1
|
Hosokawa C, Yagi H, Segami S, Nagano AJ, Koumoto Y, Tamura K, Oka Y, Matsushita T, Shimada T. The Arabidopsis katamari2 Mutant Exhibits a Hypersensitive Seedling Arrest Response at the Phase Transition from Heterotrophic to Autotrophic Growth. PLANT & CELL PHYSIOLOGY 2024; 65:350-361. [PMID: 38175914 DOI: 10.1093/pcp/pcad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024]
Abstract
Young seedlings use nutrients stored in the seeds to grow and acquire photosynthetic potential. This process, called seedling establishment, involves a developmental phase transition from heterotrophic to autotrophic growth. Some membrane-trafficking mutants of Arabidopsis (Arabidopsis thaliana), such as the katamari2 (kam2) mutant, exhibit growth arrest during seedling development, with a portion of individuals failing to develop true leaves on sucrose-free solid medium. However, the reason for this seedling arrest is unclear. In this study, we show that seedling arrest is a temporal growth arrest response that occurs not only in kam2 but also in wild-type (WT) Arabidopsis; however, the threshold for this response is lower in kam2 than in the WT. A subset of the arrested kam2 seedlings resumed growth after transfer to fresh sucrose-free medium. Growth arrest in kam2 on sucrose-free medium was restored by increasing the gel concentration of the medium or covering the surface of the medium with a perforated plastic sheet. WT Arabidopsis seedlings were also arrested when the gel concentration of sucrose-free medium was reduced. RNA sequencing revealed that transcriptomic changes associated with the rate of seedling establishment were observed as early as 4 d after sowing. Our results suggest that the growth arrest of both kam2 and WT seedlings is an adaptive stress response and is not simply caused by the lack of a carbon source in the medium. This study provides a new perspective on an environmental stress response under unfavorable conditions during the phase transition from heterotrophic to autotrophic growth in Arabidopsis.
Collapse
Affiliation(s)
- Chika Hosokawa
- Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| | - Hiroki Yagi
- Graduate School of Natural Science, Konan University, Kobe, 658-8501 Japan
| | - Shoji Segami
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, 444-8585 Japan
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, 444-8585 Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, 520-2194 Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017 Japan
| | - Yasuko Koumoto
- Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| | - Kentaro Tamura
- Department of Environmental and Life Sciences, University of Shizuoka, Shizuoka, 422-8526 Japan
| | - Yoshito Oka
- Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| | | | - Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
2
|
Agunbiade VF, Babalola OO. Drought Stress Amelioration Attributes of Plant-Associated Microbiome on Agricultural Plants. Bioinform Biol Insights 2024; 18:11779322241233442. [PMID: 38464334 PMCID: PMC10924568 DOI: 10.1177/11779322241233442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 02/01/2024] [Indexed: 03/12/2024] Open
Abstract
The future global food security depends on the availability of water for agriculture. Yet, the ongoing rise in nonagricultural uses for water, such as urban and industrial uses, and growing environmental quality concerns have increased pressure of irrigation water demand and posed danger to food security. Nevertheless, its severity and duration are predicted to rise shortly. Drought pressure causes stunted growth, severe damage to photosynthesis activity, loss in crop yield, reduced seed germination, and reduced nutrient intake by plants. To overcome the effects of a devastating drought on plants, it is essential to think about the causes, mechanisms of action, and long-term agronomy management and genetics. As a result, there is an urgent need for long-term medication to deal with the harmful effects of drought pressure. The review focuses on the adverse impact of drought on the plant, physiological, and biochemical aspects, and management measures to control the severity of drought conditions. This article reviews the role of genome editing (GE) technologies such as CRISPR 9 (CRISPR-Cas9) related spaces and short palindromic relapse between proteins in reducing the effects of phytohormones, osmolytes, external compounds, proteins, microbes (plant growth-promoting microorganism [PGPM]), approach omics, and drought on plants that support plant growth. This research is to examine the potential of using the microbiome associated with plants for drought resistance and sustainable agriculture. Researchers also advocate using a mix of biotechnology, agronomic, and advanced GE technologies to create drought-tolerant plant varieties.
Collapse
Affiliation(s)
- Victor Funso Agunbiade
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
3
|
Cho Y, Kim Y, Lee H, Kim S, Kang J, Kadam US, Ju Park S, Sik Chung W, Chan Hong J. Cellular and physiological functions of SGR family in gravitropic response in higher plants. J Adv Res 2024:S2090-1232(24)00039-0. [PMID: 38295878 DOI: 10.1016/j.jare.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/29/2023] [Accepted: 01/24/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND In plants, gravity directs bidirectional growth; it specifies upward growth of shoots and downward growth of roots. Due to gravity, roots establish robust anchorage and shoot, which enables to photosynthesize. It sets optimum posture and develops plant architecture to efficiently use resources like water, nutrients, CO2, and gaseous exchange. Hence, gravitropism is crucial for crop productivity as well as for the growth of plants in challenging climate. Some SGR members are known to affect tiller and shoot angle, organ size, and inflorescence stem in plants. AIM OF REVIEW Although the SHOOT GRAVITROPISM (SGR) family plays a key role in regulating the fate of shoot gravitropism, little is known about its function compared to other proteins involved in gravity response in plant cells and tissues. Moreover, less information on the SGR family's physiological activities and biochemical responses in shoot gravitropism is available. This review scrutinizes and highlights the recent developments in shoot gravitropism and provides an outlook for future crop development, multi-application scenarios, and translational research to improve agricultural productivity. KEY SCIENTIFIC CONCEPTS OF REVIEW Plants have evolved multiple gene families specialized in gravitropic responses, of which the SGR family is highly significant. The SGR family regulates the plant's gravity response by regulating specific physiological and biochemical processes such as transcription, cell division, amyloplast sedimentation, endodermis development, and vacuole formation. Here, we analyze the latest discoveries in shoot gravitropism with particular attention to SGR proteins in plant cell biology, cellular physiology, and homeostasis. Plant cells detect gravity signals by sedimentation of amyloplast (starch granules) in the direction of gravity, and the signaling cascade begins. Gravity sensing, signaling, and auxin redistribution (organ curvature) are the three components of plant gravitropism. Eventually, we focus on the role of multiple SGR genes in shoot and present a complete update on the participation of SGR family members in gravity.
Collapse
Affiliation(s)
- Yuhan Cho
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Yujeong Kim
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Hyebi Lee
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Sundong Kim
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Jaehee Kang
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Ulhas S Kadam
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea.
| | - Soon Ju Park
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Woo Sik Chung
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Jong Chan Hong
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea.
| |
Collapse
|
4
|
Li P, Wang J, Jiang D, Yu A, Sun R, Liu A. Function and Characteristic Analysis of Candidate PEAR Proteins in Populus yunnanensis. Int J Mol Sci 2023; 24:13101. [PMID: 37685908 PMCID: PMC10488302 DOI: 10.3390/ijms241713101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
PEAR proteins are a type of plant-specific DNA binding with one finger (Dof) transcription factors that play a key role in the regulation of plant growth, especially during phloem cell growth and seed germination in Arabidopsis. However, the identification, characteristics and function of PEAR proteins, particularly in woody plants, need to be further studied. In the present study, 43 candidate PEAR proteins harboring the conserved Zf-Dof domain were obtained in Populus yunnanensis. Based on phylogenetic and structural analysis, 10 representative PEAR candidates were selected, belonging to different phylogenetic groups. The functions of PEAR proteins in the stress response, signal transduction, and growth regulation of stem cambium and roots undergoing vigorous cell division in Arabidopsis were revealed based on their expression patterns as characterized by qRT-PCR analysis, in accordance with the results of cis-element analysis. In vitro experiments showed that the interaction of transcription factor (E2F) and cyclin indirectly reflects the growth regulation function of PEAR through light signaling and cell-cycle regulation. Therefore, our results provide new insight into the identity of PEAR proteins and their function in stress resistance and vigorous cell division regulation of tissues in P. yunnanensis, which may serve as a basis for further investigation of the functions and characteristics of PEAR proteins in other plants.
Collapse
Affiliation(s)
- Ping Li
- Correspondence: (P.L.); (A.L.)
| | | | | | | | | | - Aizhong Liu
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China (Ministry of Education), College of Forestry, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
5
|
Gautam R, Meena RK, Rampuria S, Shukla P, Kirti PB. Ectopic expression of DnaJ type-I protein homolog of Vigna aconitifolia ( VaDJI) confers ABA insensitivity and multiple stress tolerance in transgenic tobacco plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1135552. [PMID: 37152162 PMCID: PMC10154610 DOI: 10.3389/fpls.2023.1135552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023]
Abstract
Reduced crop productivity results from altered plant physiological processes caused by dysfunctional proteins due to environmental stressors. In this study, a novel DnaJ Type-I encoding gene, VaDJI having a zinc finger motif in its C-terminal domain was found to be induced early upon treatment with heat stress (within 5 min) in a heat tolerant genotype of Vigna aconitifolia RMO-40. VaDJI is induced by multiple stresses. In tobacco, ectopic expression of VaDJI reduced ABA sensitivity during seed germination and the early stages of seedling growth of transgenic tobacco plants. Concomitantly, it also improved the ability of transgenic tobacco plants to withstand drought stress by modulating the photosynthetic efficiency, with the transgenic plants having higher Fv/Fm ratios and reduced growth inhibition. Additionally, transgenic plants showed a reduced build-up of H2O2 and lower MDA levels and higher chlorophyll content during drought stress, which attenuated cell damage and reduced oxidative damage. An analysis using the qRT-PCR study demonstrated that VaDJI overexpression is associated with the expression of some ROS-detoxification-related genes and stress-marker genes that are often induced during drought stress responses. These findings suggest a hypothesis whereby VaDJI positively influences drought stress tolerance and ABA signalling in transgenic tobacco, and suggests that it is a potential gene for genetic improvement of drought and heat stress tolerance in crop plants.
Collapse
Affiliation(s)
- Ranjana Gautam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Rajesh Kumar Meena
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Sakshi Rampuria
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pawan Shukla
- Seri-Biotech Research Laboratory, Central Silk Board, Bangalore, India
| | - P. B. Kirti
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
6
|
Zouhar J, Cao W, Shen J, Rojo E. Retrograde transport in plants: Circular economy in the endomembrane system. Eur J Cell Biol 2023; 102:151309. [PMID: 36933283 DOI: 10.1016/j.ejcb.2023.151309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/09/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
The study of endomembrane trafficking is crucial for understanding how cells and whole organisms function. Moreover, there is a special interest in investigating endomembrane trafficking in plants, given its role in transport and accumulation of seed storage proteins and in secretion of cell wall material, arguably the two most essential commodities obtained from crops. The mechanisms of anterograde transport in the biosynthetic and endocytic pathways of plants have been thoroughly discussed in recent reviews, but, comparatively, retrograde trafficking pathways have received less attention. Retrograde trafficking is essential to recover membranes, retrieve proteins that have escaped from their intended localization, maintain homeostasis in maturing compartments, and recycle trafficking machinery for its reuse in anterograde transport reactions. Here, we review the current understanding on retrograde trafficking pathways in the endomembrane system of plants, discussing their integration with anterograde transport routes, describing conserved and plant-specific retrieval mechanisms at play, highlighting contentious issues and identifying open questions for future research.
Collapse
Affiliation(s)
- Jan Zouhar
- Central European Institute of Technology, Mendel University in Brno, CZ-61300 Brno, Czech Republic.
| | - Wenhan Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300 Hangzhou, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300 Hangzhou, China.
| | - Enrique Rojo
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, E-28049 Madrid, Spain.
| |
Collapse
|
7
|
Kawamoto N, Morita MT. Gravity sensing and responses in the coordination of the shoot gravitropic setpoint angle. THE NEW PHYTOLOGIST 2022; 236:1637-1654. [PMID: 36089891 PMCID: PMC9828789 DOI: 10.1111/nph.18474] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Gravity is one of the fundamental environmental cues that affect plant development. Indeed, the plant architecture in the shoots and roots is modulated by gravity. Stems grow vertically upward, whereas lateral organs, such as the lateral branches in shoots, tend to grow at a specific angle according to a gravity vector known as the gravitropic setpoint angle (GSA). During this process, gravity is sensed in specialised gravity-sensing cells named statocytes, which convert gravity information into biochemical signals, leading to asymmetric auxin distribution and driving asymmetric cell division/expansion in the organs to achieve gravitropism. As a hypothetical offset mechanism against gravitropism to determine the GSA, the anti-gravitropic offset (AGO) has been proposed. According to this concept, the GSA is a balance of two antagonistic growth components, that is gravitropism and the AGO. Although the nature of the AGO has not been clarified, studies have suggested that gravitropism and the AGO share a common gravity-sensing mechanism in statocytes. This review discusses the molecular mechanisms underlying gravitropism as well as the hypothetical AGO in the control of the GSA.
Collapse
Affiliation(s)
- Nozomi Kawamoto
- Division of Plant Environmental ResponsesNational Institute for Basic BiologyMyodaijiOkazaki444‐8556Japan
| | - Miyo Terao Morita
- Division of Plant Environmental ResponsesNational Institute for Basic BiologyMyodaijiOkazaki444‐8556Japan
| |
Collapse
|
8
|
Ren Y, Wang Y, Zhang Y, Pan T, Duan E, Bao X, Zhu J, Teng X, Zhang P, Gu C, Dong H, Wang F, Wang Y, Bao Y, Wang Y, Wan J. Endomembrane-mediated storage protein trafficking in plants: Golgi-dependent or Golgi-independent? FEBS Lett 2022; 596:2215-2230. [PMID: 35615915 DOI: 10.1002/1873-3468.14374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 11/11/2022]
Abstract
Seed storage proteins (SSPs) accumulated within plant seeds constitute the major protein nutrition sources for human and livestock. SSPs are synthesized on the endoplasmic reticulum (ER) and then deposited in plant-specific protein bodies (PBs), including ER-derived PBs and protein storage vacuoles (PSVs). Plant seeds have evolved a distinct endomembrane system to accomplish SSP transport. There are two distinct types of trafficking pathways contributing to SSP delivery to PSVs, one Golgi-dependent and the other Golgi-independent. In recent years, molecular, genetic and biochemical studies have shed light on the complex network controlling SSP trafficking, to which both evolutionarily conserved molecular machineries and plant-unique regulators contribute. In this review, we discuss current knowledge of PB biogenesis and endomembrane-mediated SSP transport, focusing on ER export and post-Golgi traffic. These knowledges support a dominant role for the Golgi-dependent pathways in SSP transport in Arabidopsis and rice. In addition, we describe cutting-edge strategies to dissect the endomembrane trafficking system in plant seeds to advance the field.
Collapse
Affiliation(s)
- Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongfei Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tian Pan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Erchao Duan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiuhao Bao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianping Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Teng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pengcheng Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chuanwei Gu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Dong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fan Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
9
|
Panahabadi R, Ahmadikhah A, McKee LS, Ingvarsson PK, Farrokhi N. Genome-wide association study for lignocellulosic compounds and fermentable sugar in rice straw. THE PLANT GENOME 2022; 15:e20174. [PMID: 34806838 DOI: 10.1002/tpg2.20174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Cellulose and lignin are the two main components of secondary plant cell walls with substantial impact on stalk in the field and on straw during industrial processing. The amount of fermentable sugar that can be accessed is another important parameter affecting various industrial applications. In the present study, genetic variability of rice (Oryza sativa L.) genotypes for cellulose, lignin, and fermentable sugars contents was analyzed in rice straw. A genome-wide association study of 33,484 single nucleotide polymorphisms (SNPs) with a minor allele frequency (MAF) >0.05 was performed. The genome-wide association study identified seven, three, and three genomic regions to be significantly associated with cellulose, lignin, and fermentable sugar contents, respectively. Candidate genes in the associated genomic regions were enzymes mainly involved in cell wall metabolism. Novel SNP markers associated with cellulose were tagged to GH16, peroxidase, GT6, GT8, and CSLD2. For lignin content, Villin protein, OsWAK1/50/52/53, and GH16 were identified. For fermentable sugar content, UTP-glucose-1-phosphate uridylyltransferase, BRASSINOSTEROID INSENSITIVE 1, and receptor-like protein kinase 5 were found. The results of this study should improve our understanding of the genetic basis of the factors that might be involved in biosynthesis, turnover, and modification of major cell wall components and saccharides in rice straw.
Collapse
Affiliation(s)
- Rahele Panahabadi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti Univ., Tehran, Iran
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, 106 91, Sweden
| | | | - Lauren S McKee
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, 106 91, Sweden
- Wallenberg Wood Science Centre, Teknikringen 56-58, Stockholm, 100 44, Sweden
| | - Pär K Ingvarsson
- Linnean Centre for Plant Biology, Dep. of Plant Biology, Swedish Univ. of Agricultural Sciences, Uppsala, Sweden
| | - Naser Farrokhi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti Univ., Tehran, Iran
| |
Collapse
|
10
|
Tamura K, Ueda H, Hara-Nishimura I. In vitro assembly of nuclear envelope in tobacco cultured cells. Nucleus 2021; 12:82-89. [PMID: 34030583 PMCID: PMC8158034 DOI: 10.1080/19491034.2021.1930681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
The coordinated regulation of the nucelar envelope (NE) reassembly during cell division is an essential event. However, there is little information on the molecular components involved in NE assembly in plant cells. Here we developed an in vitro assay of NE assembly using tobacco BY-2 cultured cells. To start the NE assembly reaction, the demembranated nuclei and the S12 fraction (cytosol and microsomes) were mixed in the presence of GTP and ATP nucleotides. Time-course analysis indicated that tubule structures were extended from the microsomal vesicles that accumulated on the demembranated nuclei, and finally sealed the NE. Immunofluorescence confirmed that the assembled membrane contains a component of nuclear pore complex. The efficiency of the NE assembly is significantly inhibited by GTPγS that suppresses membrane fusion. This in-vitro assay system may elucidate the role of specific proteins and provide important insights into the molecular machinery of NE assembly in plant cells.
Collapse
Affiliation(s)
- Kentaro Tamura
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Haruko Ueda
- Faculty of Science and Engineering, Konan University, Kobe, Japan
| | | |
Collapse
|
11
|
Almeida FA, Passamani LZ, Santa-Catarina C, Mooney BP, Thelen JJ, Silveira V. Label-Free Quantitative Phosphoproteomics Reveals Signaling Dynamics Involved in Embryogenic Competence Acquisition in Sugarcane. J Proteome Res 2020; 19:4145-4157. [PMID: 32964716 DOI: 10.1021/acs.jproteome.0c00652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study, a label-free quantitative phosphoproteomic analysis was performed to identify and quantify signaling events related to the acquisition of embryogenic competence in sugarcane. Embryogenic and nonembryogenic calli were compared at the multiplication phase, resulting in the identification of 163 phosphoproteins unique to embryogenic calli, 9 unique to nonembryogenic calli, and 51 upregulated and 40 downregulated in embryogenic calli compared to nonembryogenic calli. Data are available via ProteomeXchange with identifier PXD018054. Motif-x analysis revealed the enrichment of [xxxpSPxxx], [RxxpSxxx], and [xxxpSDxxx] motifs, which are predicted phosphorylation sites for several kinases related to stress responses. The embryogenic-related phosphoproteins (those unique and upregulated in embryogenic calli) identified in the present study are related to abscisic acid-induced signaling and abiotic stress response; they include OSK3, ABF1, LEAs, and RD29Bs. On the other hand, the nonembryogenic-related phosphoproteins EDR1 and PP2Ac-2 are negative regulators of abscisic acid signaling, suggesting a relationship between phosphoproteins involved in the abscisic acid and stress responses in the acquisition of embryogenic competence. Moreover, embryogenic-related phosphoproteins associated with epigenetic modifications, such as HDA6, HDA19, and TOPLESS, and with RNA metabolism, including AGO1, DEAH5, SCL30, UB2C, and SR45, were identified to play potential roles in embryogenic competence. These results reveal novel phosphorylation sites for several proteins and identify potential candidate biomarkers for the acquisition of embryogenic competence in sugarcane.
Collapse
Affiliation(s)
- Felipe A Almeida
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, 28013-602 Campos dos Goytacazes, Rio de Janeiro, Brazil.,Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
| | - Lucas Z Passamani
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, 28013-602 Campos dos Goytacazes, Rio de Janeiro, Brazil.,Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
| | - Claudete Santa-Catarina
- Laboratório de Biologia Celular e Tecidual, CBB-UENF, Campos dos Goytacazes 28013-602, Rio de Janeiro, Brazil
| | - Brian P Mooney
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, 65211 Columbia, Missouri, United States
| | - Jay J Thelen
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, 65211 Columbia, Missouri, United States
| | - Vanildo Silveira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, 28013-602 Campos dos Goytacazes, Rio de Janeiro, Brazil.,Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
| |
Collapse
|
12
|
Goto C, Hashizume S, Fukao Y, Hara-Nishimura I, Tamura K. Comprehensive nuclear proteome of Arabidopsis obtained by sequential extraction. Nucleus 2020; 10:81-92. [PMID: 30961429 PMCID: PMC6527390 DOI: 10.1080/19491034.2019.1603093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In eukaryotes, the nucleus plays key roles in fundamental cellular processes, including DNA replication, chromatin maintenance, transcription, and translation. To better understand the functional diversity of nuclei, we developed a method for the comprehensive extraction of the nuclear proteome from Arabidopsis. We used a buffer with a high sucrose concentration to purify nuclei and then conducted solubility-based fractionation to increase proteome coverage. We identified 1539 proteins and two novel nuclear envelope (NE) proteins in the nuclear fraction of Arabidopsis cultured cells. The localization of 25 proteins was determined by GFP fusion analyses; 23 of these proteins were localized either in the nucleus or the NE-associated endoplasmic reticulum. This result was indicative of the high quality of the proteome. These findings will be useful for clarifying novel nuclear functions in plants.
Collapse
Affiliation(s)
- Chieko Goto
- a Graduate School of Agricultural and Life Sciences , University of Tokyo , Tokyo , Japan
| | - Shoko Hashizume
- b Department of Botany , Graduate School of Science, Kyoto University , Kyoto , Japan
| | - Yoichiro Fukao
- c Department of Bioinformatics , College of Life Sciences, Ritsumeikan University , Shiga , Japan
| | | | - Kentaro Tamura
- e Department of Environmental and Life Sciences , University of Shizuoka , Shizuoka , Japan
| |
Collapse
|
13
|
MTV proteins unveil ER- and microtubule-associated compartments in the plant vacuolar trafficking pathway. Proc Natl Acad Sci U S A 2020; 117:9884-9895. [PMID: 32321832 DOI: 10.1073/pnas.1919820117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The factors and mechanisms involved in vacuolar transport in plants, and in particular those directing vesicles to their target endomembrane compartment, remain largely unknown. To identify components of the vacuolar trafficking machinery, we searched for Arabidopsis modified transport to the vacuole (mtv) mutants that abnormally secrete the synthetic vacuolar cargo VAC2. We report here on the identification of 17 mtv mutations, corresponding to mutant alleles of MTV2/VSR4, MTV3/PTEN2A MTV7/EREL1, MTV8/ARFC1, MTV9/PUF2, MTV10/VPS3, MTV11/VPS15, MTV12/GRV2, MTV14/GFS10, MTV15/BET11, MTV16/VPS51, MTV17/VPS54, and MTV18/VSR1 Eight of the MTV proteins localize at the interface between the trans-Golgi network (TGN) and the multivesicular bodies (MVBs), supporting that the trafficking step between these compartments is essential for segregating vacuolar proteins from those destined for secretion. Importantly, the GARP tethering complex subunits MTV16/VPS51 and MTV17/VPS54 were found at endoplasmic reticulum (ER)- and microtubule-associated compartments (EMACs). Moreover, MTV16/VPS51 interacts with the motor domain of kinesins, suggesting that, in addition to tethering vesicles, the GARP complex may regulate the motors that transport them. Our findings unveil a previously uncharacterized compartment of the plant vacuolar trafficking pathway and support a role for microtubules and kinesins in GARP-dependent transport of soluble vacuolar cargo in plants.
Collapse
|
14
|
Ren Y, Wang Y, Pan T, Wang Y, Wang Y, Gan L, Wei Z, Wang F, Wu M, Jing R, Wang J, Wan G, Bao X, Zhang B, Zhang P, Zhang Y, Ji Y, Lei C, Zhang X, Cheng Z, Lin Q, Zhu S, Zhao Z, Wang J, Wu C, Qiu L, Wang H, Wan J. GPA5 Encodes a Rab5a Effector Required for Post-Golgi Trafficking of Rice Storage Proteins. THE PLANT CELL 2020; 32:758-777. [PMID: 31949008 PMCID: PMC7054044 DOI: 10.1105/tpc.19.00863] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/16/2019] [Accepted: 01/13/2020] [Indexed: 05/18/2023]
Abstract
Dense vesicles (DVs) are vesicular carriers, unique to plants, that mediate post-Golgi trafficking of storage proteins to protein storage vacuoles (PSVs) in seeds. However, the molecular mechanisms regulating the directional targeting of DVs to PSVs remain elusive. Here, we show that the rice (Oryza sativa) glutelin precursor accumulation5 (gpa5) mutant is defective in directional targeting of DVs to PSVs, resulting in discharge of its cargo proteins into the extracellular space. Molecular cloning revealed that GPA5 encodes a plant-unique phox-homology domain-containing protein homologous to Arabidopsis (Arabidopsis thaliana) ENDOSOMAL RAB EFFECTOR WITH PX-DOMAIN. We show that GPA5 is a membrane-associated protein capable of forming homodimers and that it is specifically localized to DVs in developing endosperm. Colocalization, biochemical, and genetic evidence demonstrates that GPA5 acts in concert with Rab5a and VPS9a to regulate DV-mediated post-Golgi trafficking to PSVs. Furthermore, we demonstrated that GPA5 physically interacts with a class C core vacuole/endosome tethering complex and a seed plant-specific VAMP727-containing R-soluble N-ethylmaleimide sensitive factor attachment protein receptor complex. Collectively, our results suggest that GPA5 functions as a plant-specific effector of Rab5a required for mediating tethering and membrane fusion of DVs with PSVs in rice endosperm.
Collapse
Affiliation(s)
- Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Pan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongfei Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Gan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhongyan Wei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fan Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingming Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruonan Jing
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiachang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Gexing Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuhao Bao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Binglei Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pengcheng Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Ji
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuanyin Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lijuan Qiu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Hu S, Li Y, Shen J. A Diverse Membrane Interaction Network for Plant Multivesicular Bodies: Roles in Proteins Vacuolar Delivery and Unconventional Secretion. FRONTIERS IN PLANT SCIENCE 2020; 11:425. [PMID: 32425960 PMCID: PMC7203423 DOI: 10.3389/fpls.2020.00425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/24/2020] [Indexed: 05/15/2023]
Abstract
Vesicle trafficking between the membrane-bound organelles in plant cells plays crucial roles in the precise transportation of various materials, and thus supports cell proliferation and cellular polarization. Conventionally, plant prevacuolar compartments (PVCs), identified as multivesicular bodies (MVBs), play important roles in both the secretory pathway as intermediate compartments and the endocytic pathway as late endosomes. In recent years, the PVC/MVBs have been proposed to play important roles in both protein vacuolar delivery and unconventional secretion, but several important questions on the new regulators and environmental cues that coordinate the PVC/MVB-organelle membrane interactions and their biological significances remain. In this review, we first summarize the identity and nature of the plant PVC/MVBs, and then we present an update on our current understanding on the interaction of PVC/MVBs with other organelles in the plant endomembrane system with focus on the vacuole, autophagosome, and plasma membrane (PM) in plant development and stress responses. Finally, we raise some open questions and present future perspectives in the study of PVC/MVB-organelle interactions and associated biological functions.
Collapse
|
16
|
Verma AK, Tamadaddi C, Tak Y, Lal SS, Cole SJ, Hines JK, Sahi C. The expanding world of plant J-domain proteins. CRITICAL REVIEWS IN PLANT SCIENCES 2019; 38:382-400. [PMID: 33223602 PMCID: PMC7678915 DOI: 10.1080/07352689.2019.1693716] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants maintain cellular proteostasis during different phases of growth and development despite a barrage of biotic and abiotic stressors in an ever-changing environment. This requires a collaborative effort of a cadre of molecular chaperones. Hsp70s and their obligate co-chaperones, J-domain proteins (JDPs), are arguably the most ubiquitous and formidable components of the cellular chaperone network, facilitating numerous and diverse cellular processes and allowing survival under a plethora of stressful conditions. JDPs are also among the most versatile chaperones. Compared to Hsp70s, the number of JDP-encoding genes has proliferated, suggesting the emergence of highly complex Hsp70-JDP networks, particularly in plants. Recent studies indicate that besides the increase in the number of JDP encoding genes; regulatory differences, neo- and sub-functionalization, and inter- and intra-class combinatorial interactions, is rapidly expanding the repertoire of Hsp70-JDP systems. This results in highly robust and functionally diverse chaperone networks in plants. Here, we review the current status of plant JDP research and discuss how the paradigm shift in the field can be exploited toward a better understanding of JDP function and evolution.
Collapse
Affiliation(s)
- Amit K. Verma
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Chetana Tamadaddi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Yogesh Tak
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Silviya S. Lal
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Sierra J. Cole
- Department of Chemistry, Lafayette College, Easton, PA, USA
| | | | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
17
|
Rodriguez-Furlan C, Minina EA, Hicks GR. Remove, Recycle, Degrade: Regulating Plasma Membrane Protein Accumulation. THE PLANT CELL 2019; 31:2833-2854. [PMID: 31628169 PMCID: PMC6925004 DOI: 10.1105/tpc.19.00433] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/23/2019] [Accepted: 10/17/2019] [Indexed: 05/21/2023]
Abstract
Interactions between plant cells and the environment rely on modulation of protein receptors, transporters, channels, and lipids at the plasma membrane (PM) to facilitate intercellular communication, nutrient uptake, environmental sensing, and directional growth. These functions are fine-tuned by cellular pathways maintaining or reducing particular proteins at the PM. Proteins are endocytosed, and their fate is decided between recycling and degradation to modulate localization, abundance, and activity. Selective autophagy is another pathway regulating PM protein accumulation in response to specific conditions or developmental signals. The mechanisms regulating recycling, degradation, and autophagy have been studied extensively, yet we are just now addressing their regulation and coordination. Here, we (1) provide context concerning regulation of protein accumulation, recycling, or degradation by overviewing endomembrane trafficking; (2) discuss pathways regulating recycling and degradation in terms of cellular roles and cargoes; (3) review plant selective autophagy and its physiological significance; (4) focus on two decision-making mechanisms: regulation of recycling versus degradation of PM proteins and coordination between autophagy and vacuolar degradation; and (5) identify future challenges.
Collapse
Affiliation(s)
- Cecilia Rodriguez-Furlan
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, California 92506
| | - Elena A Minina
- Uppsala Bio Center, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Glenn R Hicks
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, California 92506
- Uppsala Bio Center, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| |
Collapse
|
18
|
Ashnest JR, Gendall AR. Trafficking to the seed protein storage vacuole. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:895-910. [PMID: 32291054 DOI: 10.1071/fp17318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/17/2018] [Indexed: 06/11/2023]
Abstract
The processing and subcellular trafficking of seed storage proteins is a critical area of physiological, agricultural and biotechnological research. Trafficking to the lytic vacuole has been extensively discussed in recent years, without substantial distinction from trafficking to the protein storage vacuole (PSV). However, despite some overlap between these pathways, there are several examples of unique processing and machinery in the PSV pathway. Moreover, substantial new data has recently come to light regarding the important players in this pathway, in particular, the intracellular NHX proteins and their role in regulating lumenal pH. In some cases, these new data are limited to genetic evidence, with little mechanistic understanding. As such, the implications of these data in the current paradigm of PSV trafficking is perhaps yet unclear. Although it has generally been assumed that the major classes of storage proteins are trafficked via the same pathway, there is mounting evidence that the 12S globulins and 2S albumins may be trafficked independently. Advances in identification of vacuolar targeting signals, as well as an improved mechanistic understanding of various vacuolar sorting receptors, may reveal the differences in these trafficking pathways.
Collapse
Affiliation(s)
- Joanne R Ashnest
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, 5 Ring Road, La Trobe University, Bundoora, Vic. 3086, Australia
| | - Anthony R Gendall
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, 5 Ring Road, La Trobe University, Bundoora, Vic. 3086, Australia
| |
Collapse
|
19
|
Abstract
Vacuolar trafficking plays a vital role in plant growth and development. In this chapter, we describe a powerful technique for the evaluation of vacuolar protein trafficking, which is designated as GREEN FLUORESCENT SEED. Based on vacuole-targeted green fluorescent protein in Arabidopsis seeds, this method enables the nondestructive isolation of mutant seeds defective in vacuolar trafficking and their visual characterization.
Collapse
|
20
|
Hollender CA, Pascal T, Tabb A, Hadiarto T, Srinivasan C, Wang W, Liu Z, Scorza R, Dardick C. Loss of a highly conserved sterile alpha motif domain gene ( WEEP) results in pendulous branch growth in peach trees. Proc Natl Acad Sci U S A 2018; 115:E4690-E4699. [PMID: 29712856 PMCID: PMC5960274 DOI: 10.1073/pnas.1704515115] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant shoots typically grow upward in opposition to the pull of gravity. However, exceptions exist throughout the plant kingdom. Most conspicuous are trees with weeping or pendulous branches. While such trees have long been cultivated and appreciated for their ornamental value, the molecular basis behind the weeping habit is not known. Here, we characterized a weeping tree phenotype in Prunus persica (peach) and identified the underlying genetic mutation using a genomic sequencing approach. Weeping peach tree shoots exhibited a downward elliptical growth pattern and did not exhibit an upward bending in response to 90° reorientation. The causative allele was found to be an uncharacterized gene, Ppa013325, having a 1.8-Kb deletion spanning the 5' end. This gene, dubbed WEEP, was predominantly expressed in phloem tissues and encodes a highly conserved 129-amino acid protein containing a sterile alpha motif (SAM) domain. Silencing WEEP in the related tree species Prunus domestica (plum) resulted in more outward, downward, and wandering shoot orientations compared to standard trees, supporting a role for WEEP in directing lateral shoot growth in trees. This previously unknown regulator of branch orientation, which may also be a regulator of gravity perception or response, provides insights into our understanding of how tree branches grow in opposition to gravity and could serve as a critical target for manipulating tree architecture for improved tree shape in agricultural and horticulture applications.
Collapse
Affiliation(s)
- Courtney A Hollender
- Appalachian Fruit Research Station, Agricultural Research Service, US Department of Agriculture, Kearneysville, WV 25430
- Department of Horticulture, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824
| | - Thierry Pascal
- Unité Génétique et Amélioration de Fruits et Légumes, Institut National de la Recherche Agronomique, 84140 Montfavet, France
| | - Amy Tabb
- Appalachian Fruit Research Station, Agricultural Research Service, US Department of Agriculture, Kearneysville, WV 25430
| | - Toto Hadiarto
- Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (BB Biogen), Bogor, Indonesia
| | - Chinnathambi Srinivasan
- Appalachian Fruit Research Station, Agricultural Research Service, US Department of Agriculture, Kearneysville, WV 25430
| | - Wanpeng Wang
- Department of Cell Biology and Molecular Genetics, College of Mathematics and Natural Sciences, University of Maryland, College Park, MD 20742
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, College of Mathematics and Natural Sciences, University of Maryland, College Park, MD 20742
| | - Ralph Scorza
- Appalachian Fruit Research Station, Agricultural Research Service, US Department of Agriculture, Kearneysville, WV 25430
| | - Chris Dardick
- Appalachian Fruit Research Station, Agricultural Research Service, US Department of Agriculture, Kearneysville, WV 25430;
| |
Collapse
|
21
|
Zhang B, Qiu HL, Qu DH, Ruan Y, Chen DH. Phylogeny-dominant classification of J-proteins in Arabidopsis thaliana and Brassica oleracea. Genome 2018; 61:405-415. [PMID: 29620479 DOI: 10.1139/gen-2017-0206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hsp40s or DnaJ/J-proteins are evolutionarily conserved in all organisms as co-chaperones of molecular chaperone HSP70s that mainly participate in maintaining cellular protein homeostasis, such as protein folding, assembly, stabilization, and translocation under normal conditions as well as refolding and degradation under environmental stresses. It has been reported that Arabidopsis J-proteins are classified into four classes (types A-D) according to domain organization, but their phylogenetic relationships are unknown. Here, we identified 129 J-proteins in the world-wide popular vegetable Brassica oleracea, a close relative of the model plant Arabidopsis, and also revised the information of Arabidopsis J-proteins based on the latest online bioresources. According to phylogenetic analysis with domain organization and gene structure as references, the J-proteins from Arabidopsis and B. oleracea were classified into 15 main clades (I-XV) separated by a number of undefined small branches with remote relationship. Based on the number of members, they respectively belong to multigene clades, oligo-gene clades, and mono-gene clades. The J-protein genes from different clades may function together or separately to constitute a complicated regulatory network. This study provides a constructive viewpoint for J-protein classification and an informative platform for further functional dissection and resistant genes discovery related to genetic improvement of crop plants.
Collapse
Affiliation(s)
- Bin Zhang
- a Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Han-Lin Qiu
- b State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Dong-Hai Qu
- a Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Ying Ruan
- a Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Dong-Hong Chen
- b State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
22
|
Liu F, Hu W, Vierstra RD. The Vacuolar Protein Sorting-38 Subunit of the Arabidopsis Phosphatidylinositol-3-Kinase Complex Plays Critical Roles in Autophagy, Endosome Sorting, and Gravitropism. FRONTIERS IN PLANT SCIENCE 2018; 9:781. [PMID: 29967628 PMCID: PMC6016017 DOI: 10.3389/fpls.2018.00781] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/23/2018] [Indexed: 05/02/2023]
Abstract
The family of phosphatidylinositols (PtdIns) plays essential roles in membrane identity and intracellular trafficking events. In animals and yeast, PtdIn-3-phosphate, which is particularly important for endosomal sorting, lysosomal/vacuolar transport and autophagy, is assembled by two conserved kinase complexes comprised of the catalytic VACUOLAR PROTEIN SORTING (VPS)-34 subunit, along with VPS15, AUTOPHAGY-RELATED (ATG)-6, and either ATG14 (complex I) or VPS38 (complex II). Here, we describe the Arabidopsis ortholog of VPS38 and show by interaction assays that it assembles into a tetrameric PtdIn-3 kinase complex II. Plants missing VPS38 are viable but have dampened pollen germination and heightened seed abortion, and display a dwarf rosette phenotype, with defects in leaf and vascular development and sucrose sensing. vps38 seeds accumulate irregular protein storage vesicles and suppress processing of storage proteins into their mature forms. Consistent with a role for PtdIn-3-phosphate in autophagy, vps38 mutants are hypersensitive to nitrogen and fixed-carbon starvation and show reduced autophagic transport of cargo into vacuoles. vps38 seedlings also have dampened root gravitropism, which is underpinned by aberrant vectoral auxin transport likely caused by defects in plasma membrane/endosome cycling of the PIN-FORMED family of auxin transporters necessary for asymmetric cell elongation. Collectively, this study places VPS38 and its class-III PtdIn-3 kinase complex at the nexus of numerous endosomal trafficking events important to plant growth and development.
Collapse
Affiliation(s)
- Fen Liu
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Weiming Hu
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Richard D. Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
- *Correspondence: Richard D. Vierstra,
| |
Collapse
|
23
|
Asins MJ, Albacete A, Martinez-Andujar C, Pérez-Alfocea F, Dodd IC, Carbonell EA, Dieleman JA. Genetic analysis of rootstock-mediated nitrogen (N) uptake and root-to-shoot signalling at contrasting N availabilities in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:94-106. [PMID: 28818388 DOI: 10.1016/j.plantsci.2017.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/16/2017] [Accepted: 06/27/2017] [Indexed: 05/16/2023]
Abstract
Selecting rootstocks for high nitrogen acquisition ability may allow decreased N fertilizer application without reducing tomato yields, minimizing environmental nitrate pollution. A commercial hybrid tomato variety was grafted on a genotyped population of 130 recombinant inbred lines (RILs) derived from Solanum pimpinellifolium, and compared with self- and non-grafted controls under contrasting nitrate availabilities (13.8 vs 1.0mM) in the nutrient solution. Grafting itself altered xylem sap composition under N-sufficient conditions, particularly Na+ (8.75-fold increase) concentration. N deprivation decreased shoot dry weight by 72.7% across the grafted RIL population, and one RIL rootstock allowed higher total leaf N content than the best of controls, suggesting more effective N uptake. Sixty-two significant QTLs were detected by multiple QTL mapping procedure for leaf N concentration (LNC), vegetative growth, and the xylem sap concentrations of Mn and four phytohormone groups (cytokinins, gibberellins, salicylic acid and jasmonic acid). Only three LNC QTLs could be common between nitrogen treatments. Clustering of rootstock QTLs controlling LNC, leaf dry weight and xylem sap salicylic acid concentration in chromosome 9 suggests a genetic relationship between this rootstock phytohormone and N uptake efficiency. Some functional candidate genes found within 2 Mbp intervals of LNC and hormone QTLs are discussed.
Collapse
Affiliation(s)
- M J Asins
- Instituto Valenciano de Investigaciones Agrarias, Carretera de Moncada a Náquera Km 4.5, Apartado Oficial, 46113 Moncada, Valencia, Spain.
| | - A Albacete
- CEBAS, CSIC, Campus de Espinardo, 30100 Espinardo, Murcia, Spain
| | | | - F Pérez-Alfocea
- CEBAS, CSIC, Campus de Espinardo, 30100 Espinardo, Murcia, Spain
| | - I C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - E A Carbonell
- Instituto Valenciano de Investigaciones Agrarias, Carretera de Moncada a Náquera Km 4.5, Apartado Oficial, 46113 Moncada, Valencia, Spain
| | - J A Dieleman
- Wageningen University & Research, Business Unit Greenhouse Horticulture, P.O. Box 644, 6700 AP Wageningen, The Netherlands
| |
Collapse
|
24
|
Alvarez AA, Han SW, Toyota M, Brillada C, Zheng J, Gilroy S, Rojas-Pierce M. Wortmannin-induced vacuole fusion enhances amyloplast dynamics in Arabidopsis zigzag1 hypocotyls. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6459-6472. [PMID: 27816929 PMCID: PMC5181587 DOI: 10.1093/jxb/erw418] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Gravitropism in Arabidopsis shoots depends on the sedimentation of amyloplasts in the endodermis, and a complex interplay between the vacuole and F-actin. Gravity response is inhibited in zigzag-1 (zig-1), a mutant allele of VTI11, which encodes a SNARE protein involved in vacuole fusion. zig-1 seedlings have fragmented vacuoles that fuse after treatment with wortmannin, an inhibitor of phosphatidylinositol 3-kinase, and underscore a role of phosphoinositides in vacuole fusion. Using live-cell imaging with a vertical stage microscope, we determined that young endodermal cells below the apical hook that are smaller than 70 μm in length are the graviperceptive cells in dark-grown hypocotyls. This result was confirmed by local wortmannin application to the top of zig-1 hypocotyls, which enhanced shoot gravitropism in zig-1 mutants. Live-cell imaging of zig-1 hypocotyl endodermal cells indicated that amyloplasts are trapped between juxtaposed vacuoles and their movement is severely restricted. Wortmannin-induced fusion of vacuoles in zig-1 seedlings increased the formation of transvacuolar strands, enhanced amyloplast sedimentation and partially suppressed the agravitropic phenotype of zig-1 seedlings. Hypergravity conditions at 10 g were not sufficient to displace amyloplasts in zig-1, suggesting the existence of a physical tether between the vacuole and amyloplasts. Our results overall suggest that vacuole membrane remodeling may be involved in regulating the association of vacuoles and amyloplasts during graviperception.
Collapse
Affiliation(s)
- Ashley Ann Alvarez
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Sang Won Han
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Masatsugu Toyota
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Saitama, Japan
- Department of Botany, University of Wisconsin, Madison, WI, USA
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama, Japan
| | - Carla Brillada
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Jiameng Zheng
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI, USA
| | - Marcela Rojas-Pierce
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
25
|
Sakurai HT, Inoue T, Nakano A, Ueda T. ENDOSOMAL RAB EFFECTOR WITH PX-DOMAIN, an Interacting Partner of RAB5 GTPases, Regulates Membrane Trafficking to Protein Storage Vacuoles in Arabidopsis. THE PLANT CELL 2016; 28:1490-503. [PMID: 27288222 PMCID: PMC4944415 DOI: 10.1105/tpc.16.00326] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/10/2016] [Indexed: 05/03/2023]
Abstract
RAB5 GTPases act as molecular switches that regulate various endosomal functions in animal cells, including homotypic fusion of early endosomes, endosomal motility, endosomal signaling, and subcompartmentalization of the endosomal membrane. RAB5 proteins fulfill these diverse functions through interactions with downstream effector molecules. Two canonical RAB5 members, ARA7 and RAB HOMOLOG1 (RHA1), are encoded in the Arabidopsis thaliana genome. ARA7 and RHA1 play crucial roles in endocytic and vacuolar trafficking pathways. Plant RAB5 GTPases function via interactions with effector molecules, whose identities and functions are currently unclear. In this study, we searched for canonical RAB5 effector molecules of Arabidopsis and identified a candidate, which we called ENDOSOMAL RAB EFFECTOR WITH PX-DOMAIN (EREX). The intimate genetic interaction between EREX and RAB5 members, the results from subcellular colocalization experiments, and the direct interaction observed in an in vitro pull-down assay strongly suggest that EREX is a genuine effector of canonical RAB5s in Arabidopsis. We further found that close homologs of EREX play partially redundant functions with EREX in the transport of seed storage proteins. Our results indicate that canonical plant RAB5s acquired distinct effector molecules from those of non-plant systems to fulfill their functions.
Collapse
Affiliation(s)
- Hajime Tajima Sakurai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeshi Inoue
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan Live Cell Super-resolution Live Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
26
|
Jia N, Lv TT, Li MX, Wei SS, Li YY, Zhao CL, Li B. The J-protein AtDjB1 is required for mitochondrial complex I activity and regulates growth and development through ROS-mediated auxin signalling. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3481-3496. [PMID: 27117341 DOI: 10.1093/jxb/erw171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
AtDjB1 is a mitochondria-located J-protein in Arabidopsis thaliana It is involved in the regulation of plant growth and development; however, the exact mechanisms remain to be determined. We performed comparison analyses of phenotypes, auxin signalling, redox status, mitochondrial structure and function using wild-type plants, AtDjB1 mutants, rescued AtDjB1 mutants by AtDjB1 or YUCCA2 (an auxin synthesis gene), and AtDjB1 overexpression plants. AtDjB1 mutants (atj1-1 or atj1-4) exhibited inhibition of growth and development and reductions in the level of IAA and the expression of YUCCA genes compared to wild-type plants. The introduction of AtDjB1 or YUCCA2 into atj1-1 largely rescued phenotypic defects and the IAA level, indicating that AtDjB1 probably regulates growth and development via auxin. Furthermore, atj1-1 plants displayed a significant reduction in amount/activity of mitochondrial complex I compared to wild-type plants; this resulted in the accumulation of reactive oxygen species (ROS). Moreover, exogenous H2O2 markedly inhibited the expression of YUCCA genes in wild-type plants. In contrast, the reducing agent ascorbate increased the expression of YUCCA genes and IAA level in atj1-1 plants, indicating that the low auxin level observed in atj1-1 was probably due to the high oxidation status. Overall, the data presented here suggest that AtDjB1 is required for mitochondrial complex I activity and regulates growth and development through ROS-mediated auxin signalling in Arabidopsis.
Collapse
Affiliation(s)
- Ning Jia
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Ting-Ting Lv
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Mi-Xin Li
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Shan-Shan Wei
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Yan-Yi Li
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Chun-Lan Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Bing Li
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
27
|
Hegedus DD, Coutu C, Harrington M, Hope B, Gerbrandt K, Nikolov I. Multiple internal sorting determinants can contribute to the trafficking of cruciferin to protein storage vacuoles. PLANT MOLECULAR BIOLOGY 2015; 88:3-20. [PMID: 25702284 DOI: 10.1007/s11103-015-0297-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
Trafficking of seed storage proteins to protein storage vacuoles is mediated by carboxy terminal and internal sorting determinants (ISDs). Protein modelling was used to identify candidate ISDs residing near surface-exposed regions in Arabidopsis thaliana cruciferin A (AtCruA). These were verified by AtCruA fusion to yellow fluorescent protein (YFP) and expression in developing embryos of A. thaliana. As the presence of endogenous cruciferin was found to mask the effects of weaker ISDs, experiments were conducted in a line that was devoid of cruciferin. In total, nine ISDs were discovered and a core determinant defined using a series of alanine scanning and deletion mutant variants. Coupling of functional data from AtCruA ISD-YFP fusions with statistical analysis of the physiochemical properties of analogous regions from several 11/12S globulins revealed that cruciferin ISDs likely adhere to the following rules: (1) ISDs are adjacent to or within hydrophilic, surface-exposed regions that serve to present them on the protein's surface; (2) ISDs generally have a hydrophobic character; (3) ISDs tend to have Leu or Ile residues at their core; (4) ISDs are approximately eight amino acids long with the physiochemical consensus [hydrophobic][preferably charged][small or hydrophobic, but not tiny][IL][polar, preferably charged][small, but not charged][hydrophobic, not charged, preferably not polar][hydrophobic, not tiny, preferably not polar]. Microscopic evidence is also presented for the presence of an interconnected protein storage vacuolar network in embryo cells, rather than discreet, individual vacuoles.
Collapse
Affiliation(s)
- Dwayne D Hegedus
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada,
| | | | | | | | | | | |
Collapse
|
28
|
Ichino T, Fuji K, Ueda H, Takahashi H, Koumoto Y, Takagi J, Tamura K, Sasaki R, Aoki K, Shimada T, Hara-Nishimura I. GFS9/TT9 contributes to intracellular membrane trafficking and flavonoid accumulation in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:410-23. [PMID: 25116949 DOI: 10.1111/tpj.12637] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/14/2014] [Accepted: 08/06/2014] [Indexed: 05/20/2023]
Abstract
Flavonoids are the most important pigments for the coloration of flowers and seeds. In plant cells, flavonoids are synthesized by a multi-enzyme complex located on the cytosolic surface of the endoplasmic reticulum, and they accumulate in vacuoles. Two non-exclusive pathways have been proposed to mediate flavonoid transport to vacuoles: the membrane transporter-mediated pathway and the vesicle trafficking-mediated pathway. No molecules involved in the vesicle trafficking-mediated pathway have been identified, however. Here, we show that a membrane trafficking factor, GFS9, has a role in flavonoid accumulation in the vacuole. We screened a library of Arabidopsis thaliana mutants with defects in vesicle trafficking, and isolated the gfs9 mutant with abnormal pale tan-colored seeds caused by low flavonoid accumulation levels. gfs9 is allelic to the unidentified transparent testa mutant tt9. The responsible gene for these phenotypes encodes a previously uncharacterized protein containing a region that is conserved among eukaryotes. GFS9 is a peripheral membrane protein localized at the Golgi apparatus. GFS9 deficiency causes several membrane trafficking defects, including the mis-sorting of vacuolar proteins, vacuole fragmentation, the aggregation of enlarged vesicles, and the proliferation of autophagosome-like structures. These results suggest that GFS9 is required for vacuolar development through membrane fusion at vacuoles. Our findings introduce a concept that plants use GFS9-mediated membrane trafficking machinery for delivery of not only proteins but also phytochemicals, such as flavonoids, to vacuoles.
Collapse
Affiliation(s)
- Takuji Ichino
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Park MY, Kim SY. The Arabidopsis J Protein AtJ1 is Essential for Seedling Growth, Flowering Time Control and ABA Response. ACTA ACUST UNITED AC 2014; 55:2152-63. [DOI: 10.1093/pcp/pcu145] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Wang X, Jia N, Zhao C, Fang Y, Lv T, Zhou W, Sun Y, Li B. Knockout of AtDjB1, a J-domain protein from Arabidopsis thaliana, alters plant responses to osmotic stress and abscisic acid. PHYSIOLOGIA PLANTARUM 2014; 152:286-300. [PMID: 24521401 DOI: 10.1111/ppl.12169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 05/26/2023]
Abstract
AtDjB1 is a member of the Arabidopsis thaliana J-protein family. AtDjB1 is targeted to the mitochondria and plays a crucial role in A. thaliana heat and oxidative stress resistance. Herein, the role of AtDjB1 in adapting to saline and drought stress was studied in A. thaliana. AtDjB1 expression was induced through salinity, dehydration and abscisic acid (ABA) in young seedlings. Reverse genetic analyses indicate that AtDjB1 is a negative regulator in plant osmotic stress tolerance. Further, AtDjB1 knockout mutant plants (atj1-1) exhibited greater ABA sensitivity compared with the wild-type (WT) plants and the mutant lines with a rescued AtDjB1 gene. AtDjB1 gene knockout also altered the expression of several ABA-responsive genes, which suggests that AtDjB1 is involved in osmotic stress tolerance through its effects on ABA signaling pathways. Moreover, atj1-1 plants exhibited higher glucose levels and greater glucose sensitivity in the post-germination development stage. Applying glucose promoted an ABA response in seedlings, and the promotion was more evident in atj1-1 than WT seedlings. Taken together, higher glucose levels in atj1-1 plants are likely responsible for the greater ABA sensitivity and increased osmotic stress tolerance.
Collapse
Affiliation(s)
- Xingxing Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
So HA, Chung E, Lee JH. Arabidopsis atDjC53 encoding a type III J-protein plays a negative role in heat shock tolerance. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0207-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Jancowski S, Catching A, Pighin J, Kudo T, Foissner I, Wasteneys GO. Trafficking of the myrosinase-associated protein GLL23 requires NUC/MVP1/GOLD36/ERMO3 and the p24 protein CYB. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:497-510. [PMID: 24330158 DOI: 10.1111/tpj.12408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/22/2013] [Accepted: 11/28/2013] [Indexed: 05/08/2023]
Abstract
Proteins detrimental to endoplasmic reticulum (ER) morphology need to be efficiently exported. Here, we identify two mechanisms that control trafficking of Arabidopsis thalianaGLL23, a 43 kDa GDSL-like lipase implicated in glucosinolate metabolism through its association with the β-glucosidase myrosinase. Using immunofluorescence, we identified two mutants that showed aberrant accumulation of GLL23: large perinuclear ER aggregates in the nuclear cage (nuc) mutant; and small compartments contiguous with the peripheral ER in the cytoplasmic bodies (cyb) mutant. Live imaging of fluorescently tagged GLL23 confirmed its presence in the nuc and cyb compartments, but lack of fluorescent signals in the wild-type plants suggested that GLL23 is normally post-translationally modified for ER export. NUC encodes the MVP1/GOLD36/ERMO3 myrosinase-associated protein, previously shown to have vacuolar distribution. CYB is an ER and Golgi-localized p24 type I membrane protein component of coat protein complex (COP) vesicles, animal and yeast homologues of which are known to be involved in selective cargo sorting for ER-Golgi export. Without NUC, GLL23 accumulates in the ER this situation suggests that NUC is in fact active in the ER. Without CYB, both GLL23 and NUC were found to accumulate in cyb compartments, consistent with a role for NUC in GLL23 processing and indicated that GLL23 is the likely sorting target of the CYB p24 protein.
Collapse
Affiliation(s)
- Sylwia Jancowski
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Uehara M, Wang S, Kamiya T, Shigenobu S, Yamaguchi K, Fujiwara T, Naito S, Takano J. Identification and Characterization of an Arabidopsis Mutant with Altered Localization of NIP5;1, a Plasma Membrane Boric Acid Channel, Reveals the Requirement for d-Galactose in Endomembrane Organization. ACTA ACUST UNITED AC 2014; 55:704-14. [DOI: 10.1093/pcp/pct191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Kong F, Deng Y, Wang G, Wang J, Liang X, Meng Q. LeCDJ1, a chloroplast DnaJ protein, facilitates heat tolerance in transgenic tomatoes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:63-74. [PMID: 24148796 DOI: 10.1111/jipb.12119] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/15/2013] [Indexed: 05/22/2023]
Abstract
The roles of a tomato (Lycopersicon esculentum) chloroplast-targeted DnaJ protein (LeCDJ1) were investigated using wild-type (WT) and sense transgenic tomatoes. The LeCDJ1 expression was upregulated by 38 °C, 42 °C, 45 °C, NaCl, PEG, methyl viologen (MV) and hydrogen peroxide (H2O2), but not by 30 °C and 35 °C. Meanwhile, LeCDJ1 was involved in the response of plants to abscisic acid (ABA). Under heat stress, the sense plants showed better growth, higher chlorophyll content, lower malondialdehyde (MDA) accumulation and relative electrical conductivity (REC), and also less PSII photoinhibition than WT. Interestingly, the sense plants treated with streptomycin (SM), an inhibitor of organellar translation, still showed higher maximum photochemistry efficiency of PSII (Fv/Fm) and D1 protein levels than the SM-untreated WT, suggesting that the protective effect of LeCDJ1 on PSII was, at least partially, independent of D1 protein synthesis. Furthermore, the relatively lower superoxide radical (O2(•-)) and H2O2 levels in the sense plants were considered to be due to the higher ascorbate peroxidase (APX) and superoxide dismutase (SOD) activity, which seemed unlikely dependent on their transcription level. These results indicated that LeCDJ1 overexpression facilitated heat tolerance in transgenic tomatoes.
Collapse
Affiliation(s)
- Fanying Kong
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | | | | | | | | | | |
Collapse
|
35
|
Ren Y, Wang Y, Liu F, Zhou K, Ding Y, Zhou F, Wang Y, Liu K, Gan L, Ma W, Han X, Zhang X, Guo X, Wu F, Cheng Z, Wang J, Lei C, Lin Q, Jiang L, Wu C, Bao Y, Wang H, Wan J. GLUTELIN PRECURSOR ACCUMULATION3 encodes a regulator of post-Golgi vesicular traffic essential for vacuolar protein sorting in rice endosperm. THE PLANT CELL 2014; 26:410-25. [PMID: 24488962 PMCID: PMC3963586 DOI: 10.1105/tpc.113.121376] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In seed plants, a major pathway for sorting of storage proteins to the protein storage vacuole (PSV) depends on the Golgi-derived dense vesicles (DVs). However, the molecular mechanisms regulating the directional trafficking of DVs to PSVs remain largely elusive. Here, we report the functional characterization of the rice (Oryza sativa) glutelin precursor accumulation3 (gpa3) mutant, which exhibits a floury endosperm phenotype and accumulates excess proglutelins in dry seeds. Cytological and immunocytochemistry studies revealed that in the gpa3 mutant, numerous proglutelin-containing DVs are misrouted to the plasma membrane and, via membrane fusion, release their contents into the apoplast to form a new structure named the paramural body. Positional cloning of GPA3 revealed that it encodes a plant-specific kelch-repeat protein that is localized to the trans-Golgi networks, DVs, and PSVs in the developing endosperm. In vitro and in vivo experiments verified that GPA3 directly interacts with the rice Rab5a-guanine exchange factor VPS9a and forms a regulatory complex with Rab5a via VPS9a. Furthermore, our genetic data support the notion that GPA3 acts synergistically with Rab5a and VPS9a to regulate DV-mediated post-Golgi traffic in rice. Our findings provide insights into the molecular mechanisms regulating the plant-specific PSV pathway and expand our knowledge of vesicular trafficking in eukaryotes.
Collapse
Affiliation(s)
- Yulong Ren
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Kunneng Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Ding
- School of Life Sciences, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, New Territories, Hong Kong 999077, China
| | - Feng Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Gan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weiwei Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaohua Han
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fuqing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuanyin Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Address correspondence to
| |
Collapse
|
36
|
Du Y, Zhao J, Chen T, Liu Q, Zhang H, Wang Y, Hong Y, Xiao F, Zhang L, Shen Q, Liu Y. Type I J-domain NbMIP1 proteins are required for both Tobacco mosaic virus infection and plant innate immunity. PLoS Pathog 2013; 9:e1003659. [PMID: 24098120 PMCID: PMC3789785 DOI: 10.1371/journal.ppat.1003659] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/09/2013] [Indexed: 11/18/2022] Open
Abstract
Tm-2² is a coiled coil-nucleotide binding-leucine rich repeat resistance protein that confers durable extreme resistance against Tomato mosaic virus (ToMV) and Tobacco mosaic virus (TMV) by recognizing the viral movement protein (MP). Here we report that the Nicotiana benthamiana J-domain MIP1 proteins (NbMIP1s) associate with tobamovirus MP, Tm-2² and SGT1. Silencing of NbMIP1s reduced TMV movement and compromised Tm-2²-mediated resistance against TMV and ToMV. Furthermore, silencing of NbMIP1s reduced the steady-state protein levels of ToMV MP and Tm-2². Moreover, NbMIP1s are required for plant resistance induced by other R genes and the nonhost pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. In addition, we found that SGT1 associates with Tm-2² and is required for Tm-2²-mediated resistance against TMV. These results suggest that NbMIP1s function as co-chaperones during virus infection and plant immunity.
Collapse
Affiliation(s)
- Yumei Du
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinping Zhao
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Tianyuan Chen
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qi Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haili Zhang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Wang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Fangming Xiao
- Department of Plant, Soil and Entomological Science, University of Idaho, Moscow, Idaho, United States of America
| | - Ling Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qianhua Shen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
37
|
Li W, Guan Q, Wang ZY, Wang Y, Zhu J. A bi-functional xyloglucan galactosyltransferase is an indispensable salt stress tolerance determinant in Arabidopsis. MOLECULAR PLANT 2013; 6:1344-54. [PMID: 23571490 DOI: 10.1093/mp/sst062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Salinity is an abiotic stress that substantially limits crop production worldwide. To identify salt stress tolerance determinants, we screened for Arabidopsis mutants that are hypersensitive to salt stress and designated these mutants as short root in salt medium (rsa). One of these mutants, rsa3-1, is hypersensitive to NaCl and LiCl but not to CsCl or to general osmotic stress. Reactive oxygen species (ROS) over-accumulate in rsa3-1 plants under salt stress. Gene expression profiling with Affymetrix microarray analysis revealed that RSA3 controls expression of many genes including genes encoding proteins for ROS detoxification under salt stress. Map-based cloning showed that RSA3 encodes a xyloglucan galactosyltransferase, which is allelic to a gene previously named MUR3/KAM1. The RSA3/MUR3/KAM1-encoded xylogluscan galactosyltransferase regulates actin microfilament organization (and thereby contributes to endomembrane distribution) and is also involved in cell wall biosynthesis. In rsa3-1, actin cannot assemble and form bundles as it does in the wild-type but instead aggregates in the cytoplasm. Furthermore, addition of phalloidin, which prevents actin depolymerization, can rescue salt hypersensitivity of rsa3-1. Together, these results suggest that RSA3/MUR3/KAM1 along with other cell wall-associated proteins plays a critical role in salt stress tolerance by maintaining the proper organization of actin microfilaments in order to minimize damage caused by excessive ROS.
Collapse
Affiliation(s)
- Wenbo Li
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | | | | | | | | |
Collapse
|
38
|
Liu JZ, Whitham SA. Overexpression of a soybean nuclear localized type-III DnaJ domain-containing HSP40 reveals its roles in cell death and disease resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:110-21. [PMID: 23289813 DOI: 10.1111/tpj.12108] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 05/19/2023]
Abstract
Heat-shock proteins such as HSP70 and HSP90 are important molecular chaperones that play critical roles in biotic and abiotic stress responses; however, the involvement of their co-chaperones in stress biology remains largely uninvestigated. In a screen for candidate genes stimulating cell death in Glycine max (soybean), we transiently overexpressed full-length cDNAs of soybean genes that are highly induced during soybean rust infection in Nicotiana benthamiana leaves. Overexpression of a type-III DnaJ domain-containing HSP40 (GmHSP40.1), a co-chaperone of HSP70, caused hypersensitive response (HR)-like cell death. The HR-like cell death was dependent on MAPKKKα and WIPK, because silencing each of these genes suppressed the HR. Consistent with the presence of a nuclear localization signal (NLS) motif within the GmHSP40.1 coding sequence, GFP-GmHSP40.1 was exclusively present in nuclear bodies or speckles. Nuclear localization of GmHSP40.1 was necessary for its function, because deletion of the NLS or addition of a nuclear export signal abolished its HR-inducing ability. GmHSP40.1 co-localized with HcRed-SE, a protein involved in pri-miRNA processing, which has been shown to be co-localized with SR33-YFP, a protein involved in pre-mRNA splicing, suggesting a possible role for GmHSP40.1 in mRNA splicing or miRNA processing, and a link between these processes and cell death. Silencing GmHSP40.1 enhanced the susceptibility of soybean plants to Soybean mosaic virus, confirming its positive role in pathogen defense. Together, the results demonstrate a critical role of a nuclear-localized DnaJ domain-containing GmHSP40.1 in cell death and disease resistance in soybean.
Collapse
Affiliation(s)
- Jian-Zhong Liu
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
39
|
So HA, Chung E, Lee JH. Molecular characterization of soybean GmDjp1 encoding a type III J-protein induced by abiotic stress. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0078-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
40
|
ERMO3/MVP1/GOLD36 is involved in a cell type-specific mechanism for maintaining ER morphology in Arabidopsis thaliana. PLoS One 2012; 7:e49103. [PMID: 23155454 PMCID: PMC3498303 DOI: 10.1371/journal.pone.0049103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/04/2012] [Indexed: 11/19/2022] Open
Abstract
The endoplasmic reticulum (ER) has a unique, network-like morphology. The ER structures are composed of tubules, cisternae, and three-way junctions. This morphology is highly conserved among eukaryotes, but the molecular mechanism that maintains ER morphology has not yet been elucidated. In addition, certain Brassicaceae plants develop a unique ER-derived organelle called the ER body. This organelle accumulates large amounts of PYK10, a β-glucosidase, but its physiological functions are still obscure. We aimed to identify a novel factor required for maintaining the morphology of the ER, including ER bodies, and employed a forward-genetic approach using transgenic Arabidopsis thaliana (GFP-h) with fluorescently-labeled ER. We isolated and investigated a mutant (designated endoplasmic reticulum morphology3, ermo3) with huge aggregates and abnormal punctate structures of ER. ERMO3 encodes a GDSL-lipase/esterase family protein, also known as MVP1. Here, we showed that, although ERMO3/MVP1/GOLD36 was expressed ubiquitously, the morphological defects of ermo3 were specifically seen in a certain type of cells where ER bodies developed. Coimmunoprecipitation analysis combined with mass spectrometry revealed that ERMO3/MVP1/GOLD36 interacts with the PYK10 complex, a huge protein complex that is thought to be important for ER body-related defense systems. We also found that the depletion of transcription factor NAI1, a master regulator for ER body formation, suppressed the formation of ER-aggregates in ermo3 cells, suggesting that NAI1 expression plays an important role in the abnormal aggregation of ER. Our results suggest that ERMO3/MVP1/GOLD36 is required for preventing ER and other organelles from abnormal aggregation and for maintaining proper ER morphology in a coordinated manner with NAI1.
Collapse
|
41
|
Zwiewka M, Friml J. Fluorescence imaging-based forward genetic screens to identify trafficking regulators in plants. FRONTIERS IN PLANT SCIENCE 2012; 3:97. [PMID: 22654887 PMCID: PMC3359526 DOI: 10.3389/fpls.2012.00097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 04/25/2012] [Indexed: 05/25/2023]
Abstract
Coordinated, subcellular trafficking of proteins is one of the fundamental properties of the multicellular eukaryotic organisms. Trafficking involves a large diversity of compartments, pathways, cargo molecules, and vesicle-sorting events. It is also crucial in regulating the localization and, thus, the activity of various proteins, but the process is still poorly genetically defined in plants. In the past, forward genetics screens had been used to determine the function of genes by searching for a specific morphological phenotype in the organism population in which mutations had been induced chemically or by irradiation. Unfortunately, these straightforward genetic screens turned out to be limited in identifying new regulators of intracellular protein transport, because mutations affecting essential trafficking pathways often lead to lethality. In addition, the use of these approaches has been restricted by functional redundancy among trafficking regulators. Screens for mutants that rely on the observation of changes in the cellular localization or dynamics of fluorescent subcellular markers enable, at least partially, to circumvent these issues. Hence, such image-based screens provide the possibility to identify either alleles with weak effects or components of the subcellular trafficking machinery that have no strong impact on the plant growth.
Collapse
Affiliation(s)
- Marta Zwiewka
- Department of Plant Systems Biology, VIB Life Sciences Research InstituteGent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent UniversityGent, Belgium
| | - Jiří Friml
- Department of Plant Systems Biology, VIB Life Sciences Research InstituteGent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent UniversityGent, Belgium
| |
Collapse
|
42
|
Sparkes I, Brandizzi F. Fluorescent protein-based technologies: shedding new light on the plant endomembrane system. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:96-107. [PMID: 22449045 DOI: 10.1111/j.1365-313x.2011.04884.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Without doubt, GFP and spectral derivatives have revolutionized the way biologists approach their journey toward the discovery of how plant cells function. It is fascinating that in its early days GFP was used merely for localization studies, but as time progressed researchers successfully explored new avenues to push the power of GFP technology to reach new and exciting research frontiers. This has had a profound impact on the way we can now study complex and dynamic systems such as plant endomembranes. Here we briefly describe some of the approaches where GFP has revolutionized in vivo studies of protein distribution and dynamics and focus on two emerging approaches for the application of GFP technology in plant endomembranes, namely optical tweezers and forward genetics approaches, which are based either on the light or on genetic manipulation of secretory organelles to gain insights on the factors that control their activities and integrity.
Collapse
Affiliation(s)
- Imogen Sparkes
- Biosciences,College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter, UK
| | | |
Collapse
|
43
|
Zhou W, Zhou T, Li MX, Zhao CL, Jia N, Wang XX, Sun YZ, Li GL, Xu M, Zhou RG, Li B. The Arabidopsis J-protein AtDjB1 facilitates thermotolerance by protecting cells against heat-induced oxidative damage. THE NEW PHYTOLOGIST 2012; 194:364-378. [PMID: 22356282 DOI: 10.1111/j.1469-8137.2012.04070.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
AtDjB1 belongs to the J-protein family in Arabidopsis thaliana. Its biological functions in plants are largely unknown. In this study, we examined the roles of AtDjB1 in resisting heat and oxidative stresses in A. thaliana using reverse genetic analysis. AtDjB1 knockout plants (atj1-1) were more sensitive to heat stress than wildtype plants, and displayed decreased concentrations of ascorbate (ASC), and increased concentrations of hydrogen peroxide (H(2)O(2)) and oxidative products after heat shock. Application of H(2)O(2) accelerated cell death and decreased seedling viability in atj1-1. Exogenous ASC conferred much greater thermotolerance in atj1-1 than in wildtype plants, suggesting that a lower concentration of ASC in atj1-1 could be responsible for the increased concentration of H(2)O(2) and decreased thermotolerance. Furthermore, AtDjB1 was found to localize to mitochondria, directly interact with a mitochondrial heat-shock protein 70 (mtHSC70-1), and stimulate ATPase activity of mtHSC70-1. AtDjB1 knockout led to the accumulation of cellular ATP and decreased seedling respiration, indicating that AtDjB1 modulated the ASC concentration probably through affecting the function of mitochondria. Taken together, these results suggest that AtDjB1 plays a crucial role in maintaining redox homeostasis, and facilitates thermotolerance by protecting cells against heat-induced oxidative damage.
Collapse
Affiliation(s)
- Wei Zhou
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
- College of Biology and Engineering, Hebei University of Economics and Business, Shijiazhuang 050061, China
| | - Ting Zhou
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Mi-Xin Li
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Chun-Lan Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Ning Jia
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Xing-Xing Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Yong-Zhen Sun
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Guo-Liang Li
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Meng Xu
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Ren-Gang Zhou
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Bing Li
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
44
|
Heintz D, Gallien S, Compagnon V, Berna A, Suzuki M, Yoshida S, Muranaka T, Van Dorsselaer A, Schaeffer C, Bach TJ, Schaller H. Phosphoproteome exploration reveals a reformatting of cellular processes in response to low sterol biosynthetic capacity in Arabidopsis. J Proteome Res 2012; 11:1228-39. [PMID: 22182420 DOI: 10.1021/pr201127u] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sterols are membrane-bound isoprenoid lipids that are required for cell viability and growth. In plants, it is generally assumed that 3-hydroxy-3-methylglutaryl-CoA-reductase (HMGR) is a key element of their biosynthesis, but the molecular regulation of that pathway is largely unknown. In an attempt to identify regulators of the biosynthetic flux from acyl-CoA toward phytosterols, we compared the membrane phosphoproteome of wild-type Arabidopsis thaliana and of a mutant being deficient in HMGR1. We performed a N-terminal labeling of microsomal peptides with a trimethoxyphenyl phosphonium (TMPP) derivative, followed by a quantitative assessment of phosphopeptides with a spectral counting method. TMPP derivatization of peptides resulted in an improved LC-MS/MS detection due to increased hydrophobicity in chromatography and ionization efficiency in electrospray. The phosphoproteome coverage was 40% higher with this methodology. We further found that 31 proteins were in a different phosphorylation state in the hmgr1-1 mutant as compared with the wild-type. One-third of these proteins were identified based on novel phosphopeptides. This approach revealed that phosphorylation changes in the Arabidopsis membrane proteome targets major cellular processes such as transports, calcium homeostasis, photomorphogenesis, and carbohydrate synthesis. A reformatting of these processes appears to be a response of a genetically reduced sterol biosynthesis.
Collapse
Affiliation(s)
- Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique-Unité Propre de Recherche 2357, Université de Strasbourg , 28 rue Goethe, 67083 Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yao HY, Xue HW. Signals and mechanisms affecting vesicular trafficking during root growth. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:571-579. [PMID: 21764358 DOI: 10.1016/j.pbi.2011.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 06/27/2011] [Accepted: 06/27/2011] [Indexed: 05/27/2023]
Abstract
Vesicular trafficking is mediated by distinct exocytic and endocytic routes in eukaryotic cells. These pathways involve RAB family proteins, ADP-ribosylation factor, RHO proteins of the Ras superfamily, and SNAREs (soluble N-ethylmaleimide-sensitive factor adaptors). Studies have shown that vesicular trafficking plays a crucial role in protein localization and movement, signal transduction, and multiple developmental processes. Here we summarize the role of vesicular trafficking in root and root hair growth and in auxin-mediated root development, focusing on the regulation of the polarized subcellular distribution of the PIN proteins (auxin efflux carriers).
Collapse
Affiliation(s)
- Hong-Yan Yao
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300, Fenglin Road, 200032 Shanghai, China
| | | |
Collapse
|
46
|
Huang Z, van der Knaap E. Tomato fruit weight 11.3 maps close to fasciated on the bottom of chromosome 11. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:465-74. [PMID: 21541852 DOI: 10.1007/s00122-011-1599-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 04/12/2011] [Indexed: 05/23/2023]
Abstract
Fruit weight is an important character in many crops. In tomato (Solanum lycopersicum), fruit weight is controlled by many loci, some of which have a major effect on the trait. Fruit weight 11.3 (fw11.3) and fasciated (fas) have been mapped to the same region on chromosome 11. We sought to determine whether these loci represent alleles of the same or separate genes. We show that fas and fw11.3 are not allelic and instead represent separate genes. The fw11.3 locus was fine-mapped to a 149-kb region comprised of 22 predicted genes. Unlike most fruit weight loci, gene action at fw11.3 indicates that the mutant allele is partially dominant over the wild allele. We also investigate the nature of the genome rearrangement at the fas locus and demonstrate that the mutation is due to a 294-kb inversion disrupting the YABBY gene known to underlie the fas locus.
Collapse
Affiliation(s)
- Zejun Huang
- Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
| | | |
Collapse
|
47
|
Shen L, Kang YGG, Liu L, Yu H. The J-domain protein J3 mediates the integration of flowering signals in Arabidopsis. THE PLANT CELL 2011; 23:499-514. [PMID: 21343416 PMCID: PMC3077791 DOI: 10.1105/tpc.111.083048] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 01/07/2011] [Accepted: 02/08/2011] [Indexed: 05/18/2023]
Abstract
The timing of the switch from vegetative to reproductive development in Arabidopsis thaliana is controlled by an intricate network of flowering pathways, which converge on the transcriptional regulation of two floral pathway integrators, FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1). SHORT VEGETATIVE PHASE (SVP) acts as a key flowering regulator that represses the expression of FT and SOC1. Here, we report the identification of another potent flowering promoter, Arabidopsis DNAJ HOMOLOG 3 (J3), which mediates the integration of flowering signals through its interaction with SVP. J3 encodes a type I J-domain protein and is ubiquitously expressed in various plant tissues. J3 expression is regulated by multiple flowering pathways. Loss of function of J3 results in a significant late-flowering phenotype, which is partly due to decreased expression of SOC1 and FT. We further show that J3 interacts directly with SVP in the nucleus and prevents in vivo SVP binding to SOC1 and FT regulatory sequences. Our results suggest a flowering mechanism by which J3 integrates flowering signals from several genetic pathways and acts as a transcriptional regulator to upregulate SOC1 and FT through directly attenuating SVP binding to their regulatory sequences during the floral transition.
Collapse
Affiliation(s)
| | | | | | - Hao Yu
- Address correspondence to
| |
Collapse
|
48
|
Wang Y, Ren Y, Liu X, Jiang L, Chen L, Han X, Jin M, Liu S, Liu F, Lv J, Zhou K, Su N, Bao Y, Wan J. OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:812-24. [PMID: 21105928 DOI: 10.1111/j.1365-313x.2010.04370.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Rice glutelins are synthesized at the endoplasmic reticulum (ER) as precursors (pro-glutelins), and are transported to protein storage vacuoles, where they are processed into mature proteins. The molecular basis of this process is largely unknown. Here, we report the isolation of a rice mutant, gpa1, that accumulates 57 kDa pro-glutelins in seeds and whose endosperm has a floury appearance. Transmission electron microscopy analysis showed that the gpa1 endosperm cells have an enlarged ER lumen and a smaller protein body II (PBII), and accumulated three types of newly generated subcellular structures. Moreover, a proportion of glutelins in the gpa1 endosperm cells were not delivered to PBII, and instead were mis-targeted to two of the newly generated structures or secreted. The gene corresponding to the gpa1 mutation was found to be OsRab5a, which encodes a small GTPase. In Arabidopsis protoplasts, OsRab5a protein was found to co-localize predominantly with AtVSR2, a molecular marker for the pre-vacuolar compartments (PVC). We conclude that OsRab5a plays an essential role in trafficking of storage protein to PBII, possibly as part of its function in organizing the endomembrane system in developing endosperm cells of rice.
Collapse
Affiliation(s)
- Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Marti L, Stefano G, Tamura K, Hawes C, Renna L, Held MA, Brandizzi F. A missense mutation in the vacuolar protein GOLD36 causes organizational defects in the ER and aberrant protein trafficking in the plant secretory pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:901-913. [PMID: 20626647 DOI: 10.1111/j.1365-313x.2010.04296.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A central question in cell biology is how the identity of organelles is established and maintained. Here, we report on GOLD36, an EMS mutant identified through a screen for partial displacement of the Golgi marker, ST-GFP, to other organelles. GOLD36 showed partial distribution of ST-GFP into a modified endoplasmic reticulum (ER) network, which formed bulges and large skein-like structures entangling Golgi stacks. GOLD36 showed defects in ER protein export as evidenced by our observations that, besides the partial retention of Golgi markers in the ER, the trafficking of a soluble bulk-flow marker to the cell surface was also compromised. Using a combination of classical mapping and next-generation DNA sequencing approaches, we linked the mutant phenotype to a missense mutation of a proline residue in position 80 to a leucine residue in a small endomembrane protein encoded by the gold36 locus (At1g54030). Subcellular localization analyses indicated that GOLD36 is a vacuolar protein and that its mutated form is retained in the ER. Interestingly also, a gold36 knock-out mutant mirrored the GOLD36 subcellular phenotype. These data indicate that GOLD36 is a protein destined to post-ER compartments and suggest that its export from the ER is a requirement to ensure steady-state maintenance of the organelle's organization and functional activity in relation to other secretory compartments. We speculate that GOLD36 may be a factor that is necessary for ER integrity because of its ability to limit deleterious effects of other secretory proteins on the ER.
Collapse
Affiliation(s)
- Lucia Marti
- Michigan State University-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Yang Y, Qin Y, Xie C, Zhao F, Zhao J, Liu D, Chen S, Fuglsang AT, Palmgren MG, Schumaker KS, Deng XW, Guo Y. The Arabidopsis chaperone J3 regulates the plasma membrane H+-ATPase through interaction with the PKS5 kinase. THE PLANT CELL 2010; 22:1313-32. [PMID: 20418496 PMCID: PMC2879748 DOI: 10.1105/tpc.109.069609] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 03/16/2010] [Accepted: 03/30/2010] [Indexed: 05/17/2023]
Abstract
The plasma membrane H(+)-ATPase (PM H(+)-ATPase) plays an important role in the regulation of ion and metabolite transport and is involved in physiological processes that include cell growth, intracellular pH, and stomatal regulation. PM H(+)-ATPase activity is controlled by many factors, including hormones, calcium, light, and environmental stresses like increased soil salinity. We have previously shown that the Arabidopsis thaliana Salt Overly Sensitive2-Like Protein Kinase5 (PKS5) negatively regulates the PM H(+)-ATPase. Here, we report that a chaperone, J3 (DnaJ homolog 3; heat shock protein 40-like), activates PM H(+)-ATPase activity by physically interacting with and repressing PKS5 kinase activity. Plants lacking J3 are hypersensitive to salt at high external pH and exhibit decreased PM H(+)-ATPase activity. J3 functions upstream of PKS5 as double mutants generated using j3-1 and several pks5 mutant alleles with altered kinase activity have levels of PM H(+)-ATPase activity and responses to salt at alkaline pH similar to their corresponding pks5 mutant. Taken together, our results demonstrate that regulation of PM H(+)-ATPase activity by J3 takes place via inactivation of the PKS5 kinase.
Collapse
Affiliation(s)
- Yongqing Yang
- College of Life Sciences, Peking University, Beijing 100871, China
- National Institute of Biological Sciences, Beijing 102206, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Yunxia Qin
- Key Lab of Ministry of Agriculture for Biology of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Changgen Xie
- College of Life Sciences, Peking University, Beijing 100871, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Feiyi Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jinfeng Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Dafa Liu
- Key Lab of Ministry of Agriculture for Biology of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Shouyi Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Anja T. Fuglsang
- Department of Plant Biology, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Michael G. Palmgren
- Department of Plant Biology, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Karen S. Schumaker
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Xing Wang Deng
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Yan Guo
- National Institute of Biological Sciences, Beijing 102206, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| |
Collapse
|