1
|
Shi S, Zhang Y, Lin S, Zhang M, Zou W, Zhou J, Wang Y. Deciphering the promotion and inhibition of bicarbonate fertilization on microalgal activity and nutrient uptake from wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 378:124810. [PMID: 40043562 DOI: 10.1016/j.jenvman.2025.124810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/10/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025]
Abstract
Microalgal bioremediation is a promising alternative for biological wastewater treatment but constrained by low microalgal activities. Here, bicarbonate fertilization was introduced to enhance microalgal wastewater treatment, with systematic investigations of its biphasic dose-dependent effects on microalgal activity and nutrient uptake. The results showed that moderate inorganic carbon (MIC, 0.05 M) group significantly improved the biomass production, NH4+-N removal, and PO43--P removal by 76.0%, 21.3%, and 11.9%, respectively; whereas high inorganic carbon (HIC, 0.1 M) group inhibited them by 11.0%, 4.48%, and 52.7%, respectively, compared with low inorganic carbon (LIC, 0.005 M) group. Mechanistic analyses suggested that LIC group encountered high alkalinity, exacerbated carbon/trace element limitation, and attenuated extracellular polymeric substances (EPS) barriers and antioxidant systems; while HIC group increased salinity stresses, triggered morphological defense, and diminished light harvesting and phycospheric mass transfer, restricting microalgal activity and nutrient uptake. In contrast, MIC group relieved carbon limitation, accelerated photosynthetic electron transfer, and sustained intracellular redox homeostasis, underpinning the highest biomass production and nutrient removal. These findings could facilitate the practical application of bicarbonate fertilization in microalgal wastewater treatment.
Collapse
Affiliation(s)
- Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Ying Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Shuxuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Meiman Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Weiming Zou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Yingmu Wang
- College of Civil Engineering, Fuzhou University, Fujian, 350116, China
| |
Collapse
|
2
|
Vánská T, Kouřil R, Opatíková M, Ilíková I, Arshad R, Roudnický P, Ilík P. Photosystem II supercomplexes lacking light-harvesting antenna protein LHCB5 and their organization in the thylakoid membrane. PHYSIOLOGIA PLANTARUM 2025; 177:e70167. [PMID: 40128143 PMCID: PMC11932966 DOI: 10.1111/ppl.70167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 03/26/2025]
Abstract
Light-harvesting protein LHCB5 is one of the three minor antenna proteins (LHCB4-6) that connect the core (C) of photosystem II (PSII) with strongly (S) and moderately (M) bound peripheral trimeric antennae (LHCIIs), forming a dimeric PSII supercomplex known as C2S2M2. Plants lacking LHCB4 and LHCB6 do not form C2S2M2, indicating that these minor antenna proteins are crucial for C2S2M2 assembly. However, studies on antisense asLhcb5 plants suggest this may not apply to LHCB5. Using mild clear-native PAGE (CN-PAGE) and electron microscopy (EM), we separated and structurally characterized the C2S2M2 supercomplex from the Arabidopsis lhcb5 mutant. When compared with wild type (WT), the C2S2M2 supercomplexes in the lhcb5 mutant have slightly different positions of S and M trimers and are generally smaller and present in the thylakoid membrane at higher density. Using CN-PAGE, we did not observe any PSII megacomplexes in the lhcb5 mutant, although they are routinely detected by this method in WT. However, we identified the megacomplexes directly in thylakoid membranes via EM, indicating that the megacomplexes are formed but are too labile to be separated. While in WT, both parallel- and non-parallel-associated PSII supercomplexes can be detected in the thylakoid membrane (Nosek et al., 2017, Plant Journal 89, pp. 104-111), only the parallel-associated PSII supercomplexes were found in the lhcb5 mutant. This finding suggests that the formation of non-parallel-associated PSII supercomplexes depends on the presence of LHCB5. The presence of large PSII supercomplexes and megacomplexes, even though less stable, could explain the WT-like photosynthetic characteristics of the lhcb5 mutant.
Collapse
Affiliation(s)
- Tereza Vánská
- Department of BiophysicsFaculty of Science, Palacký UniversityOlomoucCzech Republic
| | - Roman Kouřil
- Department of BiophysicsFaculty of Science, Palacký UniversityOlomoucCzech Republic
| | - Monika Opatíková
- Department of BiophysicsFaculty of Science, Palacký UniversityOlomoucCzech Republic
| | - Iva Ilíková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional GenomicsOlomoucCzech Republic
| | - Rameez Arshad
- Department of BiophysicsFaculty of Science, Palacký UniversityOlomoucCzech Republic
| | - Pavel Roudnický
- Central European Institute of Technology, Masaryk UniversityBrnoCzech Republic
| | - Petr Ilík
- Department of BiophysicsFaculty of Science, Palacký UniversityOlomoucCzech Republic
| |
Collapse
|
3
|
Li L, Liu Y, Jia Y, Yuan Z. Investigation into the mechanisms of photosynthetic regulation and adaptation under salt stress in lavender. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109376. [PMID: 39693951 DOI: 10.1016/j.plaphy.2024.109376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/11/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024]
Abstract
Salinity stress is a major threat to agricultural productivity and sustainability, often causing irreversible damage to photosynthesis. Lavender, a valuable aromatic plant, experiences growth impacts under salt stress. However, the regulatory mechanisms of photosynthesis related to its adaptation to salt stress remain unclear. In this study, lavender was exposed to 0, 100, 200, and 300 mM NaCl for 28 days. It was observed that lavender effectively maintained chlorophyll stability when salt concentrations were below 200 mM and stress duration was under 21 days. The most effective model for lavender under salt stress was identified as a right-angled hyperbolic modified model. Under moderate salt stress (100 mM, 200 mM), genes such as LaPSB28, LaPSBS, and LaPSBR contributed to PSII core stability, enhanced photosynthetic pigment levels, and sustained high electron transfer rates to improve salt-tolerance. Additionally, LaLHCB4-1 and LaPSAK-1 regulated stomatal size, thereby facilitating gas exchange and supporting the photosynthetic process. Conversely, under high salt stress (300 mM), LaPSBW-1, -2, and LaPSAB were found to reduce photosynthetic pigment levels and inhibit photosynthetic activity. However, genes such as LaCHLG-2, LaGLG-3, LaBAM1-1 and -3, and LaCHLP-3 aided in starch synthesis by increasing pigment content, thus promoting energy balance and enhancing salt tolerance. This regulation involved photosynthesis-antenna proteins and pathways related to starch, sucrose, and chlorophyll metabolism. These findings may support the cultivation of salt-tolerant lavender varieties and maximize saline soil usage.
Collapse
Affiliation(s)
- Ling Li
- College of Life Science and Technology, Harbin Normal University, Harbin, China; Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China; Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China
| | - Yinan Liu
- College of Life Science and Technology, Harbin Normal University, Harbin, China; Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China; Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China
| | - Yujing Jia
- College of Life Science and Technology, Harbin Normal University, Harbin, China; Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China; Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China
| | - Zening Yuan
- College of Life Science and Technology, Harbin Normal University, Harbin, China; Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China; Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China.
| |
Collapse
|
4
|
Silva LF, Barreto KFM, Silva HC, de Souza ID, Meneses CHSG, Uchôa AF, Scortecci KC. Insights of cellular and molecular changes in sugarcane response to oxidative signaling. BMC PLANT BIOLOGY 2025; 25:54. [PMID: 39810103 PMCID: PMC11731162 DOI: 10.1186/s12870-024-06036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025]
Abstract
MAIN CONCLUSION Significant changes in the proteome highlight essential metabolic adaptations for development and oxidative signaling induced by the treatment of young sugarcane plants with hydrogen peroxide. These adaptations suggest that hydrogen peroxide acts not only as a stressor but primarily as a signaling molecule, triggering specific metabolic pathways that regulate growth and plant resilience. Sugarcane is a crucial crop for sugar and ethanol production, often influenced by environmental signals. Hydrogen peroxide (H2O2) is increasingly recognized as an important signaling molecule that regulates plant development and adaptation. In this study, two-month-old sugarcane plants were treated with varying concentrations of H2O2 to investigate how this molecule acts as a signal at the cellular, biochemical, and proteomic levels. Antioxidant enzyme activity exhibited fluctuations, suggesting a dynamic response to oxidative signaling. Lipid peroxidation, observed through TBARs and scanning electron microscopy, highlighted early membrane modifications. Proteomic analysis (ProteomeXchange PXD048142) identified 2,699 proteins, with 155 showing significant expression changes in response to H2O2 signaling. Bioinformatics, including Principal Component Analysis, revealed distinct proteomic profiles in roots and leaves, indicating tissue-specific metabolic reprogramming. Functional annotation through Gene Ontology and KEGG pathway enrichment showed that oxidative signaling led to the repression of photosynthesis-related pathways in leaves, while promoting pathways related to protein processing, glycolysis, and carbon metabolism in roots. Additionally, bioinformatic tools identified proteins involved in amino acid metabolism, the TCA cycle, and carbohydrate metabolism as critical components of sugarcane's adaptive signaling response. The data suggest that sugarcane plants responded to oxidative signals by adjusting their metabolic networks, promoting sustained development and potential pathways for targeted plant breeding.
Collapse
Affiliation(s)
- Lucas Felipe Silva
- Bioinformatics Multidisciplinary Environment, IMD, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil
- LPTAM, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil
| | - Kellya F M Barreto
- LPTAM, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil
- Biochemistry and Molecular Biology Graduate School, Centro de Biociências, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil
| | - Helaine Cristiane Silva
- LPTAM, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil
- Biochemistry and Molecular Biology Graduate School, Centro de Biociências, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil
| | - Iara Dantas de Souza
- Bioinformatics Multidisciplinary Environment, IMD, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil
| | - Carlos H S G Meneses
- Plant Biotechnology Laboratory, Department of Biology - Centro de Ciências Biológicas e da Saúde, , Universidade Estadual da Paraíba, Campina Grande, Brazil
| | - Adriana F Uchôa
- Biochemistry and Molecular Biology Graduate School, Centro de Biociências, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil
- Cell Biology and Genetics Department, Centro de Biociências, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil
| | - Katia C Scortecci
- Bioinformatics Multidisciplinary Environment, IMD, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil.
- LPTAM, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil.
- Biochemistry and Molecular Biology Graduate School, Centro de Biociências, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil.
- Cell Biology and Genetics Department, Centro de Biociências, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil.
| |
Collapse
|
5
|
Höfer M, Schäfer M, Wang Y, Wink S, Xu S. Genome-wide association study of metabolic traits in the giant duckweed Spirodela polyrhiza. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:18-28. [PMID: 39630110 DOI: 10.1111/plb.13747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/23/2024] [Indexed: 12/20/2024]
Abstract
The exceptionally high growth rate and high flavonoid content make the giant duckweed Spirodela polyrhiza (L.) Schleid. (Arales: Lemnaceae Martinov) an ideal organism for food production and metabolic engineering. To facilitate this, identification of the genetic basis underlying growth and metabolic traits is essential. Here, we analysed growth and content of 42 metabolites in 137 S. polyrhiza genotypes and characterized the genetics underpinning these traits using a genome-wide association (GWA) approach. We found that biomass positively correlated with the content of many free amino acids, including L-glutamine, L-tryptophan, and L-serine, but negatively correlated with specialized metabolites, such as flavonoids. GWA analysis showed that several candidate genes involved in processes such as photosynthesis, protein degradation, and organ development were jointly associated with multiple metabolic traits. The results suggest the above genes are suitable targets for simultaneous optimization of duckweed growth and metabolite levels. This study provides insights into the metabolic diversity of S. polyrhiza and its underlying genetic architecture, paving the way for industrial applications of this plant via targeted breeding or genetic engineering.
Collapse
Affiliation(s)
- M Höfer
- Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University of Mainz, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - M Schäfer
- Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Y Wang
- Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University of Mainz, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - S Wink
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - S Xu
- Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University of Mainz, Mainz, Germany
- Institute for Quantitative and Computer Biosciences, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
6
|
Shan J, Niedzwiedzki DM, Tomar RS, Liu Z, Liu H. Architecture and functional regulation of a plant PSII-LHCII megacomplex. SCIENCE ADVANCES 2024; 10:eadq9967. [PMID: 39671473 PMCID: PMC11640958 DOI: 10.1126/sciadv.adq9967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024]
Abstract
Photosystem II (PSII) splits water in oxygenic photosynthesis on Earth. The structure and function of the C4S4M2-type PSII-LHCII (light-harvesting complex II) megacomplexes from the wild-type and PsbR-deletion mutant plants are studied through electron microscopy (EM), structural mass spectrometry, and ultrafast fluorescence spectroscopy [time-resolved fluorescence (TRF)]. The cryo-EM structure of a type I C4S4M2 megacomplex demonstrates that the three domains of PsbR bind to the stromal side of D1, D2, and CP43; associate with the single transmembrane helix of the redox active Cyt b559; and stabilize the luminal extrinsic PsbP, respectively. This megacomplex, with PsbR and PsbY centered around the narrow interface between two dimeric PSII cores, provides the supramolecular structural basis that regulates the plastoquinone occupancy in QB site, excitation energy transfer, and oxygen evolution. PSII-LHCII megacomplexes (types I and II) and LHC aggregation levels in Arabidopsis psbR mutant were also interrogated and compared to wild-type plants through EM and picosecond TRF.
Collapse
Affiliation(s)
- Jianyu Shan
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dariusz M. Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Energy, Environmental, & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Rupal S. Tomar
- Department of Biology, Saint Louis University, St. Louis, MO, 63103, USA
| | - Zhenfeng Liu
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haijun Liu
- Department of Biology, Saint Louis University, St. Louis, MO, 63103, USA
| |
Collapse
|
7
|
Yang SJ, Wales DJ, Woods EJ, Fleming GR. Design principles for energy transfer in the photosystem II supercomplex from kinetic transition networks. Nat Commun 2024; 15:8763. [PMID: 39384886 PMCID: PMC11464844 DOI: 10.1038/s41467-024-53138-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Photosystem II (PSII) has the unique ability to perform water-splitting. With light-harvesting complexes, it forms the PSII supercomplex (PSII-SC) which is a functional unit that can perform efficient energy conversion, as well as photoprotection, allowing photosynthetic organisms to adapt to the naturally fluctuating sunlight intensity. Achieving these functions requires a collaborative energy transfer network between all subunits of the PSII-SC. In this work, we perform kinetic analyses and characterise the energy landscape of the PSII-SC with a structure-based energy transfer model. With first passage time analyses and kinetic Monte Carlo simulations, we are able to map out the overall energy transfer network. We also investigate how energy transfer pathways are affected when individual protein complexes are removed from the network, revealing the functional roles of the subunits of the PSII-SC. In addition, we provide a quantitative description of the flat energy landscape of the PSII-SC. We show that it is a unique landscape that produces multiple kinetically relevant pathways, corresponding to a high pathway entropy. These design principles are crucial for balancing efficient energy conversion and photoprotection.
Collapse
Affiliation(s)
- Shiun-Jr Yang
- Department of Chemistry, University of California, Berkeley, Berkeley, 94720, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, 94720, CA, USA
- Kavli Energy Nanoscience Institute at Berkeley, Berkeley, 94720, CA, USA
| | - David J Wales
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Esmae J Woods
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, 94720, CA, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, 94720, CA, USA.
- Kavli Energy Nanoscience Institute at Berkeley, Berkeley, 94720, CA, USA.
| |
Collapse
|
8
|
Tang X, Liu Y, Li S, Pei Y, Wei Q, Zhang L, Shi Y. Expression pattern of Stlhcb gene family in potato and effects of overexpression of Stcp24 gene on potato photosynthesis. PLoS One 2024; 19:e0305781. [PMID: 39178225 PMCID: PMC11343382 DOI: 10.1371/journal.pone.0305781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/04/2024] [Indexed: 08/25/2024] Open
Abstract
Potato is one of the four staple food crops in the world. It has a wide range of cultivation, high yield, and high nutritional value. Enhancing the photosynthesis of potato is particularly important as it leads to an increase in the potato yield. The light-harvesting pigment-binding protein complex is very important for plant photosynthesis. We identified 12 Stlhcb gene family members from the potato variety "Atlantic" using transcriptome sequencing and bioinformatics. The proteins encoded by the Stlhcb gene family have between 3358 and 4852 atomic number, a relative molecular weight between 24060.16 and 34624.54 Da, and an isoelectric point between 4.99 and 8.65. The RT-qPCR results showed that the 12 Stlhcb genes were expressed in a tissue-specific and time-dependent fashion under low light. The relative expression of the Stlhcb genes in the leaves was significantly higher than that in the stems and roots, and the relative expression of these genes first increased and then decreased with the prolongation of light exposure time. The Stcp24 gene with the highest expression was cloned, and an expression vector was constructed. A subcellular localization analysis was performed in tobacco and an overexpression experiment was performed in potato using an Agrobacterium-mediated method. The subcellular localization analysis showed that the protein encoded by Stcp24 was located in chloroplasts as expected. Overexpression of Stcp24 in transgenic potato increased the yield of potatoes and the content of chlorophyll a and b; increased the net photosynthetic rate, transpiration rate, stomatal conductance, electron transport efficiency, and semi-saturated light intensity; and promoted photosynthesis and plant growth. This study provides a reference for the study of the function of the potato light-harvesting pigment-binding protein gene family. It lays a foundation for further study of the mechanism of the photosynthesis of potato, improvement of the light energy utilization of potato, and molecular breeding of potato.
Collapse
Affiliation(s)
- Xinhua Tang
- College of Agriculture, Northeast Agricultural University, Harbin, China
- National Research Center of Soybean Engineering and Technology, Harbin, China
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, China
| | - Yulin Liu
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Shiwei Li
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yating Pei
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Qiaorong Wei
- College of Agriculture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, China
| | - Lili Zhang
- College of Agriculture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, China
| | - Ying Shi
- College of Agriculture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, China
| |
Collapse
|
9
|
Wang Z, Zhang W, Ding C, Xia Y, Yuan Z, Guo J, Yu J, Zhang B, Su X. RNA-seq reveals the gene expression in patterns in Populus × euramericana 'Neva' plantation under different precision water and fertilizer-intensive management. BMC PLANT BIOLOGY 2024; 24:759. [PMID: 39118015 PMCID: PMC11312740 DOI: 10.1186/s12870-024-05427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Populus spp. is a crucial fast-growing and productive tree species extensively cultivated in the mid-latitude plains of the world. However, the impact of intensive cultivation management on gene expression in plantation remains largely unexplored. RESULTS Precision water and fertilizer-intensive management substantially increased key enzyme activities of nitrogen transport, assimilation, and photosynthesis (1.12-2.63 times than CK) in Populus × euramericana 'Neva' plantation. Meanwhile, this management approach had a significant regulatory effect on the gene expression of poplar plantations. 1554 differential expression genes (DEGs)were identified in drip irrigation (ND) compared with conventional irrigation. Relative to ND, 2761-4116 DEGs, predominantly up-regulated, were identified under three drip fertilization combinations, among which 202 DEGs were mainly regulated by fertilization. Moreover, drip irrigation reduced the expression of cell wall synthesis-related genes to reduce unnecessary water transport. Precision drip and fertilizer-intensive management promotes the synergistic regulation of carbon and nitrogen metabolism and up-regulates the expression of major genes in nitrogen transport and assimilation processes (5 DEGs), photosynthesis (15 DEGs), and plant hormone signal transduction (11 DEGs). The incorporation of trace elements further enhanced the up-regulation of secondary metabolic process genes. In addition, the co-expression network identified nine hub genes regulated by precision water and fertilizer-intensive management, suggesting a pivotal role in regulating the growth of poplar. CONCLUSION Precision water and fertilizer-intensive management demonstrated the ability to regulate the expression of key genes and transcription factor genes involved in carbon and nitrogen metabolism pathways, plant hormone signal transduction, and enhance the activity of key enzymes involved in related processes. This regulation facilitated nitrogen absorption and utilization, and photosynthetic abilities such as light capture, light transport, and electron transport, which faintly synergistically regulate the growth of poplar plantations. These results provide a reference for proposing highly efficient precision intensive management to optimize the expression of target genes.
Collapse
Affiliation(s)
- Zhou Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yongxiu Xia
- Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing, 100023, P.R. China
| | - Zhengsai Yuan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jiangtao Guo
- Heibei Agricultural University, Baoding, 071001, P.R. China
| | - Jinjin Yu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Bingyu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
10
|
Iwai M, Patel-Tupper D, Niyogi KK. Structural Diversity in Eukaryotic Photosynthetic Light Harvesting. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:119-152. [PMID: 38360524 DOI: 10.1146/annurev-arplant-070623-015519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Photosynthesis has been using energy from sunlight to assimilate atmospheric CO2 for at least 3.5 billion years. Through evolution and natural selection, photosynthetic organisms have flourished in almost all aquatic and terrestrial environments. This is partly due to the diversity of light-harvesting complex (LHC) proteins, which facilitate photosystem assembly, efficient excitation energy transfer, and photoprotection. Structural advances have provided angstrom-level structures of many of these proteins and have expanded our understanding of the pigments, lipids, and residues that drive LHC function. In this review, we compare and contrast recently observed cryo-electron microscopy structures across photosynthetic eukaryotes to identify structural motifs that underlie various light-harvesting strategies. We discuss subtle monomer changes that result in macroscale reorganization of LHC oligomers. Additionally, we find recurring patterns across diverse LHCs that may serve as evolutionary stepping stones for functional diversification. Advancing our understanding of LHC protein-environment interactions will improve our capacity to engineer more productive crops.
Collapse
Affiliation(s)
- Masakazu Iwai
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA;
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Dhruv Patel-Tupper
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Krishna K Niyogi
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA;
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California, USA
| |
Collapse
|
11
|
Saraceno P, Sardar S, Caferri R, Camargo FVA, Dall'Osto L, D'Andrea C, Bassi R, Cupellini L, Cerullo G, Mennucci B. Probing the Effect of Mutations on Light Harvesting in CP29 by Transient Absorption and First-Principles Simulations. J Phys Chem Lett 2024; 15:6398-6408. [PMID: 38861672 DOI: 10.1021/acs.jpclett.4c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Natural light harvesting is exceptionally efficient thanks to the local energy funnel created within light-harvesting complexes (LHCs). To understand the design principles underlying energy transport in LHCs, ultrafast spectroscopy is often complemented by mutational studies that introduce perturbations into the excitonic structure of the natural complexes. However, such studies may fall short of identifying all excitation energy transfer (EET) pathways and their changes upon mutation. Here, we show that a synergistic combination of first-principles calculations and ultrafast spectroscopy can give unprecedented insight into the EET pathways occurring within LHCs. We measured the transient absorption spectra of the minor CP29 complex of plants and of two mutants, systematically mapping the kinetic components seen in experiments to the simulated exciton dynamics. With our combined strategy, we show that EET in CP29 is surprisingly robust to the changes in the exciton states induced by mutations, explaining the versatility of plant LHCs.
Collapse
Affiliation(s)
- Piermarco Saraceno
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy
| | - Samim Sardar
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy
| | - Roberto Caferri
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Franco V A Camargo
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Luca Dall'Osto
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Cosimo D'Andrea
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy
| | - Giulio Cerullo
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza L. da Vinci 32, 20133 Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy
| |
Collapse
|
12
|
Sarngadharan P, Holtkamp Y, Kleinekathöfer U. Protein Effects on the Excitation Energies and Exciton Dynamics of the CP24 Antenna Complex. J Phys Chem B 2024; 128:5201-5217. [PMID: 38756003 PMCID: PMC11145653 DOI: 10.1021/acs.jpcb.4c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
In this study, the site energy fluctuations, energy transfer dynamics, and some spectroscopic properties of the minor light-harvesting complex CP24 in a membrane environment were determined. For this purpose, a 3 μs-long classical molecular dynamics simulation was performed for the CP24 complex. Furthermore, using the density functional tight binding/molecular mechanics molecular dynamics (DFTB/MM MD) approach, we performed excited state calculations for the chlorophyll a and chlorophyll b molecules in the complex starting from five different positions of the MD trajectory. During the extended simulations, we observed variations in the site energies of the different sets as a result of the fluctuating protein environment. In particular, a water coordination to Chl-b 608 occurred only after about 1 μs in the simulations, demonstrating dynamic changes in the environment of this pigment. From the classical and the DFTB/MM MD simulations, spectral densities and the (time-dependent) Hamiltonian of the complex were determined. Based on these results, three independent strongly coupled chlorophyll clusters were revealed within the complex. In addition, absorption and fluorescence spectra were determined together with the exciton relaxation dynamics, which reasonably well agrees with experimental time scales.
Collapse
Affiliation(s)
- Pooja Sarngadharan
- School of Science, Constructor
University, Campus Ring
1, 28759 Bremen, Germany
| | - Yannick Holtkamp
- School of Science, Constructor
University, Campus Ring
1, 28759 Bremen, Germany
| | | |
Collapse
|
13
|
Mohanta TK, Mohanta YK, Kaushik P, Kumar J. Physiology, genomics, and evolutionary aspects of desert plants. J Adv Res 2024; 58:63-78. [PMID: 37160225 PMCID: PMC10982872 DOI: 10.1016/j.jare.2023.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Despite the exposure to arid environmental conditions across the globe ultimately hampering the sustainability of the living organism, few plant species are equipped with several unique genotypic, biochemical, and physiological features to counter such harsh conditions. Physiologically, they have evolved with reduced leaf size, spines, waxy cuticles, thick leaves, succulent hydrenchyma, sclerophyll, chloroembryo, and photosynthesis in nonfoliar and other parts. At the biochemical level, they are evolved to perform efficient photosynthesis through Crassulacean acid metabolism (CAM) and C4 pathways with the formation of oxaloacetic acid (Hatch-Slack pathway) instead of the C3 pathway. Additionally, comparative genomics with existing data provides ample evidence of the xerophytic plants' positive selection to adapt to the arid environment. However, adding more high-throughput sequencing of xerophyte plant species is further required for a comparative genomic study toward trait discovery related to survival. Learning from the mechanism to survive in harsh conditions could pave the way to engineer crops for future sustainable agriculture. AIM OF THE REVIEW The distinct physiology of desert plants allows them to survive in harsh environments. However, the genomic composition also contributes significantly to this and requires great attention. This review emphasizes the physiological and genomic adaptation of desert plants. Other important parameters, such as desert biodiversity and photosynthetic strategy, are also discussed with recent progress in the field. Overall, this review discusses the different features of desert plants, which prepares them for harsh conditions intending to translate knowledge to engineer plant species for sustainable agriculture. KEY SCIENTIFIC CONCEPTS OF REVIEW This review comprehensively presents the physiology, molecular mechanism, and genomics of desert plants aimed towards engineering a sustainable crop.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 611, Oman.
| | - Yugal Kishore Mohanta
- Dept. of Applied Biology, University of Science and Technology Meghalaya, Baridua, Meghalaya 793101, India
| | - Prashant Kaushik
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Jitesh Kumar
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, United States
| |
Collapse
|
14
|
Das Laha S, Kundu A, Podder S. Impact of biotic stresses on the Brassicaceae family and opportunities for crop improvement by exploiting genotyping traits. PLANTA 2024; 259:97. [PMID: 38520529 DOI: 10.1007/s00425-024-04379-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024]
Abstract
MAIN CONCLUSION Utilizing RNAi, miRNA, siRNA, lncRNA and exploiting genotyping traits can help safeguard the food supply from illnesses and pest damage to Brassicas, as well as reduce yield losses caused by plant pathogens and insect pests. In the natural environment, plants face significant challenges in the form of biotic stress, due to various living organisms, leading to biological stress and a sharp decline in crop yields. To cope with these effects, plants have evolved specialized mechanisms to mitigate these challenges. Plant stress tolerance and resistance are influenced by genes associated with stress-responsive pathogens that interact with various stress-related signaling pathway components. Plants employ diverse strategies and mechanisms to combat biological stress, involving a complex network of transcription factors that interact with specific cis-elements to regulate gene expression. Understanding both plant developmental and pathogenic disease resistance mechanisms can allow us to develop stress-tolerant and -resistant crops. Brassica genus includes commercially important crops, e.g., broccoli, cabbage, cauliflower, kale, and rapeseed, cultivated worldwide, with several applications, e.g., oil production, consumption, condiments, fodder, as well as medicinal ones. Indeed, in 2020, global production of vegetable Brassica reached 96.4 million tones, a 10.6% rise from the previous decade. Taking into account their commercial importance, coupled to the impact that pathogens can have in Brassica productivity, yield losses up to 60%, this work complies the major diseases caused due to fungal, bacterial, viral, and insects in Brassica species. The review is structured into three parts. In the first part, an overview is provided of the various pathogens affecting Brassica species, including fungi, bacteria, viruses, and insects. The second part delves into the exploration of defense mechanisms that Brassica plants encounter against these pathogens including secondary metabolites, duplicated genes, RNA interference (RNAi), miRNA (micro-RNA), siRNA (small interfering RNA), and lncRNA (long non-coding RNA). The final part comprehensively outlines the current applications of CRISPR/Cas9 technology aimed at enhancing crop quality. Taken collectively, this review will contribute to our enhanced understanding of these mechanisms and their role in the development of resistance in Brassica plants, thus supporting strategies to protect this crucial crop.
Collapse
Affiliation(s)
- Shayani Das Laha
- Computational and Systems Biology Laboratory, Department of Microbiology, Raiganj University, Raiganj, West Bengal, India
- Department of Genetics and Plant Breeding, Uttar Banga Krishi Viswavidyalaya, Coochbehar, West Bengal, India
| | - Avijit Kundu
- Department of Genetics and Plant Breeding, Uttar Banga Krishi Viswavidyalaya, Coochbehar, West Bengal, India
| | - Soumita Podder
- Computational and Systems Biology Laboratory, Department of Microbiology, Raiganj University, Raiganj, West Bengal, India.
| |
Collapse
|
15
|
Kim M, Cazzaniga S, Jang J, Pivato M, Kim G, Ballottari M, Jin E. Photoautotrophic cultivation of a Chlamydomonas reinhardtii mutant with zeaxanthin as the sole xanthophyll. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:41. [PMID: 38486329 PMCID: PMC10941483 DOI: 10.1186/s13068-024-02483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/24/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Photosynthetic microalgae are known for their sustainable and eco-friendly potential to convert carbon dioxide into valuable products. Nevertheless, the challenge of self-shading due to high cell density has been identified as a drawback, hampering productivity in sustainable photoautotrophic mass cultivation. To address this issue, mutants with altered pigment composition have been proposed to allow a more efficient light diffusion but further study on the role of the different pigments is still needed to correctly engineer this process. RESULTS We here investigated the Chlamydomonas reinhardtii Δzl mutant with zeaxanthin as the sole xanthophyll. The Δzl mutant displayed altered pigment composition, characterized by lower chlorophyll content, higher chlorophyll a/b ratio, and lower chlorophyll/carotenoid ratio compared to the wild type (Wt). The Δzl mutant also exhibited a significant decrease in the light-harvesting complex II/Photosystem II ratio (LHCII/PSII) and the absence of trimeric LHCIIs. This significantly affects the organization and stability of PSII supercomplexes. Consequently, the estimated functional antenna size of PSII in the Δzl mutant was approximately 60% smaller compared to that of Wt, and reduced PSII activity was evident in this mutant. Notably, the Δzl mutant showed impaired non-photochemical quenching. However, the Δzl mutant compensated by exhibiting enhanced cyclic electron flow compared to Wt, seemingly offsetting the impaired PSII functionality. Consequently, the Δzl mutant achieved significantly higher cell densities than Wt under high-light conditions. CONCLUSIONS Our findings highlight significant changes in pigment content and pigment-protein complexes in the Δzl mutant compared to Wt, resulting in an advantage for high-density photoautotrophic cultivation. This advantage is attributed to the decreased chlorophyll content of the Δzl mutant, allowing better light penetration. In addition, the accumulated zeaxanthin in the mutant could serve as an antioxidant, offering protection against reactive oxygen species generated by chlorophylls.
Collapse
Affiliation(s)
- Minjae Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea
| | | | - Junhwan Jang
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea
| | - Matteo Pivato
- Dipartimento di Biotecnologie, Università di Verona, Verona, Italy
| | - Gueeda Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea
| | | | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea.
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Korea.
| |
Collapse
|
16
|
Nguyen HL, Do TN, Zhong K, Akhtar P, Jansen TLC, Knoester J, Caffarri S, Lambrev P, Tan HS. Inter-subunit energy transfer processes in a minimal plant photosystem II supercomplex. SCIENCE ADVANCES 2024; 10:eadh0911. [PMID: 38394196 PMCID: PMC10889429 DOI: 10.1126/sciadv.adh0911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Photosystem II (PSII) is an integral part of the photosynthesis machinery, in which several light-harvesting complexes rely on inter-complex excitonic energy transfer (EET) processes to channel energy to the reaction center. In this paper, we report on a direct observation of the inter-complex EET in a minimal PSII supercomplex from plants, containing the trimeric light-harvesting complex II (LHCII), the monomeric light-harvesting complex CP26, and the monomeric PSII core complex. Using two-dimensional (2D) electronic spectroscopy, we measure an inter-complex EET timescale of 50 picoseconds for excitations from the LHCII-CP26 peripheral antenna to the PSII core. The 2D electronic spectra also reveal that the transfer timescale is nearly constant over the pump spectrum of 600 to 700 nanometers. Structure-based calculations reveal the contribution of each antenna complex to the measured inter-complex EET time. These results provide a step in elucidating the full inter-complex energy transfer network of the PSII machinery.
Collapse
Affiliation(s)
- Hoang Long Nguyen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Thanh Nhut Do
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Kai Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Parveen Akhtar
- ELI-ALPS, ELI-HU Nonprofit Limited, Wolfgang Sandner utca 3, Szeged 6728, Hungary
- HUN-REN Biological Research Centre, Szeged, Temesvári körút 62, Szeged 6726, Hungary
| | - Thomas L. C. Jansen
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Jasper Knoester
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
- Faculty of Science, Leiden University, Einsteinweg 55, NL-2300 RA Leiden, Netherlands
| | - Stefano Caffarri
- Aix Marseille Université, CEA, CNRS, BIAM, LGBP, 13009 Marseille, France
| | - Petar Lambrev
- HUN-REN Biological Research Centre, Szeged, Temesvári körút 62, Szeged 6726, Hungary
| | - Howe-Siang Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
17
|
Guo Y, Li Q, Ji D, Tian L, Meurer J, Chi W. A Ubiquitin-Based Module Directing Protein-Protein Interactions in Chloroplasts. Int J Mol Sci 2023; 24:16673. [PMID: 38068997 PMCID: PMC10706609 DOI: 10.3390/ijms242316673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
A promising approach for the genetic engineering of multiprotein complexes in living cells involves designing and reconstructing the interaction between two proteins that lack native affinity. Thylakoid-embedded multiprotein complexes execute the light reaction of plant photosynthesis, but their engineering remains challenging, likely due to difficulties in accurately targeting heterologous membrane-bound proteins to various sub-compartments of thylakoids. In this study, we developed a ubiquitin-based module (Nub-Cub) capable of directing interactions in vivo between two chloroplast proteins lacking native affinities. We applied this module to genetically modify thylakoid multiprotein complexes. We demonstrated the functionality of the Nub-Cub module in the model organism Arabidopsis thaliana. Employing this system, we successfully modified the Photosystem II (PSII) complex by ectopically attaching an extrinsic subunit of PSII, PsbTn1, to CP26-a component of the antenna system of PSII. Surprisingly, this mandatory interaction between CP26 and PsbTn1 in plants impairs the efficiency of electron transport in PSII and unexpectedly results in noticeable defects in leaf development. Our study not only offers a general strategy to modify multiprotein complexes embedded in thylakoid membranes but it also sheds light on the possible interplay between two proteins without native interaction.
Collapse
Affiliation(s)
- Yinjie Guo
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Y.G.); (Q.L.); (D.J.); (L.T.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuxin Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Y.G.); (Q.L.); (D.J.); (L.T.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daili Ji
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Y.G.); (Q.L.); (D.J.); (L.T.)
| | - Lijin Tian
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Y.G.); (Q.L.); (D.J.); (L.T.)
| | - Jörg Meurer
- Faculty of Biology, Plant Molecular Biology, Ludwig-Maximilians University, D-82152 Munich, Germany;
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Y.G.); (Q.L.); (D.J.); (L.T.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
18
|
Li X, Jiang Z, Zhang C, Cai K, Wang H, Pan W, Sun X, Gao Y, Xu K. Comparative genomics analysis provide insights into evolution and stress responses of Lhcb genes in Rosaceae fruit crops. BMC PLANT BIOLOGY 2023; 23:484. [PMID: 37817059 PMCID: PMC10566169 DOI: 10.1186/s12870-023-04438-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Light-harvesting chlorophyll a/b b evelopment of higher plants and in response to abiotic stress. Previous works has demonstrated that that Lhcb genes were involved in the phytochrome regulation and responded to the different light and temperature conditions in Poaceae (such as maize). However, the evolution and functions of Lhcb genes remains poorly characterized in important Rosaceae species. RESULTS In this investigation, we conducted a genome-wide analysis and identified a total of 212 Lhcb genes across nine Rosaceae species. Specifically, we found 23 Lhcb genes in Fragaria vesca, 20 in Prunus armeniaca, 33 in Malus domestica 'Gala', 21 in Prunus persica, 33 in Rosa chinensis, 29 in Pyrus bretschneideri, 18 in Rubus occidentalis, 20 in Prunus mume, and 15 in Prunus salicina. Phylogenetic analysis revealed that the Lhcb gene family could be classified into seven major subfamilies, with members of each subfamily sharing similar conserved motifs. And, the functions of each subfamily was predicted based on the previous reports from other species. The Lhcb proteins were highly conserved within their respective subfamilies, suggesting similar functions. Interestingly, we observed similar peaks in Ks values (0.1-0.2) for Lhcb genes in apple and pear, indicating a recent whole genome duplication event (about 30 to 45 million years ago). Additionally, a few Lhcb genes underwent tandem duplication and were located across all chromosomes of nine species of Rosaceae. Furthermore, the analysis of the cis-acting elements in the 2000 bp promoter region upstream of the pear Lhcb gene revealed four main categories: light response correlation, stress response correlation, hormone response correlation, and plant growth. Quantitative expression analysis demonstrated that Lhcb genes exhibited tissue-specific expression patterns and responded differently to low-temperature stress in Rosaceae species. CONCLUSIONS These findings shed light on the evolution and phylogeny of Lhcb genes in Rosaceae and highlight the critical role of Lhcb in pear's response to low temperatures. The results obtained provide valuable insights for further investigations into the functions of Lhcb genes in Rosaceae, and these functional genes will be used for further fruit tree breeding and improvement to cope with the current climate changes.
Collapse
Affiliation(s)
- Xiaolong Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zeyu Jiang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Chaofan Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Kefan Cai
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Hui Wang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Weiyi Pan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Xuepeng Sun
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yongbin Gao
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Kai Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
19
|
Cazzaniga S, Kim M, Pivato M, Perozeni F, Sardar S, D'Andrea C, Jin E, Ballottari M. Photosystem II monomeric antenna CP26 plays a key role in nonphotochemical quenching in Chlamydomonas. PLANT PHYSIOLOGY 2023; 193:1365-1380. [PMID: 37403662 DOI: 10.1093/plphys/kiad391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023]
Abstract
Thermal dissipation of excess excitation energy, called nonphotochemical quenching (NPQ), is 1 of the main photoprotective mechanisms in oxygenic photosynthetic organisms. Here, we investigated the function of the monomeric photosystem II (PSII) antenna protein CP26 in photoprotection and light harvesting in Chlamydomonas reinhardtii, a model organism for green algae. We used CRISPR/Cas9 genome editing and complementation to generate cp26 knockout mutants (named k6#) that did not negatively affect CP29 accumulation, which differed from previous cp26 mutants, allowing us to compare mutants specifically deprived of CP26, CP29, or both. The absence of CP26 partially affected PSII activity, causing reduced growth at low or medium light but not at high irradiances. However, the main phenotype observed in k6# mutants was a more than 70% reduction of NPQ compared to the wild type (Wt). This phenotype was fully rescued by genetic complementation and complemented strains accumulating different levels of CP26, demonstrating that ∼50% of CP26 content, compared to the Wt, was sufficient to restore the NPQ capacity. Our findings demonstrate a pivotal role for CP26 in NPQ induction, while CP29 is crucial for PSII activity. The genetic engineering of these 2 proteins could be a promising strategy to regulate the photosynthetic efficiency of microalgae under different light regimes.
Collapse
Affiliation(s)
- Stefano Cazzaniga
- Dipartimento di Biotecnologie, Università di Verona, Verona 37134, Italy
| | - Minjae Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Matteo Pivato
- Dipartimento di Biotecnologie, Università di Verona, Verona 37134, Italy
| | - Federico Perozeni
- Dipartimento di Biotecnologie, Università di Verona, Verona 37134, Italy
| | - Samim Sardar
- Istituto Italiano di Tecnologia, Center for Nano Science and Technology, Milano 20134, Italy
| | - Cosimo D'Andrea
- Istituto Italiano di Tecnologia, Center for Nano Science and Technology, Milano 20134, Italy
- Dipartimento di Fisica, Politecnico di Milano, Milano 20133, Italy
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Matteo Ballottari
- Dipartimento di Biotecnologie, Università di Verona, Verona 37134, Italy
| |
Collapse
|
20
|
Wang W, Li X, Fan S, He Y, Wei M, Wang J, Yin Y, Liu Y. Combined genomic and transcriptomic analysis reveals the contribution of tandem duplication genes to low-temperature adaptation in perennial ryegrass. FRONTIERS IN PLANT SCIENCE 2023; 14:1216048. [PMID: 37502702 PMCID: PMC10368995 DOI: 10.3389/fpls.2023.1216048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Perennial ryegrass (Lolium perenne L.) is an agronomically important cool-season grass species that is widely used as forage for ruminant animal production and cultivated in temperate regions for the establishment of lawns. However, the underlying genetic mechanism of the response of L. perenne to low temperature is still unclear. In the present study, we performed a comprehensive study and identified 3,770 tandem duplication genes (TDGs) in L. perenne, and evolutionary analysis revealed that L. perenne might have undergone a duplication event approximately 7.69 Mya. GO and KEGG pathway functional analyses revealed that these TDGs were mainly enriched in photosynthesis, hormone-mediated signaling pathways and responses to various stresses, suggesting that TDGs contribute to the environmental adaptability of L. perenne. In addition, the expression profile analysis revealed that the expression levels of TDGs were highly conserved and significantly lower than those of all genes in different tissues, while the frequency of differentially expressed genes (DEGs) from TDGs was much higher than that of DEGs from all genes in response to low-temperature stress. Finally, in-depth analysis of the important and expanded gene family indicated that the members of the ELIP subfamily could rapidly respond to low temperature and persistently maintain higher expression levels during all low temperature stress time points, suggesting that ELIPs most likely mediate low temperature responses and help to facilitate adaptation to low temperature in L. perenne. Our results provide evidence for the genetic underpinning of low-temperature adaptation and valuable resources for practical application and genetic improvement for stress resistance in L. perenne.
Collapse
Affiliation(s)
- Wei Wang
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Xiaoning Li
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Shugao Fan
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Yang He
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Meng Wei
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Jiayi Wang
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Yanling Yin
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Yanfeng Liu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
| |
Collapse
|
21
|
Su X, Yue X, Kong M, Xie Z, Yan J, Ma W, Wang Y, Zhao J, Zhang X, Liu M. Leaf Color Classification and Expression Analysis of Photosynthesis-Related Genes in Inbred Lines of Chinese Cabbage Displaying Minor Variations in Dark-Green Leaves. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112124. [PMID: 37299103 DOI: 10.3390/plants12112124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023]
Abstract
The leaves of the Chinese cabbage which is most widely consumed come in a wide variety of colors. Leaves that are dark green can promote photosynthesis, effectively improving crop yield, and therefore hold important application and cultivation value. In this study, we selected nine inbred lines of Chinese cabbage displaying slight differences in leaf color, and graded the leaf color using the reflectance spectra. We clarified the differences in gene sequences and the protein structure of ferrochelatase 2 (BrFC2) among the nine inbred lines, and used qRT-PCR to analyze the expression differences of photosynthesis-related genes in inbred lines with minor variations in dark-green leaves. We found expression differences among the inbred lines of Chinese cabbage in photosynthesis-related genes involved in the porphyrin and chlorophyll metabolism, as well as in photosynthesis and photosynthesis-antenna protein pathway. Chlorophyll b content was significantly positively correlated with the expression of PsbQ, LHCA1_1 and LHCB6_1, while chlorophyll a content was significantly negatively correlated with the expression PsbQ, LHCA1_1 and LHCA1_2. Our results provide an empirical basis for the precise identification of candidate genes and a better understanding of the molecular mechanisms responsible for the production of dark-green leaves in Chinese cabbage.
Collapse
Affiliation(s)
- Xiangjie Su
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Xiaonan Yue
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Mingyu Kong
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Ziwei Xie
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Jinghui Yan
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Wei Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yanhua Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Xiaomeng Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Mengyang Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
22
|
Zou Z, Xiao Y, Zhang L, Zhao Y. Analysis of Lhc family genes reveals development regulation and diurnal fluctuation expression patterns in Cyperus esculentus, a Cyperaceae plant. PLANTA 2023; 257:59. [PMID: 36807540 DOI: 10.1007/s00425-023-04092-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Sixteen Lhc genes representing 13 phylogenetic groups were identified from the full-length transcriptome of tigernut, exhibiting development regulation and diurnal fluctuation expression patterns in leaves. Nuclear encoded light-harvesting chlorophyll a/b-binding (Lhc) proteins play indispensable roles in oxygenic photosynthesis. In this study, we present the first transcriptome-based characterization of Lhc family genes in tigernut (Cyperus esculentus L.), a Cyperaceae C4 plant producing oil in underground tubers. A number of 16 Lhc genes representing 13 phylogenetic groups identified from the full-length tigernut transcriptome are equal to that found in both Carex littledalei (another Cyperaceae plant) and papaya, slightly more than 15 members present in both rice and jatropha, but relatively less than 18, 20, and 21 members present in sorghum, cassava, and Arabidopsis, respectively. Nevertheless, nearly one-vs-one orthologous relationship was observed in most groups, though some of them are no longer located in syntenic blocks and species-specific expansion was frequently found in Lhcb1. Comparative genomics analysis revealed that the loss of two groups (i.e., Lhca2 and Lhca5) in C. littledalei is species-specific, sometime after the split with tigernut, and the expansion of Lhcb1 was mainly contributed by tandem duplication as observed in most species. Interestingly, a transposed duplication, which appears to be shared by monocots, was also identified in Lhcb1. Further transcriptome profiling revealed a predominant expression pattern of most CeLhc family genes in photosynthetic tissues and enhanced transcription during leaf maturation, reflecting their key roles in light absorption. Moreover, qRT-PCR analysis revealed an apparent diurnal fluctuation expression pattern of 11 dominant CeLhc genes. These findings not only highlight species-specific evolution of Lhc genes in the Cyperaceae family as well as the monocot lineage, but also provide valuable information for further functional analysis and genetic improvement in tigernut.
Collapse
Affiliation(s)
- Zhi Zou
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China.
| | - Yanhua Xiao
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Science, South-Central Minzu University, Wuhan, 430074, Hubei, People's Republic of China
| | - Li Zhang
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Science, South-Central Minzu University, Wuhan, 430074, Hubei, People's Republic of China
| | - Yongguo Zhao
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China.
- Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, People's Republic of China.
| |
Collapse
|
23
|
Chen LX, Mao HT, Lin S, Din AMU, Yin XY, Yuan M, Zhang ZW, Yuan S, Zhang HY, Chen YE. Different Photosynthetic Response to High Light in Four Triticeae Crops. Int J Mol Sci 2023; 24:ijms24021569. [PMID: 36675085 PMCID: PMC9862584 DOI: 10.3390/ijms24021569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023] Open
Abstract
Photosynthetic capacity is usually affected by light intensity in the field. In this study, photosynthetic characteristics of four different Triticeae crops (wheat, triticale, barley, and highland barley) were investigated based on chlorophyll fluorescence and the level of photosynthetic proteins under high light. Compared with wheat, three cereals (triticale, barley, and highland barley) presented higher photochemical efficiency and heat dissipation under normal light and high light for 3 h, especially highland barley. In contrast, lower photoinhibition was observed in barley and highland barley relative to wheat and triticale. In addition, barley and highland barley showed a lower decline in D1 and higher increase in Lhcb6 than wheat and triticale under high light. Furthermore, compared with the control, the results obtained from PSII protein phosphorylation showed that the phosphorylation level of PSII reaction center proteins (D1 and D2) was higher in barley and highland barley than that of wheat and triticale. Therefore, we speculated that highland barley can effectively alleviate photodamages to photosynthetic apparatus by high photoprotective dissipation, strong phosphorylation of PSII reaction center proteins, and rapid PSII repair cycle under high light.
Collapse
Affiliation(s)
- Lun-Xing Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Hao-Tian Mao
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Shuai Lin
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Atta Mohi Ud Din
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Xiao-Yan Yin
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Huai-Yu Zhang
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Yang-Er Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China
- Correspondence: ; Tel.: +86-835-2886653
| |
Collapse
|
24
|
Leister D. Enhancing the light reactions of photosynthesis: Strategies, controversies, and perspectives. MOLECULAR PLANT 2023; 16:4-22. [PMID: 35996755 DOI: 10.1016/j.molp.2022.08.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Photosynthesis is central to life on Earth, employing sunlight, water, and carbon dioxide to produce chemical energy and oxygen. It is generally accepted that boosting its efficiency offers one promising way to increase crop yields under agronomically realistic conditions. Since the components, structure, and regulatory mechanisms of the light reactions of photosynthesis are well understood, concepts for enhancing the process have been suggested and partially tested. These approaches vary in complexity, from targeting single components to comprehensive redesign of the whole process on the scales from single cells or tissues to whole canopies. Attempts to enhance light utilization per leaf, by decreasing pigmentation, increasing levels of photosynthetic proteins, prolonging the lifespan of the photosynthetic machinery, or massive reconfiguration of the photosynthetic machinery and the incorporation of nanomaterials, are discussed in this review first. Secondly, strategies intended to optimize the acclimation of photosynthesis to changes in the environment are presented, including redesigning mechanisms to dissipate excess excitation energy (e.g., non-photochemical quenching) or reduction power (e.g., flavodiiron proteins). Moreover, schemes for improving acclimation, inspired by natural or laboratory-induced adaptation, are introduced. However, all these endeavors are still in an early exploratory phase and/or have not resulted in the desired outcome, largely because photosynthesis is embedded within large networks of closely interacting cellular and metabolic processes, which can vary among species and even cultivars. This explains why integrated, systems-wide approaches are required to achieve the breakthroughs required for effectively increasing crop yields.
Collapse
Affiliation(s)
- Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University (LMU) Munich, Martinsried-Planegg, D-82152 Munich, Germany.
| |
Collapse
|
25
|
Mohi Ud Din A, Mao HT, Khan A, Raza MA, Ahmed M, Yuan M, Zhang ZW, Yuan S, Zhang HY, Liu ZH, Su YQ, Chen YE. Photosystems and antioxidative system of rye, wheat and triticale under Pb stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114356. [PMID: 36508799 DOI: 10.1016/j.ecoenv.2022.114356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Lead (Pb2+) pollution in the soil sub-ecosystem has been a continuously growing problem due to economic development and ever-increasing anthropogenic activities across the world. In this study, the photosynthetic performance and antioxidant capacity of Triticeae cereals (rye, wheat and triticale) were compared to assess the activities of antioxidants, the degree of oxidative damage, photochemical efficiency and the levels of photosynthetic proteins under Pb stress (0.5 mM, 1 mM and 2 mM Pb (NO3)2). Compared with triticale, Pb treatments imposed severe oxidative damage in rye and wheat. In addition, the highest activity of major antioxidant enzymes (SOD, POD, CAT, and GPX) was also found to be elevated. Triticale accumulated the highest Pb contents in roots. The concentration of mineral ions (Mg, Ca, and K) was also high in its leaves, compared with rye and wheat. Consistently, triticale showed higher photosynthetic activity under Pb stress. Immunoblotting of proteins revealed that rye and wheat have significantly lower levels of D1 (photosystem II subunit A, PsbA) and D2 (photosystem II subunit D, PsbD) proteins, while no obvious decrease was noticed in triticale. The amount of light-harvesting complex II b6 (Lhcb6; CP24) and light-harvesting complex II b5 (Lhcb5; CP26) was significantly increased in rye and wheat. However, the increase in PsbS (photosystem II subunit S) protein only occurred in wheat and triticale exposed to Pb treatment. Taken together, these findings demonstrate that triticale shows higher antioxidant capacity and photosynthetic efficiency than wheat and rye under Pb stress, suggesting that triticale has high tolerance to Pb and could be used as a heavy metal-tolerant plant.
Collapse
Affiliation(s)
- Atta Mohi Ud Din
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China; Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; National Research Center of Intercropping, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Hao-Tian Mao
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Ahsin Khan
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Muhammad Ali Raza
- National Research Center of Intercropping, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Mukhtar Ahmed
- Department of Agronomy, PMAS Arid Agricultural University, Rawalpindi 46300, Pakistan
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Huai-Yu Zhang
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Zheng-Hui Liu
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan-Qiu Su
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China.
| |
Collapse
|
26
|
Phylogenetic, Structural and Functional Evolution of the LHC Gene Family in Plant Species. Int J Mol Sci 2022; 24:ijms24010488. [PMID: 36613939 PMCID: PMC9820578 DOI: 10.3390/ijms24010488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
Light-harvesting chlorophyll a/b-binding (LHC) superfamily proteins play a vital role in photosynthesis. Although the physiological and biochemical functions of LHC genes have been well-characterized, the structural evolution and functional differentiation of the products need to be further studied. In this paper, we report the genome-wide identification and phylogenetic analysis of LHC genes in photosynthetic organisms. A total of 1222 non-redundant members of the LHC family were identified from 42 species. According to the phylogenetic clustering of their homologues with Arabidopsis thaliana, they can be divided into four subfamilies. In the subsequent evolution of land plants, a whole-genome replication (WGD) event was the driving force for the evolution and expansion of the LHC superfamily, with its copy numbers rapidly increasing in angiosperms. The selection pressure of photosystem II sub-unit S (PsbS) and ferrochelatase (FCII) families were higher than other subfamilies. In addition, the transcriptional expression profiles of LHC gene family members in different tissues and their expression patterns under exogenous abiotic stress conditions significantly differed, and the LHC genes are highly expressed in mature leaves, which is consistent with the conclusion that LHC is mainly involved in the capture and transmission of light energy in photosynthesis. According to the expression pattern and copy number of LHC genes in land plants, we propose different evolutionary trajectories in this gene family. This study provides a basis for understanding the molecular evolutionary characteristics and evolution patterns of plant LHCs.
Collapse
|
27
|
Zhang D, Guo W, Wang T, Wang Y, Le L, Xu F, Wu Y, Wuriyanghan H, Sung ZR, Pu L. RNA 5-Methylcytosine Modification Regulates Vegetative Development Associated with H3K27 Trimethylation in Arabidopsis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2204885. [PMID: 36382558 PMCID: PMC9811455 DOI: 10.1002/advs.202204885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Methylating RNA post-transcriptionally is emerging as a significant mechanism of gene regulation in eukaryotes. The crosstalk between RNA methylation and histone modification is critical for chromatin state and gene expression in mammals. However, it is not well understood mechanistically in plants. Here, the authors report a genome-wide correlation between RNA 5-cytosine methylation (m5 C) and histone 3 lysine27 trimethylation (H3K27me3) in Arabidopsis. The plant-specific Polycomb group (PcG) protein EMBRYONIC FLOWER1 (EMF1) plays dual roles as activators or repressors. Transcriptome-wide RNA m5 C profiling revealed that m5 C peaks are mostly enriched in chromatin regions that lacked H3K27me3 in both wild type and emf1 mutants. EMF1 repressed the expression of m5 C methyltransferase tRNA specific methyltransferase 4B (TRM4B) through H3K4me3, independent of PcG-mediated H3K27me3 mechanism. The 5-Cytosine methylation on targets is increased in emf1 mutants, thereby decreased the mRNA transcripts of photosynthesis and chloroplast genes. In addition, impairing EMF1 activity reduced H3K27me3 levels of PcG targets, such as starch genes, which are de-repressed in emf1 mutants. Both EMF1-mediated promotion and repression of gene activities via m5 C and H3K27me3 are required for normal vegetative growth. Collectively, t study reveals a previously undescribed epigenetic mechanism of RNA m5 C modifications and histone modifications to regulate gene expression in eukaryotes.
Collapse
Affiliation(s)
- Daolei Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
- School of Life ScienceInner Mongolia UniversityHohhot010021P. R. China
| | - Weijun Guo
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Ting Wang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
- Shangrao Normal UniversityShangrao334001P. R. China
| | - Yifan Wang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Liang Le
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Fan Xu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Yue Wu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Hada Wuriyanghan
- School of Life ScienceInner Mongolia UniversityHohhot010021P. R. China
| | - Zinmay Renee Sung
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCA94720USA
| | - Li Pu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| |
Collapse
|
28
|
Genome-wide analysis of autophagy-related gene family and PagATG18a enhances salt tolerance by regulating ROS homeostasis in poplar. Int J Biol Macromol 2022; 224:1524-1540. [DOI: 10.1016/j.ijbiomac.2022.10.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/04/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
|
29
|
Arshad R, Saccon F, Bag P, Biswas A, Calvaruso C, Bhatti AF, Grebe S, Mascoli V, Mahbub M, Muzzopappa F, Polyzois A, Schiphorst C, Sorrentino M, Streckaité S, van Amerongen H, Aro EM, Bassi R, Boekema EJ, Croce R, Dekker J, van Grondelle R, Jansson S, Kirilovsky D, Kouřil R, Michel S, Mullineaux CW, Panzarová K, Robert B, Ruban AV, van Stokkum I, Wientjes E, Büchel C. A kaleidoscope of photosynthetic antenna proteins and their emerging roles. PLANT PHYSIOLOGY 2022; 189:1204-1219. [PMID: 35512089 PMCID: PMC9237682 DOI: 10.1093/plphys/kiac175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/17/2022] [Indexed: 05/17/2023]
Abstract
Photosynthetic light-harvesting antennae are pigment-binding proteins that perform one of the most fundamental tasks on Earth, capturing light and transferring energy that enables life in our biosphere. Adaptation to different light environments led to the evolution of an astonishing diversity of light-harvesting systems. At the same time, several strategies have been developed to optimize the light energy input into photosynthetic membranes in response to fluctuating conditions. The basic feature of these prompt responses is the dynamic nature of antenna complexes, whose function readily adapts to the light available. High-resolution microscopy and spectroscopic studies on membrane dynamics demonstrate the crosstalk between antennae and other thylakoid membrane components. With the increased understanding of light-harvesting mechanisms and their regulation, efforts are focusing on the development of sustainable processes for effective conversion of sunlight into functional bio-products. The major challenge in this approach lies in the application of fundamental discoveries in light-harvesting systems for the improvement of plant or algal photosynthesis. Here, we underline some of the latest fundamental discoveries on the molecular mechanisms and regulation of light harvesting that can potentially be exploited for the optimization of photosynthesis.
Collapse
Affiliation(s)
- Rameez Arshad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc 783 71, Czech Republic
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Francesco Saccon
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Pushan Bag
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå 901 87, Sweden
| | - Avratanu Biswas
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Claudio Calvaruso
- Institute for Molecular Biosciences, Goethe University of Frankfurt, Frankfurt 60438, Germany
| | - Ahmad Farhan Bhatti
- Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands
| | - Steffen Grebe
- Department of Life Technologies, MolecularPlant Biology, University of Turku, Turku FI–20520, Finland
| | - Vincenzo Mascoli
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Moontaha Mahbub
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Botany, Jagannath University, Dhaka 1100, Bangladesh
| | - Fernando Muzzopappa
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette 1198, France
| | - Alexandros Polyzois
- Université de Paris, Faculté de Pharmacie de Paris, CiTCoM UMR 8038 CNRS, Paris 75006, France
| | | | - Mirella Sorrentino
- Photon Systems Instruments, spol. s.r.o., Drásov, Czech Republic
- Department of Agricultural Sciences, University of Naples Federico II, Naples 80138, Italy
| | - Simona Streckaité
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette 1198, France
| | | | - Eva-Mari Aro
- Department of Life Technologies, MolecularPlant Biology, University of Turku, Turku FI–20520, Finland
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Verona, Italy
| | - Egbert J Boekema
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Roberta Croce
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Jan Dekker
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Rienk van Grondelle
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Stefan Jansson
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå 901 87, Sweden
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette 1198, France
| | - Roman Kouřil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc 783 71, Czech Republic
| | - Sylvie Michel
- Université de Paris, Faculté de Pharmacie de Paris, CiTCoM UMR 8038 CNRS, Paris 75006, France
| | - Conrad W Mullineaux
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Klára Panzarová
- Photon Systems Instruments, spol. s.r.o., Drásov, Czech Republic
| | - Bruno Robert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette 1198, France
| | - Alexander V Ruban
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Ivo van Stokkum
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Emilie Wientjes
- Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands
| | - Claudia Büchel
- Institute for Molecular Biosciences, Goethe University of Frankfurt, Frankfurt 60438, Germany
| |
Collapse
|
30
|
Sharma N, Kumari S, Jaiswal DK, Raghuram N. Comparative Transcriptomic Analyses of Nitrate-Response in Rice Genotypes With Contrasting Nitrogen Use Efficiency Reveals Common and Genotype-Specific Processes, Molecular Targets and Nitrogen Use Efficiency-Candidates. FRONTIERS IN PLANT SCIENCE 2022; 13:881204. [PMID: 35774823 PMCID: PMC9237547 DOI: 10.3389/fpls.2022.881204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/26/2022] [Indexed: 05/05/2023]
Abstract
The genetic basis for nitrogen (N)-response and N use efficiency (NUE) must be found in N-responsive gene expression or protein regulation. Our transcriptomic analysis of nitrate response in two contrasting rice genotypes of Oryza sativa ssp. Indica (Nidhi with low NUE and Panvel1 with high NUE) revealed the processes/functions underlying differential N-response/NUE. The microarray analysis of low nitrate response (1.5 mM) relative to normal nitrate control (15 mM) used potted 21-days old whole plants. It revealed 1,327 differentially expressed genes (DEGs) exclusive to Nidhi and 666 exclusive to Panvel1, apart from 70 common DEGs, of which 10 were either oppositely expressed or regulated to different extents. Gene ontology analyses revealed that photosynthetic processes were among the very few processes common to both the genotypes in low N response. Those unique to Nidhi include cell division, nitrogen utilization, cytoskeleton, etc. in low N-response, whereas those unique to Panvel1 include signal transduction, protein import into the nucleus, and mitochondria. This trend of a few common but mostly unique categories was also true for transporters, transcription factors, microRNAs, and post-translational modifications, indicating their differential involvement in Nidhi and Panvel1. Protein-protein interaction networks constructed using DEG-associated experimentally validated interactors revealed subnetworks involved in cytoskeleton organization, cell wall, etc. in Nidhi, whereas in Panvel1, it was chloroplast development. NUE genes were identified by selecting yield-related genes from N-responsive DEGs and their co-localization on NUE-QTLs revealed the differential distribution of NUE-genes between genotypes but on the same chromosomes 1 and 3. Such hotspots are important for NUE breeders.
Collapse
Affiliation(s)
| | | | | | - Nandula Raghuram
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
31
|
Luo J, Abid M, Tu J, Gao P, Wang Z, Huang H. Genome-Wide Identification of the LHC Gene Family in Kiwifruit and Regulatory Role of AcLhcb3.1/3.2 for Chlorophyll a Content. Int J Mol Sci 2022; 23:ijms23126528. [PMID: 35742967 PMCID: PMC9224368 DOI: 10.3390/ijms23126528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/29/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Light-harvesting chlorophyll a/b-binding (LHC) protein is a superfamily that plays a vital role in photosynthesis. However, the reported knowledge of LHCs in kiwifruit is inadequate and poorly understood. In this study, we identified 42 and 45 LHC genes in Actinidia chinensis (Ac) and A. eriantha (Ae) genomes. Phylogenetic analysis showed that the kiwifruit LHCs of both species were grouped into four subfamilies (Lhc, Lil, PsbS, and FCII). Expression profiles and qRT-PCR results revealed expression levels of LHC genes closely related to the light, temperature fluctuations, color changes during fruit ripening, and kiwifruit responses to Pseudomonas syringae pv. actinidiae (Psa). Subcellular localization analysis showed that AcLhcb1.5/3.1/3.2 were localized in the chloroplast while transient overexpression of AcLhcb3.1/3.2 in tobacco leaves confirmed a significantly increased content of chlorophyll a. Our findings provide evidence of the characters and evolution patterns of kiwifruit LHCs genes in kiwifruit and verify the AcLhcb3.1/3.2 genes controlling the chlorophyll a content.
Collapse
Affiliation(s)
- Juan Luo
- College of Life Science, Nanchang University, Nanchang 330031, China; (J.L.); (J.T.)
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.A.); (P.G.)
| | - Muhammad Abid
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.A.); (P.G.)
| | - Jing Tu
- College of Life Science, Nanchang University, Nanchang 330031, China; (J.L.); (J.T.)
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.A.); (P.G.)
| | - Puxing Gao
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.A.); (P.G.)
| | - Zupeng Wang
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
- Correspondence: (Z.W.); (H.H.)
| | - Hongwen Huang
- College of Life Science, Nanchang University, Nanchang 330031, China; (J.L.); (J.T.)
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.A.); (P.G.)
- Correspondence: (Z.W.); (H.H.)
| |
Collapse
|
32
|
Loss of a single chlorophyll in CP29 triggers re-organization of the Photosystem II supramolecular assembly. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148555. [PMID: 35378087 DOI: 10.1016/j.bbabio.2022.148555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/21/2022]
Abstract
In land plants, both efficient light capture and photoprotective dissipation of chlorophyll excited states in excess require proper assembly of Photosystem II supercomplexes PSII-LHCs. These include a dimeric core moiety and a peripheral antenna system made of trimeric LHCII proteins connected to the core through monomeric LHC subunits. Regulation of light harvesting involves re-organization of the PSII supercomplex, including dissociation of its LHCII-CP24-CP29 domain under excess light. The Chl a603-a609-a616 chromophore cluster within CP29 was recently identified as responsible for the fast component of Non-Photochemical Quenching of chlorophyll fluorescence. Here, we pinpointed a chlorophyll-protein domain of CP29 involved in the macro-organization of PSII-LHCs. By complementing an Arabidopsis knock-out mutant with CP29 sequences deleted in the residue binding chlorophyll b614/b3-binding, we found that the site is promiscuous for chlorophyll a and b. By plotting NPQ amplitude vs. CP29 content we observed that quenching activity was significantly reduced in mutants compared to the wild type. Analysis of pigment-binding supercomplexes showed that the missing Chl did hamper the assembly of PSII-LHCs supercomplexes, while observation by electron microscopy of grana membranes highlighted the PSII particles were organized in two-dimensional arrays in mutant grana partitions. As an effect of such array formation electron transport rate between QA and QB reduced, likely due to restricted plastoquinone diffusion. We conclude that chlorophyll b614, rather being part of pigment cluster responsible for quenching, is needed to maintain full rate of electron flow in the thylakoids by controlling protein-protein interactions between PSII units in grana partitions.
Collapse
|
33
|
Zhu W, Xu L, Yu X, Zhong Y. The immunophilin CYCLOPHILIN28 affects PSII-LHCII supercomplex assembly and accumulation in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:915-929. [PMID: 35199452 DOI: 10.1111/jipb.13235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
In plant chloroplasts, photosystem II (PSII) complexes, together with light-harvesting complex II (LHCII), form various PSII-LHCII supercomplexes (SCs). This process likely involves immunophilins, but the underlying regulatory mechanisms are unclear. Here, by comparing Arabidopsis thaliana mutants lacking the chloroplast lumen-localized immunophilin CYCLOPHILIN28 (CYP28) to wild-type and transgenic complemented lines, we determined that CYP28 regulates the assembly and accumulation of PSII-LHCII SCs. Compared to the wild type, cyp28 plants showed accelerated leaf growth, earlier flowering time, and enhanced accumulation of high molecular weight PSII-LHCII SCs under normal light conditions. The lack of CYP28 also significantly affected the electron transport rate. Blue native-polyacrylamide gel electrophoresis analysis revealed more Lhcb6 and less Lhcb4 in M-LHCII-Lhcb4-Lhcb6 complexes in cyp28 versus wild-type plants. Peptidyl-prolyl cis/trans isomerase (PPIase) activity assays revealed that CYP28 exhibits weak PPIase activity and that its K113 and E187 residues are critical for this activity. Mutant analysis suggested that CYP28 may regulate PSII-LHCII SC accumulation by altering the configuration of Lhcb6 via its PPIase activity. Furthermore, the Lhcb6-P139 residue is critical for PSII-LHCII SC assembly and accumulation. Therefore, our findings suggest that CYP28 likely regulates PSII-LHCII SC assembly and accumulation by altering the configuration of P139 of Lhcb6 via its PPIase activity.
Collapse
Affiliation(s)
- Weining Zhu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Linqing Xu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xiaoxia Yu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ying Zhong
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| |
Collapse
|
34
|
Sárvári É, Gellén G, Sági-Kazár M, Schlosser G, Solymosi K, Solti Á. Qualitative and quantitative evaluation of thylakoid complexes separated by Blue Native PAGE. PLANT METHODS 2022; 18:23. [PMID: 35241118 PMCID: PMC8895881 DOI: 10.1186/s13007-022-00858-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/12/2022] [Indexed: 05/26/2023]
Abstract
BACKGROUND Blue Native polyacrylamide gel electrophoresis (BN PAGE) followed by denaturing PAGE is a widely used, convenient and time efficient method to separate thylakoid complexes and study their composition, abundance, and interactions. Previous analyses unravelled multiple monomeric and dimeric/oligomeric thylakoid complexes but, in certain cases, the separation of complexes was not proper. Particularly, the resolution of super- and megacomplexes, which provides important information on functional interactions, still remained challenging. RESULTS Using a detergent mixture of 1% (w/V) n-dodecyl-β-D-maltoside plus 1% (w/V) digitonin for solubilisation and 4.3-8% gel gradients for separation as methodological improvements in BN PAGE, several large photosystem (PS) I containing bands were detected. According to BN(/BN)/SDS PAGE and mass spectrometry analyses, these PSI bands proved to be PSI-NADH dehydrogenase-like megacomplexes more discernible in maize bundle sheath thylakoids, and PSI complexes with different light-harvesting complex (LHC) complements (PSI-LHCII, PSI-LHCII*) more abundant in mesophyll thylakoids of lincomycin treated maize. For quantitative determination of the complexes and their comparison across taxa and physiological conditions, sample volumes applicable to the gel, correct baseline determination of the densitograms, evaluation methods to resolve complexes running together, calculation of their absolute/relative amounts and distribution among their different forms are proposed. CONCLUSIONS Here we report our experience in Blue/Clear-Native polyacrylamide gel electrophoretic separation of thylakoid complexes, their identification, quantitative determination and comparison in different samples. The applied conditions represent a powerful methodology for the analysis of thylakoid mega- and supercomplexes.
Collapse
Affiliation(s)
- Éva Sárvári
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary.
| | - Gabriella Gellén
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, 1117, Hungary
| | - Máté Sági-Kazár
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
- Doctoral School of Biology, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Gitta Schlosser
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, 1117, Hungary
| | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| |
Collapse
|
35
|
Ilíková I, Ilík P, Opatíková M, Arshad R, Nosek L, Karlický V, Kučerová Z, Roudnický P, Pospíšil P, Lazár D, Bartoš J, Kouřil R. Towards spruce-type photosystem II: consequences of the loss of light-harvesting proteins LHCB3 and LHCB6 in Arabidopsis. PLANT PHYSIOLOGY 2021; 187:2691-2715. [PMID: 34618099 PMCID: PMC8644234 DOI: 10.1093/plphys/kiab396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/26/2021] [Indexed: 05/28/2023]
Abstract
The largest stable photosystem II (PSII) supercomplex in land plants (C2S2M2) consists of a core complex dimer (C2), two strongly (S2) and two moderately (M2) bound light-harvesting protein (LHCB) trimers attached to C2 via monomeric antenna proteins LHCB4-6. Recently, we have shown that LHCB3 and LHCB6, presumably essential for land plants, are missing in Norway spruce (Picea abies), which results in a unique structure of its C2S2M2 supercomplex. Here, we performed structure-function characterization of PSII supercomplexes in Arabidopsis (Arabidopsis thaliana) mutants lhcb3, lhcb6, and lhcb3 lhcb6 to examine the possibility of the formation of the "spruce-type" PSII supercomplex in angiosperms. Unlike in spruce, in Arabidopsis both LHCB3 and LHCB6 are necessary for stable binding of the M trimer to PSII core. The "spruce-type" PSII supercomplex was observed with low abundance only in the lhcb3 plants and its formation did not require the presence of LHCB4.3, the only LHCB4-type protein in spruce. Electron microscopy analysis of grana membranes revealed that the majority of PSII in lhcb6 and namely in lhcb3 lhcb6 mutants were arranged into C2S2 semi-crystalline arrays, some of which appeared to structurally restrict plastoquinone diffusion. Mutants without LHCB6 were characterized by fast induction of non-photochemical quenching and, on the contrary to the previous lhcb6 study, by only transient slowdown of electron transport between PSII and PSI. We hypothesize that these functional changes, associated with the arrangement of PSII into C2S2 arrays in thylakoids, may be important for the photoprotection of both PSI and PSII upon abrupt high-light exposure.
Collapse
Affiliation(s)
- Iva Ilíková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of
the Region Haná for Biotechnological and Agricultural Research, 783 71
Olomouc, Czech Republic
| | - Petr Ilík
- Department of Biophysics, Centre of the Region Haná for Biotechnological and
Agricultural Research, Palacký University, 783 71 Olomouc, Czech Republic
| | - Monika Opatíková
- Department of Biophysics, Centre of the Region Haná for Biotechnological and
Agricultural Research, Palacký University, 783 71 Olomouc, Czech Republic
| | - Rameez Arshad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and
Agricultural Research, Palacký University, 783 71 Olomouc, Czech Republic
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen,
The Netherlands
| | - Lukáš Nosek
- Department of Biophysics, Centre of the Region Haná for Biotechnological and
Agricultural Research, Palacký University, 783 71 Olomouc, Czech Republic
| | - Václav Karlický
- Department of Physics, Faculty of Science, University of Ostrava,
710 00 Ostrava, Czech Republic
- Global Change Research Institute of the Czech Academy of
Sciences, 603 00 Brno, Czech Republic
| | - Zuzana Kučerová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and
Agricultural Research, Palacký University, 783 71 Olomouc, Czech Republic
| | - Pavel Roudnický
- Central European Institute of Technology, Masaryk University, 625
00 Brno, Czech Republic
| | - Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and
Agricultural Research, Palacký University, 783 71 Olomouc, Czech Republic
| | - Dušan Lazár
- Department of Biophysics, Centre of the Region Haná for Biotechnological and
Agricultural Research, Palacký University, 783 71 Olomouc, Czech Republic
| | - Jan Bartoš
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of
the Region Haná for Biotechnological and Agricultural Research, 783 71
Olomouc, Czech Republic
| | - Roman Kouřil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and
Agricultural Research, Palacký University, 783 71 Olomouc, Czech Republic
| |
Collapse
|
36
|
Plant ecological genomics at the limits of life in the Atacama Desert. Proc Natl Acad Sci U S A 2021; 118:2101177118. [PMID: 34725254 DOI: 10.1073/pnas.2101177118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/26/2022] Open
Abstract
The Atacama Desert in Chile-hyperarid and with high-ultraviolet irradiance levels-is one of the harshest environments on Earth. Yet, dozens of species grow there, including Atacama-endemic plants. Herein, we establish the Talabre-Lejía transect (TLT) in the Atacama as an unparalleled natural laboratory to study plant adaptation to extreme environmental conditions. We characterized climate, soil, plant, and soil-microbe diversity at 22 sites (every 100 m of altitude) along the TLT over a 10-y period. We quantified drought, nutrient deficiencies, large diurnal temperature oscillations, and pH gradients that define three distinct vegetational belts along the altitudinal cline. We deep-sequenced transcriptomes of 32 dominant plant species spanning the major plant clades, and assessed soil microbes by metabarcoding sequencing. The top-expressed genes in the 32 Atacama species are enriched in stress responses, metabolism, and energy production. Moreover, their root-associated soils are enriched in growth-promoting bacteria, including nitrogen fixers. To identify genes associated with plant adaptation to harsh environments, we compared 32 Atacama species with the 32 closest sequenced species, comprising 70 taxa and 1,686,950 proteins. To perform phylogenomic reconstruction, we concatenated 15,972 ortholog groups into a supermatrix of 8,599,764 amino acids. Using two codon-based methods, we identified 265 candidate positively selected genes (PSGs) in the Atacama plants, 64% of which are located in Pfam domains, supporting their functional relevance. For 59/184 PSGs with an Arabidopsis ortholog, we uncovered functional evidence linking them to plant resilience. As some Atacama plants are closely related to staple crops, these candidate PSGs are a "genetic goldmine" to engineer crop resilience to face climate change.
Collapse
|
37
|
Bassi R, Dall'Osto L. Dissipation of Light Energy Absorbed in Excess: The Molecular Mechanisms. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:47-76. [PMID: 34143647 DOI: 10.1146/annurev-arplant-071720-015522] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Light is essential for photosynthesis. Nevertheless, its intensity widely changes depending on time of day, weather, season, and localization of individual leaves within canopies. This variability means that light collected by the light-harvesting system is often in excess with respect to photon fluence or spectral quality in the context of the capacity of photosynthetic metabolism to use ATP and reductants produced from the light reactions. Absorption of excess light can lead to increased production of excited, highly reactive intermediates, which expose photosynthetic organisms to serious risks of oxidative damage. Prevention and management of such stress are performed by photoprotective mechanisms, which operate by cutting down light absorption, limiting the generation of redox-active molecules, or scavenging reactive oxygen species that are released despite the operation of preventive mechanisms. Here, we describe the major physiological and molecular mechanisms of photoprotection involved in the harmless removal of the excess light energy absorbed by green algae and land plants. In vivo analyses of mutants targeting photosynthetic components and the enhanced resolution of spectroscopic techniques have highlighted specific mechanisms protecting the photosynthetic apparatus from overexcitation. Recent findings unveil a network of multiple interacting elements, the reaction times of which vary from a millisecond to weeks, that continuously maintain photosynthetic organisms within the narrow safety range between efficient light harvesting and photoprotection.
Collapse
Affiliation(s)
- Roberto Bassi
- Department of Biotechnology, University of Verona, 37134 Verona, Italy;
| | - Luca Dall'Osto
- Department of Biotechnology, University of Verona, 37134 Verona, Italy;
| |
Collapse
|
38
|
Bag P. Light Harvesting in Fluctuating Environments: Evolution and Function of Antenna Proteins across Photosynthetic Lineage. PLANTS (BASEL, SWITZERLAND) 2021; 10:1184. [PMID: 34200788 PMCID: PMC8230411 DOI: 10.3390/plants10061184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
Photosynthesis is the major natural process that can harvest and harness solar energy into chemical energy. Photosynthesis is performed by a vast number of organisms from single cellular bacteria to higher plants and to make the process efficient, all photosynthetic organisms possess a special type of pigment protein complex(es) that is (are) capable of trapping light energy, known as photosynthetic light-harvesting antennae. From an evolutionary point of view, simpler (unicellular) organisms typically have a simple antenna, whereas higher plants possess complex antenna systems. The higher complexity of the antenna systems provides efficient fine tuning of photosynthesis. This relationship between the complexity of the antenna and the increasing complexity of the organism is mainly related to the remarkable acclimation capability of complex organisms under fluctuating environmental conditions. These antenna complexes not only harvest light, but also provide photoprotection under fluctuating light conditions. In this review, the evolution, structure, and function of different antenna complexes, from single cellular organisms to higher plants, are discussed in the context of the ability to acclimate and adapt to cope under fluctuating environmental conditions.
Collapse
Affiliation(s)
- Pushan Bag
- Department of Plant Physiology, Umeå Plant Science Centre, UPSC, Umeå University, 90736 Umeå, Sweden
| |
Collapse
|
39
|
Tu W, Wu L, Zhang C, Sun R, Wang L, Yang W, Yang C, Liu C. Neoxanthin affects the stability of the C 2 S 2 M 2 -type photosystem II supercomplexes and the kinetics of state transition in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1724-1735. [PMID: 33085804 DOI: 10.1111/tpj.15033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Neoxanthin (Neo), which is only bound to the peripheral antenna proteins of photosystem (PS) II, is a conserved carotenoid in all green plants. It has been demonstrated that Neo plays an important role in photoprotection and its deficiency fails to impact LHCII stability in vitro and indoor plant growth in vivo. Whether Neo is involved in maintaining the PSII complex structure or adaptive mechanisms for the everchanging environment has not yet been elucidated. In this study, the role of Neo in maintaining the structure and function of the PSII-LHCII supercomplexes was studied using Neo deficient Arabidopsis mutants. Our results show that Neo deficiency had little effect on the electron transport capacity and the plant fitness, but the PSII-LHCII supercomplexes were significantly impacted by the lack of Neo. In the absence of Neo, the M-type LHCII trimer cannot effectively associate with the C2 S2 -type PSII-LHCII supercomplexes even in moderate light conditions. Interestingly, Neo deficiency also leads to decreased PSII protein phosphorylation but rapid transition from state 1 to state 2. We suggest that Neo might enforce the interactions between LHCII and the minor antennas and that the absence of Neo makes M-type LHCII disassociate from the PSII complex, leading to the disassembly of the PSII-LHCII C2 S2 M2 supercomplexes, which results in alterations in the phosphorylation patterns of the thylakoid photosynthetic proteins and the kinetics of state transition.
Collapse
Affiliation(s)
- Wenfeng Tu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lishuan Wu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyan Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ruixue Sun
- Qingdao Institute, Shanghai Institute of Technological Physics, Chinese Academy of Sciences, Qingdao, 264000, China
| | - Liangsheng Wang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqiang Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunhong Yang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Liu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
40
|
Watanabe A, Minagawa J. Structural characterization of the photosystems in the green alga Chlorella sorokiniana. PLANTA 2020; 252:79. [PMID: 33034766 DOI: 10.1007/s00425-020-03487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
The supramolecular organization of the photosystem supercomplexes in the green alga Chlorella sorokiniana belonging to Trebouxiophyceae are essentially the same as those of Chlamydomonas reinhardtii belonging to Chlorophyceae. The photosynthetic conversion of light energy into chemical energy is performed by photosystems II and I (PSII and PSI) embedded within the thylakoid membranes. In plants and green algae, PSII and PSI comprise the core complex and light-harvesting complexes (LHCII and LHCI), forming PSII-LHCII and PSI-LHCI supercomplexes, respectively. The structural information about photosystem supercomplexes of green algae has been limited to chlorophytic algae. Here, to obtain an insight into the evolution of Chlorophyta, we determined the supramolecular organization of the PSII-LHCII and PSI-LHCI supercomplexes from the freshwater green alga Chlorella sorokiniana, which belongs to Trebouxiophyceae. The obtained results showed that the supramolecular organizations of the photosystem supercomplexes in C. sorokiniana were essentially the same as those of the model green alga C. reinhardtii, which belongs to Chlorophyceae, namely PSII-LHCII supercomplex formed the C2S2M2L2 configuration and PSI-LHCI supercomplex was associated with 10 LHCI subunits.
Collapse
Affiliation(s)
- Akimasa Watanabe
- Division of Environmental Photobiology, National Institute for Basic Biology, Nishigo-naka 38, Myodaiji, Okazaki, 444-8585, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Nishigo-naka 38, Myodaiji, Okazaki, 444-8585, Japan.
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan.
| |
Collapse
|
41
|
Ünnep R, Paul S, Zsiros O, Kovács L, Székely NK, Steinbach G, Appavou MS, Porcar L, Holzwarth AR, Garab G, Nagy G. Thylakoid membrane reorganizations revealed by small-angle neutron scattering of Monstera deliciosa leaves associated with non-photochemical quenching. Open Biol 2020; 10:200144. [PMID: 32931722 PMCID: PMC7536078 DOI: 10.1098/rsob.200144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
Non-photochemical quenching (NPQ) is an important photoprotective mechanism in plants and algae. Although the process is extensively studied, little is known about its relationship with ultrastructural changes of the thylakoid membranes. In order to better understand this relationship, we studied the effects of illumination on the organization of thylakoid membranes in Monstera deliciosa leaves. This evergreen species is known to exhibit very large NPQ and to possess giant grana with dozens of stacked thylakoids. It is thus ideally suited for small-angle neutron scattering measurements (SANS)-a non-invasive technique, which is capable of providing spatially and statistically averaged information on the periodicity of the thylakoid membranes and their rapid reorganizations in vivo. We show that NPQ-inducing illumination causes a strong decrease in the periodic order of granum thylakoid membranes. Development of NPQ and light-induced ultrastructural changes, as well as the relaxation processes, follow similar kinetic patterns. Surprisingly, whereas NPQ is suppressed by diuron, it impedes only the relaxation of the structural changes and not its formation, suggesting that structural changes do not cause but enable NPQ. We also demonstrate that the diminishment of SANS peak does not originate from light-induced redistribution and reorientation of chloroplasts inside the cells.
Collapse
Affiliation(s)
- Renáta Ünnep
- Neutron Spectroscopy Department, Centre for Energy Research, H-1121 Budapest, Konkoly-Thege Miklós út 29-33, Hungary
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Suman Paul
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim a.d. Ruhr, Germany
| | - Ottó Zsiros
- Biological Research Centre, Institute of Plant Biology, 6726 Szeged, Hungary
| | - László Kovács
- Biological Research Centre, Institute of Plant Biology, 6726 Szeged, Hungary
| | - Noémi K. Székely
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at MLZ, 85748 Garching, Germany
| | - Gábor Steinbach
- Biological Research Centre, Institute of Biophysics, Temesvári körút 62, 6726 Szeged, Hungary
| | - Marie-Sousai Appavou
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at MLZ, 85748 Garching, Germany
| | - Lionel Porcar
- Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9, France
| | - Alfred R. Holzwarth
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim a.d. Ruhr, Germany
| | - Győző Garab
- Biological Research Centre, Institute of Plant Biology, 6726 Szeged, Hungary
- Department of Physics, Faculty of Science, Ostrava University, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Gergely Nagy
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- European Spallation Source ESS ERIC, PO Box 176, 221 00 Lund, Sweden
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, 1121 Budapest, Hungary
| |
Collapse
|
42
|
Kouřil R, Nosek L, Opatíková M, Arshad R, Semchonok DA, Chamrád I, Lenobel R, Boekema EJ, Ilík P. Unique organization of photosystem II supercomplexes and megacomplexes in Norway spruce. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:215-225. [PMID: 32654240 PMCID: PMC7590091 DOI: 10.1111/tpj.14918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/26/2020] [Indexed: 05/28/2023]
Abstract
Photosystem II (PSII) complexes are organized into large supercomplexes with variable amounts of light-harvesting proteins (Lhcb). A typical PSII supercomplex in plants is formed by four trimers of Lhcb proteins (LHCII trimers), which are bound to the PSII core dimer via monomeric antenna proteins. However, the architecture of PSII supercomplexes in Norway spruce[Picea abies (L.) Karst.] is different, most likely due to a lack of two Lhcb proteins, Lhcb6 and Lhcb3. Interestingly, the spruce PSII supercomplex shares similar structural features with its counterpart in the green alga Chlamydomonas reinhardtii [Kouřil et al. (2016) New Phytol. 210, 808-814]. Here we present a single-particle electron microscopy study of isolated PSII supercomplexes from Norway spruce that revealed binding of a variable amount of LHCII trimers to the PSII core dimer at positions that have never been observed in any other plant species so far. The largest spruce PSII supercomplex, which was found to bind eight LHCII trimers, is even larger than the current largest known PSII supercomplex from C. reinhardtii. We have also shown that the spruce PSII supercomplexes can form various types of PSII megacomplexes, which were also identified in intact grana membranes. Some of these large PSII supercomplexes and megacomplexes were identified also in Pinus sylvestris, another representative of the Pinaceae family. The structural variability and complexity of LHCII organization in Pinaceae seems to be related to the absence of Lhcb6 and Lhcb3 in this family, and may be beneficial for the optimization of light-harvesting under varying environmental conditions.
Collapse
Affiliation(s)
- Roman Kouřil
- Department of BiophysicsCentre of the Region Haná for Biotechnological and Agricultural ResearchFaculty of SciencePalacký UniversityŠlechtitelů 27Olomouc783 71Czech Republic
| | - Lukáš Nosek
- Department of BiophysicsCentre of the Region Haná for Biotechnological and Agricultural ResearchFaculty of SciencePalacký UniversityŠlechtitelů 27Olomouc783 71Czech Republic
| | - Monika Opatíková
- Department of BiophysicsCentre of the Region Haná for Biotechnological and Agricultural ResearchFaculty of SciencePalacký UniversityŠlechtitelů 27Olomouc783 71Czech Republic
| | - Rameez Arshad
- Department of BiophysicsCentre of the Region Haná for Biotechnological and Agricultural ResearchFaculty of SciencePalacký UniversityŠlechtitelů 27Olomouc783 71Czech Republic
- Electron Microscopy GroupGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 7Groningen9747 AGThe Netherlands
| | - Dmitry A. Semchonok
- Electron Microscopy GroupGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 7Groningen9747 AGThe Netherlands
| | - Ivo Chamrád
- Department of Protein Biochemistry and ProteomicsCentre of the Region Haná for Biotechnological and Agricultural ResearchFaculty of SciencePalacký UniversityŠlechtitelů 27Olomouc783 71Czech Republic
| | - René Lenobel
- Department of Protein Biochemistry and ProteomicsCentre of the Region Haná for Biotechnological and Agricultural ResearchFaculty of SciencePalacký UniversityŠlechtitelů 27Olomouc783 71Czech Republic
| | - Egbert J. Boekema
- Electron Microscopy GroupGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 7Groningen9747 AGThe Netherlands
| | - Petr Ilík
- Department of BiophysicsCentre of the Region Haná for Biotechnological and Agricultural ResearchFaculty of SciencePalacký UniversityŠlechtitelů 27Olomouc783 71Czech Republic
| |
Collapse
|
43
|
Wang J, Long X, Chern M, Chen X. Understanding the molecular mechanisms of trade-offs between plant growth and immunity. SCIENCE CHINA-LIFE SCIENCES 2020; 64:234-241. [PMID: 32710363 DOI: 10.1007/s11427-020-1719-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/05/2020] [Indexed: 12/24/2022]
Abstract
Trade-offs between plant growth and immunity are a well-known phenomenon in plants that are meant to ensure the best use of limited resources. Recently, many advances have been achieved on molecular regulations of the trade-offs between plant growth and immunity. Here, we provide an overview on molecular understanding of these trade-offs including those regulated at the transcriptional level or post-transcriptional level by transcriptional factors, microRNAs, and post-translational modifications of proteins, respectively The understanding on the molecular regulation of these trade-offs will provide new strategies to breed crops with high yield and enhanced resistance to disease.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China (in preparation), Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, China
| | - Xiaoyu Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China (in preparation), Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, China
| | - Mawsheng Chern
- Department of Plant Pathology and the Genome Center, University of California, Davis, California, 95616, USA
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China (in preparation), Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, China.
| |
Collapse
|
44
|
Cheng B, Smyth HE, Furtado A, Henry RJ. Slower development of lower canopy beans produces better coffee. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4201-4214. [PMID: 32206798 PMCID: PMC7337091 DOI: 10.1093/jxb/eraa151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
The production of high-quality coffee is being challenged by changing climates in coffee-growing regions. The coffee beans from the upper and lower canopy at different development stages of the same plants were analyzed to investigate the impact of the microenvironment on gene expression and coffee quality. Compared with coffee beans from the upper canopy, lower canopy beans displayed more intense aroma with higher caffeine, trigonelline, and sucrose contents, associated with greater gene expression in the representative metabolic pathways. Global gene expression indicated a longer ripening in the lower canopy, resulting from higher expression of genes relating to growth inhibition and suppression of chlorophyll degradation during early bean ripening. Selection of genotypes or environments that enhance expression of the genes slowing bean development may produce higher quality coffee beans, allowing coffee production in a broader range of available future environments.
Collapse
Affiliation(s)
- Bing Cheng
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Heather E Smyth
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
45
|
Saccon F, Giovagnetti V, Shukla MK, Ruban AV. Rapid regulation of photosynthetic light harvesting in the absence of minor antenna and reaction centre complexes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3626-3637. [PMID: 32149343 PMCID: PMC7307847 DOI: 10.1093/jxb/eraa126] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/02/2020] [Indexed: 05/25/2023]
Abstract
Plants are subject to dramatic fluctuations in the intensity of sunlight throughout the day. When the photosynthetic machinery is exposed to high light, photons are absorbed in excess, potentially leading to oxidative damage of its delicate membrane components. A photoprotective molecular process called non-photochemical quenching (NPQ) is the fastest response carried out in the thylakoid membranes to harmlessly dissipate excess light energy. Despite having been intensely studied, the site and mechanism of this essential regulatory process are still debated. Here, we show that the main NPQ component called energy-dependent quenching (qE) is present in plants with photosynthetic membranes largely enriched in the major trimeric light-harvesting complex (LHC) II, while being deprived of all minor LHCs and most photosystem core proteins. This fast and reversible quenching depends upon thylakoid lumen acidification (ΔpH). Enhancing ΔpH amplifies the extent of the quenching and restores qE in the membranes lacking PSII subunit S protein (PsbS), whereas the carotenoid zeaxanthin modulates the kinetics and amplitude of the quenching. These findings highlight the self-regulatory properties of the photosynthetic light-harvesting membranes in vivo, where the ability to switch reversibly between the harvesting and dissipative states is an intrinsic property of the major LHCII.
Collapse
Affiliation(s)
- Francesco Saccon
- Queen Mary University of London, School of Biological and Chemical Sciences, London, UK
| | - Vasco Giovagnetti
- Queen Mary University of London, School of Biological and Chemical Sciences, London, UK
| | - Mahendra K Shukla
- Queen Mary University of London, School of Biological and Chemical Sciences, London, UK
| | - Alexander V Ruban
- Queen Mary University of London, School of Biological and Chemical Sciences, London, UK
| |
Collapse
|
46
|
Leonetti P, Miesen P, van Rij RP, Pantaleo V. Viral and subviral derived small RNAs as pathogenic determinants in plants and insects. Adv Virus Res 2020; 107:1-36. [PMID: 32711727 DOI: 10.1016/bs.aivir.2020.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The phenotypic manifestations of disease induced by viruses and subviral infectious entities are the result of complex molecular interactions between host and viral factors. The viral determinants of the diseased phenotype have traditionally been sought at the level of structural or non-structural proteins. However, the discovery of RNA silencing mechanisms has led to speculations that determinants of the diseased phenotype are caused by viral nucleic acid sequences in addition to proteins. RNA silencing is a gene regulation mechanism conserved within eukaryotic kingdoms (with the exception of some yeast species), and in plants and insects it also functions as an antiviral mechanism. Non-coding RNAs of viral origin, ranging in size from 21 to 24 nucleotides (viral small interfering RNAs, vsiRNAs) accumulate in virus-infected tissues and organs, in some cases to comparable levels as the entire complement of host-encoded small interfering RNAs. Upon incorporation into RNA-induced silencing complexes, vsiRNAs can mediate cleavage or induce translational inhibition of nucleic acid targets in a sequence-specific manner. This review focuses on recent findings that suggest an increased complexity of small RNA-based interactions between virus and host. We mainly address plant viruses, but where applicable discuss insect viruses as well. Prominence is given to studies that have indisputably demonstrated that vsiRNAs determine diseased phenotype by either carrying sequence determinants or, indirectly, by altering host-gene regulatory pathways. Results from these studies suggest biotechnological applications, which are also discussed.
Collapse
Affiliation(s)
- Paola Leonetti
- Department of Biology, Agricultural and Food Sciences, Institute for Sustainable Plant Protection, CNR, Bari, Italy
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Vitantonio Pantaleo
- Department of Biology, Agricultural and Food Sciences, Institute for Sustainable Plant Protection, CNR, Bari, Italy..
| |
Collapse
|
47
|
Bielczynski LW, Schansker G, Croce R. Consequences of the reduction of the Photosystem II antenna size on the light acclimation capacity of Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2020; 43:866-879. [PMID: 31834625 PMCID: PMC7154682 DOI: 10.1111/pce.13701] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/04/2019] [Accepted: 12/09/2019] [Indexed: 05/24/2023]
Abstract
In several systems, from plant's canopy to algal bioreactors, the decrease of the antenna size has been proposed as a strategy to increase the photosynthetic efficiency. However, still little is known about possible secondary effects of such modifications. This is particularly relevant because the modulation of the antenna size is one of the most important light acclimation responses in photosynthetic organisms. In our study, we used an Arabidopsis thaliana mutant (dLhcb2), which has a 60% decrease of Lhcb1 and Lhcb2, the two main components of the major Photosystem II antenna complex. We show that the mutant maintains the photosynthetic and photoprotective capacity of the Wild Type (WT) and adapts to different light conditions by remodelling its photosynthetic apparatus, but the regulatory mechanism differs from that of the WT. Surprisingly, it does not compensate for the decreased light-harvesting capacity by increasing other pigment-protein complexes. Instead, it lowers the ratio of the cytochrome b6 f and ATP synthase to the photosystems, regulating linear electron flow and maintaining the photosynthetic control at the level of these complexes as in the WT. We show that targeting the reduction of two specific antenna proteins, Lhcb1 and Lhcb2, represents a viable solution to obtain plants with a truncated antenna size, which still maintain the capacity to acclimate to different light conditions.
Collapse
Affiliation(s)
- Ludwik W. Bielczynski
- Biophysics of Photosynthesis/Energy, Faculty of Sciences, Department of Physics and AstronomyVU University AmsterdamAmsterdamThe Netherlands
| | - Gert Schansker
- Biophysics of Photosynthesis/Energy, Faculty of Sciences, Department of Physics and AstronomyVU University AmsterdamAmsterdamThe Netherlands
| | - Roberta Croce
- Biophysics of Photosynthesis/Energy, Faculty of Sciences, Department of Physics and AstronomyVU University AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
48
|
Dall'Osto L, Cazzaniga S, Zappone D, Bassi R. Monomeric light harvesting complexes enhance excitation energy transfer from LHCII to PSII and control their lateral spacing in thylakoids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148035. [DOI: 10.1016/j.bbabio.2019.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 10/26/2022]
|
49
|
Gao S, Zheng Z, Wang J, Wang G. Slow zeaxanthin accumulation and the enhancement of CP26 collectively contribute to an atypical non-photochemical quenching in macroalga Ulva prolifera under high light. JOURNAL OF PHYCOLOGY 2020; 56:393-403. [PMID: 31849051 DOI: 10.1111/jpy.12958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/08/2019] [Indexed: 05/27/2023]
Abstract
Non-photochemical quenching (NPQ) is an important photoprotective mechanism in plants, which dissipates excess energy and further protects the photosynthetic apparatus under high light stress. NPQ can be dissected into a number of components: qE, qZ, and qI. In general, NPQ is catalyzed by two independent mechanisms, with the faster-activated quenching catalyzed by the monomeric light-harvesting complex (LHCII) proteins and the slowly activated quenching catalyzed by LHCII trimers, both processes depending on zeaxanthin but to different extent. Here, we studied the NPQ of the intertidal green macroalga, Ulva prolifera, and found that the NPQ of U. prolifera lack the faster-activated quenching, and showed much greater sensitivity to dithiothreitol (DTT) than to dicyclohexylcarbodiimide (DCCD). Further results suggested that the monomeric LHC proteins in U. prolifera included only CP29 and CP26, but lacked CP24, unlike Arabidopsis thaliana and the moss Physcomitrella patens. Moreover, the expression levels of CP26 increased significantly following exposure to high light, but the concentrations of the two important photoprotective proteins (PsbS and light-harvesting complex stress-related [LhcSR]) did not change upon the same conditions. Analysis of the xanthophyll cycle pigments showed that, upon exposure to high light, zeaxanthin synthesis in U. prolifera was gradual and much slower than that in P. patens, and could effectively be inhibited by DTT. Based on these results, we speculate the enhancement of CP26 and slow zeaxanthin accumulation provide an atypical NPQ, making this green macroalga well adapted to the intertidal environments.
Collapse
Affiliation(s)
- Shan Gao
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenbing Zheng
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
50
|
An Y, Zhou Y, Han X, Shen C, Wang S, Liu C, Yin W, Xia X. The GATA transcription factor GNC plays an important role in photosynthesis and growth in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1969-1984. [PMID: 31872214 PMCID: PMC7094078 DOI: 10.1093/jxb/erz564] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 12/21/2019] [Indexed: 05/18/2023]
Abstract
GATA transcription factors are involved in the regulation of diverse growth processes and environmental responses in Arabidopsis and rice. In this study, we conducted a comprehensive bioinformatic survey of the GATA family in the woody perennial Populus trichocarpa. Thirty-nine Populus GATA genes were classified into four subfamilies based on gene structure and phylogenetic relationships. Predicted cis-elements suggested potential roles of poplar GATA genes in light, phytohormone, development, and stress responses. A poplar GATA gene, PdGATA19/PdGNC (GATA nitrate-inducible carbon-metabolism-involved), was identified from a fast growing poplar clone. PdGNC expression was significantly up-regulated in leaves under both high (50 mM) and low (0.2 mM) nitrate concentrations. The CRISPR/Cas9-mediated mutant crispr-GNC showed severely retarded growth and enhanced secondary xylem differentiation. PdGNC-overexpressing transformants exhibited 25-30% faster growth, 20-28% higher biomass accumulation, and ~25% increase in chlorophyll content, photosynthetic rate, and plant height, compared with the wild type. Transcriptomic analysis showed that PdGNC was involved in photosynthetic electron transfer and carbon assimilation in the leaf, cell division and carbohydrate utilization in the stem, and nitrogen uptake in the root. These data indicated that PdGNC plays a crucial role in plant growth and is potentially useful in tree molecular breeding.
Collapse
Affiliation(s)
- Yi An
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, Beijing, China
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Yangyan Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, Beijing, China
| | - Xiao Han
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, Beijing, China
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Chao Shen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, Beijing, China
| | - Shu Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, Beijing, China
| | - Chao Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, Beijing, China
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, Beijing, China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, Beijing, China
- Correspondence:
| |
Collapse
|