720 Chappes, France
| | - Massimiliano Lauria
- The Institute of Agricultural Biology and Biotechnology (IBBA), Consiglio Nazionale delle Ricerche (CNR), 20133 Milano, Italy
| | - Nicola Dal Ferro
- Department of Agronomy Food Natural Resources, Animals and Environment (DAFNAE) Agripolis, University of Padova, 35020 Legnaro (PD), Italy
| | - Serena Varotto
- Department of Agronomy Food Natural Resources, Animals and Environment (DAFNAE) Agripolis, University of Padova, 35020 Legnaro (PD), Italy
| |
Collapse
|
19
|
|
20
|
Control of Maize Vegetative and Reproductive Development, Fertility, and rRNAs Silencing by HISTONE DEACETYLASE 108. Genetics 2018; 208:1443-1466. [PMID: 29382649 PMCID: PMC5887141 DOI: 10.1534/genetics.117.300625] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/28/2018] [Indexed: 12/27/2022] Open
Abstract
Histone deacetylases (HDACs) catalyze the removal of acetyl groups from acetylated histone tails that consequently interact more closely with DNA, leading to chromatin state refractory to transcription. Zea mays HDA108 belongs to the Rpd3/HDA1 HDAC family and is ubiquitously expressed during development. The newly isolated hda108/hda108 insertional mutant exhibited many developmental defects: significant reduction in plant height, alterations of shoot and leaf development, and alterations of inflorescence patterning and fertility. Western blot analyses and immunolocalization experiments revealed an evident increase in histone acetylation, accompanied by a marked reduction in H3K9 dimethylation, in mutant nuclei. The DNA methylation status, in the CHG sequence context, and the transcript level of ribosomal sequences were also affected in hda108 mutants, while enrichment in H3 and H4 acetylation characterizes both repetitive and nonrepetitive transcriptional up-regulated loci. RNA-Seq of both young leaf and anthers indicated that transcription factor expression is highly affected and that the pollen developmental program is disrupted in hda108 mutants. Crosses between hda108/hda108 and epiregulator mutants did not produce any double mutant progeny indicating possible genetic interactions of HDA108 with distinct epigenetic pathways. Our findings indicate that HDA108 is directly involved in regulation of maize development, fertility, and epigenetic regulation of genome activity.
Collapse
|
21
|
Increased Power To Dissect Adaptive Traits in Global Sorghum Diversity Using a Nested Association Mapping Population. Genetics 2017; 206:573-585. [PMID: 28592497 PMCID: PMC5499173 DOI: 10.1534/genetics.116.198499] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/09/2017] [Indexed: 11/18/2022] Open
Abstract
Adaptation of domesticated species to diverse agroclimatic regions has led to abundant trait diversity. However, the resulting population structure and genetic heterogeneity confounds association mapping of adaptive traits. To address this challenge in sorghum [Sorghum bicolor (L.) Moench]-a widely adapted cereal crop-we developed a nested association mapping (NAM) population using 10 diverse global lines crossed with an elite reference line RTx430. We characterized the population of 2214 recombinant inbred lines at 90,000 SNPs using genotyping-by-sequencing. The population captures ∼70% of known global SNP variation in sorghum, and 57,411 recombination events. Notably, recombination events were four- to fivefold enriched in coding sequences and 5' untranslated regions of genes. To test the power of the NAM population for trait dissection, we conducted joint linkage mapping for two major adaptive traits, flowering time and plant height. We precisely mapped several known genes for these two traits, and identified several additional QTL. Considering all SNPs simultaneously, genetic variation accounted for 65% of flowering time variance and 75% of plant height variance. Further, we directly compared NAM to genome-wide association mapping (using panels of the same size) and found that flowering time and plant height QTL were more consistently identified with the NAM population. Finally, for simulated QTL under strong selection in diversity panels, the power of QTL detection was up to three times greater for NAM vs. association mapping with a diverse panel. These findings validate the NAM resource for trait mapping in sorghum, and demonstrate the value of NAM for dissection of adaptive traits.
Collapse
|
22
|
Yang H, Liu X, Xin M, Du J, Hu Z, Peng H, Rossi V, Sun Q, Ni Z, Yao Y. Genome-Wide Mapping of Targets of Maize Histone Deacetylase HDA101 Reveals Its Function and Regulatory Mechanism during Seed Development. THE PLANT CELL 2016; 28:629-45. [PMID: 26908760 PMCID: PMC4826005 DOI: 10.1105/tpc.15.00691] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 02/21/2016] [Indexed: 05/03/2023]
Abstract
Histone deacetylases (HDACs) regulate histone acetylation levels by removing the acetyl group from lysine residues. The maize (Zea mays) HDACHDA101 influences several aspects of development, including kernel size; however, the molecular mechanism by which HDA101 affects kernel development remains unknown. In this study, we find that HDA101 regulates the expression of transfer cell-specific genes, suggesting that their misregulation may be associated with the defects in differentiation of endosperm transfer cells and smaller kernels observed in hda101 mutants. To investigate HDA101 function during the early stages of seed development, we performed genome-wide mapping of HDA101 binding sites. We observed that, like mammalian HDACs, HDA101 mainly targets highly and intermediately expressed genes. Although loss of HDA101 can induce histone hyperacetylation of its direct targets, this often does not involve variation in transcript levels. A small subset of inactive genes that must be negatively regulated during kernel development is also targeted by HDA101 and its loss leads to hyperacetylation and increased expression of these inactive genes. Finally, we report that HDA101 interacts with members of different chromatin remodeling complexes, such as NFC103/MSI1 and SNL1/SIN3-like protein corepressors. Taken together, our results reveal a complex genetic network regulated by HDA101 during seed development and provide insight into the different mechanisms of HDA101-mediated regulation of transcriptionally active and inactive genes.
Collapse
Affiliation(s)
- Hua Yang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Xinye Liu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Jinkun Du
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, PR China
| | - HuiRu Peng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Vincenzo Rossi
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Unità di Ricerca per la Maiscoltura, I-24126 Bergamo, Italy
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, PR China
| |
Collapse
|
23
|
Han Z, Yu H, Zhao Z, Hunter D, Luo X, Duan J, Tian L. AtHD2D Gene Plays a Role in Plant Growth, Development, and Response to Abiotic Stresses in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:310. [PMID: 27066015 PMCID: PMC4815178 DOI: 10.3389/fpls.2016.00310] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 02/29/2016] [Indexed: 05/20/2023]
Abstract
The histone deacetylases play important roles in the regulation of gene expression and the subsequent control of a number of important biological processes, including those involved in the response to environmental stress. A specific group of histone deacetylase genes, HD2, is present in plants. In Arabidopsis, HD2s include HD2A, HD2B, HD2C, and HD2D. Previous research showed that HD2A, HD2B, and HD2C are more related in terms of expression and function, but not HD2D. In this report, we studied different aspects of AtHD2D in Arabidopsis with respect to plant response to drought and other abiotic stresses. Bioinformatics analysis indicates that HD2D is distantly related to other HD2 genes. Transient expression in Nicotiana benthamiana and stable expression in Arabidopsis of AtHD2D fused with gfp showed that AtHD2D was expressed in the nucleus. Overexpression of AtHD2D resulted in developmental changes including fewer main roots, more lateral roots, and a higher root:shoot ratio. Seed germination and plant flowering time were delayed in transgenic plants expressing AtHD2D, but these plants exhibited higher degrees of tolerance to abiotic stresses, including drought, salt, and cold stresses. Physiological studies indicated that the malondialdehyde (MDA) content was high in wild-type plants but in plants overexpressing HD2D the MDA level increased slowly in response to stress conditions of drought, cold, and salt stress. Furthermore, electrolyte leakage in leaf cells of wild type plants increased but remained stable in transgenic plants. Our results indicate that AtHD2D is unique among HD2 genes and it plays a role in plant growth and development regulation and these changes can modulate plant stress responses.
Collapse
Affiliation(s)
- Zhaofen Han
- College of Life Science, Northwest A & F UniversityYangling, China
| | - Huimin Yu
- Department of E-A Information Engineering, Liaoning Institute of Science and TechnologyBenxi, China
| | - Zhong Zhao
- College of Forestry, Northwest A & F UniversityYangling, China
- *Correspondence: Zhong Zhao
| | - David Hunter
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-food CanadaLondon, ON, Canada
| | - Xinjuan Luo
- College of Life Science, Northwest A & F UniversityYangling, China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Genetics and Breeding, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Lining Tian
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-food CanadaLondon, ON, Canada
- Lining Tian
| |
Collapse
|
24
|
Molecular Breeding of Sorghum bicolor, A Novel Energy Crop. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:221-57. [PMID: 26811289 DOI: 10.1016/bs.ircmb.2015.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Currently, molecular breeding is regarded as an important tool for the improvement of many crop species. However, in sorghum, recently heralded as an important bioenergy crop, progress in this field has been relatively slow and limited. In this review, we present existing efforts targeted at genetic characterization of sorghum mutants. We also comprehensively review the different attempts made toward the isolation of genes involved in agronomically important traits, including the dissection of some sorghum quantitative trait loci (QTLs). We also explore the current status of the use of transgenic techniques in sorghum, which should be crucial for advancing sorghum molecular breeding. Through this report, we provide a useful benchmark to help assess how much more sorghum genomics and molecular breeding could be improved.
Collapse
|
25
|
Mascheretti I, Turner K, Brivio RS, Hand A, Colasanti J, Rossi V. Florigen-Encoding Genes of Day-Neutral and Photoperiod-Sensitive Maize Are Regulated by Different Chromatin Modifications at the Floral Transition. PLANT PHYSIOLOGY 2015; 168:1351-63. [PMID: 26084920 PMCID: PMC4528754 DOI: 10.1104/pp.15.00535] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/17/2015] [Indexed: 05/04/2023]
Abstract
The activity of the maize (Zea mays) florigen gene ZEA CENTRORADIALIS8 (ZCN8) is associated with the floral transition in both day-neutral temperate maize and short-day (SD)-requiring tropical maize. We analyzed transcription and chromatin modifications at the ZCN8 locus and its nearly identical paralog ZCN7 during the floral transition. This analysis was performed with day-neutral maize (Zea mays ssp. mays), where flowering is promoted almost exclusively via the autonomous pathway through the activity of the regulatory gene indeterminate1 (id1), and tropical teosinte (Zea mays ssp. parviglumis) under floral inductive and noninductive photoperiods. Comparison of ZCN7/ZCN8 histone modification profiles in immature leaves of nonflowering id1 mutants and teosinte grown under floral inhibitory photoperiods reveals that both id1 floral inductive activity and SD-mediated induction result in histone modification patterns that are compatible with the formation of transcriptionally competent chromatin environments. Specific histone modifications are maintained during leaf development and may represent a chromatin signature that favors the production of processed ZCN7/ZCN8 messenger RNA in florigen-producing mature leaf. However, whereas id1 function promotes histone H3 hyperacetylation, SD induction is associated with increased histone H3 dimethylation and trimethylation at lysine-4. In addition, id1 and SD differently affect the production of ZCN7/ZCN8 antisense transcript. These observations suggest that distinct mechanisms distinguish florigen regulation in response to autonomous and photoperiod pathways. Finally, the identical expression and histone modification profiles of ZCN7 and ZCN8 in response to floral induction suggest that ZCN7 may represent a second maize florigen.
Collapse
Affiliation(s)
- Iride Mascheretti
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Unità di Ricerca per la Maiscoltura, I-24126 Bergamo, Italy (I.M., R.S.B., V.R.); andDepartment of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (K.T., A.H., J.C.)
| | - Katie Turner
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Unità di Ricerca per la Maiscoltura, I-24126 Bergamo, Italy (I.M., R.S.B., V.R.); andDepartment of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (K.T., A.H., J.C.)
| | - Roberta S Brivio
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Unità di Ricerca per la Maiscoltura, I-24126 Bergamo, Italy (I.M., R.S.B., V.R.); andDepartment of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (K.T., A.H., J.C.)
| | - Andrew Hand
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Unità di Ricerca per la Maiscoltura, I-24126 Bergamo, Italy (I.M., R.S.B., V.R.); andDepartment of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (K.T., A.H., J.C.)
| | - Joseph Colasanti
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Unità di Ricerca per la Maiscoltura, I-24126 Bergamo, Italy (I.M., R.S.B., V.R.); andDepartment of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (K.T., A.H., J.C.)
| | - Vincenzo Rossi
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Unità di Ricerca per la Maiscoltura, I-24126 Bergamo, Italy (I.M., R.S.B., V.R.); andDepartment of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (K.T., A.H., J.C.)
| |
Collapse
|
26
|
Zhao L, Wang P, Hou H, Zhang H, Wang Y, Yan S, Huang Y, Li H, Tan J, Hu A, Gao F, Zhang Q, Li Y, Zhou H, Zhang W, Li L. Transcriptional regulation of cell cycle genes in response to abiotic stresses correlates with dynamic changes in histone modifications in maize. PLoS One 2014; 9:e106070. [PMID: 25171199 PMCID: PMC4149478 DOI: 10.1371/journal.pone.0106070] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/27/2014] [Indexed: 12/22/2022] Open
Abstract
The histone modification level has been shown to be related with gene activation and repression in stress-responsive process, but there is little information on the relationship between histone modification and cell cycle gene expression responsive to environmental cues. In this study, the function of histone modifications in mediating the transcriptional regulation of cell cycle genes under various types of stress was investigated in maize (Zea mays L.). Abiotic stresses all inhibit the growth of maize seedlings, and induce total acetylation level increase compared with the control group in maize roots. The positive and negative regulation of the expression of some cell cycle genes leads to perturbation of cell cycle progression in response to abiotic stresses. Chromatin immunoprecipitation analysis reveals that dynamic histone acetylation change in the promoter region of cell cycle genes is involved in the control of gene expression in response to external stress and different cell cycle genes have their own characteristic patterns for histone acetylation. The data also showed that the combinations of hyperacetylation and hypoacetylation states of specific lysine sites on the H3 and H4 tails on the promoter regions of cell cycle genes regulate specific cell cycle gene expression under abiotic stress conditions, thus resulting in prolonged cell cycle duration and an inhibitory effect on growth and development in maize seedlings.
Collapse
Affiliation(s)
- Lin Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Pu Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yapei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shihan Yan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yan Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hui Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Junjun Tan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ao Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fei Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qi Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yingnan Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hong Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wei Zhang
- Renmin Hospital, Wuhan University, Wuhan, China
- * E-mail: (LL); (WZ)
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (LL); (WZ)
| |
Collapse
|
27
|
Zhao L, Wang P, Yan S, Gao F, Li H, Hou H, Zhang Q, Tan J, Li L. Promoter-associated histone acetylation is involved in the osmotic stress-induced transcriptional regulation of the maize ZmDREB2A gene. PHYSIOLOGIA PLANTARUM 2014; 151:459-467. [PMID: 24299295 DOI: 10.1111/ppl.12136] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 06/02/2023]
Abstract
Epigenetic modifications play a key role in the transcriptional regulation of stress-induced gene expression in plants. In this study, we showed that the overall acetylation levels of histone H3 lysine 9 (H3K9) and H4 lysine 5 (H4K5) in the genome were increased in maize seedlings after mannitol treatment (to mimic osmotic stress). Mannitol treatment significantly induced the upregulation of the maize osmotic stress responsive gene Zea mays dehydration-responsive element binding protein 2A (ZmDREB2A), whereas abscisic acid (ABA) did not result in the induction of this gene. The application of exogenous ABA under osmotic stress conditions strongly repressed the induction of the ZmDREB2A gene. Chromatin immunoprecipitation and chromatin accessibility by real-time PCR experiments revealed that the promoter region of the ZmDREB2A gene was quickly hyperacetylated and decondensed after the mannitol treatment, suggesting that the promoter region is poised for histone acetylation to allow for fast induction of the ZmDREB2A gene. However, under osmotic stress conditions, the ABA treatment decreased the acetylation status and chromatin accessibility to micrococcal nuclease. These results suggest that osmotic stress activates the transcription of the ZmDREB2A gene by increasing the levels of acetylated histones H3K9 and H4K5 associated with the ZmDREB2A promoter region.
Collapse
Affiliation(s)
- Lin Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Liu X, Yang S, Zhao M, Luo M, Yu CW, Chen CY, Tai R, Wu K. Transcriptional repression by histone deacetylases in plants. MOLECULAR PLANT 2014; 7:764-72. [PMID: 24658416 DOI: 10.1093/mp/ssu033] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Reversible histone acetylation and deacetylation at the N-terminus of histone tails play crucial roles in regulation of eukaryotic gene activity. Acetylation of core histones usually induces an 'open' chromatin structure and is associated with gene activation, whereas deacetylation of histone is often correlated with 'closed' chromatin and gene repression. Histone deacetylation is catalyzed by histone deacetylases (HDACs). A growing number of studies have demonstrated the importance of histone deacetylation/acetylation on genome stability, transcriptional regulation, and development in plants. Furthermore, HDACs were shown to interact with various chromatin remolding factors and transcription factors involved in transcriptional repression in multiple developmental processes. In this review, we summarized recent findings on the transcriptional repression mediated by HDACs in plants.
Collapse
Affiliation(s)
- Xuncheng Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Yan S, Zhang Q, Li Y, Huang Y, Zhao L, Tan J, He S, Li L. Comparison of chromatin epigenetic modification patterns among root meristem, elongation and maturation zones in maize (Zea mays L.). Cytogenet Genome Res 2014; 143:179-88. [PMID: 24731999 DOI: 10.1159/000361003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Plant roots mainly consist of division, elongation and maturation regions. Histone modifications of chromatin play a vital role in plant cell growth and differentiation. However, there has been no systematic attempt to investigate the distribution patterns of histone modifications in the different plant root zones. In this study, histone H3 acetylation (H3K9ac), histone H4 acetylation (H4K5ac), and histone H3 methylation (H3K4me2, H3K4me3, H3K9me1, H3K9me2, and H3K27me2) levels and distribution patterns were examined in the root meristem, elongation and maturation zones of maize primary roots. Overall, the cells of the maturation zone displayed the highest level of multiple histone modifications. The lowest level of histone modification was detected in the root meristem. H3K9ac was enriched in the euchromatin and nucleoli of most nuclei from the elongation and maturation zones. The nucleoli of more than 60% of cells from all root regions were labeled by H4K5ac. In only a small proportion of cells (less than 7%), knobs showed H4K5ac signals. H3K4me2 and H3K4me3 were specifically detected in euchromatin. H3K9me1, H3K9me2 and H3K27me2 labeled heterochromatin and euchromatin in all the root tissues analyzed. Over 30% of elongation and maturation cells exhibited H3K9me1 signals around knobs, approximately 5% of maturation cells showed signals of H3K9me2 around knobs, and H3K27me2 was stained weakly in approximately 95% of maturation cells in knobs. Analysis of the genomic patterns of histone modifications across functionally distinct regions of maize roots reveals a root zone-specific chromatin distribution.
Collapse
Affiliation(s)
- Shihan Yan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, PR China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Epigenetic variation, inheritance, and parent-of-origin effects of cytosine methylation in maize (Zea mays). Genetics 2013; 196:653-66. [PMID: 24374354 DOI: 10.1534/genetics.113.160515] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Pure epigenetic variation, or epigenetic variation that is independent of genetic context, may provide a mechanism for phenotypic variation in the absence of DNA mutations. To estimate the extent of pure epigenetic variation within and across generations and to identify the DNA regions targeted, a group of eight plants derived from a highly inbred line of maize (Zea mays) was analyzed by the methylation-sensitive amplified polymorphism (MSAP) technique. We found that cytosine methylation (mC) differences among individuals accounted for up to 7.4% of CCGG sites investigated by MSAP. Of the differentially methylated fragments (DMFs) identified in the S0 generation, ∼12% were meiotically inherited for at least six generations. We show that meiotically heritable mC variation was consistently generated for an average of 0.5% CCGG sites per generation and that it largely occurred somatically. We provide evidence that mC variation can be established and inherited in a parent-of-origin manner, given that the paternal lineage is more prone to both forward and reverse mC changes. The molecular characterization of selected DMFs revealed that the variation was largely determined by CG methylation changes that map within gene regions. The expression analysis of genes overlapping with DMFs did not reveal an obvious correlation between mC variation and transcription, reinforcing the idea that the primary function of gene-body methylation is not to control gene expression. Because this study focuses on epigenetic variation in field-grown plants, the data presented herein pertain to spontaneous epigenetic changes of the maize genome in a natural context.
Collapse
|
31
|
Perrella G, Lopez-Vernaza MA, Carr C, Sani E, Gosselé V, Verduyn C, Kellermeier F, Hannah MA, Amtmann A. Histone deacetylase complex1 expression level titrates plant growth and abscisic acid sensitivity in Arabidopsis. THE PLANT CELL 2013; 25:3491-505. [PMID: 24058159 PMCID: PMC3809545 DOI: 10.1105/tpc.113.114835] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/23/2013] [Accepted: 08/28/2013] [Indexed: 05/19/2023]
Abstract
Histone deacetylation regulates gene expression during plant stress responses and is therefore an interesting target for epigenetic manipulation of stress sensitivity in plants. Unfortunately, overexpression of the core enzymes (histone deacetylases [HDACs]) has either been ineffective or has caused pleiotropic morphological abnormalities. In yeast and mammals, HDACs operate within multiprotein complexes. Searching for putative components of plant HDAC complexes, we identified a gene with partial homology to a functionally uncharacterized member of the yeast complex, which we called Histone Deacetylation Complex1 (HDC1). HDC1 is encoded by a single-copy gene in the genomes of model plants and crops and therefore presents an attractive target for biotechnology. Here, we present a functional characterization of HDC1 in Arabidopsis thaliana. We show that HDC1 is a ubiquitously expressed nuclear protein that interacts with at least two deacetylases (HDA6 and HDA19), promotes histone deacetylation, and attenuates derepression of genes under water stress. The fast-growing HDC1-overexpressing plants outperformed wild-type plants not only on well-watered soil but also when water supply was reduced. Our findings identify HDC1 as a rate-limiting component of the histone deacetylation machinery and as an attractive tool for increasing germination rate and biomass production of plants.
Collapse
Affiliation(s)
- Giorgio Perrella
- Plant Science Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G128QQ, United Kingdom
| | - Manuel A. Lopez-Vernaza
- Plant Science Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G128QQ, United Kingdom
| | - Craig Carr
- Plant Science Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G128QQ, United Kingdom
| | - Emanuela Sani
- Plant Science Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G128QQ, United Kingdom
| | | | | | - Fabian Kellermeier
- Plant Science Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G128QQ, United Kingdom
| | | | - Anna Amtmann
- Plant Science Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G128QQ, United Kingdom
- Address correspondence to
| |
Collapse
|
32
|
Ma X, Lv S, Zhang C, Yang C. Histone deacetylases and their functions in plants. PLANT CELL REPORTS 2013; 32:465-78. [PMID: 23408190 DOI: 10.1007/s00299-013-1393-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 01/12/2013] [Accepted: 01/24/2013] [Indexed: 05/07/2023]
Abstract
Histone deacetylases (HDACs) mediate histone deacetylation and act in concert with histone acetyltransferases to regulate dynamic and reversible histone acetylation which modifies chromatin structure and function, affects gene transcription, thus, controlling multiple cellular processes. HDACs are widely distributed in almost all eukaryotes, and there have been many researches focusing on plant HDACs recently. An increasing number of HDAC genes have been identified and characterized in a variety of plant species and the functions of certain HDACs have been studied. The present studies indicate that HDACs play a key role in regulating plant growth, development and stress responses. This paper reviews recent findings on HDACs and their functions in plants, especially their roles in development and stress responses.
Collapse
Affiliation(s)
- Xujun Ma
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040, China
| | | | | | | |
Collapse
|
33
|
Mascheretti I, Battaglia R, Mainieri D, Altana A, Lauria M, Rossi V. The WD40-repeat proteins NFC101 and NFC102 regulate different aspects of maize development through chromatin modification. THE PLANT CELL 2013; 25:404-20. [PMID: 23424244 PMCID: PMC3608768 DOI: 10.1105/tpc.112.107219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The maize (Zea mays) nucleosome remodeling factor complex component101 (nfc101) and nfc102 are putative paralogs encoding WD-repeat proteins with homology to plant and mammalian components of various chromatin modifying complexes. In this study, we generated transgenic lines with simultaneous nfc101 and nfc102 downregulation and analyzed phenotypic alterations, along with effects on RNA levels, the binding of NFC101/NFC102, and Rpd3-type histone deacetylases (HDACs), and histone modifications at selected targets. Direct NFC101/NFC102 binding and negative correlation with mRNA levels were observed for indeterminate1 (id1) and the florigen Zea mays CENTRORADIALIS8 (ZCN8), key activators of the floral transition. In addition, the abolition of NFC101/NFC102 association with repetitive sequences of different transposable elements (TEs) resulted in tissue-specific upregulation of nonpolyadenylated RNAs produced by these regions. All direct nfc101/nfc102 targets showed histone modification patterns linked to active chromatin in nfc101/nfc102 downregulation lines. However, different mechanisms may be involved because NFC101/NFC102 proteins mediate HDAC recruitment at id1 and TE repeats but not at ZCN8. These results, along with the pleiotropic effects observed in nfc101/nfc102 downregulation lines, suggest that NFC101 and NFC102 are components of distinct chromatin modifying complexes, which operate in different pathways and influence diverse aspects of maize development.
Collapse
|
34
|
Abstract
The analysis of gene expression at transcript and at protein level is of outstanding importance in plant developmental biology. Proteins can be localized with subcellular resolution by immunolocalization using specific antibodies or generating reporter lines carrying the specific protein fused to a fluorescent protein. Immunolocalization is particularly suitable to confirm the expression pattern of transgenic reporter lines. It also represents a valid alternative, especially for plants such as maize, for which transformation is time consuming and still often unsuccessful, by-passing also some side-effects of fusion proteins. Indeed, the availability of specific antibodies for immunolocalizations and observations of maize tissues under a confocal microscope is a powerful tool for studying protein targeting to different cellular compartments.In the following chapter we describe the complete procedure for the localization of proteins in different maize tissues both at cellular and sub-cellular level, using polyclonal or monoclonal antibodies. Tissues can be embedded in different substrates, such as paraplast, PEG400 and agarose, depending on the tissue and the desired use: epifluorescence or confocal microscope observations. An additional protocol for the analysis of the nuclear distribution of modified histones in squashed maize root apexes is also presented.
Collapse
Affiliation(s)
- Cristian Forestan
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padova, Italy
| | | | | |
Collapse
|
35
|
Kapazoglou A, Engineer C, Drosou V, Kalloniati C, Tani E, Tsaballa A, Kouri ED, Ganopoulos I, Flemetakis E, Tsaftaris AS. The study of two barley type I-like MADS-box genes as potential targets of epigenetic regulation during seed development. BMC PLANT BIOLOGY 2012; 12:166. [PMID: 22985436 PMCID: PMC3499179 DOI: 10.1186/1471-2229-12-166] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 08/30/2012] [Indexed: 05/09/2023]
Abstract
BACKGROUND MADS-box genes constitute a large family of transcription factors functioning as key regulators of many processes during plant vegetative and reproductive development. Type II MADS-box genes have been intensively investigated and are mostly involved in vegetative and flowering development. A growing number of studies of Type I MADS-box genes in Arabidopsis, have assigned crucial roles for these genes in gamete and seed development and have demonstrated that a number of Type I MADS-box genes are epigenetically regulated by DNA methylation and histone modifications. However, reports on agronomically important cereals such as barley and wheat are scarce. RESULTS Here we report the identification and characterization of two Type I-like MADS-box genes, from barley (Hordeum vulgare), a monocot cereal crop of high agronomic importance. Protein sequence and phylogenetic analysis showed that the putative proteins are related to Type I MADS-box proteins, and classified them in a distinct cereal clade. Significant differences in gene expression among seed developmental stages and between barley cultivars with varying seed size were revealed for both genes. One of these genes was shown to be induced by the seed development- and stress-related hormones ABA and JA whereas in situ hybridizations localized the other gene to specific endosperm sub-compartments. The genomic organization of the latter has high conservation with the cereal Type I-like MADS-box homologues and the chromosomal position of both genes is close to markers associated with seed quality traits. DNA methylation differences are present in the upstream and downstream regulatory regions of the barley Type I-like MADS-box genes in two different developmental stages and in response to ABA treatment which may be associated with gene expression differences. CONCLUSIONS Two barley MADS-box genes were studied that are related to Type I MADS-box genes. Differential expression in different seed developmental stages as well as in barley cultivars with different seed size was evidenced for both genes. The two barley Type I MADS-box genes were found to be induced by ABA and JA. DNA methylation differences in different seed developmental stages and after exogenous application of ABA is suggestive of epigenetic regulation of gene expression. The study of barley Type I-like MADS-box genes extends our investigations of gene regulation during endosperm and seed development in a monocot crop like barley.
Collapse
Affiliation(s)
- Aliki Kapazoglou
- Institute of Agrobiotechnology (INA), CERTH, Thermi-Thessaloniki, GR-57001, Greece
| | - Cawas Engineer
- Institute of Agrobiotechnology (INA), CERTH, Thermi-Thessaloniki, GR-57001, Greece
| | - Vicky Drosou
- Institute of Agrobiotechnology (INA), CERTH, Thermi-Thessaloniki, GR-57001, Greece
| | - Chrysanthi Kalloniati
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens, GR-11855, Greece
| | - Eleni Tani
- Institute of Agrobiotechnology (INA), CERTH, Thermi-Thessaloniki, GR-57001, Greece
| | - Aphrodite Tsaballa
- Department of Genetics and Plant Breeding, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - Evangelia D Kouri
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens, GR-11855, Greece
| | - Ioannis Ganopoulos
- Department of Genetics and Plant Breeding, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - Emmanouil Flemetakis
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens, GR-11855, Greece
| | - Athanasios S Tsaftaris
- Institute of Agrobiotechnology (INA), CERTH, Thermi-Thessaloniki, GR-57001, Greece
- Department of Genetics and Plant Breeding, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| |
Collapse
|
36
|
Trichostatin A selectively suppresses the cold-induced transcription of the ZmDREB1 gene in maize. PLoS One 2011; 6:e22132. [PMID: 21811564 PMCID: PMC3141014 DOI: 10.1371/journal.pone.0022132] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Accepted: 06/16/2011] [Indexed: 02/06/2023] Open
Abstract
Post-translational modifications of histone proteins play a crucial role in responding to environmental stresses. Histone deacetylases (HDACs) catalyze the removal of an acetyl group from histones and are generally believed to be a transcriptional repressor. In this paper, we report that cold treatment highly induces the up-regulation of HDACs, leading to global deacetylation of histones H3 and H4. Treatment of maize with the HDAC inhibitor trichostatin A (TSA) under cold stress conditions strongly inhibits induction of the maize cold-responsive genes ZmDREB1 and ZmCOR413. However, up-regulation of the ZmICE1 gene in response to cold stress is less affected. The expression of drought and salt induced genes, ZmDBF1 and rab17, is almost unaffected by TSA treatment. Thus, these observations show that HDACs may selectively activate transcription. The time course of TSA effects on the expression of ZmDREB1 and ZmCOR413 genes indicates that HDACs appear to directly activate the ZmDREB1 gene, which in turn modulates ZmCOR413 expression. After cold treatment, histone hyperacetylation and DNA demethylation occurs in the ICE1 binding region, accompanied by an increase in accessibility to micrococcal nuclease (MNase). The two regions adjacent to the ICE1 binding site remain hypoacetylated and methylated. However, during cold acclimation, TSA treatment increases the acetylation status and accessibility of MNase and decreases DNA methylation at these two regions. However, TSA treatment does not affect histone hyperacetylation and DNA methylation levels at the ICE1 binding regions of the ZmDREB1 gene. Altogether, our findings indicate that HDACs positively regulate the expression of the cold-induced ZmDREB1 gene through histone modification and chromatin conformational changes and that this activation is both gene and site selective.
Collapse
|
37
|
Osnato M, Stile MR, Wang Y, Meynard D, Curiale S, Guiderdoni E, Liu Y, Horner DS, Ouwerkerk PB, Pozzi C, Müller KJ, Salamini F, Rossini L. Cross talk between the KNOX and ethylene pathways is mediated by intron-binding transcription factors in barley. PLANT PHYSIOLOGY 2010; 154:1616-32. [PMID: 20921155 PMCID: PMC2996029 DOI: 10.1104/pp.110.161984] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Accepted: 09/30/2010] [Indexed: 05/18/2023]
Abstract
In the barley (Hordeum vulgare) Hooded (Kap) mutant, the duplication of a 305-bp intron sequence leads to the overexpression of the Barley knox3 (Bkn3) gene, resulting in the development of an extra flower in the spikelet. We used a one-hybrid screen to identify four proteins that bind the intron-located regulatory element (Kap intron-binding proteins). Three of these, Barley Ethylene Response Factor1 (BERF1), Barley Ethylene Insensitive Like1 (BEIL1), and Barley Growth Regulating Factor1 (BGRF1), were characterized and their in vitro DNA-binding capacities verified. Given the homology of BERF1 and BEIL1 to ethylene signaling proteins, we investigated if these factors might play a dual role in intron-mediated regulation and ethylene response. In transgenic rice (Oryza sativa), constitutive expression of the corresponding genes produced phenotypic alterations consistent with perturbations in ethylene levels and variations in the expression of a key gene of ethylene biosynthesis. In barley, ethylene treatment results in partial suppression of the Kap phenotype, accompanied by up-regulation of BERF1 and BEIL1 expression, followed by down-regulation of Bkn3 mRNA levels. In rice protoplasts, BEIL1 activates the expression of a reporter gene driven by the 305-bp intron element, while BERF1 can counteract this activation. Thus, BEIL1 and BERF1, likely in association with other Kap intron-binding proteins, should mediate the fine-tuning of Bkn3 expression by ethylene. We propose a hypothesis for the cross talk between the KNOX and ethylene pathways.
Collapse
|
38
|
Wight WD, Kim KH, Lawrence CB, Walton JD. Biosynthesis and role in virulence of the histone deacetylase inhibitor depudecin from Alternaria brassicicola. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1258-67. [PMID: 19737099 DOI: 10.1094/mpmi-22-10-1258] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Depudecin, an eleven-carbon linear polyketide made by the pathogenic fungus Alternaria brassicicola, is an inhibitor of histone deacetylase (HDAC). A chemically unrelated HDAC inhibitor, HC toxin, was earlier shown to be a major virulence factor in the interaction between Cochliobolus carbonum and its host, maize. In order to test whether depudecin is also a virulence factor for A. brassicicola, we identified the genes for depudecin biosynthesis and created depudecin-minus mutants. The depudecin gene cluster contains six genes (DEP1 to DEP6), which are predicted to encode a polyketide synthase (AbPKS9 or DEP5), a transcription factor (DEP6), two monooxygenases (DEP2 and DEP4), a transporter of the major facilitator superfamily (DEP3), and one protein of unknown function (DEP1). The involvement in depudecin production of DEP2, DEP4, DEP5, and DEP6 was demonstrated by targeted gene disruption. DEP6 is required for expression of DEP1 through DEP5 but not the immediate flanking genes, thus defining a coregulated depudecin biosynthetic cluster. The genes flanking the depudecin gene cluster but not the cluster itself are conserved in the same order in the related fungi Stagonospora nodorum and Pyrenophora tritici-repentis. Depudecin-minus mutants have a small (10%) but statistically significant reduction in virulence on cabbage (Brassica oleracea) but not on Arabidopsis. The role of depudecin in virulence is, therefore, less dramatic than that of HC toxin.
Collapse
Affiliation(s)
- Wanessa D Wight
- Department of Energy - Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
39
|
Chung PJ, Kim YS, Jeong JS, Park SH, Nahm BH, Kim JK. The histone deacetylase OsHDAC1 epigenetically regulates the OsNAC6 gene that controls seedling root growth in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:764-76. [PMID: 19453457 DOI: 10.1111/j.1365-313x.2009.03908.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We have previously isolated a rice gene encoding a histone deacetylase, OsHDAC1, and observed that its transgenic overexpression increases seedling root growth. To identify the transcriptional repression events that occur as a result of OsHDAC1 overexpression (OsHDAC1(OE)), a global profiling of root-expressed genes was performed on OsHDAC1(OE) or HDAC inhibitor-treated non-transgenic (NT) roots, in comparison with untreated NT roots. We selected 39 genes that are induced and repressed in HDAC inhibitor-treated NT and OsHDAC1(OE) roots, compared with NT roots, respectively. Interestingly, OsNAC6, a member of the NAM-ATAF-CUC (NAC) family, was identified as a key component of the OsHDAC1 regulon, and was found to be epigenetically repressed by OsHDAC1 overexpression. The root phenotype of OsNAC6 knock-out seedlings was observed to be similar to that of the OsHDAC1(OE) seedlings. Conversely, the root phenotype of the OsNAC6 overexpressors was similar to that of the OsHDAC1 knock-out seedlings. These observations indicate that OsHDAC1 negatively regulates the OsNAC6 gene that primarily mediates the alteration in the root growth of the OsHDAC1(OE) seedlings. Chromatin immunoprecipitation assays of the OsNAC6 promoter region using antibodies specific to acetylated histones H3 and H4 revealed that OsHDAC1 epigenetically represses the expression of OsNAC6 by deacetylating K9, K14 and K18 on H3 and K5, K12 and K16 on H4.
Collapse
Affiliation(s)
- Pil Joong Chung
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin, Korea
| | | | | | | | | | | |
Collapse
|
40
|
Demetriou K, Kapazoglou A, Tondelli A, Francia E, Stanca MA, Bladenopoulos K, Tsaftaris AS. Epigenetic chromatin modifiers in barley: I. Cloning, mapping and expression analysis of the plant specific HD2 family of histone deacetylases from barley, during seed development and after hormonal treatment. PHYSIOLOGIA PLANTARUM 2009; 136:358-68. [PMID: 19470089 DOI: 10.1111/j.1399-3054.2009.01236.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Epigenetic phenomena have been associated with modifications of chromatin structure. These are achieved, in part, by histone post-translational modifications including acetylations and deacetylations, the later being catalyzed by histone deacetylaces (HDACs). Eukaryotic HDACs are grouped into three major families, RPD3/HDA1, SIR2 and the plant-specific HD2. HDAC genes have been analyzed from model plants such as Arabidopsis, rice and maize and have been shown to be involved in various cellular processes including seed development, vegetative and reproductive growth and responses to abiotic and biotic stress, but reports on HDACs from other crops are limited. In this work two full-length cDNAs (HvHDAC2-1 and HvHDAC2-2) encoding two members of the plant-specific HD2 family, respectively, were isolated and characterized from barley (Hordeum vulgare), an agronomically important cereal crop. HvHDAC2-1 and HvHDAC2-2 were mapped on barley chromosomes 1H and 3H, respectively, which could prove useful in developing markers for marker-assisted selection in breeding programs. Expression analysis of the barley HD2 genes demonstrated that they are expressed in all tissues and seed developmental stages examined. Significant differences were observed among tissues and seed stages, and between cultivars with varying seed size, suggesting an association of these genes with seed development. Furthermore, the HD2 genes from barley were found to respond to treatments with plant stress-related hormones such as jasmonic acid (JA), abscisic acid (ABA) and salicylic acid (SA) implying an association of these genes with plant resistance to biotic and abiotic stress. The expression pattern of HD2 genes suggests a possible role for these genes in the epigenetic regulation of seed development and stress response.
Collapse
Affiliation(s)
- Kyproula Demetriou
- Centre for Research & Technology, Institute of Agrobiotechnology, Thermi-Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|
41
|
Locatelli S, Piatti P, Motto M, Rossi V. Chromatin and DNA modifications in the Opaque2-mediated regulation of gene transcription during maize endosperm development. THE PLANT CELL 2009; 21:1410-27. [PMID: 19482970 PMCID: PMC2700540 DOI: 10.1105/tpc.109.067256] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/05/2009] [Accepted: 05/13/2009] [Indexed: 05/20/2023]
Abstract
The maize (Zea mays) Opaque2 (O2) gene encodes an endosperm-specific bZIP-type transcription activator. In this study, we analyzed O2 targets for chromatin and DNA modifications and transcription factors binding during endosperm development and in leaves. In leaves, O2 targets exhibit high cytosine methylation levels and transcriptionally silent chromatin, enriched with histones H3 dimethylated at Lys-9 (H3K9me2) and Lys-27 (H3K27me2). Transcriptional activation in the endosperm occurs through a two-step process, with an early potentiated state and a later activated state. The potentiated state has cytosine demethylation at symmetric sites, substitution of H3K9me2 and H3K27me2 with histones H3 acetylated at Lys-14 (H3K14ac) and dimethylated at Lys-4 (H3K4me2), and increased DNaseI sensitivity. During the activated state, the mRNA of O2 targets accumulates in correspondence to RNPII, O2, and Ada2/Gcn5 coactivator binding. The active state also exhibits further increases of H3K14ac/H3K4me2 and DNaseI accessibility levels and deposition of histone H3 acetylated at Lys-9 and trimethylated at Lys-4. Analysis of o2 mutants revealed that O2 targets differ in their dependence on O2 activity for coactivator recruitment and for formation of specific chromatin modification profiles. These results indicate gene-specific involvement of mechanisms that modify chromatin states in the O2-mediated regulation of transcription.
Collapse
Affiliation(s)
- Sabrina Locatelli
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Unità di Ricerca per la Maiscoltura, I-24126 Bergamo, Italy
| | | | | | | |
Collapse
|
42
|
Chinnusamy V, Zhu JK. Epigenetic regulation of stress responses in plants. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:133-9. [PMID: 19179104 PMCID: PMC3139470 DOI: 10.1016/j.pbi.2008.12.006] [Citation(s) in RCA: 648] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 12/09/2008] [Accepted: 12/11/2008] [Indexed: 05/18/2023]
Abstract
Gene expression driven by developmental and stress cues often depends on nucleosome histone post-translational modifications and sometimes on DNA methylation. A number of studies have shown that these DNA and histone modifications play a key role in gene expression and plant development under stress. Most of these stress-induced modifications are reset to the basal level once the stress is relieved, while some of the modifications may be stable, that is, may be carried forward as 'stress memory' and may be inherited across mitotic or even meiotic cell divisions. Epigenetic stress memory may help plants more effectively cope with subsequent stresses. Comparative studies on stress-responsive epigenomes and transcriptomes will enhance our understanding of stress adaptation of plants.
Collapse
Affiliation(s)
- Viswanathan Chinnusamy
- Water Technology Centre, Indian Agricultural Research Institute, New Delhi 110012, India
| | | |
Collapse
|
43
|
Granot G, Sikron-Persi N, Li Y, Grafi G. Phosphorylated H3S10 occurs in distinct regions of the nucleolus in differentiated leaf cells. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1789:220-4. [PMID: 19135559 DOI: 10.1016/j.bbagrm.2008.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 12/08/2008] [Accepted: 12/09/2008] [Indexed: 01/05/2023]
Abstract
Serine 10 phosphorylation of histone H3 (H3S10ph) has long been considered a mitotic marker, which is often associated with chromosome condensation both in plants and animals. Yet, in animal cells, H3S10ph was found associated with transcriptional activation of genes. Here we extend this view to plant cells showing that H3S10ph not only occurs in dividing cells during mitosis, but also in differentiated mesophyll cells. In these cells H3S10ph displayed a peculiar localization within the nucleolus where it was restricted to specific domains reminiscent of fibrillar centers. Chromatin immunoprecipitation analysis showed that H3S10ph is associated with ribosomal DNAs. Thus, in plants H3S10ph appears to be associated with two structurally differing nuclear sites engaged in gene silencing (mitotic centromeres) and in gene transcription (nucleolus).
Collapse
Affiliation(s)
- Gila Granot
- French Associates Institute for Dryland Agriculture and Biotechnology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel
| | | | | | | |
Collapse
|
44
|
Castro C, Motto M, Rossi V, Manetti C. Variation of metabolic profiles in developing maize kernels up- and down-regulated for the hda101 gene. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3913-24. [PMID: 18836140 PMCID: PMC2576642 DOI: 10.1093/jxb/ern239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/01/2008] [Accepted: 08/14/2008] [Indexed: 05/24/2023]
Abstract
To shed light on the specific contribution of HDA101 in modulating metabolic pathways in the maize seed, changes in the metabolic profiles of kernels obtained from hda101 mutant plants have been investigated by a metabonomic approach. Dynamic properties of chromatin folding can be mediated by enzymes that modify DNA and histones. The enzymes responsible for the steady-state of histone acetylation are histone acetyltransferase and histone deacetylase (HDA). Therefore, it is interesting to evaluate the effects of up- and down-regulation of a Rpd-3 type HDA on the development of maize seeds in terms of metabolic changes. This has been reached by analysing nuclear magnetic resonance spectra by different chemometrician approaches, such as Orthogonal Projection to Latent Structure-Discriminant Analysis, Parallel Factors Analysis, and Multi-way Partial Least Squares-Discriminant Analysis (N-PLS-DA). In particular, the latter approaches were chosen because they explicitly take time into account, organizing data into a set of slices that refer to different steps of the developing process. The results show the good discriminating capabilities of the N-PLS-DA approach, even if the number of samples ought be increased to obtain better predictive capabilities. However, using this approach, it was possible to show differences in the accumulation of metabolites during development and to highlight the changes occuring in the modified seeds. In particular, the results confirm the role of this gene in cell cycle control.
Collapse
Affiliation(s)
- Cecilia Castro
- Dipartimento di Chimica, Università degli Studi di Roma ‘La Sapienza’, Piazzale Aldo Moro 5, 00185-Roma, Italia
| | - Mario Motto
- CRA-Unità di Ricerca per la Maiscoltura, Bergamo, Italia
| | - Vincenzo Rossi
- CRA-Unità di Ricerca per la Maiscoltura, Bergamo, Italia
| | - Cesare Manetti
- Dipartimento di Chimica, Università degli Studi di Roma ‘La Sapienza’, Piazzale Aldo Moro 5, 00185-Roma, Italia
| |
Collapse
|
45
|
Developmental and environmental signals induce distinct histone acetylation profiles on distal and proximal promoter elements of the C4-Pepc gene in maize. Genetics 2008; 179:1891-901. [PMID: 18689888 DOI: 10.1534/genetics.108.087411] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The maize C(4)-Pepc gene is expressed in an organ- and cell-type-specific manner, inducible by light and modulated by nutrient availability and the metabolic state of the cell. We studied the contribution of histone acetylation at five lysine residues to the integration of these signals into a graduated promoter response. In roots and coleoptiles, where the gene is constitutively inactive, three of the five lysines were acetylated and the modifications showed unique patterns with respect to their distribution on the gene. A similar pattern was observed in etiolated leaves, where the gene is poised for activation by light. Here, illumination selectively induced the acetylation of histone H4 lysine 5 and histone H3 lysine 9 in both the promoter and the transcribed region, again with unique distribution patterns. Induction was independent of transcription and fully reversible in the dark. Nitrate and hexose availability modulated acetylation of all five lysines restricted to a distal promoter region, whereas proximal promoter acetylation was highly resistant to these stimuli. Our data suggest that light induction of acetylation is controlled by regulating HDAC activity, whereas metabolic signals regulate HAT activity. Acetylation turnover rates were high in the distal promoter and the transcribed regions, but low on the proximal promoter. On the basis of these results, we propose a model with three levels of stimulus-induced histone modifications that collectively adjust promoter activity. The results support a charge neutralization model for the distal promoter and a stimulus-mediated, but transcription-independent, histone acetylation pattern on the core promoter, which might be part of a more complex histone code.
Collapse
|