1
|
Ojosnegros S, Alvarez JM, Gagliardini V, Quintanilla LG, Grossniklaus U, Fernández H. Transcriptomic analyses in the gametophytes of the apomictic fern Dryopteris affinis. PLANTA 2024; 260:111. [PMID: 39356333 PMCID: PMC11447071 DOI: 10.1007/s00425-024-04540-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/21/2024] [Indexed: 10/03/2024]
Abstract
MAIN CONCLUSION A novel genomic map of the apogamous gametophyte of the fern Dryopteris affinis unlocks oldest hindrance with this complex plant group, to gain insight into evo-devo approaches. The gametophyte of the fern Dryopteris affinis ssp. affinis represents a good model to explore the molecular basis of vegetative and reproductive development, as well as stress responses. Specifically, this fern reproduces asexually by apogamy, a peculiar case of apomixis whereby a sporophyte forms directly from a gametophytic cell without fertilization. Using RNA-sequencing approach, we have previously annotated more than 6000 transcripts. Here, we selected 100 of the inferred proteins homolog to those of Arabidopsis thaliana, which were particularly interesting for a detailed study of their potential functions, protein-protein interactions, and distance trees. As expected, a plethora of proteins associated with gametogenesis and embryogenesis in angiosperms, such as FERONIA (FER) and CHROMATING REMODELING 11 (CHR11) were identified, and more than a dozen candidates potentially involved in apomixis, such as ARGONAUTE family (AGO4, AGO9, and AGO 10), BABY BOOM (BBM), FASCIATED STEM4 (FAS4), FERTILIZATION-INDEPENDENT ENDOSPERM (FIE), and MATERNAL EFFECT EMBRYO ARREST29 (MEE29). In addition, proteins involved in the response to biotic and abiotic stresses were widely represented, as shown by the enrichment of heat-shock proteins. Using the String platform, the interactome revealed that most of the protein-protein interactions were predicted based on experimental, database, and text mining datasets, with MULTICOPY SUPPRESSOR OF IRA4 (MSI4) showing the highest number of interactions: 16. Lastly, some proteins were studied through distance trees by comparing alignments with respect to more distantly or closely related plant groups. This analysis identified DCL4 as the most distant protein to the predicted common ancestor. New genomic information in relation to gametophyte development, including apomictic reproduction, could expand our current vision of evo-devo approaches.
Collapse
Affiliation(s)
- Sara Ojosnegros
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071, Oviedo, Spain
| | - José Manuel Alvarez
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071, Oviedo, Spain
| | - Valeria Gagliardini
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, 8008, Zurich, Switzerland
| | - Luis G Quintanilla
- Global Change Research Institute, University Rey Juan Carlos, 28933, Móstoles, Spain
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, 8008, Zurich, Switzerland
| | - Helena Fernández
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071, Oviedo, Spain.
| |
Collapse
|
2
|
Sharma V, Ali MF, Kawashima T. Insights into dynamic coenocytic endosperm development: Unraveling molecular, cellular, and growth complexity. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102566. [PMID: 38830335 DOI: 10.1016/j.pbi.2024.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024]
Abstract
The endosperm, a product of double fertilization, is one of the keys to the evolution and success of angiosperms in conquering the land. While there are differences in endosperm development among flowering plants, the most common form is coenocytic growth, where the endosperm initially undergoes nuclear division without cytokinesis and eventually becomes cellularized. This complex process requires interplay among networks of transcription factors such as MADS-box, auxin response factors (ARFs), and phytohormones. The role of cytoskeletal elements in shaping the coenocytic endosperm and influencing seed growth also becomes evident. This review offers a recent understanding of the molecular and cellular dynamics in coenocytic endosperm development and their contributions to the final seed size.
Collapse
Affiliation(s)
- Vijyesh Sharma
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Mohammad Foteh Ali
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Tomokazu Kawashima
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
3
|
Akagi T, Sugano SS. Random epigenetic inactivation of the X-chromosomal HaMSter gene causes sex ratio distortion in persimmon. NATURE PLANTS 2024:10.1038/s41477-024-01805-w. [PMID: 39333352 DOI: 10.1038/s41477-024-01805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024]
Abstract
In contrast to the recent progress in the genome sequencing of plant sex chromosomes, the functional contribution of the genes in sex chromosomes remains little known1. They were classically thought to be related to sexual dimorphism, which is beneficial to male or female functions, including segregation ratios. Here we focused on the functional evolution of the sex ratio distortion-related locus Half Male Sterile/Inviable (HaMSter), which is located in the short sex-linked region in diploid persimmon (Diospyros lotus). The expression of HaMSter, encoding a plant1589-like undefined protein, is necessary for production of viable seeds. Notably, only X-allelic HaMSter is substantially expressed and half of the maternal X alleles of HaMSter is randomly inactivated, which results in sex ratio distortion in seeds. Genome-wide DNA methylome analyses revealed endosperm-specific DNA hypermethylation, especially in the X-linked region. The maintenance/release of this hypermethylation is linked to inactivation/activation of HaMSter expression, respectively, which determines the sex ratio distortion pattern.
Collapse
Affiliation(s)
- Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
- Japan Science and Technology Agency (JST), PRESTO, Kawaguchi-shi, Saitama, Japan.
| | - Shigeo S Sugano
- Bioproduction Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
4
|
Muthusamy M, Pandian S, Shin EK, An HK, Sohn SI. Unveiling the imprinted dance: how parental genomes orchestrate seed development and hybrid success. FRONTIERS IN PLANT SCIENCE 2024; 15:1455685. [PMID: 39399543 PMCID: PMC11466797 DOI: 10.3389/fpls.2024.1455685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
Parental epigenetic asymmetries, which contribute to the monoallelic expression of genes known as imprints, play a critical role in seed development in flowering plants. Primarily, differential DNA methylation patterns and histone modifications on parental alleles form the molecular basis of gene imprinting. Plants predominantly exhibit this non-Mendelian inheritance phenomenon in the endosperm and the early embryo of developing seeds. Imprinting is crucial for regulating nutrient allocation, maintaining seed development, resolving parental conflict, and facilitating evolutionary adaptation. Disruptions in imprinted gene expression, mediated by epigenetic regulators and parental ploidy levels, can lead to endosperm-based hybridization barriers and hybrid dysfunction, ultimately reducing genetic diversity in plant populations. Conversely, imprinting helps maintain genetic stability within plant populations. Imprinted genes likely influence seed development in various ways, including ensuring proper endosperm development, influencing seed dormancy, and regulating seed size. However, the functions of most imprinted genes, the evolutionary significance of imprinting, and the long-term consequences of imprinting disruptions on plant development and adaptation need further exploration. Thus, it is clear that research on imprinting has immense potential for improving our understanding of plant development and ultimately enhancing key agronomic traits. This review decodes the possible genetic and epigenetic regulatory factors underpinning genomic imprinting and their positive and negative consequences on seed development. This study also forecasts the potential implications of exploiting gene imprinting for crop improvement programs.
Collapse
Affiliation(s)
| | | | | | | | - Soo-In Sohn
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of
Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| |
Collapse
|
5
|
Liu F, Aziz RB, Wang Y, Xuan X, Yu M, Qi Z, Chen X, Wu Q, Qu Z, Dong T, Li S, Fang J, Wang C. Identification of VvAGL Genes Reveals Their Network's Involvement in the Modulation of Seed Abortion via Responding Multi-Hormone Signals in Grapevines. Int J Mol Sci 2024; 25:9849. [PMID: 39337335 PMCID: PMC11432271 DOI: 10.3390/ijms25189849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The formation of seedless traits is regulated by multiple factors. AGLs, which belong to the MADS-box family, were reported to be important regulators in this process; however, the underlying mechanism remains elusive. Here, we identified the VvAGL sub-family genes during the seed abortion process in seedless grapevine cv. 'JingkeJing' and found 40 differentially expressed VvAGL members and 1069 interacting proteins in this process. Interestingly, almost all members and their interacting proteins involved in the tryptophan metabolic pathway (K14486) and participated in the phytohormone signalling (KO04075) pathway, including the growth hormone (IAA), salicylic acid (SA), abscisic acid (ABA), cytokinin (CTK), and ethylene signalling pathways. The promoters of AGL sub-family genes contain cis-elements in response to hormones such as IAA, ABA, CTK, SA, and ETH, implying that they might respond to multi-hormone signals and involve in hormone signal transductions. Further expression analysis revealed VvAGL6-2, VvAGL11, VvAGL62-11, and VvAGL15 had the highest expression at the critical period of seed abortion, and there were positive correlations between ETH-VvAGL15-VvAGL6-2, ABA-VvAGL80, and SA-VvAGL62 in promoting seed abortion but negative feedback between IAA-VvAGL15-VvAGL6-2 and CTK-VvAGL11. Furthermore, many genes in the IAA, ABA, SA, CTK, and ETH pathways had a special expressional pattern in the seed, whereby we developed a regulatory network mediated by VvAGLs by responding to multihormonal crosstalk during grape seed abortion. Our findings provide new insights into the regulatory network of VvAGLs in multi-hormone signalling to regulate grape seed abortion, which could be helpful in the molecular breeding of high-quality seedless grapes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (F.L.); (R.B.A.); (Y.W.); (X.X.); (M.Y.); (Z.Q.); (X.C.); (Q.W.); (Z.Q.); (T.D.); (S.L.); (J.F.)
| |
Collapse
|
6
|
Zhang X, He W, Wang X, Duan Y, Li Y, Wang Y, Jiang Q, Liao B, Zhou S, Li Y. Genome-Wide Analyses of MADS-Box Genes Reveal Their Involvement in Seed Development and Oil Accumulation of Tea-Oil Tree ( Camellia oleifera). Int J Genomics 2024; 2024:3375173. [PMID: 39105136 PMCID: PMC11300058 DOI: 10.1155/2024/3375173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
The seeds of Camellia oleifera produce high amount of oil, which can be broadly used in the fields of food, industry, and medicine. However, the molecular regulation mechanisms of seed development and oil accumulation in C. oleifera are unclear. In this study, evolutionary and expression analyses of the MADS-box gene family were performed across the C. oleifera genome for the first time. A total of 86 MADS-box genes (ColMADS) were identified, including 60 M-type and 26 MIKC members. More gene duplication events occurred in M-type subfamily (6) than that in MIKC subfamily (2), and SEP-like genes were lost from the MIKCC clade. Furthermore, 8, 15, and 17 differentially expressed ColMADS genes (DEGs) were detected between three developmental stages of seed (S1/S2, S2/S3, and S1/S3), respectively. Among these DEGs, the STK-like ColMADS12 and TT16-like ColMADS17 were highly expressed during the seed formation (S1 and S2), agreeing with their predicted functions to positively regulate the seed organogenesis and oil accumulation. While ColMADS57 and ColMADS07 showed increasing expression level with the seed maturation (S2 and S3), conforming to their potential roles in promoting the seed ripening. In all, these results revealed a critical role of MADS-box genes in the C. oleifera seed development and oil accumulation, which will contribute to the future molecular breeding of C. oleifera.
Collapse
Affiliation(s)
- Xianzhi Zhang
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Heyuan Branch CenterGuangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517500, China
| | - Wenliang He
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xinyi Wang
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yongliang Duan
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yongjuan Li
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yi Wang
- School of Mechanic and Electronic EngineeringZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qingbin Jiang
- Research Institute of Tropical ForestryChinese Academy of Forestry, Guangzhou 510520, China
| | - Boyong Liao
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Sheng Zhou
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yongquan Li
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
7
|
Choi J, Gehring M. CRWN nuclear lamina components maintain the H3K27me3 landscape and promote successful reproduction in Arabidopsis. THE NEW PHYTOLOGIST 2024; 243:213-228. [PMID: 38715414 PMCID: PMC11162254 DOI: 10.1111/nph.19791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
Arabidopsis lamin analogs CROWDED NUCLEIs (CRWNs) are necessary to maintain nuclear structure, genome function, and proper plant growth. However, whether and how CRWNs impact reproduction and genome-wide epigenetic modifications is unknown. Here, we investigate the role of CRWNs during the development of gametophytes, seeds, and endosperm, using genomic and epigenomic profiling methods. We observed defects in crwn mutant seeds including seed abortion and reduced germination rate. Quadruple crwn null genotypes were rarely transmitted through gametophytes. Because defects in seeds often stem from abnormal endosperm development, we focused on crwn1 crwn2 (crwn1/2) endosperm. These mutant seeds exhibited enlarged chalazal endosperm cysts and increased expression of stress-related genes and the MADS-box transcription factor PHERES1 and its targets. Previously, it was shown that PHERES1 expression is regulated by H3K27me3 and that CRWN1 interacts with the PRC2 interactor PWO1. Thus, we tested whether crwn1/2 alters H3K27me3 patterns. We observed a mild loss of H3K27me3 at several hundred loci, which differed between endosperm and leaves. These data indicate that CRWNs are necessary to maintain the H3K27me3 landscape, with tissue-specific chromatin and transcriptional consequences.
Collapse
Affiliation(s)
- Junsik Choi
- Whitehead Institute for Biomedical Research, Cambridge MA 02142
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge MA 02142
- Dept. of Biology, Massachusetts Institute of Technology, Cambridge MA 02139
| |
Collapse
|
8
|
Zhang S, Mohanty D, Muzaffar A, Ni M. Two MADS-box proteins, AGL9 and AGL15, recruit the FIS-PRC2 complex to trigger the phase transition from endosperm proliferation to embryo development in Arabidopsis. MOLECULAR PLANT 2024; 17:1110-1128. [PMID: 38825830 DOI: 10.1016/j.molp.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/31/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
Spatiotemporal regulation of gene expression by polycomb repressive complex 2 (PRC2) is critical for animal and plant development. The Arabidopsis fertilization independent seed (FIS)-PRC2 complex functions specifically during plant reproduction from gametogenesis to seed development. After a double fertilization event, triploid endosperm proliferates early, followed by the growth of a diploid embryo, which replaces the endosperm in Arabidopsis and many dicots. Key genes critical for endosperm proliferation such as IKU2 and MINI3 are activated after fertilization. Here we report that two MADS-box AGAMOUS-LIKE (AGL) proteins associate with the key endosperm proliferation loci and recruit the FIS-PRC2 repressive complex at 4-5 days after pollination (DAP). Interestingly, AGL9 and AGL15 only accumulate toward the end of endosperm proliferation at 4-5 DAP and promote the deposition of H3K27me3 marks at key endosperm proliferation loci. Disruption of AGL9 and AGL15 or overexpression of AGL9 or AGL15 significantly influence endosperm proliferation and cellularization. Genome-wide analysis with cleavage Under Targets and tagmentation (CUT&Tag) sequencing and RNA sequencing revealed the landscape of endosperm H3K27me3 marks and gene expression profiles in Col-0 and agl9 agl15. CUT&Tag qPCR also demonstrated the occupancy of the two MADS-box proteins and FIS-PRC2 on a few representative target loci. Our studies suggest that MADS-box proteins could potentially recruit PRC2 to regulate many other developmental processes in plants or even in fungi and animals.
Collapse
Affiliation(s)
- Shen Zhang
- Department of Plant and Microbial Biology, University of Minnesota at Twin Cities, Saint Paul, Minnesota MN 55108, United States of AmericaUSA
| | - Devasantosh Mohanty
- Department of Plant and Microbial Biology, University of Minnesota at Twin Cities, Saint Paul, Minnesota MN 55108, United States of AmericaUSA
| | - Adnan Muzaffar
- Department of Plant and Microbial Biology, University of Minnesota at Twin Cities, Saint Paul, Minnesota MN 55108, United States of AmericaUSA
| | - Min Ni
- Department of Plant and Microbial Biology, University of Minnesota at Twin Cities, Saint Paul, Minnesota MN 55108, United States of AmericaUSA.
| |
Collapse
|
9
|
He J, Wang J, Zhang Z. Toward unveiling transcriptome dynamics and regulatory modules at the maternal/filial interface of developing maize kernel. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2124-2140. [PMID: 38551088 DOI: 10.1111/tpj.16733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/21/2024] [Accepted: 03/12/2024] [Indexed: 06/14/2024]
Abstract
The basal region of maize (Zea mays) kernels, which includes the pedicel, placenta-chalazal, and basal endosperm transfer layers, serves as the maternal/filial interface for nutrient transfer from the mother plant to the developing seed. However, transcriptome dynamics of this maternal/filial interface remain largely unexplored. To address this gap, we conducted high-temporal-resolution RNA sequencing of the basal and upper kernel regions between 4 and 32 days after pollination and deeply analyzed transcriptome dynamics of the maternal/filial interface. Utilizing 790 specifically and highly expressed genes in the basal region, we performed the gene ontology (GO) term and weighted gene co-expression network analyses. In the early-stage basal region, we identified five MADS-box transcription factors (TFs) as hubs. Their homologs have been demonstrated as pivotal regulators at the maternal/filial interface of rice or Arabidopsis, suggesting their potential roles in maize kernel development. In the filling-stage basal region, numerous GO terms associated with transcriptional regulation and transporters are significantly enriched. Furthermore, we investigated the molecular function of three hub TFs. Through genome-wide DNA affinity purification sequencing combined with promoter transactivation assays, we suggested that these three TFs act as regulators of 10 basal-specific transporter genes involved in the transfer of sugars, amino acids, and ions. This study provides insights into transcriptomic dynamic and regulatory modules of the maternal/filial interface. In the future, genetic investigation of these hub regulators must advance our understanding of maternal/filial interface development and function.
Collapse
Affiliation(s)
- Juan He
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jincang Wang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Zhiyong Zhang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| |
Collapse
|
10
|
Cherubino Ribeiro TH, Baldrich P, de Oliveira RR, Fernandes-Brum CN, Mathioni SM, de Sousa Cardoso TC, de Souza Gomes M, do Amaral LR, Pimenta de Oliveira KK, Dos Reis GL, Meyers BC, Chalfun-Junior A. The floral development of the allotetraploid Coffea arabica L. correlates with a small RNA dynamic reprogramming. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1848-1863. [PMID: 38488203 DOI: 10.1111/tpj.16713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/05/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Noncoding and coding RNAs are key regulators of plant growth, development, and stress responses. To investigate the types of transcripts accumulated during the vegetative to reproductive transition and floral development in the Coffea arabica L., we sequenced small RNA libraries from eight developmental stages, up to anthesis. We combined these data with messenger RNA and PARE sequencing of two important development stages that marks the transition of an apparent latent to a rapid growth stage. In addition, we took advantage of multiple in silico tools to characterize genomic loci producing small RNAs such as phasiRNAs, miRNAs, and tRFs. Our differential and co-expression analysis showed that some types of small RNAs such as tRNAs, snoRNAs, snRNAs, and phasiRNAs preferentially accumulate in a stage-specific manner. Members of the miR482/miR2118 superfamily and their 21-nucleotide phasiRNAs originating from resistance genes show a robust co-expression pattern that is maintained across all the evaluated developmental stages. Finally, the majority of miRNAs accumulate in a family stage-specific manner, related to modulated hormonal responses and transcription factor expression.
Collapse
Affiliation(s)
- Thales Henrique Cherubino Ribeiro
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras, 37200-000, MG, Brazil
- Donald Danforth Plant Science Center, Saint Louis, MO, 63132, USA
| | | | - Raphael Ricon de Oliveira
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras, 37200-000, MG, Brazil
| | - Christiane Noronha Fernandes-Brum
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras, 37200-000, MG, Brazil
| | | | - Thaís Cunha de Sousa Cardoso
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, Lavras, 38700-128, MG, Brazil
| | - Matheus de Souza Gomes
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, Lavras, 38700-128, MG, Brazil
| | - Laurence Rodrigues do Amaral
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, Lavras, 38700-128, MG, Brazil
| | - Kellen Kauanne Pimenta de Oliveira
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras, 37200-000, MG, Brazil
| | - Gabriel Lasmar Dos Reis
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras, 37200-000, MG, Brazil
| | - Blake C Meyers
- Donald Danforth Plant Science Center, Saint Louis, MO, 63132, USA
- Division of Plant Sciences and Technology, University of Missouri-Columbia, Columbia, MI, 65211, USA
| | - Antonio Chalfun-Junior
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras, 37200-000, MG, Brazil
| |
Collapse
|
11
|
Wang Y, Duchen P, Chávez A, Sree KS, Appenroth KJ, Zhao H, Höfer M, Huber M, Xu S. Population genomics and epigenomics of Spirodela polyrhiza provide insights into the evolution of facultative asexuality. Commun Biol 2024; 7:581. [PMID: 38755313 PMCID: PMC11099151 DOI: 10.1038/s42003-024-06266-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
Many plants are facultatively asexual, balancing short-term benefits with long-term costs of asexuality. During range expansion, natural selection likely influences the genetic controls of asexuality in these organisms. However, evidence of natural selection driving asexuality is limited, and the evolutionary consequences of asexuality on the genomic and epigenomic diversity remain controversial. We analyzed population genomes and epigenomes of Spirodela polyrhiza, (L.) Schleid., a facultatively asexual plant that flowers rarely, revealing remarkably low genomic diversity and DNA methylation levels. Within species, demographic history and the frequency of asexual reproduction jointly determined intra-specific variations of genomic diversity and DNA methylation levels. Genome-wide scans revealed that genes associated with stress adaptations, flowering and embryogenesis were under positive selection. These data are consistent with the hypothesize that natural selection can shape the evolution of asexuality during habitat expansions, which alters genomic and epigenomic diversity levels.
Collapse
Affiliation(s)
- Yangzi Wang
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany
| | - Pablo Duchen
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany
| | - Alexandra Chávez
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, 48161, Münster, Germany
| | - K Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periya, 671320, India
| | - Klaus J Appenroth
- Matthias Schleiden Institute - Plant Physiology, Friedrich Schiller University of Jena, 07743, Jena, Germany
| | - Hai Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, 6100641, Chengdu, China
| | - Martin Höfer
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany
| | - Meret Huber
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, 48161, Münster, Germany
| | - Shuqing Xu
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany.
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany.
- Institute for Quantitative and Computational Biosciences, University of Mainz, 55218, Mainz, Germany.
| |
Collapse
|
12
|
Mirzaghaderi G. Genome-wide analysis of MADS-box transcription factor gene family in wild emmer wheat (Triticum turgidum subsp. dicoccoides). PLoS One 2024; 19:e0300159. [PMID: 38451993 PMCID: PMC10919676 DOI: 10.1371/journal.pone.0300159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
The members of MADS-box gene family have important roles in regulating the growth and development of plants. MADS-box genes are highly regarded for their potential to enhance grain yield and quality under shifting global conditions. Wild emmer wheat (Triticum turgidum subsp. dicoccoides) is a progenitor of common wheat and harbors valuable traits for wheat improvement. Here, a total of 117 MADS-box genes were identified in the wild emmer wheat genome and classified to 90 MIKCC, 3 MIKC*, and 24 M-type. Furthermore, a phylogenetic analysis and expression profiling of the emmer wheat MADS-box gene family was presented. Although some MADS-box genes belonging to SOC1, SEP1, AGL17, and FLC groups have been expanded in wild emmer wheat, the number of MIKC-type MADS-box genes per subgenome is similar to that of rice and Arabidopsis. On the other hand, M-type genes of wild emmer wheat is less frequent than that of Arabidopsis. Gene expression patterns over different tissues and developmental stages agreed with the subfamily classification of MADS-box genes and was similar to common wheat and rice, indicating their conserved functionality. Some TdMADS-box genes are also differentially expressed under drought stress. The promoter region of each of the TdMADS-box genes harbored 6 to 48 responsive elements, mainly related to light, however hormone, drought, and low-temperature related cis-acting elements were also present. In conclusion, the results provide detailed information about the MADS-box genes of wild emmer wheat. The present work could be useful in the functional genomics efforts toward breeding for agronomically important traits in T. dicoccoides.
Collapse
Affiliation(s)
- Ghader Mirzaghaderi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
13
|
Liang M, Du Z, Yang Z, Luo T, Ji C, Cui H, Li R. Genome-wide characterization and expression analysis of MADS-box transcription factor gene family in Perilla frutescens. FRONTIERS IN PLANT SCIENCE 2024; 14:1299902. [PMID: 38259943 PMCID: PMC10801092 DOI: 10.3389/fpls.2023.1299902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024]
Abstract
MADS-box transcription factors are widely involved in the regulation of plant growth, developmental processes, and response to abiotic stresses. Perilla frutescens, a versatile plant, is not only used for food and medicine but also serves as an economical oil crop. However, the MADS-box transcription factor family in P. frutescens is still largely unexplored. In this study, a total of 93 PfMADS genes were identified in P. frutescens genome. These genes, including 37 Type I and 56 Type II members, were randomly distributed across 20 chromosomes and 2 scaffold regions. Type II PfMADS proteins were found to contain a greater number of motifs, indicating more complex structures and diverse functions. Expression analysis revealed that most PfMADS genes (more than 76 members) exhibited widely expression model in almost all tissues. The further analysis indicated that there was strong correlation between some MIKCC-type PfMADS genes and key genes involved in lipid synthesis and flavonoid metabolism, which implied that these PfMADS genes might play important regulatory role in the above two pathways. It was further verified that PfMADS47 can effectively mediate the regulation of lipid synthesis in Chlamydomonas reinhardtii transformants. Using cis-acting element analysis and qRT-PCR technology, the potential functions of six MIKCC-type PfMADS genes in response to abiotic stresses, especially cold and drought, were studied. Altogether, this study is the first genome-wide analysis of PfMADS. This result further supports functional and evolutionary studies of PfMADS gene family and serves as a benchmark for related P. frutescens breeding studies.
Collapse
Affiliation(s)
- Mengjing Liang
- Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Zhongyang Du
- Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Ze Yang
- Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Tao Luo
- Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chunli Ji
- Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Hongli Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
| | - Runzhi Li
- Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| |
Collapse
|
14
|
Zhang J, Zhang Z, Zhang R, Yang C, Zhang X, Chang S, Chen Q, Rossi V, Zhao L, Xiao J, Xin M, Du J, Guo W, Hu Z, Liu J, Peng H, Ni Z, Sun Q, Yao Y. Type I MADS-box transcription factor TaMADS-GS regulates grain size by stabilizing cytokinin signalling during endosperm cellularization in wheat. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:200-215. [PMID: 37752705 PMCID: PMC10754016 DOI: 10.1111/pbi.14180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023]
Abstract
Grain size is one of the important traits in wheat breeding programs aimed at improving yield, and cytokinins, mainly involved in cell division, have a positive impact on grain size. Here, we identified a novel wheat gene TaMADS-GS encoding type I MADS-box transcription factor, which regulates the cytokinins signalling pathway during early stages of grain development to modulate grain size and weight in wheat. TaMADS-GS is exclusively expressed in grains at early stage of seed development and its knockout leads to delayed endosperm cellularization, smaller grain size and lower grain weight. TaMADS-GS protein interacts with the Polycomb Repressive Complex 2 (PRC2) and leads to repression of genes encoding cytokinin oxidase/dehydrogenases (CKXs) stimulating cytokinins inactivation by mediating accumulation of the histone H3 trimethylation at lysine 27 (H3K27me3). Through the screening of a large wheat germplasm collection, an elite allele of the TaMADS-GS exhibits higher ability to repress expression of genes inactivating cytokinins and a positive correlation with grain size and weight, thus representing a novel marker for breeding programs in wheat. Overall, these findings support the relevance of TaMADS-GS as a key regulator of wheat grain size and weight.
Collapse
Affiliation(s)
- Jianing Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Zhaoheng Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Ruijie Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Changfeng Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Xiaobang Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Siyuan Chang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Qian Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Vincenzo Rossi
- Council for Agricultural Research and EconomicsResearch Centre for Cereal and Industrial CropsBergamoItaly
| | - Long Zhao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Jinkun Du
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| |
Collapse
|
15
|
Cao J, Wang W, Xu X, Li SY, Zheng Y, Li DD. Identification and Analysis of MADS-Box Genes Expressed in the Mesocarp of Oil Palm Fruit (Elaeis guineensis Jacq.). Biochem Genet 2023; 61:2382-2400. [PMID: 37060482 DOI: 10.1007/s10528-023-10376-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
Oil palm (Elaeis guineensis) is the most important tropical oil-bearing crop species worldwide. MADS-box proteins, which play crucial roles in plant growth and development and are involved in various physiological and biochemical processes, compose one of the largest families of plant transcription factors. In this study, 42 MADS-box genes were screened from the mesocarp transcriptome database of oil palm fruit, and their phylogenetic relationships with Arabidopsis thaliana MADS-box genes were analyzed. Based on the results, MADS-box genes from oil palm mesocarp were classified into four groups: MIKCc-type, MIKC*-type, Mα-type, and Mγ-type MADS-box genes. Members of the subfamilies were classified according to the presence of three specific protein motifs. To explore the differential expression of the MADS-box genes, the dynamic expression of all selected MADS-box genes in oil palm was measured by RNA-seq. The high expression of specific MADS-box genes in the mesocarp of oil palm during different developmental stages indicates that those genes may play important roles in the cell division of and metabolite accumulation in the fruit and could become important targets for fruit development and oil accumulation research in oil palm.
Collapse
Affiliation(s)
- Jiaqi Cao
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Hainan, 570228, China
| | - Wei Wang
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Hainan, 570228, China
| | - Xin Xu
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Hainan, 570228, China
| | - Si-Yu Li
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Hainan, 570228, China
| | - Yusheng Zheng
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Hainan, 570228, China
| | - Dong-Dong Li
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Hainan, 570228, China.
| |
Collapse
|
16
|
Bramsiepe J, Krabberød AK, Bjerkan KN, Alling RM, Johannessen IM, Hornslien KS, Miller JR, Brysting AK, Grini PE. Structural evidence for MADS-box type I family expansion seen in new assemblies of Arabidopsis arenosa and A. lyrata. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:942-961. [PMID: 37517071 DOI: 10.1111/tpj.16401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/24/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Arabidopsis thaliana diverged from A. arenosa and A. lyrata at least 6 million years ago. The three species differ by genome-wide polymorphisms and morphological traits. The species are to a high degree reproductively isolated, but hybridization barriers are incomplete. A special type of hybridization barrier is based on the triploid endosperm of the seed, where embryo lethality is caused by endosperm failure to support the developing embryo. The MADS-box type I family of transcription factors is specifically expressed in the endosperm and has been proposed to play a role in endosperm-based hybridization barriers. The gene family is well known for its high evolutionary duplication rate, as well as being regulated by genomic imprinting. Here we address MADS-box type I gene family evolution and the role of type I genes in the context of hybridization. Using two de-novo assembled and annotated chromosome-level genomes of A. arenosa and A. lyrata ssp. petraea we analyzed the MADS-box type I gene family in Arabidopsis to predict orthologs, copy number, and structural genomic variation related to the type I loci. Our findings were compared to gene expression profiles sampled before and after the transition to endosperm cellularization in order to investigate the involvement of MADS-box type I loci in endosperm-based hybridization barriers. We observed substantial differences in type-I expression in the endosperm of A. arenosa and A. lyrata ssp. petraea, suggesting a genetic cause for the endosperm-based hybridization barrier between A. arenosa and A. lyrata ssp. petraea.
Collapse
Affiliation(s)
- Jonathan Bramsiepe
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
- CEES, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Anders K Krabberød
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Katrine N Bjerkan
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
- CEES, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Renate M Alling
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
- CEES, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Ida M Johannessen
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Karina S Hornslien
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Jason R Miller
- College of STEM, Shepherd University, Shepherdstown, West Virginia, 25443-5000, USA
| | - Anne K Brysting
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
- CEES, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Paul E Grini
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| |
Collapse
|
17
|
Ezura K, Nomura Y, Ariizumi T. Molecular, hormonal, and metabolic mechanisms of fruit set, the ovary-to-fruit transition, in horticultural crops. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6254-6268. [PMID: 37279328 DOI: 10.1093/jxb/erad214] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023]
Abstract
Fruit set is the process by which the ovary develops into a fruit and is an important factor in determining fruit yield. Fruit set is induced by two hormones, auxin and gibberellin, and the activation of their signaling pathways, partly by suppressing various negative regulators. Many studies have investigated the structural changes and gene networks in the ovary during fruit set, revealing the cytological and molecular mechanisms. In tomato (Solanum lycopersicum), SlIAA9 and SlDELLA/PROCERA act as auxin and gibberellin signaling repressors, respectively, and are important regulators of the activity of transcription factors and downstream gene expression involved in fruit set. Upon pollination, SlIAA9 and SlDELLA are degraded, which subsequently activates downstream cascades and mainly contributes to active cell division and cell elongation, respectively, in ovaries during fruit setting. According to current knowledge, the gibberellin pathway functions as the most downstream signal in fruit set induction, and therefore its role in fruit set has been extensively explored. Furthermore, multi-omics analysis has revealed the detailed dynamics of gene expression and metabolites downstream of gibberellins, highlighting the rapid activation of central carbon metabolism. This review will outline the relevant mechanisms at the molecular and metabolic levels during fruit set, particularly focusing on tomato.
Collapse
Affiliation(s)
- Kentaro Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Research Fellow of Japan Society for Promotion of Science (JSPS), Kojimachi, Tokyo 102-0083, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yukako Nomura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
18
|
Choi J, Gehring M. CRWN nuclear lamina components maintain the H3K27me3 landscape and promote successful reproduction in Arabidopsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560721. [PMID: 37873406 PMCID: PMC10592970 DOI: 10.1101/2023.10.03.560721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The nuclear lamina, a sub-nuclear protein matrix, maintains nuclear structure and genome function. Here, we investigate the role of Arabidopsis lamin analogs CROWDED NUCLEIs during gametophyte and seed development. We observed defects in crwn mutant seeds, including seed abortion and reduced germination rate. Quadruple crwn null genotypes were rarely transmitted through gametophytes. We focused on the crwn1 crwn2 (crwn1/2) endosperm, which exhibited enlarged chalazal cysts and increased expression of stress-related genes and the MADS-box transcription factor PHERES1 and its targets. Previously, it was shown that PHERES1 is regulated by H3K27me3 and that CRWN1 interacts with the PRC2 interactor PWO1. Thus, we tested whether crwn1/2 alters H3K27me3 patterns. We observed a mild loss of H3K27me3 at several hundred loci, which differed between endosperm and leaves. These data indicate that CRWNs are necessary to maintain the H3K27me3 landscape, with tissue-specific chromatin and transcriptional consequences.
Collapse
Affiliation(s)
- Junsik Choi
- Whitehead Institute for Biomedical Research, Cambridge MA 02142
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge MA 02142
- Dept. of Biology, Massachusetts Institute of Technology, Cambridge MA 02139
| |
Collapse
|
19
|
Yan G, Li S, Ma M, Quan C, Tian X, Tu J, Shen J, Yi B, Fu T, Ma C, Guo L, Dai C. The transcription factor BnaWRKY10 regulates cytokinin dehydrogenase BnaCKX2 to control cytokinin distribution and seed size in Brassica napus. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4994-5013. [PMID: 37246599 DOI: 10.1093/jxb/erad201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Cytokinins (CKs) are phytohormones that promote cell division and differentiation. However, the regulation of CK distribution and homeostasis in Brassica napus is poorly understood. Here, the endogenous CKs were first quantified by LC-ESI-MS/MS in rapeseed tissues and visualized by TCSn::GUS reporter lines. Interestingly, the cytokinin oxidase/dehydrogenase BnaCKX2 homologs were mainly expressed in reproductive organs. Subsequently, the quadruple mutants of the four BnaCKX2 homologs were generated. Endogenous CKs were increased in the seeds of the BnaCKX2 quadruple mutants, resulting in a significantly reduced seed size. In contrast, overexpression of BnaA9.CKX2 resulted in larger seeds, probably by delaying endosperm cellularization. Furthermore, the transcription factor BnaC6.WRKY10b, but not BnaC6.WRKY10a, positively regulated BnaA9.CKX2 expression by binding directly to its promoter region. Overexpression of BnaC6.WRKY10b rather than BnaC6.WRKY10a resulted in lower concentration of CKs and larger seeds by activating BnaA9.CKX2 expression, indicating that the functional differentiation of BnaWRKY10 homologs might have occurred during B. napus evolution or domestication. Notably, the haploid types of BnaA9.CKX2 were associated with 1000-seed weight in the natural B. napus population. Overall, the study reveals the distribution of CKs in B. napus tissues, and shows that BnaWRKY10-mediated BnaCKX2 expression is essential for seed size regulation, providing promising targets for oil crop improvement.
Collapse
Affiliation(s)
- Guanbo Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Sijia Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengya Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chengtao Quan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xia Tian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
20
|
Qiu Y, Li Z, Walther D, Köhler C. Updated Phylogeny and Protein Structure Predictions Revise the Hypothesis on the Origin of MADS-box Transcription Factors in Land Plants. Mol Biol Evol 2023; 40:msad194. [PMID: 37652031 PMCID: PMC10484287 DOI: 10.1093/molbev/msad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023] Open
Abstract
MADS-box transcription factors (TFs), among the first TFs extensively studied, exhibit a wide distribution across eukaryotes and play diverse functional roles. Varying by domain architecture, MADS-box TFs in land plants are categorized into Type I (M-type) and Type II (MIKC-type). Type I and II genes have been considered orthologous to the SRF and MEF2 genes in animals, respectively, presumably originating from a duplication before the divergence of eukaryotes. Here, we exploited the increasing availability of eukaryotic MADS-box sequences and reassessed their evolution. While supporting the ancient duplication giving rise to SRF- and MEF2-types, we found that Type I and II genes originated from the MEF2-type genes through another duplication in the most recent common ancestor (MRCA) of land plants. Protein structures predicted by AlphaFold2 and OmegaFold support our phylogenetic analyses, with plant Type I and II TFs resembling the MEF2-type structure, rather than SRFs. We hypothesize that the ancestral SRF-type TFs were lost in the MRCA of Archaeplastida (the kingdom Plantae sensu lato). The retained MEF2-type TFs acquired a Keratin-like domain and became MIKC-type before the divergence of Streptophyta. Subsequently in the MRCA of land plants, M-type TFs evolved from a duplicated MIKC-type precursor through loss of the Keratin-like domain, leading to the Type I clade. Both Type I and II TFs expanded and functionally differentiated in concert with the increasing complexity of land plant body architecture. The recruitment of these originally stress-responsive TFs into developmental programs, including those underlying reproduction, may have facilitated the adaptation to the terrestrial environment.
Collapse
Affiliation(s)
- Yichun Qiu
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Swedish University of Agricultural Sciences & Linnean Center for Plant Biology, Uppsala BioCenter, Uppsala, Sweden
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Claudia Köhler
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Swedish University of Agricultural Sciences & Linnean Center for Plant Biology, Uppsala BioCenter, Uppsala, Sweden
| |
Collapse
|
21
|
Bjerkan KN, Alling RM, Myking IV, Brysting AK, Grini PE. Genetic and environmental manipulation of Arabidopsis hybridization barriers uncovers antagonistic functions in endosperm cellularization. FRONTIERS IN PLANT SCIENCE 2023; 14:1229060. [PMID: 37600172 PMCID: PMC10433385 DOI: 10.3389/fpls.2023.1229060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023]
Abstract
Speciation involves reproductive isolation, which can occur by hybridization barriers acting in the endosperm of the developing seed. The nuclear endosperm is a nutrient sink, accumulating sugars from surrounding tissues, and undergoes coordinated cellularization, switching to serve as a nutrient source for the developing embryo. Tight regulation of cellularization is therefore vital for seed and embryonic development. Here we show that hybrid seeds from crosses between Arabidopsis thaliana as maternal contributor and A. arenosa or A. lyrata as pollen donors result in an endosperm based post-zygotic hybridization barrier that gives rise to a reduced seed germination rate. Hybrid seeds display opposite endosperm cellularization phenotypes, with late cellularization in crosses with A. arenosa and early cellularization in crosses with A. lyrata. Stage specific endosperm reporters display temporally ectopic expression in developing hybrid endosperm, in accordance with the early and late cellularization phenotypes, confirming a disturbance of the source-sink endosperm phase change. We demonstrate that the hybrid barrier is under the influence of abiotic factors, and show that a temperature gradient leads to diametrically opposed cellularization phenotype responses in hybrid endosperm with A. arenosa or A. lyrata as pollen donors. Furthermore, different A. thaliana accession genotypes also enhance or diminish seed viability in the two hybrid cross-types, emphasizing that both genetic and environmental cues control the hybridization barrier. We have identified an A. thaliana MADS-BOX type I family single locus that is required for diametrically opposed cellularization phenotype responses in hybrid endosperm. Loss of AGAMOUS-LIKE 35 significantly affects the germination rate of hybrid seeds in opposite directions when transmitted through the A. thaliana endosperm, and is suggested to be a locus that promotes cellularization as part of an endosperm based mechanism involved in post-zygotic hybrid barriers. The role of temperature in hybrid speciation and the identification of distinct loci in control of hybrid failure have great potential to aid the introduction of advantageous traits in breeding research and to support models to predict hybrid admixture in a changing global climate.
Collapse
Affiliation(s)
- Katrine N. Bjerkan
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Renate M. Alling
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ida V. Myking
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Anne K. Brysting
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Paul E. Grini
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
Zhang S, Wang L, Yao J, Wu N, Ahmad B, van Nocker S, Wu J, Abudureheman R, Li Z, Wang X. Control of ovule development in Vitis vinifera by VvMADS28 and interacting genes. HORTICULTURE RESEARCH 2023; 10:uhad070. [PMID: 37293531 PMCID: PMC10244803 DOI: 10.1093/hr/uhad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 04/08/2023] [Indexed: 06/10/2023]
Abstract
Seedless grapes are increasingly popular throughout the world, and the development of seedless varieties is a major breeding goal. In this study, we demonstrate an essential role for the grapevine MADS-box gene VvMADS28 in morphogenesis of the ovule. We found that VvMADS28 mRNA accumulated in the ovules of a seeded cultivar, 'Red Globe', throughout the course of ovule and seed development, especially within the integument/seed coat. In contrast, in the seedless cultivar 'Thompson Seedless', VvMADS28 was expressed only weakly in ovules, and this was associated with increased levels of histone H3 lysine 27 trimethylation (H3K27me3) within the VvMADS28 promoter region. RNAi-mediated transient suppression of VvMADS28 expression in 'Red Globe' led to reduced seed size associated with inhibition of episperm and endosperm cell development. Heterologous overexpression of VvMADS28 in transgenic tomatoes interfered with sepal development and resulted in smaller fruit but did not obviously affect seed size. Assays in yeast cells showed that VvMADS28 is subject to regulation by the transcription factor VvERF98, and that VvMADS28 could interact with the Type I/ Mβ MADS-domain protein VvMADS5. Moreover, through DNA-affinity purification-sequencing (DAP-seq), we found that VvMADS28 protein specifically binds to the promoter of the grapevine WUSCHEL (VvWUS) gene, suggesting that maintenance of the VvMADS28-VvMADS5 dimer and VvWUS expression homeostasis influences seed development. Taken together, our results provide insight into regulatory mechanisms of ovule and seed development associated with VvMADS28.
Collapse
Affiliation(s)
- Songlin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Jin Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bilal Ahmad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Agriculture Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI 48823, USA
| | - Jiuyun Wu
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan 838000, Xinjiang, China
| | - Riziwangguli Abudureheman
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan 838000, Xinjiang, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan 838000, Xinjiang, China
| |
Collapse
|
23
|
Jin C, Sun L, Trinh HK, Danny G. Heat stress promotes haploid formation during CENH3-mediated genome elimination in Arabidopsis. PLANT REPRODUCTION 2023; 36:147-155. [PMID: 36692584 DOI: 10.1007/s00497-023-00457-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 01/09/2023] [Indexed: 06/09/2023]
Abstract
Impaired activity of centromeric histone CENH3 causes inaccurate chromosome segregation and in crosses between the Arabidopsis recombinant CENH3 mutant GFP-tailswap and CENH3G83E with wild-type pollen it results in chromosome loss with the formation of haploids. This genome elimination in the zygote and embryo is not absolute as also aneuploid and diploid progeny is formed. Here, we report that a temporal and moderate heat stress during fertilization and early embryogenesis shifts the ratio in favour of haploid progeny in CENH3 mutant lines. Micronuclei formation, a proxy for genome elimination, was similar in control and heat-treated flowers, indicating that heat-induced seed abortion occurred at a late stage during the development of the seed. In the seeds derived from heat-treated crosses, the endosperm did not cellularize and many seeds aborted. Haploid seeds were formed, however, resulting in increased frequencies of haploids in CENH3-mediated genome elimination crosses performed under heat stress. Therefore, heat stress application is a selective force during genome elimination that promotes haploid formation and may be used to improve the development and efficacy of in vivo haploid induction systems.
Collapse
Affiliation(s)
- Chunlian Jin
- Faculty of Bioscience Engineering, HortiCell, Ghent University, Coupure Links, 9000, Ghent, Belgium
- Floricultural Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Limin Sun
- Faculty of Bioscience Engineering, HortiCell, Ghent University, Coupure Links, 9000, Ghent, Belgium
| | - Hoang Khai Trinh
- Faculty of Bioscience Engineering, HortiCell, Ghent University, Coupure Links, 9000, Ghent, Belgium
- Biotechnology Research and Development Institute, Can Tho University, Can Tho City, 900000, Vietnam
| | - Geelen Danny
- Faculty of Bioscience Engineering, HortiCell, Ghent University, Coupure Links, 9000, Ghent, Belgium.
| |
Collapse
|
24
|
Pasaribu B, Acosta K, Aylward A, Liang Y, Abramson BW, Colt K, Hartwick NT, Shanklin J, Michael TP, Lam E. Genomics of turions from the Greater Duckweed reveal its pathways for dormancy and re-emergence strategy. THE NEW PHYTOLOGIST 2023. [PMID: 37149888 DOI: 10.1111/nph.18941] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/24/2023] [Indexed: 05/09/2023]
Abstract
Over 15 families of aquatic plants are known to use a strategy of developmental switching upon environmental stress to produce dormant propagules called turions. However, few molecular details for turion biology have been elucidated due to the difficulties in isolating high-quality nucleic acids from this tissue. We successfully developed a new protocol to isolate high-quality transcripts and carried out RNA-seq analysis of mature turions from the Greater Duckweed Spirodela polyrhiza. Comparison of turion transcriptomes to that of fronds, the actively growing leaf-like tissue, were carried out. Bioinformatic analysis of high confidence, differentially expressed transcripts between frond and mature turion tissues revealed major pathways related to stress tolerance, starch and lipid metabolism, and dormancy that are mobilized to reprogram frond meristems for turion differentiation. We identified the key genes that are likely to drive starch and lipid accumulation during turion formation, as well as those in pathways for starch and lipid utilization upon turion germination. Comparison of genome-wide cytosine methylation levels also revealed evidence for epigenetic changes in the formation of turion tissues. Similarities between turions and seeds provide evidence that key regulators for seed maturation and germination were retooled for their function in turion biology.
Collapse
Affiliation(s)
- Buntora Pasaribu
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Marine Science Department, Faculty of Fishery and Marine Science, Universitas Padjadjaran, Bandung, 40600, Indonesia
| | - Kenneth Acosta
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Anthony Aylward
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Yuanxue Liang
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Bradley W Abramson
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Kelly Colt
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Nolan T Hartwick
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Todd P Michael
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Eric Lam
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| |
Collapse
|
25
|
Chen TQ, Sun Y, Yuan T. Transcriptome sequencing and gene expression analysis revealed early ovule abortion of Paeonia ludlowii. BMC Genomics 2023; 24:78. [PMID: 36803218 PMCID: PMC9936667 DOI: 10.1186/s12864-023-09171-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Paeonia ludlowii (Stern & G. Taylor D.Y. Hong) belongs to the peony group of the genus Paeonia in the Paeoniaceae family and is now classified as a "critically endangered species" in China. Reproduction is important for this species, and its low fruiting rate has become a critical factor limiting both the expansion of its wild population and its domestic cultivation. RESULTS In this study, we investigated possible causes of the low fruiting rate and ovule abortion in Paeonia ludlowii. We clarified the characteristics of ovule abortion and the specific time of abortion in Paeonia ludlowii, and used transcriptome sequencing to investigate the mechanism of abortion of ovules in Paeonia ludlowii. CONCLUSIONS In this paper, the ovule abortion characteristics of Paeonia ludlowii were systematically studied for the first time and provide a theoretical basis for the optimal breeding and future cultivation of Paeonia ludlowii.
Collapse
Affiliation(s)
- Ting-qiao Chen
- grid.66741.320000 0001 1456 856XBeijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, 100083 China ,grid.443395.c0000 0000 9546 5345School of Geography and Environmental Science/School of Karst Science, Guizhou Normal University, Guiyang, 550001 China
| | - Yue Sun
- grid.66741.320000 0001 1456 856XBeijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, 100083 China
| | - Tao Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
26
|
Ando A, Kirkbride RC, Qiao H, Chen ZJ. Endosperm and Maternal-specific expression of EIN2 in the endosperm affects endosperm cellularization and seed size in Arabidopsis. Genetics 2023; 223:iyac161. [PMID: 36282525 PMCID: PMC9910398 DOI: 10.1093/genetics/iyac161] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Seed size is related to plant evolution and crop yield and is affected by genetic mutations, imprinting, and genome dosage. Imprinting is a widespread epigenetic phenomenon in mammals and flowering plants. ETHYLENE INSENSITIVE2 (EIN2) encodes a membrane protein that links the ethylene perception to transcriptional regulation. Interestingly, during seed development EIN2 is maternally expressed in Arabidopsis and maize, but the role of EIN2 in seed development is unknown. Here, we show that EIN2 is expressed specifically in the endosperm, and the maternal-specific EIN2 expression affects temporal regulation of endosperm cellularization. As a result, seed size increases in the genetic cross using the ein2 mutant as the maternal parent or in the ein2 mutant. The maternal-specific expression of EIN2 in the endosperm is controlled by DNA methylation but not by H3K27me3 or by ethylene and several ethylene pathway genes tested. RNA-seq analysis in the endosperm isolated by laser-capture microdissection show upregulation of many endosperm-expressed genes such as AGAMOUS-LIKEs (AGLs) in the ein2 mutant or when the maternal EIN2 allele is not expressed. EIN2 does not interact with DNA and may act through ETHYLENE INSENSITIVE3 (EIN3), a DNA-binding protein present in sporophytic tissues, to activate target genes like AGLs, which in turn mediate temporal regulation of endosperm cellularization and seed size. These results provide mechanistic insights into endosperm and maternal-specific expression of EIN2 on endosperm cellularization and seed development, which could help improve seed production in plants and crops.
Collapse
Affiliation(s)
- Atsumi Ando
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ryan C Kirkbride
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hong Qiao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
27
|
Li J, Wang K, Yang Y, Lu Y, Cui K, Ji Y, Ma L, Cheng K, Ostersetzer-Biran O, Li F, Qu G, Zhu B, Fu D, Luo Y, Zhu H. SlRIP1b is a global organellar RNA editing factor, required for normal fruit development in tomato plants. THE NEW PHYTOLOGIST 2023; 237:1188-1203. [PMID: 36345265 DOI: 10.1111/nph.18594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
RNA editing in plant organelles involves numerous C-U conversions, which often restore evolutionarily conserved codons and may generate new translation initiation and termination codons. These RNA maturation events rely on a subset of nuclear-encoded protein cofactors. Here, we provide evidence of the role of SlRIP1b on RNA editing of mitochondrial transcripts in tomato (Solanum lycopersicum) plants. SlRIP1b is a RIP/MORF protein that was originally identified as an interacting partner of the organellar editing factor SlORRM4. Mutants of SlRIP1b, obtained by CRISPR/Cas9 strategy, exhibited abnormal carpel development and grew into fruit with more locules. RNA-sequencing revealed that SlRIP1b affects the C-U editing of numerous mitochondrial pre-RNA transcripts and in particular altered RNA editing of various cytochrome c maturation (CCM)-related genes. The slrip1b mutants display increased H2 O2 and aberrant mitochondrial morphologies, which are associated with defects in cytochrome c biosynthesis and assembly of respiratory complex III. Taken together, our results indicate that SlRIP1b is a global editing factor that plays a key role in CCM and oxidative phosphorylation system biogenesis during fruit development in tomato plants. These data provide important insights into the molecular roles of organellar RNA editing factors during fruit development.
Collapse
Affiliation(s)
- Jinyan Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Keru Wang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yongfang Yang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yao Lu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Kaicheng Cui
- Key Lab of Horticultural Plant Biology (MOE), College of Horticultural and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yajing Ji
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Liqun Ma
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ke Cheng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Feng Li
- Key Lab of Horticultural Plant Biology (MOE), College of Horticultural and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guiqin Qu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Benzhong Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Daqi Fu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yunbo Luo
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hongliang Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
28
|
McCartney B, Dudin O. Cellularization across eukaryotes: Conserved mechanisms and novel strategies. Curr Opin Cell Biol 2023; 80:102157. [PMID: 36857882 DOI: 10.1016/j.ceb.2023.102157] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/02/2023]
Abstract
Many eukaryotes form multinucleated cells during their development. Some cells persist as such during their lifetime, others choose to cleave each nucleus individually using a specialized cytokinetic process known as cellularization. What is cellularization and how is it achieved across the eukaryotic tree of life? Are there common pathways among all species supporting a shared ancestry, or are there key differences, suggesting independent evolutionary paths? In this review, we discuss common strategies and key mechanistic differences in how cellularization is executed across vastly divergent eukaryotic species. We present a number of novel methods and non-model organisms that may provide important insight into the evolutionary origins of cellularization.
Collapse
Affiliation(s)
- Brooke McCartney
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Omaya Dudin
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
| |
Collapse
|
29
|
Ali MF, Shin JM, Fatema U, Kurihara D, Berger F, Yuan L, Kawashima T. Cellular dynamics of coenocytic endosperm development in Arabidopsis thaliana. NATURE PLANTS 2023; 9:330-342. [PMID: 36646830 DOI: 10.1038/s41477-022-01331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
After double fertilization, the endosperm in the seeds of many flowering plants undergoes repeated mitotic nuclear divisions without cytokinesis, resulting in a large coenocytic endosperm that then cellularizes. Growth during the coenocytic phase is strongly associated with the final seed size; however, a detailed description of the cellular dynamics controlling the unique coenocytic development in flowering plants has remained elusive. By integrating confocal microscopy live-cell imaging and genetics, we have characterized the entire development of the coenocytic endosperm of Arabidopsis thaliana including nuclear divisions, their timing intervals, nuclear movement and cytoskeleton dynamics. Around each nucleus, microtubules organize into aster-shaped structures that drive actin filament (F-actin) organization. Microtubules promote nuclear movement after division, while F-actin restricts it. F-actin is also involved in controlling the size of both the coenocytic endosperm and the mature seed. The characterization of cytoskeleton dynamics in real time throughout the entire coenocyte endosperm period provides foundational knowledge of plant coenocytic development, insights into the coordination of F-actin and microtubules in nuclear dynamics, and new opportunities to increase seed size and our food security.
Collapse
Affiliation(s)
- Mohammad Foteh Ali
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Ji Min Shin
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
| | - Umma Fatema
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- Institute for Advanced Research (IAR), Nagoya University, Nagoya, Japan
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Tomokazu Kawashima
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
30
|
Genome-Wide Analysis of the Mads-Box Transcription Factor Family in Solanum melongena. Int J Mol Sci 2023; 24:ijms24010826. [PMID: 36614267 PMCID: PMC9821028 DOI: 10.3390/ijms24010826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
The MADS-box transcription factors are known to be involved in several aspects of plant growth and development, especially in floral organ specification. However, little is known in eggplant. Here, 120 eggplant MADS-box genes were identified and categorized into type II (MIKCC and MIKC*) and type I (Mα, Mβ, and Mγ) subfamilies based on phylogenetic relationships. The exon number in type II SmMADS-box genes was greater than that in type I SmMADS-box genes, and the K-box domain was unique to type II MADS-box TFs. Gene duplication analysis revealed that segmental duplications were the sole contributor to the expansion of type II genes. Cis-elements of MYB binding sites related to flavonoid biosynthesis were identified in three SmMADS-box promoters. Flower tissue-specific expression profiles showed that 46, 44, 38, and 40 MADS-box genes were expressed in the stamens, stigmas, petals, and pedicels, respectively. In the flowers of SmMYB113-overexpression transgenic plants, the expression levels of 3 SmMADS-box genes were co-regulated in different tissues with the same pattern. Correlation and protein interaction predictive analysis revealed six SmMADS-box genes that might be involved in the SmMYB113-regulated anthocyanin biosynthesis pathway. This study will aid future studies aimed at functionally characterizing important members of the MADS-box gene family.
Collapse
|
31
|
Sandstedt GD, Sweigart AL. Developmental evidence for parental conflict in driving Mimulus species barriers. THE NEW PHYTOLOGIST 2022; 236:1545-1557. [PMID: 35999713 PMCID: PMC9826125 DOI: 10.1111/nph.18438] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/08/2022] [Indexed: 05/25/2023]
Abstract
The endosperm, a tissue that nourishes the embryo in the seeds of flowering plants, is often disrupted in inviable hybrid seeds of closely related species. A key question is whether parental conflict is a major driver of this common form of reproductive isolation. Here, we performed reciprocal crosses between pairs of three monkeyflower species (Mimulus caespitosa, Mimulus tilingii, and Mimulus guttatus). The severity of hybrid seed inviability varies among these crosses, which we inferred to be due to species divergence in effective ploidy. By performing a time series experiment of seed development, we discovered parent-of-origin phenotypes that provide strong evidence for parental conflict in shaping endosperm evolution. We found that the chalazal haustorium, a tissue within the endosperm that is found at the maternal-filial boundary, shows pronounced differences between reciprocal hybrid seeds formed from Mimulus species that differ in effective ploidy. These parent-of-origin effects suggest that the chalazal haustorium might act as a mediator of parental conflict, potentially by controlling sucrose movement from the maternal parent into the endosperm. Our study suggests that parental conflict in the endosperm may function as a driver of speciation by targeting regions and developmental stages critical for resource allocation and thus proper seed development.
Collapse
|
32
|
Developing Genetic Engineering Techniques for Control of Seed Size and Yield. Int J Mol Sci 2022; 23:ijms232113256. [PMID: 36362043 PMCID: PMC9655546 DOI: 10.3390/ijms232113256] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
Many signaling pathways regulate seed size through the development of endosperm and maternal tissues, which ultimately results in a range of variations in seed size or weight. Seed size can be determined through the development of zygotic tissues (endosperm and embryo) and maternal ovules. In addition, in some species such as rice, seed size is largely determined by husk growth. Transcription regulator factors are responsible for enhancing cell growth in the maternal ovule, resulting in seed growth. Phytohormones induce significant effects on entire features of growth and development of plants and also regulate seed size. Moreover, the vegetative parts are the major source of nutrients, including the majority of carbon and nitrogen-containing molecules for the reproductive part to control seed size. There is a need to increase the size of seeds without affecting the number of seeds in plants through conventional breeding programs to improve grain yield. In the past decades, many important genetic factors affecting seed size and yield have been identified and studied. These important factors constitute dynamic regulatory networks governing the seed size in response to environmental stimuli. In this review, we summarized recent advances regarding the molecular factors regulating seed size in Arabidopsis and other crops, followed by discussions on strategies to comprehend crops' genetic and molecular aspects in balancing seed size and yield.
Collapse
|
33
|
Li C, Hu F, Chen H, Zhao J. Transcriptome characteristics during cell wall formation of endosperm cellularization and embryo differentiation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:998664. [PMID: 36262665 PMCID: PMC9575994 DOI: 10.3389/fpls.2022.998664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Embryonic and endosperm development are important biological events during Arabidopsis seed development, and are controlled by dynamic changes in a range of gene expression. Nevertheless, the regulatory mechanisms of endosperm cellularization and embryo differentiation remain unclear. Here, we characterized the early embryo and endosperm development of the naa15 mutant that had abnormal embryo differentiation and incomplete endosperm cellularization compared to WT of Arabidopsis, and comparatively investigated the changes of gene expressions in WT seeds at 3, 4, and 5 days after pollination (3W, 4W, and 5W) and the white homozygous aborted naa15 seeds at 5, 6, and 7 DAP (5M, 6M, and 7M) from naa15-1/+ siliques using RNA sequencing and qPCR assays. The transcriptome analyses showed that there were 2040 and 3630 differentially expressed genes (DEGs) in 4W (at endosperm cellularization initiation stage and heart embryo stage) vs 3W (at syncytium stage and globular embryo stage), and 5W (at end of endosperm cellularization stage and torpedo embryo stage) vs 4W, respectively. The KEGG and GO analyses showed that lipid metabolic processes and transmembrane transport related to cell wall biogenesis, cell division and differentiation, the plant hormone signaling pathway, photosynthesis, and transcription regulator activity were evidently enriched in WT and naa15. The heatmap and qPCR analyses showed that auxin response genes (ARFs), auxin transport genes (PINs) cytokinin synthesis genes (LOGs), cytokinin dehydrogenase genes (CKXs), cytokinin receptor, transcription factors (MYB, bHLH, MADS-box, and ERF) were significantly downregulated in naa15 compared to WT. A series of cell wall genes annotated to xyloglucan endotransglycosylase/hydrolase, pectin methyl esterase, and pectin methyl esterase inhibitor were also identified in these DEGs. Moreover, using an immunofluorescent assay, the features of cell walls displayed that cellulose fluorescence signals in the embryo and endosperm of naa15 were significantly decreased, and the signals of low- and high- methyl esterification of pectin were also obviously decreased in the endosperm of naa15. In summary, we identified a large number of DEGs and investigated the features of cell walls during endosperm cellularization and embryonic differentiation, which provided important information on transcription and gene expression to reveal their regulatory mechanisms.
Collapse
|
34
|
Guo L, Luo X, Li M, Joldersma D, Plunkert M, Liu Z. Mechanism of fertilization-induced auxin synthesis in the endosperm for seed and fruit development. Nat Commun 2022; 13:3985. [PMID: 35810202 PMCID: PMC9271072 DOI: 10.1038/s41467-022-31656-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/26/2022] [Indexed: 11/09/2022] Open
Abstract
The dominance of flowering plants on earth is owed largely to the evolution of maternal tissues such as fruit and seedcoat that protect and disseminate the seeds. The mechanism of how fertilization triggers the development of these specialized maternal tissues is not well understood. A key event is the induction of auxin synthesis in the endosperm, and the mobile auxin subsequently stimulates seedcoat and fruit development. However, the regulatory mechanism of auxin synthesis in the endosperm remains unknown. Here, we show that a type I MADS box gene AGL62 is required for the activation of auxin synthesis in the endosperm in both Fragaria vesca, a diploid strawberry, and in Arabidopsis. Several strawberry FveATHB genes were identified as downstream targets of FveAGL62 and act to repress auxin biosynthesis. In this work, we identify a key mechanism for auxin induction to mediate fertilization success, a finding broadly relevant to flowering plants. In flowering plants, fertilization triggers auxin synthesis in the endosperm to promote seed and fruit development. Here the authors show that an MADS-box transcription factor AGL62 is required to activate auxin synthesis in the endosperms of Fragaria vesca, a diploid strawberry, and Arabidopsis.
Collapse
Affiliation(s)
- Lei Guo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Xi Luo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Muzi Li
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Dirk Joldersma
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Madison Plunkert
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
35
|
Abstract
In angiosperms, double fertilization triggers the concomitant development of two closely juxtaposed tissues, the embryo and the endosperm. Successful seed development and germination require constant interactions between these tissues, which occur across their common interface. The embryo-endosperm interface is a complex and poorly understood compound apoplast comprising components derived from both tissues, across which nutrients transit to fuel embryo development. Interface properties, which affect molecular diffusion and thus communication, are themselves dynamically regulated by molecular and physical dialogues between the embryo and endosperm. We review the current understanding of embryo-endosperm interactions, with a focus on the structure, properties, and function of their shared interface. Concentrating on Arabidopsis, but with reference to other species, we aim to situate recent findings within the broader context of seed physiology, developmental biology, and genetic factors such as parental conflicts over resource allocation.
Collapse
Affiliation(s)
- Nicolas M Doll
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium;
- VIB Center of Plant Systems Biology, Ghent, Belgium
| | - Gwyneth C Ingram
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, Université de Lyon 1, Lyon, France;
| |
Collapse
|
36
|
Liu X, Luo M, Li M, Wei J. Transcriptomic Analysis Reveals LncRNAs Associated with Flowering of Angelica sinensis during Vernalization. Curr Issues Mol Biol 2022; 44:1867-1888. [PMID: 35678657 PMCID: PMC9164074 DOI: 10.3390/cimb44050128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 11/16/2022] Open
Abstract
Angelica sinensis is a “low-temperature and long-day” perennial plant that produces bioactive compounds such as phthalides, organic acids, and polysaccharides for various types of clinical agents, including those with cardio-cerebrovascular, hepatoprotective, and immunomodulatory effects. To date, the regulatory mechanism of flowering under the photoperiod has been revealed, while the regulatory network of flowering genes during vernalization, especially in the role of lncRNAs, has yet to be identified. Here, lncRNAs associated with flowering were identified based on the full-length transcriptomic analysis of A. sinensis at vernalization and freezing temperatures, and the coexpressed mRNAs of lncRNAs were validated by qRT-PCR. We obtained a total of 2327 lncRNAs after assessing the protein-coding potential of coexpressed mRNAs, with 607 lncRNAs aligned against the TAIR database of model plant Arabidopsis, 345 lncRNAs identified, and 272 lncRNAs characterized on the SwissProt database. Based on the biological functions of coexpressed mRNAs, the 272 lncRNAs were divided into six categories: (1) chromatin, DNA/RNA and protein modification; (2) flowering; (3) stress response; (4) metabolism; (5) bio-signaling; and (6) energy and transport. The differential expression levels of representatively coexpressed mRNAs were almost consistent with the flowering of A. sinensis. It can be concluded that the flowering of A. sinensis is positively or negatively regulated by lncRNAs, which provides new insights into the regulation mechanism of the flowering of A. sinensis.
Collapse
Affiliation(s)
- Xiaoxia Liu
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.L.); (M.L.)
| | - Mimi Luo
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.L.); (M.L.)
| | - Mengfei Li
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.L.); (M.L.)
- Correspondence: (M.L.); (J.W.)
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Correspondence: (M.L.); (J.W.)
| |
Collapse
|
37
|
Han B, Wu D, Zhang Y, Li DZ, Xu W, Liu A. Epigenetic regulation of seed-specific gene expression by DNA methylation valleys in castor bean. BMC Biol 2022; 20:57. [PMID: 35227267 PMCID: PMC8886767 DOI: 10.1186/s12915-022-01259-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Understanding the processes governing angiosperm seed growth and development is essential both for fundamental plant biology and for agronomic purposes. Master regulators of angiosperm seed development are expressed in a seed-specific manner. However, it is unclear how this seed specificity of transcription is established. In some vertebrates, DNA methylation valleys (DMVs) are highly conserved and strongly associated with key developmental genes, but comparable studies in plants are limited to Arabidopsis and soybean. Castor bean (Ricinus communis) is a valuable model system for the study of seed biology in dicots and source of economically important castor oil. Unlike other dicots such as Arabidopsis and soybean, castor bean seeds have a relatively large and persistent endosperm throughout seed development, representing substantial structural differences in mature seeds. Here, we performed an integrated analysis of RNA-seq, whole-genome bisulfite sequencing, and ChIP-seq for various histone marks in the castor bean. RESULTS We present a gene expression atlas covering 16 representative tissues and identified 1162 seed-specific genes in castor bean (Ricinus communis), a valuable model for the study of seed biology in dicots. Upon whole-genome DNA methylation analyses, we detected 32,567 DMVs across five tissues, covering ~33% of the castor bean genome. These DMVs are highly hypomethylated during development and conserved across plant species. We found that DMVs have the potential to activate transcription, especially that of tissue-specific genes. Focusing on seed development, we found that many key developmental regulators of seed/endosperm development, including AGL61, AGL62, LEC1, LEC2, ABI3, and WRI1, were located within DMVs. ChIP-seq for five histone modifications in leaves and seeds clearly showed that the vast majority of histone modification peaks were enriched within DMVs, and their remodeling within DMVs has a critical role in the regulation of seed-specific gene expression. Importantly, further experiment analysis revealed that distal DMVs may act as cis-regulatory elements, like enhancers, to activate downstream gene expression. CONCLUSIONS Our results point to the importance of DMVs and special distal DMVs behaving like enhancers, in the regulation of seed-specific genes, via the reprogramming of histone modifications within DMVs. Furthermore, these results provide a comprehensive understanding of the epigenetic regulator roles in seed development in castor bean and other important crops.
Collapse
Affiliation(s)
- Bing Han
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Di Wu
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyu Zhang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Wei Xu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
38
|
Lu D, Zhai J, Xi M. Regulation of DNA Methylation During Plant Endosperm Development. Front Genet 2022; 13:760690. [PMID: 35222527 PMCID: PMC8867698 DOI: 10.3389/fgene.2022.760690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022] Open
Abstract
The endosperm is a vital storage tissue in plant seeds. It provides nutrients to the embryos or the seedlings during seed development and germination. Although the genetic information in the endosperm cannot be passed directly to the next generation, its inherited epigenetic marks affect gene expression and its development and, consequently, embryo and seed growth. DNA methylation is a major form of epigenetic modification that can be investigated to understand the epigenome changes during reproductive development. Therefore, it is of great significance to explore the effects of endosperm DNA methylation on crop yield and traits. In this review, we discuss the changes in DNA methylation and the resulting imprinted gene expression levels during plant endosperm development, as well as their effects on seed development.
Collapse
Affiliation(s)
- Dongdong Lu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Jixian Zhai
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Jixian Zhai, ; Mengli Xi,
| | - Mengli Xi
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- *Correspondence: Jixian Zhai, ; Mengli Xi,
| |
Collapse
|
39
|
Wang W, Xiong H, Sun K, Zhang B, Sun MX. New insights into cell-cell communications during seed development in flowering plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:215-229. [PMID: 34473416 DOI: 10.1111/jipb.13170] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
The evolution of seeds is a major reason why flowering plants are a dominant life form on Earth. The developing seed is composed of two fertilization products, the embryo and endosperm, which are surrounded by a maternally derived seed coat. Accumulating evidence indicates that efficient communication among all three seed components is required to ensure coordinated seed development. Cell communication within plant seeds has drawn much attention in recent years. In this study, we review current knowledge of cross-talk among the endosperm, embryo, and seed coat during seed development, and highlight recent advances in this field.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hanxian Xiong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Kaiting Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bo Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
40
|
Hoffmann T, Shi X, Hsu CY, Brown A, Knight Q, Courtney LS, Mukarram RJ, Wang D. The identification of type I MADS box genes as the upstream activators of an endosperm-specific invertase inhibitor in Arabidopsis. BMC PLANT BIOLOGY 2022; 22:18. [PMID: 34991468 PMCID: PMC8734259 DOI: 10.1186/s12870-021-03399-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/15/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Nuclear endosperm development is a common mechanism among Angiosperms, including Arabidopsis. During nuclear development, the endosperm nuclei divide rapidly after fertilization without cytokinesis to enter the syncytial phase, which is then followed by the cellularized phase. The endosperm can be divided into three spatial domains with distinct functions: the micropylar, peripheral, and chalazal domains. Previously, we identified two putative small invertase inhibitors, InvINH1 and InvINH2, that are specifically expressed in the micropylar region of the syncytial endosperm. In addition, ectopically expressing InvINH1 in the cellularized endosperm led to a reduction in embryo growth rate. However, it is not clear what are the upstream regulators responsible for the specific expression of InvINHs in the syncytial endosperm. RESULTS Using protoplast transient expression system, we discovered that a group of type I MADS box transcription factors can form dimers to activate InvINH1 promoter. Promoter deletion assays carried out in the protoplast system revealed the presence of an enhancer region in InvINH1 promoter, which contains several consensus cis-elements for the MADS box proteins. Using promoter deletion assay in planta, we further demonstrated that this enhancer region is required for InvINH1 expression in the syncytial endosperm. One of the MADS box genes, AGL62, is a key transcription factor required for syncytial endosperm development. Using promoter-GFP reporter assay, we demonstrated that InvINH1 and InvINH2 are not expressed in agl62 mutant seeds. Collectively, our data supports the role of AGL62 and other type I MADS box genes as the upstream activators of InvINHs expression in the syncytial endosperm. CONCLUSIONS Our findings revealed several type I MADS box genes that are responsible for activating InvINH1 in the syncytial endosperm, which in turn regulates embryo growth rate during early stage of seed development.
Collapse
Affiliation(s)
| | - Xiuling Shi
- Biology Department, Spelman College, Atlanta, GA, USA
| | - Chuan-Yu Hsu
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS, USA
| | - Aakilah Brown
- Biology Department, Spelman College, Atlanta, GA, USA
| | | | | | | | - Dongfang Wang
- Biology Department, Spelman College, Atlanta, GA, USA.
| |
Collapse
|
41
|
Ding X, Jia X, Xiang Y, Jiang W. Histone Modification and Chromatin Remodeling During the Seed Life Cycle. FRONTIERS IN PLANT SCIENCE 2022; 13:865361. [PMID: 35548305 PMCID: PMC9083068 DOI: 10.3389/fpls.2022.865361] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/21/2022] [Indexed: 05/16/2023]
Abstract
Seeds are essential for the reproduction and dispersion of spermatophytes. The seed life cycle from seed development to seedling establishment proceeds through a series of defined stages regulated by distinctive physiological and biochemical mechanisms. The role of histone modification and chromatin remodeling in seed behavior has been intensively studied in recent years. In this review, we summarize progress in elucidating the regulatory network of these two kinds of epigenetic regulation during the seed life cycle, especially in two model plants, rice and Arabidopsis. Particular emphasis is placed on epigenetic effects on primary tissue formation (e.g., the organized development of embryo and endosperm), pivotal downstream gene expression (e.g., transcription of DOG1 in seed dormancy and repression of seed maturation genes in seed-to-seedling transition), and environmental responses (e.g., seed germination in response to different environmental cues). Future prospects for understanding of intricate interplay of epigenetic pathways and the epigenetic mechanisms in other commercial species are also proposed.
Collapse
Affiliation(s)
- Xiali Ding
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Xuhui Jia
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yong Xiang
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Wenhui Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
- *Correspondence: Wenhui Jiang,
| |
Collapse
|
42
|
Shao Z, He M, Zeng Z, Chen Y, Hanna AD, Zhu H. Genome-Wide Identification and Expression Analysis of the MADS-Box Gene Family in Sweet Potato [ Ipomoea batatas (L.) Lam]. Front Genet 2021; 12:750137. [PMID: 34868221 PMCID: PMC8636027 DOI: 10.3389/fgene.2021.750137] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
MADS-box gene, one of the largest transcription factor families in plants, is a class of transcription factors widely present in eukaryotes. It plays an important role in plant growth and development and participates in the growth and development of flowers and fruits. Sweet potato is the seventh most important food crop in the world. Its tuberous roots, stems, and leaves contain a large number of proteins, lipids, carotenoids, anthocyanins, conjugated phenolic acids, and minerals, which have high edible, forage, and medicinal value, and is also an important energy crop. At present, MADS-box genes in sweet potato have rarely been reported, and there has been no study on the genome-wide identification and classification of MADS-box genes in Ipomoea batatas. This study provided the first comprehensive analysis of sweet potato MADS-box genes. We identified 95 MADS-box genes, analyzed the structure and protein of sweet potato MADS-box genes, and categorized them based on phylogenetic analysis with Arabidopsis MADS-box proteins. Chromosomal localization indicated an unequal number of MADS-box genes in all 14 chromosomes except LG3, with more than 10 MADS-box genes located on chromosomes LG7, LG11, and LG15. The MADS domain and core motifs of the sweet potato MADS-box genes were identified by motif analysis. We identified 19 MADS-box genes with collinear relationships and analyzed duplication events. Cis-acting elements, such as light-responsive, auxin-responsive, drought-inducible, and MeJA-responsive elements, were found in the promoter region of the MADS-box genes in sweet potato, which further indicates the basis of MADS-box gene regulation in response to environmental changes and hormones. RNA-seq suggested that sweet potato MADS-box genes exhibit tissue-specific expression patterns, with 34 genes highly expressed in sweet potato flowers and fruits, and 19 genes highly expressed in the tuberous root, pencil root, or fibrous root. qRT-PCR again validated the expression levels of the 10 genes and found that IbMADS1, IbMADS18, IbMADS19, IbMADS79, and IbMADS90 were highly expressed in the tuberous root or fibrous root, and IbMADS18, IbMADS31, and IbMADS83 were highly expressed in the fruit. In this study, the molecular basis of MADS-box genes of sweet potato was analyzed from various angles. The effects of MADS-box genes on the growth and development of sweet potato were investigated, which may provide a certain theoretical basis for molecular breeding of sweet potato.
Collapse
Affiliation(s)
- Zhengwei Shao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Minhong He
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Zhipeng Zeng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yanzhu Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Amoanimaa-Dede Hanna
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Hongbo Zhu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
43
|
Wang L, Ruan C, Bao A, Li H. Small RNA profiling for identification of microRNAs involved in regulation of seed development and lipid biosynthesis in yellowhorn. BMC PLANT BIOLOGY 2021; 21:464. [PMID: 34641783 PMCID: PMC8513341 DOI: 10.1186/s12870-021-03239-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 09/29/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND Yellowhorn (Xanthoceras sorbifolium), an endemic woody oil-bearing tree, has become economically important and is widely cultivated in northern China for bioactive oil production. However, the regulatory mechanisms of seed development and lipid biosynthesis affecting oil production in yellowhorn are still elusive. MicroRNAs (miRNAs) play crucial roles in diverse aspects of biological and metabolic processes in seeds, especially in seed development and lipid metabolism. It is still unknown how the miRNAs regulate the seed development and lipid biosynthesis in yellowhorn. RESULTS Here, based on investigations of differences in the seed growth tendency and embryo oil content between high-oil-content and low-oil-content lines, we constructed small RNA libraries from yellowhorn embryos at four seed development stages of the two lines and then profiled small RNA expression using high-throughput sequencing. A total of 249 known miRNAs from 46 families and 88 novel miRNAs were identified. Furthermore, by pairwise comparisons among the four seed development stages in each line, we found that 64 miRNAs (53 known and 11 novel miRNAs) were differentially expressed in the two lines. Across the two lines, 15, 11, 10, and 7 differentially expressed miRNAs were detected at 40, 54, 68, and 81 days after anthesis, respectively. Bioinformatic analysis was used to predict a total of 2654 target genes for 141 differentially expressed miRNAs (120 known and 21 novel miRNAs). Most of these genes were involved in the fatty acid biosynthetic process, regulation of transcription, nucleus, and response to auxin. Using quantitative real-time PCR and an integrated analysis of miRNA and mRNA expression, miRNA-target regulatory modules that may be involved in yellowhorn seed size, weight, and lipid biosynthesis were identified, such as miR172b-ARF2 (auxin response factor 2), miR7760-p3_1-AGL61 (AGAMOUS-LIKE 61), miR319p_1-FAD2-2 (omega-6 fatty acid desaturase 2-2), miR5647-p3_1-DGAT1 (diacylglycerol acyltransferase 1), and miR7760-p5_1-MED15A (Mediator subunit 15a). CONCLUSIONS This study provides new insights into the important regulatory roles of miRNAs in the seed development and lipid biosynthesis in yellowhorn. Our results will be valuable for dissecting the post-transcriptional and transcriptional regulation of seed development and lipid biosynthesis, as well as improving yellowhorn in northern China.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, China
- Key Laboratory of Marine Genetics and Breeding (OUC), Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao, 266100, China
| | - Chengjiang Ruan
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, China.
| | - Aomin Bao
- Institute of Economic Forest, Tongliao Academy of Forestry Science and Technology, Tongliao, 028000, China
| | - He Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, China
| |
Collapse
|
44
|
El-Sappah AH, Yan K, Huang Q, Islam MM, Li Q, Wang Y, Khan MS, Zhao X, Mir RR, Li J, El-Tarabily KA, Abbas M. Comprehensive Mechanism of Gene Silencing and Its Role in Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2021; 12:705249. [PMID: 34589097 PMCID: PMC8475493 DOI: 10.3389/fpls.2021.705249] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/10/2021] [Indexed: 05/19/2023]
Abstract
Gene silencing is a negative feedback mechanism that regulates gene expression to define cell fate and also regulates metabolism and gene expression throughout the life of an organism. In plants, gene silencing occurs via transcriptional gene silencing (TGS) and post-transcriptional gene silencing (PTGS). TGS obscures transcription via the methylation of 5' untranslated region (5'UTR), whereas PTGS causes the methylation of a coding region to result in transcript degradation. In this review, we summarized the history and molecular mechanisms of gene silencing and underlined its specific role in plant growth and crop production.
Collapse
Affiliation(s)
- Ahmed H. El-Sappah
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Kuan Yan
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Qiulan Huang
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
- College of Tea Science, Yibin University, Yibin, China
| | | | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yu Wang
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Muhammad Sarwar Khan
- Center of Agriculture Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Xianming Zhao
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST–K), Sopore, India
| | - Jia Li
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Manzar Abbas
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| |
Collapse
|
45
|
Morimoto T, Kitamura Y, Numaguchi K, Itai A. Characterization of transcriptomic response in ovules derived from inter-subgeneric hybridization in Prunus (Rosaceae) species. PLANT REPRODUCTION 2021; 34:255-266. [PMID: 34165636 DOI: 10.1007/s00497-021-00423-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Characterization of hybrid seed failure in Prunus provides insight into conserved or lineage-specific hybrid incompatibility mechanisms in plant species. Postzygotic hybrid incompatibility resulting from a cross between different species involves complex mechanisms occurring at various developmental stages. Embryo arrest, followed by seed abortion, is the first stage of such incompatibility reactions and inhibits hybrid seed development. In Prunus, a rosaceous woody species, some interspecific crosses result in fruit drop during the early stage of fruit development, in which inferior seed development may be accounted for the observed hybrid incompatibility. In this study, we investigated ovule development and the transcriptomes of developing ovules in inter-subgeneric crosses of Prunus. We conducted a cross of Prunus mume (subgenus Prunus), pollinated by P. persica (subgenus Amygdalus), and found that ovule and seed coat degeneration occurs before fruit drop. Transcriptome analysis identified differentially expressed genes enriched in several GO pathways, including organelle development, stimulus response, and signaling. Among these pathways, the organelle-related genes were actively regulated during ovule development, as they showed higher expression in the early stage of interspecific crosses and declined in the later stage, suggesting that the differential regulation of organelle function may induce the degeneration of hybrid ovules. Additionally, genes related to ovule and seed coat development, such as genes encoding AGL-like and auxin response, were differentially regulated in Prunus interspecific crosses. Our results provide histological and molecular information on hybrid seed abortion in Prunus that could be utilized to develop new hybrid crops. Additionally, we compared and discussed transcriptome responses to hybrid seed failure in Prunus and other plant species, which provides insight into conserved or lineage-specific hybrid incompatibility mechanisms in some plant species.
Collapse
Affiliation(s)
- Takuya Morimoto
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, 619-0244, Japan.
| | - Yuto Kitamura
- Japanese Apricot Laboratory, Wakayama Fruit Tree Experiment Station, Wakayama, 645-0021, Japan
- Faculty of Agriculture, Setsunan University, Osaka, 573-0101, Japan
| | - Koji Numaguchi
- Japanese Apricot Laboratory, Wakayama Fruit Tree Experiment Station, Wakayama, 645-0021, Japan
| | - Akihiro Itai
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, 619-0244, Japan
| |
Collapse
|
46
|
Malovichko YV, Shikov AE, Nizhnikov AA, Antonets KS. Temporal Control of Seed Development in Dicots: Molecular Bases, Ecological Impact and Possible Evolutionary Ramifications. Int J Mol Sci 2021; 22:ijms22179252. [PMID: 34502157 PMCID: PMC8430901 DOI: 10.3390/ijms22179252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/21/2022] Open
Abstract
In flowering plants, seeds serve as organs of both propagation and dispersal. The developing seed passes through several consecutive stages, following a conserved general outline. The overall time needed for a seed to develop, however, may vary both within and between plant species, and these temporal developmental properties remain poorly understood. In the present paper, we summarize the existing data for seed development alterations in dicot plants. For genetic mutations, the reported cases were grouped in respect of the key processes distorted in the mutant specimens. Similar phenotypes arising from the environmental influence, either biotic or abiotic, were also considered. Based on these data, we suggest several general trends of timing alterations and how respective mechanisms might add to the ecological plasticity of the families considered. We also propose that the developmental timing alterations may be perceived as an evolutionary substrate for heterochronic events. Given the current lack of plausible models describing timing control in plant seeds, the presented suggestions might provide certain insights for future studies in this field.
Collapse
Affiliation(s)
- Yury V. Malovichko
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
47
|
Sandhu J, Irvin L, Liu K, Staswick P, Zhang C, Walia H. Endoplasmic reticulum stress pathway mediates the early heat stress response of developing rice seeds. PLANT, CELL & ENVIRONMENT 2021; 44:2604-2624. [PMID: 34036580 DOI: 10.1111/pce.14103] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
A transient heat stress occurring during early seed development in rice (Oryza sativa) reduces seed size by altering endosperm development. However, the relationship between the timing of the stress and specific developmental stage on heat sensitivity is not well-understood. To address this, we imposed a series of non-overlapping heat stress treatments and found that young seeds are most sensitive during the first two days after flowering. Temporal transcriptome analysis of developing, heat stressed (35°C) seeds during this window shows that Inositol-requiring enzyme 1 (IRE1)-mediated endoplasmic reticulum (ER) stress response and jasmonic acid (JA) pathways are the early (1-3 h) drivers of heat stress response. We propose that increased JA levels under heat stress may precede ER stress response as JA application promotes the spliced form of OsbZIP50, an ER response marker gene linked to IRE1-specific pathway. This study presents temporal and mechanistic insights into the role of JA and ER stress signalling during early heat stress response of rice seeds that impact both grain size and quality. Modulating the heat sensitivity of the early sensing pathways and downstream endosperm development genes can enhance rice resilience to transient heat stress events.
Collapse
Affiliation(s)
- Jaspreet Sandhu
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Larissa Irvin
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Kan Liu
- School of Biological Science, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Paul Staswick
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Chi Zhang
- School of Biological Science, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
48
|
Li J, Li ML, Zhu TT, Zhang XN, Li MF, Wei JH. Integrated transcriptomics and metabolites at different growth stages reveals the regulation mechanism of bolting and flowering of Angelica sinensis. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:574-582. [PMID: 33660347 DOI: 10.1111/plb.13249] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
The root of Angelica sinensis is one of the most widely used traditional Chinese medicines. In commercial planting, early bolting and flowering (EBF) of ca. 40% of 2-year-old plants reduces root yield and quality. Although changes in physiology in bolted plants have been investigated, the mechanism activating EBF has not been identified. Here, transcriptomics profiles at four different growth stages (S1 to S4) were performed, gene expression was validated by qRT-PCR and the accumulation of endogenous hormones quantified by HPLC. A total of 60,282 unigenes were generated, with 2,282, 1,359 and 2,246 differentially expressed genes (DEGs) observed at S2 versus S1, S3 versus S2 and S4 versus S3, respectively; 558 genes that co-exist in at least three stages from S1 to S4 were obtained. Functional annotation classified 38 DEGs linked to flowering pathways: photoperiodism, hormone signalling, carbohydrate metabolism and floral development. The levels of gene expression, hormones (GA1 , GA4 and IAA) and soluble sugars were consistent with the EBF. It can be concluded that the EBF of A. sinensis is controlled by multiple genes. This integrated analysis of transcriptomics, together with targeted hormones and soluble sugars, provides new insights into the regulation of EBF of A. sinensis.
Collapse
Affiliation(s)
- J Li
- Key Lab of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - M L Li
- Key Lab of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - T T Zhu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - X N Zhang
- Gansu Herbal Medicine Planting Co., Ltd, Lanzhou, 730000, China
| | - M F Li
- Key Lab of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - J H Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
49
|
Xiong H, Wang W, Sun MX. Endosperm development is an autonomously programmed process independent of embryogenesis. THE PLANT CELL 2021; 33:1151-1160. [PMID: 33793916 DOI: 10.1093/plcell/koab007] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The seeds of flowering plants contain three genetically distinct structures: the embryo, endosperm, and seed coat. The embryo and endosperm need to interact and exchange signals to ensure coordinated growth. Accumulating evidence has confirmed that embryo growth is supported by the nourishing endosperm and regulated by signals originating from the endosperm. Available data also support that endosperm development requires communication with the embryo. Here, using single-fertilization mutants, Arabidopsis thaliana dmp8 dmp9 and gex2, we demonstrate that in the absence of a zygote and embryo, endosperm initiation, syncytium formation, free nuclear cellularization, and endosperm degeneration occur as in the wild type in terms of the cytological process and time course. Although rapid embryo expansion accelerates endosperm breakdown, our findings strongly suggest that endosperm development is an autonomously organized process, independent of egg cell fertilization and embryo-endosperm communication. This work confirms both the altruistic and self-directed nature of the endosperm during coordinated embryo-endosperm development. Our findings provide insights into the intricate interaction between the two fertilization products and will help to distinguish the physiological roles of the signaling between endosperm and embryo. These findings also open new avenues in agro-biotechnology for crop improvement.
Collapse
Affiliation(s)
- Hanxian Xiong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
50
|
Florez-Rueda AM, Fiscalini F, Roth M, Grossniklaus U, Städler T. Endosperm and Seed Transcriptomes Reveal Possible Roles for Small RNA Pathways in Wild Tomato Hybrid Seed Failure. Genome Biol Evol 2021; 13:6278300. [PMID: 34009298 PMCID: PMC8358227 DOI: 10.1093/gbe/evab107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 01/10/2023] Open
Abstract
Crosses between the wild tomato species Solanum peruvianum and Solanum chilense result in hybrid seed failure (HSF), characterized by endosperm misdevelopment and embryo arrest. We previously showed that genomic imprinting, the parent-of-origin–dependent expression of alleles, is perturbed in the hybrid endosperm, with many of the normally paternally expressed genes losing their imprinted status. Here, we report transcriptome-based analyses of gene and small RNA (sRNA) expression levels. We identified 2,295 genes and 387 sRNA clusters as differentially expressed when comparing reciprocal hybrid seed to seeds and endosperms from the two within-species crosses. Our analyses uncovered a pattern of overdominance in endosperm gene expression in both hybrid cross directions, in marked contrast to the patterns of sRNA expression in whole seeds. Intriguingly, patterns of increased gene expression resemble the previously reported increased maternal expression proportions in hybrid endosperms. We identified physical clusters of sRNAs; differentially expressed sRNAs exhibit reduced transcript abundance in hybrid seeds of both cross directions. Moreover, sRNAs map to genes coding for key proteins involved in epigenetic regulation of gene expression, suggesting a regulatory feedback mechanism. We describe examples of genes that appear to be targets of sRNA-mediated gene silencing; in these cases, reduced sRNA abundance is concomitant with increased gene expression in hybrid seeds. Our analyses also show that S. peruvianum dominance impacts gene and sRNA expression in hybrid seeds. Overall, our study indicates roles for sRNA-mediated epigenetic regulation in HSF between closely related wild tomato species.
Collapse
Affiliation(s)
- Ana Marcela Florez-Rueda
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland.,Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092 Zurich, Switzerland
| | - Flurin Fiscalini
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Morgane Roth
- Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092 Zurich, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Thomas Städler
- Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|