1
|
Chen Z, Lu J, Li X, Jiang D, Li Z. EMBRYONIC FLOWER 1 regulates male reproduction by repressing the jasmonate pathway downstream transcription factor MYB26. THE PLANT CELL 2024; 37:koae287. [PMID: 39437257 DOI: 10.1093/plcell/koae287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/09/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
The evolutionarily conserved Polycomb repressive complexes (PRCs) mediate genome-wide transcriptional silencing and regulate a plethora of development, as well as environmental responses in multicellular organisms. The PRC2-catalyzed trimethylation of lysine 27 on histone H3 (H3K27me3) is recognized by reader-effector modules of Polycomb repressive complex 1 (PRC1) to implement gene repression. Here, we report that the Arabidopsis (Arabidopsis thaliana) H3K27me3 effector EMBRYONIC FLOWER 1 (EMF1) interacts with and constrains the R2R3 DNA binding transcription factor MYB26 by a eudicot-conserved motif in the stamen. MYB26 activates the transcription of two NAC domain genes, NAC SECONDARY WALL THICKENING PROMOTING FACTOR1 (NST1) and NST2, whose encoded proteins mediate anther secondary cell thickening in jasmonate (JA)-regulated stamen maturation. In this process, the transcriptional activity of MYB26 is negatively modulated by the JAZ-PRC repressive complex to precisely regulate the expression of NST1 and NST2. Disruption of EMF1 repression stimulates MYB26, leading to the excessive transcription of the two NAC genes and male sterility. Our results reveal a novel mechanism in Polycomb-mediated gene silencing and illustrate that the plant Polycomb complex regulates stamen development by preventing the hypersensitivity of JA responses in male reproduction.
Collapse
Affiliation(s)
- Zhijuan Chen
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jing Lu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xiaoyi Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danhua Jiang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zicong Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
2
|
Li S, Li J, Li D, Hao J, Hua Z, Wang P, Zhu M, Ge H, Liu Y, Chen H. Genome-wide identification of the eggplant jasmonate ZIM-domain (JAZ) gene family and functional characterization of SmJAZ10 in modulating chlorophyll synthesis in leaves. Int J Biol Macromol 2024; 283:137804. [PMID: 39566784 DOI: 10.1016/j.ijbiomac.2024.137804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
The jasmonate ZIM-domain (JAZ) plays a crucial role in regulating several economic traits in crops. Despite its importance, the characterization of the SmJAZ gene family in eggplant (Solanum melongena L.) has not been documented. In this study, we identified 13 SmJAZ distributed across 9 chromosomes, which were categorized into 5 subgroups based on phylogenetic analysis. Both of them possess TIFY-motif and CCT_2 domains with varying degrees of variation. Promoter cis-element analysis predicted 42 distributed cis-elements that respond to diverse signals. Gene expression analysis demonstrated that SmJAZ exhibited responsiveness to JA, ABA, NaCl, PEG, 4 °C, blue light, and UV-B treatments. Moreover, microRNA interaction predictions identified 150 potential miRNAs, among which ath-miR5021 was found to target 8 SmJAZ mRNAs. Yeast two-hybrid assays demonstrated that most of the SmJAZs were able to interact with SmMYC2 and SmNINJA and could form JAZ-JAZ complexes. Subcellular localization analysis unveiled a diverse array of intranuclear and extranuclear localization signals for SmJAZs. Overexpressing of SmJAZ10 could decrease the chlorophyll content of seedling leaves, and the transcriptome showed that genes related to chlorophyll synthesis, such as SmCHLH, SmPORA, and SmGLK2, underwent down-regulated expression. Overall, these findings serve as a valuable resource for leveraging JA signaling to enhance eggplant quality.
Collapse
Affiliation(s)
- Shaohang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianyong Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dalu Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiangnan Hao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyi Hua
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengqing Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengliang Zhu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiyan Ge
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Huoying Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Huang S, Wang C, Wang L, Li S, Wang T, Tao Z, Zhao Y, Ma J, Zhao M, Zhang X, Wang L, Xie C, Li P. Loss-of-function of LIGULELESS1 activates the jasmonate pathway and promotes maize resistance to corn leaf aphids. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3326-3341. [PMID: 39145425 PMCID: PMC11606423 DOI: 10.1111/pbi.14451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Corn leaf aphids (Rhopalosiphum maidis) are highly destructive pests of maize (Zea mays) that threaten growth and seed yield, but resources for aphid resistance are scarce. Here, we identified an aphid-resistant maize mutant, resistance to aphids 1 (rta1), which is allelic to LIGULELESS1 (LG1). We confirmed LG1's role in aphid resistance using the independent allele lg1-2, allelism tests and LG1 overexpression lines. LG1 interacts with, and increases the stability of ZINC-FINGER PROTEIN EXPRESSED IN INFLORESCENCE MERISTEM (ZIM1), a central component of the jasmonic acid (JA) signalling pathway, by disturbing its interaction with the F-box protein CORONATINE INSENSITIVE 1a (COI1a). Natural variation in the LG1 promoter was associated with aphid resistance among inbred lines. Moreover, a loss-of-function mutant in the LG1-related gene SPL8 in the dicot Arabidopsis thaliana conferred aphid resistance. This study revealed the aphid resistance mechanism of lg1, providing a theoretical basis and germplasm for breeding aphid-resistant crops.
Collapse
Affiliation(s)
- Shijie Huang
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Chuanhong Wang
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Ling Wang
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Shuai Li
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Tengyue Wang
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Zhen Tao
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Yibing Zhao
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Jing Ma
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Mengjie Zhao
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Xinqiao Zhang
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Lei Wang
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Chuanxiao Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesNational Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Peijin Li
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| |
Collapse
|
4
|
Yang Z, Liu T, Fan J, Chen Y, Wu S, Li J, Liu Z, Yang Z, Li L, Liu S, Yang H, Yin H, Meng D, Tang Q. Biocontrol agents modulate phyllosphere microbiota interactions against pathogen Pseudomonas syringae. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100431. [PMID: 38883559 PMCID: PMC11177076 DOI: 10.1016/j.ese.2024.100431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024]
Abstract
The pathogen Pseudomonas syringae, responsible for a variety of diseases, poses a considerable threat to global crop yields. Emerging biocontrol strategies employ antagonistic microorganisms, utilizing phyllosphere microecology and systemic resistance to combat this disease. However, the interactions between phyllosphere microbial dynamics and the activation of the plant defense system remain poorly understood. Here we show significant alterations in phyllosphere microbiota structure and plant gene expression following the application of biocontrol agents. We reveal enhanced collaboration and integration of Sphingomonas and Methylobacterium within the microbial co-occurrence network. Notably, Sphingomonas inhibits P. syringae by disrupting pathogen chemotaxis and virulence. Additionally, both Sphingomonas and Methylobacterium activate plant defenses by upregulating pathogenesis-related gene expression through abscisic acid, ethylene, jasmonate acid, and salicylic acid signaling pathways. Our results highlighted that biocontrol agents promote plant health, from reconstructing beneficial microbial consortia to enhancing plant immunity. The findings enrich our comprehension of the synergistic interplays between phyllosphere microbiota and plant immunity, offering potential enhancements in biocontrol efficacy for crop protection.
Collapse
Affiliation(s)
- Zhaoyue Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Tianbo Liu
- Hunan Tobacco Research Institute, Changsha, 410004, Hunan, China
| | - Jianqiang Fan
- Technology Center, Fujian Tobacco Industrial Co.,Ltd., Xiamen, 361000, Fujian, China
| | - Yiqiang Chen
- Technology Center, Fujian Tobacco Industrial Co.,Ltd., Xiamen, 361000, Fujian, China
| | - Shaolong Wu
- Hunan Tobacco Research Institute, Changsha, 410004, Hunan, China
| | - Jingjing Li
- Technology Center, Fujian Tobacco Industrial Co.,Ltd., Xiamen, 361000, Fujian, China
| | - Zhenghua Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Zhendong Yang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Liangzhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Suoni Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Hongwu Yang
- Yongzhou Tobacco Corporation, Yongzhou, 425000, Hunan, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Qianjun Tang
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| |
Collapse
|
5
|
Huang D, Li J, Chen J, Yao S, Li L, Huang R, Tan Y, Ming R, Huang Y. Genome-wide identification and characterization of the JAZ gene family in Gynostemma pentaphyllum reveals the COI1/JAZ/MYC2 complex potential involved in the regulation of the MeJA-induced gypenoside biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108952. [PMID: 39043058 DOI: 10.1016/j.plaphy.2024.108952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
The Jasmonate ZIM domain (JAZ) proteins, functioning as critical suppressors for jasmonic acid (JA) signal transduction in plants, occupy crucial roles in multiple biological processes, particularly in the orchestration of secondary metabolic pathways. However, the mechanism underlying the JA-induced gypenosides accumulation in Gynostemma pentaphyllum remains poorly elucidated. Our research led to the identification of 11 distinct JAZ members in G. pentaphyllum (GpJAZs). According to the classification approach of AtJAZ, we allocated these members into five subgroups that shared similar conserved motif compositions. Subsequently, we identified the presence of various cis-acting elements associated with light stimuli, hormone responses, and stress signals within the promoter regions of the GpJAZ gene family. The expression levels of GpJAZ genes in different tissues were quite different, and the majority of GpJAZ genes exhibited varying degrees of response to methyl jasmonate (MeJA) induction. Yeast two-hybrid (Y2H) assays revealed interactions between GpJAZ1/2/4/5/7/9/10 and GpMYC2, whereas GpCOI1 protein was found to interact with GpJAZ1/2/4/5, thereby forming the COI1/JAZ/MYC2 complex. Furthermore, as an activator of gypenoside metabolic pathway, GpMYC2 could activate the promoter activity of the gypenoside metabolism-related genes to varying degrees by binding to their promoters, indicating that the COI1/JAZ/MYC2 module involved in the MeJA-induced regulation of gypenosides. In summary, our findings present an exhaustive examination of the JAZ gene family, furnishing a significant lead for delving deeper into the molecular mechanisms that drive the MeJA-induced enhancement of gypenosides accumulation in G. pentaphyllum.
Collapse
Affiliation(s)
- Ding Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Jinmei Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Jianhua Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Shaochang Yao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Liangbo Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Rongshao Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Yong Tan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Ruhong Ming
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Yue Huang
- School of Horticulture, Anhui Agricultural University, Anhui, 230036, China.
| |
Collapse
|
6
|
Takaoka Y, Liu R, Ueda M. A structure-redesigned intrinsically disordered peptide that selectively inhibits a plant transcription factor in jasmonate signaling. PNAS NEXUS 2024; 3:pgae312. [PMID: 39139264 PMCID: PMC11319934 DOI: 10.1093/pnasnexus/pgae312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024]
Abstract
Plant hormone-related transcription factors (TFs) are key regulators of plant development, responses to environmental stress such as climate changes, pathogens, and pests. These TFs often function as families that exhibit genetic redundancy in higher plants, and are affected by complex crosstalk mechanisms between different plant hormones. These properties make it difficult to analyze and control them in many cases. In this study, we introduced a chemical inhibitor to manipulate plant hormone-related TFs, focusing on the jasmonate (JA) and ethylene (ET) signaling pathways, with the key TFs MYC2/3/4 and EIN3/EIL1. This study revealed that JAZ10CMID, the binding domain of the repressor involved in the desensitization of both TFs, is an intrinsically disordered region in the absence of binding partners. Chemical inhibitors have been designed based on this interaction to selectively inhibit MYC TFs while leaving EIN3/EIL1 unaffected. This peptide inhibitor effectively disrupts MYC-mediated responses while activating EIN3-mediated responses and successfully uncouples the crosstalk between JA and ET signaling in Arabidopsis thaliana. Furthermore, the designed peptide inhibitor was also shown to selectively inhibit the activity of MpMYC, an ortholog of AtMYC in Marchantia polymorpha, demonstrating its applicability across different plant species. This underscores the potential of using peptide inhibitors for specific TFs to elucidate hormone crosstalk mechanisms in non-model plants without genetic manipulation. Such a design concept for chemical fixation of the disordered structure is expected to limit the original multiple binding partners and provide useful chemical tools in chemical biology research.
Collapse
Affiliation(s)
- Yousuke Takaoka
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Ruiqi Liu
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Minoru Ueda
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza Aoba, Aoba-ku, Sendai 980-8578, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
7
|
Yan W, Dong X, Li R, Zhao X, Zhou Q, Luo D, Liu Z. Genome-wide identification of JAZ gene family members in autotetraploid cultivated alfalfa (Medicago sativa subsp. sativa) and expression analysis under salt stress. BMC Genomics 2024; 25:636. [PMID: 38926665 PMCID: PMC11201308 DOI: 10.1186/s12864-024-10460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Jasmonate ZIM-domain (JAZ) proteins, which act as negative regulators in the jasmonic acid (JA) signalling pathway, have significant implications for plant development and response to abiotic stress. RESULTS Through a comprehensive genome-wide analysis, a total of 20 members of the JAZ gene family specific to alfalfa were identified in its genome. Phylogenetic analysis divided these 20 MsJAZ genes into five subgroups. Gene structure analysis, protein motif analysis, and 3D protein structure analysis revealed that alfalfa JAZ genes in the same evolutionary branch share similar exon‒intron, motif, and 3D structure compositions. Eight segmental duplication events were identified among these 20 MsJAZ genes through collinearity analysis. Among the 32 chromosomes of the autotetraploid cultivated alfalfa, there were 20 MsJAZ genes distributed on 17 chromosomes. Extensive stress-related cis-acting elements were detected in the upstream sequences of MsJAZ genes, suggesting that their response to stress has an underlying function. Furthermore, the expression levels of MsJAZ genes were examined across various tissues and under the influence of salt stress conditions, revealing tissue-specific expression and regulation by salt stress. Through RT‒qPCR experiments, it was discovered that the relative expression levels of these six MsJAZ genes increased under salt stress. CONCLUSIONS In summary, our study represents the first comprehensive identification and analysis of the JAZ gene family in alfalfa. These results provide important information for exploring the mechanism of JAZ genes in alfalfa salt tolerance and identifying candidate genes for improving the salt tolerance of autotetraploid cultivated alfalfa via genetic engineering in the future.
Collapse
Affiliation(s)
- Wei Yan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xueming Dong
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Rong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xianglong Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Qiang Zhou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Dong Luo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Zhipeng Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
8
|
Dong K, Wu F, Cheng S, Li S, Zhang F, Xing X, Jin X, Luo S, Feng M, Miao R, Chang Y, Zhang S, You X, Wang P, Zhang X, Lei C, Ren Y, Zhu S, Guo X, Wu C, Yang DL, Lin Q, Cheng Z, Wan J. OsPRMT6a-mediated arginine methylation of OsJAZ1 regulates jasmonate signaling and spikelet development in rice. MOLECULAR PLANT 2024; 17:900-919. [PMID: 38704640 DOI: 10.1016/j.molp.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/04/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Although both protein arginine methylation (PRMT) and jasmonate (JA) signaling are crucial for regulating plant development, the relationship between these processes in the control of spikelet development remains unclear. In this study, we used the CRISPR/Cas9 technology to generate two OsPRMT6a loss-of-function mutants that exhibit various abnormal spikelet structures. Interestingly, we found that OsPRMT6a can methylate arginine residues in JA signal repressors OsJAZ1 and OsJAZ7. We showed that arginine methylation of OsJAZ1 enhances the binding affinity of OsJAZ1 with the JA receptors OsCOI1a and OsCOI1b in the presence of JAs, thereby promoting the ubiquitination of OsJAZ1 by the SCFOsCOI1a/OsCOI1b complex and degradation via the 26S proteasome. This process ultimately releases OsMYC2, a core transcriptional regulator in the JA signaling pathway, to activate or repress JA-responsive genes, thereby maintaining normal plant (spikelet) development. However, in the osprmt6a-1 mutant, reduced arginine methylation of OsJAZ1 impaires the interaction between OsJAZ1 and OsCOI1a/OsCOI1b in the presence of JAs. As a result, OsJAZ1 proteins become more stable, repressing JA responses, thus causing the formation of abnormal spikelet structures. Moreover, we discovered that JA signaling reduces the OsPRMT6a mRNA level in an OsMYC2-dependent manner, thereby establishing a negative feedback loop to balance JA signaling. We further found that OsPRMT6a-mediated arginine methylation of OsJAZ1 likely serves as a switch to tune JA signaling to maintain normal spikelet development under harsh environmental conditions such as high temperatures. Collectively, our study establishes a direct molecular link between arginine methylation and JA signaling in rice.
Collapse
Affiliation(s)
- Kun Dong
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fuqing Wu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Siqi Cheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Li
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Feng Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinxin Xing
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Jin
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sheng Luo
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Miao Feng
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rong Miao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanqi Chang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuang Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoman You
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Peiran Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shanshan Zhu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuanyin Wu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dong-Lei Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qibing Lin
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhijun Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
9
|
Wang W, Ouyang J, Li Y, Zhai C, He B, Si H, Chen K, Rose JKC, Jia W. A signaling cascade mediating fruit trait development via phosphorylation-modulated nuclear accumulation of JAZ repressor. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1106-1125. [PMID: 38558522 DOI: 10.1111/jipb.13654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
It is generally accepted that jasmonate-ZIM domain (JAZ) repressors act to mediate jasmonate (JA) signaling via CORONATINE-INSENSITIVE1 (COI1)-mediated degradation. Here, we report a cryptic signaling cascade where a JAZ repressor, FvJAZ12, mediates multiple signaling inputs via phosphorylation-modulated subcellular translocation rather than the COI1-mediated degradation mechanism in strawberry (Fragaria vesca). FvJAZ12 acts to regulate flavor metabolism and defense response, and was found to be the target of FvMPK6, a mitogen-activated protein kinase that is capable of responding to multiple signal stimuli. FvMPK6 phosphorylates FvJAZ12 at the amino acid residues S179 and T183 adjacent to the PY residues, thereby attenuating its nuclear accumulation and relieving its repression for FvMYC2, which acts to control the expression of lipoxygenase 3 (FvLOX3), an important gene involved in JA biosynthesis and a diverse array of cellular metabolisms. Our data reveal a previously unreported mechanism for JA signaling and decipher a signaling cascade that links multiple signaling inputs with fruit trait development.
Collapse
Affiliation(s)
- Wei Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jinyao Ouyang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yating Li
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Changsheng Zhai
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Bing He
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Huahan Si
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, 14853, NY, USA
| | - Wensuo Jia
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830000, China
| |
Collapse
|
10
|
Zhou X, Zhong T, Wu M, Li Q, Yu W, Gan L, Xiang X, Zhang Y, Shi Y, Zhou Y, Chen P, Zhang C. Multiomics analysis of a resistant European turnip ECD04 during clubroot infection reveals key hub genes underlying resistance mechanism. FRONTIERS IN PLANT SCIENCE 2024; 15:1396602. [PMID: 38845850 PMCID: PMC11153729 DOI: 10.3389/fpls.2024.1396602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
The clubroot disease has become a worldwide threat for crucifer crop production, due to its soil-borne nature and difficulty to eradicate completely from contaminated field. In this study we used an elite resistant European fodder turnip ECD04 and investigated its resistance mechanism using transcriptome, sRNA-seq, degradome and gene editing. A total of 1751 DEGs were identified from three time points after infection, among which 7 hub genes including XTH23 for cell wall assembly and two CPK28 genes in PTI pathways. On microRNA, we identified 17 DEMs and predicted 15 miRNA-target pairs (DEM-DEG). We validated two pairs (miR395-APS4 and miR160-ARF) by degradome sequencing. We investigated the miR395-APS4 pair by CRISPR-Cas9 mediated gene editing, the result showed that knocking-out APS4 could lead to elevated clubroot resistance in B. napus. In summary, the data acquired on transcriptional response and microRNA as well as target genes provide future direction especially gene candidates for genetic improvement of clubroot resistance on Brassica species.
Collapse
Affiliation(s)
- Xueqing Zhou
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ting Zhong
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Meixiu Wu
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qian Li
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Wenlin Yu
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Longcai Gan
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianyu Xiang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yunyun Zhang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yaru Shi
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuanwei Zhou
- Rice and Oil Research Institute, Yichang Academy of Agricultural Science, Yichang, China
| | - Peng Chen
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Xu Y, Fu S, Huang Y, Zhou D, Wu Y, Peng J, Kuang M. Genome-wide expression analysis of LACS gene family implies GhLACS25 functional responding to salt stress in cotton. BMC PLANT BIOLOGY 2024; 24:392. [PMID: 38735932 PMCID: PMC11089787 DOI: 10.1186/s12870-024-05045-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/19/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Long-chain acyl-coenzyme A synthetase (LACS) is a type of acylating enzyme with AMP-binding, playing an important role in the growth, development, and stress response processes of plants. RESULTS The research team identified different numbers of LACS in four cotton species (Gossypium hirsutum, Gossypium barbadense, Gossypium raimondii, and Gossypium arboreum). By analyzing the structure and evolutionary characteristics of the LACS, the GhLACS were divided into six subgroups, and a chromosome distribution map of the family members was drawn, providing a basis for further research classification and positioning. Promoter cis-acting element analysis showed that most GhLACS contain plant hormones (GA, MeJA) or non-biological stress-related cis-elements. The expression patterns of GhLACS under salt stress treatment were analyzed, and the results showed that GhLACS may significantly participate in salt stress response through different mechanisms. The research team selected 12 GhLACSs responsive to salt stress for tissue expression analysis and found that these genes are expressed in different tissues. CONCLUSIONS There is a certain diversity of LACS among different cotton species. Analysis of promoter cis-acting elements suggests that GhLACS may be involved in regulating plant growth, development and stress response processes. GhLACS25 was selected for in-depth study, which confirmed its significant role in salt stress response through virus-induced gene silencing (VIGS) and induced expression in yeast cells.
Collapse
Affiliation(s)
- Yuchen Xu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
- Henan University/State Key Laboratory of Crop Stress Adaptation and Improvement, Kaifeng, Henan, 475004, China
| | - Shouyang Fu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
- Sanya National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan, 572024, China
| | - Yiwen Huang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
- Sanya National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan, 572024, China
| | - Dayun Zhou
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Yuzhen Wu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Jun Peng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China.
- Sanya National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan, 572024, China.
| | - Meng Kuang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China.
- Sanya National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan, 572024, China.
| |
Collapse
|
12
|
Zhou SL, Zhang JX, Jiang S, Lu Y, Huang YS, Dong XM, Hu Q, Yao W, Zhang MQ, Xiao SH. Genome-wide identification of JAZ gene family in sugarcane and function analysis of ScJAZ1/2 in drought stress response and flowering regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108577. [PMID: 38579542 DOI: 10.1016/j.plaphy.2024.108577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/06/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
The JASMONATE ZIM DOMAIN (JAZ) proteins are a key inhibitors of the jasmonic acid (JA) signaling pathway that play an important role in the regulation of plant growth and development and environmental stress responses. However, there is no systematic identification and functional analysis of JAZ gene family members in sugarcane. In this study, a total of 49 SsJAZ genes were identified from the wild sugarcane species Saccharum spontaneum genome that were unevenly distributed on 13 chromosomes. Phylogenetic analysis showed that all SsJAZ members can be divided into six groups, and most of the SsJAZ genes contained photoreactive and ABA-responsive elements. RNA-seq analysis revealed that SsJAZ1-1/2/3/4 and SsJAZ7-1 were significantly upregulated under drought stress. The transcript level of ScJAZ1 which is the homologous gene of SsJAZ1 in modern sugarcane cultivars was upregulated by JA, PEG, and abscisic acid (ABA). Moreover, ScJAZ1 can interact with three other JAZ proteins to form heterodimers. The spatial and temporal expression analysis showed that SsJAZ2-1/2/3/4 were highly expressed in different tissues and growth stages and during the day-night rhythm between 10:00 and 18:00. Overexpression of ScJAZ2 in Arabidopsis accelerated flowering through activating the expression of AtSOC1, AtFT, and AtLFY. Moreover, the transcription level of ScJAZ2 was about 30-fold in the early-flowering sugarcane variety than that of the non-flowering variety, indicating ScJAZ2 positively regulated flowering. This first systematic analysis of the JAZ gene family and function analysis of ScJAZ1/2 in sugarcane provide key candidate genes and lay the foundation for sugarcane breeding.
Collapse
Affiliation(s)
- Shao-Li Zhou
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Jin-Xu Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Shuo Jiang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Yan Lu
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Yong-Shuang Huang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Xian-Man Dong
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Qin Hu
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Wei Yao
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Mu-Qing Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530005, China
| | - Sheng-Hua Xiao
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530005, China; Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
13
|
Li N, Xu Y, Lu Y. A Regulatory Mechanism on Pathways: Modulating Roles of MYC2 and BBX21 in the Flavonoid Network. PLANTS (BASEL, SWITZERLAND) 2024; 13:1156. [PMID: 38674565 PMCID: PMC11054080 DOI: 10.3390/plants13081156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Genes of metabolic pathways are individually or collectively regulated, often via unclear mechanisms. The anthocyanin pathway, well known for its regulation by the MYB/bHLH/WDR (MBW) complex but less well understood in its connections to MYC2, BBX21, SPL9, PIF3, and HY5, is investigated here for its direct links to the regulators. We show that MYC2 can activate the structural genes of the anthocyanin pathway but also suppress them (except F3'H) in both Arabidopsis and Oryza when a local MBW complex is present. BBX21 or SPL9 can activate all or part of the structural genes, respectively, but the effects can be largely overwritten by the local MBW complex. HY5 primarily influences expressions of the early genes (CHS, CHI, and F3H). TF-TF relationships can be complex here: PIF3, BBX21, or SPL9 can mildly activate MYC2; MYC2 physically interacts with the bHLH (GL3) of the MBW complex and/or competes with strong actions of BBX21 to lessen a stimulus to the anthocyanin pathway. The dual role of MYC2 in regulating the anthocyanin pathway and a similar role of BBX21 in regulating BAN reveal a network-level mechanism, in which pathways are modulated locally and competing interactions between modulators may tone down strong environmental signals before they reach the network.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (N.L.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunzhang Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (N.L.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Yingqing Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (N.L.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Zhou T, Li Q, Huang X, Chen C. Analysis Transcriptome and Phytohormone Changes Associated with the Allelopathic Effects of Ginseng Hairy Roots Induced by Different-Polarity Ginsenoside Components. Molecules 2024; 29:1877. [PMID: 38675697 PMCID: PMC11053915 DOI: 10.3390/molecules29081877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The allelopathic autotoxicity of ginsenosides is an important cause of continuous cropping obstacles in ginseng planting. There is no report on the potential molecular mechanism of the correlation between polarity of ginsenoside components and their allelopathic autotoxicity. This study applied a combination of metabolomics and transcriptomics analysis techniques, combined with apparent morphology, physiological indexes, and cell vitality detection of the ginseng hairy roots, through which the molecular mechanism of correlation between polarity and allelopathic autotoxicity of ginsenosides were comprehensively studied. The hairy roots of ginseng presented more severe cell apoptosis under the stress of low-polarity ginsenoside components (ZG70). ZG70 exerted allelopathic autotoxicity by regulating the key enzyme genes of cis-zeatin (cZ) synthesis pathway, indole-3-acetic acid (IAA) synthesis pathway, and jasmonates (JAs) signaling transduction pathway. The common pathway for high-polarity ginsenoside components (ZG50) and ZG70 to induce the development of allelopathic autotoxicity was through the expression of key enzymes in the gibberellin (GA) signal transduction pathway, thereby inhibiting the growth of ginseng hairy roots. cZ, indole-3-acetamid (IAM), gibberellin A1 (GA1), and jasmonoyl-L-isoleucine (JA-ILE) were the key response factors in this process. It could be concluded that the polarity of ginsenoside components were negatively correlated with their allelopathic autotoxicity.
Collapse
Affiliation(s)
- Tingting Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
- School of Medical Technology, Beihua University, Jilin 132013, China
| | - Qiong Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xin Huang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Changbao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
15
|
Che L, Lu S, Gou H, Li M, Guo L, Yang J, Mao J. VvJAZ13 Positively Regulates Cold Tolerance in Arabidopsis and Grape. Int J Mol Sci 2024; 25:4458. [PMID: 38674041 PMCID: PMC11049880 DOI: 10.3390/ijms25084458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Cold stress adversely impacts grape growth, development, and yield. Therefore, improving the cold tolerance of grape is an urgent task of grape breeding. The Jasmonic acid (JA) pathway responsive gene JAZ plays a key role in plant response to cold stress. However, the role of JAZ in response to low temperatures in grape is unclear. In this study, VvJAZ13 was cloned from the 'Pinot Noir' (Vitis vinefera cv. 'Pinot Noir') grape, and the potential interacting protein of VvJAZ13 was screened by yeast two-hybrid (Y2H). The function of VvJAZ13 under low temperature stress was verified by genetic transformation. Subcellular localization showed that the gene was mainly expressed in cytoplasm and the nucleus. Y2H indicated that VvF-box, VvTIFY5A, VvTIFY9, Vvbch1, and VvAGD13 may be potential interacting proteins of VvJAZ13. The results of transient transformation of grape leaves showed that VvJAZ13 improved photosynthetic capacity and reduced cell damage by increasing maximum photosynthetic efficiency of photosystem II (Fv/Fm), reducing relative electrolyte leakage (REL) and malondialdehyde (MDA), and increasing proline content in overexpressed lines (OEs), which played an active role in cold resistance. Through the overexpression of VvJAZ13 in Arabidopsis thaliana and grape calli, the results showed that compared with wild type (WT), transgenic lines had higher antioxidant enzyme activity and proline content, lower REL, MDA, and hydrogen peroxide (H2O2) content, and an improved ability of scavenging reactive oxygen species. In addition, the expression levels of CBF1-2 and ICE1 genes related to cold response were up-regulated in transgenic lines. To sum up, VvJAZ13 is actively involved in the cold tolerance of Arabidopsis and grape, and has the potential to be a candidate gene for improving plant cold tolerance.
Collapse
Affiliation(s)
- Lili Che
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Huimin Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Min Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Lili Guo
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Juanbo Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
16
|
Moy A, Nkongolo K. Decrypting Molecular Mechanisms Involved in Counteracting Copper and Nickel Toxicity in Jack Pine ( Pinus banksiana) Based on Transcriptomic Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1042. [PMID: 38611570 PMCID: PMC11013723 DOI: 10.3390/plants13071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
The remediation of copper and nickel-afflicted sites is challenged by the different physiological effects imposed by each metal on a given plant system. Pinus banksiana is resilient against copper and nickel, providing an opportunity to build a valuable resource to investigate the responding gene expression toward each metal. The objectives of this study were to (1) extend the analysis of the Pinus banksiana transcriptome exposed to nickel and copper, (2) assess the differential gene expression in nickel-resistant compared to copper-resistant genotypes, and (3) identify mechanisms specific to each metal. The Illumina platform was used to sequence RNA that was extracted from seedlings treated with each of the metals. There were 449 differentially expressed genes (DEGs) between copper-resistant genotypes (RGs) and nickel-resistant genotypes (RGs) at a high stringency cut-off, indicating a distinct pattern of gene expression toward each metal. For biological processes, 19.8% of DEGs were associated with the DNA metabolic process, followed by the response to stress (13.15%) and the response to chemicals (8.59%). For metabolic function, 27.9% of DEGs were associated with nuclease activity, followed by nucleotide binding (27.64%) and kinase activity (10.16%). Overall, 21.49% of DEGs were localized to the plasma membrane, followed by the cytosol (16.26%) and chloroplast (12.43%). Annotation of the top upregulated genes in copper RG compared to nickel RG identified genes and mechanisms that were specific to copper and not to nickel. NtPDR, AtHIPP10, and YSL1 were identified as genes associated with copper resistance. Various genes related to cell wall metabolism were identified, and they included genes encoding for HCT, CslE6, MPG, and polygalacturonase. Annotation of the top downregulated genes in copper RG compared to nickel RG revealed genes and mechanisms that were specific to nickel and not copper. Various regulatory and signaling-related genes associated with the stress response were identified. They included UGT, TIFY, ACC, dirigent protein, peroxidase, and glyoxyalase I. Additional research is needed to determine the specific functions of signaling and stress response mechanisms in nickel-resistant plants.
Collapse
Affiliation(s)
| | - Kabwe Nkongolo
- Biomolecular Sciences Program, Department of Biology, School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| |
Collapse
|
17
|
Wu R, Liu Z, Sun S, Qin A, Liu H, Zhou Y, Li W, Liu Y, Hu M, Yang J, Rochaix JD, An G, Herrera-Estrella L, Tran LSP, Sun X. Identification of bZIP Transcription Factors That Regulate the Development of Leaf Epidermal Cells in Arabidopsis thaliana by Single-Cell RNA Sequencing. Int J Mol Sci 2024; 25:2553. [PMID: 38473801 DOI: 10.3390/ijms25052553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Epidermal cells are the main avenue for signal and material exchange between plants and the environment. Leaf epidermal cells primarily include pavement cells, guard cells, and trichome cells. The development and distribution of different epidermal cells are tightly regulated by a complex transcriptional regulatory network mediated by phytohormones, including jasmonic acid, and transcription factors. How the fate of leaf epidermal cells is determined, however, is still largely unknown due to the diversity of cell types and the complexity of their regulation. Here, we characterized the transcriptional profiles of epidermal cells in 3-day-old true leaves of Arabidopsis thaliana using single-cell RNA sequencing. We identified two genes encoding BASIC LEUCINE-ZIPPER (bZIP) transcription factors, namely bZIP25 and bZIP53, which are highly expressed in pavement cells and early-stage meristemoid cells. Densities of pavement cells and trichome cells were found to increase and decrease, respectively, in bzip25 and bzip53 mutants, compared with wild-type plants. This trend was more pronounced in the presence of jasmonic acid, suggesting that these transcription factors regulate the development of trichome cells and pavement cells in response to jasmonic acid.
Collapse
Affiliation(s)
- Rui Wu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Zhixin Liu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Susu Sun
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Aizhi Qin
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Hao Liu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yaping Zhou
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Weiqiang Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yumeng Liu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Mengke Hu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Jincheng Yang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Guoyong An
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Luis Herrera-Estrella
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Xuwu Sun
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| |
Collapse
|
18
|
Long X, Yang W, Lv Y, Zhong X, Chen L, Li Q, Lv Z, Li Y, Cai Y, Yang H. The Histone Variant H3.3 Is Required for Plant Growth and Fertility in Arabidopsis. Int J Mol Sci 2024; 25:2549. [PMID: 38473796 DOI: 10.3390/ijms25052549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Histones are the core components of the eukaryote chromosome, and have been implicated in transcriptional gene regulation. There are three major isoforms of histone H3 in Arabidopsis. Studies have shown that the H3.3 variant is pivotal in modulating nucleosome structure and gene transcription. However, the function of H3.3 during development remains to be further investigated in plants. In this study, we disrupted all three H3.3 genes in Arabidopsis. Two triple mutants, h3.3cr-4 and h3.3cr-5, were created by the CRISPR/Cas9 system. The mutant plants displayed smaller rosettes and decreased fertility. The stunted growth of h3.3cr-4 may result from reduced expression of cell cycle regulators. The shorter stamen filaments, but not the fertile ability of the gametophytes, resulted in reduced fertility of h3.3cr-4. The transcriptome analysis suggested that the reduced filament elongation of h3.3cr-4 was probably caused by the ectopic expression of several JASMONATE-ZIM DOMAIN (JAZ) genes, which are the key repressors of the signaling pathway of the phytohormone jasmonic acid (JA). These observations suggest that the histone variant H3.3 promotes plant growth, including rosette growth and filament elongation.
Collapse
Affiliation(s)
- Xiaogang Long
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wandong Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yanfang Lv
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiaoming Zhong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Lin Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qingzhu Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhaopeng Lv
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yanzhuo Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yajun Cai
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- RNA Institute, Wuhan University, Wuhan 430072, China
| |
Collapse
|
19
|
Wu L, Wang K, Chen M, Su W, Liu Z, Guo X, Ma M, Qian S, Deng Y, Wang H, Mao C, Zhang Z, Xu X. ALLENE OXIDE SYNTHASE ( AOS) induces petal senescence through a novel JA-associated regulatory pathway in Arabidopsis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:199-212. [PMID: 38623171 PMCID: PMC11016053 DOI: 10.1007/s12298-024-01425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 04/17/2024]
Abstract
Flowers are crucial for the reproduction of flowering plants and their senescence has drastic effects on plant-animal interactions as well as pollination. Petal senescence is the final phase of flower development which is regulated by hormones and genes. Among these, jasmonic acid (JA) has emerged as a major contributor to petal senescence, but its molecular mechanisms remain elusive. Here, the role of JA in petal senescence in Arabidopsis was investigated. We showed that petal senescence in aos mutant was significantly delayed, which also affected petal cell size and proliferation. Similar significant delays in petal senescence were observed in dad1 and coi1 mutants. However, MYB21/24 and MYC2/3/4, known downstream regulators of JA in flower development, played no role in petal senescence. This indicated that JA regulates petal senescence by modulating other unknown transcription factors. Transcriptomic analysis revealed that AOS altered the expression of 3681 genes associated, and identified groups of differentially expressed transcription factors, highlighting the potential involvement of AP-2, WRKY and NAC. Furthermore, bHLH13, bHLH17 and URH2 were identified as potential new regulators of JA-mediated petal senescence. In conclusion, our findings suggest a novel genetic pathway through which JA regulates petal senescence in Arabidopsis. This pathway operates independently of stamen development and leaf senescence, suggesting the evolution of specialized mechanisms for petal senescence. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01425-w.
Collapse
Affiliation(s)
- Liuqing Wu
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Kaiqi Wang
- College of Biological and Environmental Engineering, Jingdezhen University, Jiangxi, 333000 China
| | - Mengyi Chen
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Wenxin Su
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zheng Liu
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaoying Guo
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Mengqian Ma
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shuangjie Qian
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yuqi Deng
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Haihan Wang
- School of Biological Science, University of California Irvine, Irvine, USA
| | - Chanjuan Mao
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zaibao Zhang
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang China
| | - Xiaofeng Xu
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
20
|
Liu K, Xu H, Gao X, Lu Y, Wang L, Ren Z, Chen C. Pan-Genome Analysis of TIFY Gene Family and Functional Analysis of CsTIFY Genes in Cucumber. Int J Mol Sci 2023; 25:185. [PMID: 38203357 PMCID: PMC10778933 DOI: 10.3390/ijms25010185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Cucumbers are frequently affected by gray mold pathogen Botrytis cinerea, a pathogen that causes inhibited growth and reduced yield. Jasmonic acid (JA) plays a primary role in plant responses to biotic stresses, and the jasmonate-ZIM-Domain (JAZ) proteins are key regulators of the JA signaling pathway. In this study, we used the pan-genome of twelve cucumber varieties to identify cucumber TIFY genes. Our findings revealed that two CsTIFY genes were present in all twelve cucumber varieties and showed no differences in protein sequence, gene structure, and motif composition. This suggests their evolutionary conservation across different cucumber varieties and implies that they may play a crucial role in cucumber growth. On the other hand, the other fourteen CsTIFY genes exhibited variations in protein sequence and gene structure or conserved motifs, which could be the result of divergent evolution, as these genes adapt to different cultivation and environmental conditions. Analysis of the expression profiles of the CsTIFY genes showed differential regulation by B. cinerea. Transient transfection plants overexpressing CsJAZ2, CsJAZ6, or CsZML2 were found to be more susceptible to B. cinerea infection compared to control plants. Furthermore, these plants infected by the pathogen showed lower levels of the enzymatic activities of POD, SOD and CAT. Importantly, after B. cinerea infection, the content of JA was upregulated in the plants, and cucumber cotyledons pretreated with exogenous MeJA displayed increased resistance to B. cinerea infection compared to those pretreated with water. Therefore, this study explored key TIFY genes in the regulation of cucumber growth and adaptability to different cultivation environments based on bioinformatics analysis and demonstrated that CsJAZs negatively regulate cucumber disease resistance to gray mold via multiple signaling pathways.
Collapse
Affiliation(s)
- Kun Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (K.L.); (H.X.); (Y.L.); (L.W.); (Z.R.)
| | - Haiyu Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (K.L.); (H.X.); (Y.L.); (L.W.); (Z.R.)
| | - Xinbin Gao
- College of Horticulture, Northwest A and F University, Yangling 712100, China;
| | - Yinghao Lu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (K.L.); (H.X.); (Y.L.); (L.W.); (Z.R.)
| | - Lina Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (K.L.); (H.X.); (Y.L.); (L.W.); (Z.R.)
| | - Zhonghai Ren
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (K.L.); (H.X.); (Y.L.); (L.W.); (Z.R.)
| | - Chunhua Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (K.L.); (H.X.); (Y.L.); (L.W.); (Z.R.)
| |
Collapse
|
21
|
Li Y, Zhang Q, Wang L, Wang X, Qiao J, Wang H. New Insights into the TIFY Gene Family of Brassica napus and Its Involvement in the Regulation of Shoot Branching. Int J Mol Sci 2023; 24:17114. [PMID: 38069438 PMCID: PMC10707187 DOI: 10.3390/ijms242317114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/13/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
As plant-specific transcription factors, the TIFY family genes are involved in the responses to a series of biotic and abiotic stresses and the regulation of the development of multiple organs. To explore the potential roles of the TIFY gene family in shoot branching, which can shape plant architecture and finally determine seed yield, we conducted comprehensive genome-wide analyses of the TIFY gene family in Brassica napus. Here, HMMER search and BLASTp were used to identify the TIFY members. A total of 70 TIFY members were identified and divided into four subfamilies based on the conserved domains and motifs. These TIFY genes were distributed across 19 chromosomes. The predicted subcellular localizations revealed that most TIFY proteins were located in the nucleus. The tissue expression profile analyses indicated that TIFY genes were highly expressed in the stem, flower bud, and silique at the transcriptional level. High-proportioned activation of the dormant axillary buds on stems determined the branch numbers of rapeseed plants. Here, transcriptome analyses were conducted on axillary buds in four sequential developing stages, that is, dormant, temporarily dormant, being activated, and elongating (already activated). Surprisingly, the transcription of the majority of TIFY genes (65 of the 70) significantly decreased on the activation of buds. GO enrichment analysis and hormone treatments indicated that the transcription of TIFY family genes can be strongly induced by jasmonic acid, implying that the TIFY family genes may be involved in the regulation of jasmonic acid-mediated branch development. These results shed light on the roles of TIFY family genes in plant architecture.
Collapse
Affiliation(s)
| | | | | | | | - Jiangwei Qiao
- Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chines Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (Y.L.); (Q.Z.); (L.W.); (X.W.); (H.W.)
| | | |
Collapse
|
22
|
Hou X, Singh SK, Werkman JR, Liu Y, Yuan Q, Wu X, Patra B, Sui X, Lyu R, Wang B, Liu X, Li Y, Ma W, Pattanaik S, Yuan L. Partial desensitization of MYC2 transcription factor alters the interaction with jasmonate signaling components and affects specialized metabolism. Int J Biol Macromol 2023; 252:126472. [PMID: 37625752 DOI: 10.1016/j.ijbiomac.2023.126472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
The activity of bHLH transcription factor MYC2, a key regulator in jasmonate signaling and plant specialized metabolism, is sensitive to repression by JASMONATE-ZIM-domain (JAZ) proteins and co-activation by the mediator subunit MED25. The substitution of a conserved aspartic acid (D) to asparagine (N) in the JAZ-interacting domain (JID) of Arabidopsis MYC2 affects interaction with JAZ, although the mechanism remained unclear. The effects of the conserved residue MYC2D128 on interaction with MED25 have not been investigated. Using tobacco as a model, we generated all possible substitutions of aspartic acid 128 (D128) in NtMYC2a. NtMYC2aD128N partially desensitized the repression by JAZ proteins, while strongly interacting with MED25, resulting in increased expression of nicotine pathway genes and nicotine accumulation in tobacco hairy roots overexpressing NtMYC2aD128N compared to those overexpressing NtMYC2a. The proline substitution, NtMYC2aD128P, negatively affected transactivation and abolished the interaction with JAZ proteins and MED25. Structural modeling and simulation suggest that the overall stability of the JID binding pocket is a predominant cause for the observed effects of substitutions at D128. The D128N substitution has an overall stabilizing effect on the binding pocket, which is destabilized by D128P. Our study offers an innovative tool to increase the production of plant natural products.
Collapse
Affiliation(s)
- Xin Hou
- Department of Tobacco, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, China
| | - Sanjay Kumar Singh
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Joshua R Werkman
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Yongliang Liu
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Qinghua Yuan
- Crop Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangzhou 510640, China
| | - Xia Wu
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Barunava Patra
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Xueyi Sui
- Tobacco Breeding and Biotechnology Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, Yunnan, China
| | - Ruiqing Lyu
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Bingwu Wang
- Tobacco Breeding and Biotechnology Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, Yunnan, China
| | - Xiaoyu Liu
- Pomology Institute, Shanxi Agricultural University, Taigu 030815, Shanxi, China
| | - Yongqing Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510520, China
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA.
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
23
|
Busoms S, Pérez-Martín L, Terés J, Huang XY, Yant L, Tolrà R, Salt DE, Poschenrieder C. Combined genomics to discover genes associated with tolerance to soil carbonate. PLANT, CELL & ENVIRONMENT 2023; 46:3986-3998. [PMID: 37565316 DOI: 10.1111/pce.14691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Carbonate-rich soils limit plant performance and crop production. Previously, local adaptation to carbonated soils was detected in wild Arabidopsis thaliana accessions, allowing the selection of two demes with contrasting phenotypes: A1 (carbonate tolerant, c+) and T6 (carbonate sensitive, c-). Here, A1(c+) and T6(c - ) seedlings were grown hydroponically under control (pH 5.9) and bicarbonate conditions (10 mM NaHCO3 , pH 8.3) to obtain ionomic profiles and conduct transcriptomic analysis. In parallel, A1(c+) and T6(c - ) parental lines and their progeny were cultivated on carbonated soil to evaluate fitness and segregation patterns. To understand the genetic architecture beyond the contrasted phenotypes, a bulk segregant analysis sequencing (BSA-Seq) was performed. Transcriptomics revealed 208 root and 2503 leaf differentially expressed genes in A1(c+) versus T6(c - ) comparison under bicarbonate stress, mainly involved in iron, nitrogen and carbon metabolism, hormones and glycosylates biosynthesis. Based on A1(c+) and T6(c - ) genome contrasts and BSA-Seq analysis, 69 genes were associated with carbonate tolerance. Comparative analysis of genomics and transcriptomics discovered a final set of 18 genes involved in bicarbonate stress responses that may have relevant roles in soil carbonate tolerance.
Collapse
Affiliation(s)
- Silvia Busoms
- Department of Animal Biology, Plant Biology, and Ecology, Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Pérez-Martín
- Department of Animal Biology, Plant Biology, and Ecology, Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joana Terés
- Department of Animal Biology, Plant Biology, and Ecology, Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Levi Yant
- Future Food Beacon of Excellence & School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Roser Tolrà
- Department of Animal Biology, Plant Biology, and Ecology, Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - David E Salt
- Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Sutton, UK
| | - Charlotte Poschenrieder
- Department of Animal Biology, Plant Biology, and Ecology, Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Zhou XE, Zhang Y, Yao J, Zheng J, Zhou Y, He Q, Moreno J, Lam VQ, Cao X, Sugimoto K, Vanegas-Cano L, Kariapper L, Suino-Powell K, Zhu Y, Novick S, Griffin PR, Zhang F, Howe GA, Melcher K. Assembly of JAZ-JAZ and JAZ-NINJA complexes in jasmonate signaling. PLANT COMMUNICATIONS 2023; 4:100639. [PMID: 37322867 PMCID: PMC10721472 DOI: 10.1016/j.xplc.2023.100639] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/21/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Jasmonates (JAs) are plant hormones with crucial roles in development and stress resilience. They activate MYC transcription factors by mediating the proteolysis of MYC inhibitors called JAZ proteins. In the absence of JA, JAZ proteins bind and inhibit MYC through the assembly of MYC-JAZ-Novel Interactor of JAZ (NINJA)-TPL repressor complexes. However, JAZ and NINJA are predicted to be largely intrinsically unstructured, which has precluded their experimental structure determination. Through a combination of biochemical, mutational, and biophysical analyses and AlphaFold-derived ColabFold modeling, we characterized JAZ-JAZ and JAZ-NINJA interactions and generated models with detailed, high-confidence domain interfaces. We demonstrate that JAZ, NINJA, and MYC interface domains are dynamic in isolation and become stabilized in a stepwise order upon complex assembly. By contrast, most JAZ and NINJA regions outside of the interfaces remain highly dynamic and cannot be modeled in a single conformation. Our data indicate that the small JAZ Zinc finger expressed in Inflorescence Meristem (ZIM) motif mediates JAZ-JAZ and JAZ-NINJA interactions through separate surfaces, and our data further suggest that NINJA modulates JAZ dimerization. This study advances our understanding of JA signaling by providing insights into the dynamics, interactions, and structure of the JAZ-NINJA core of the JA repressor complex.
Collapse
Affiliation(s)
- X Edward Zhou
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Yaguang Zhang
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jian Yao
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Jie Zheng
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Yuxin Zhou
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA; Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qing He
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Javier Moreno
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Vinh Q Lam
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Xiaoman Cao
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Koichi Sugimoto
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Leidy Vanegas-Cano
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Leena Kariapper
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Kelly Suino-Powell
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Yuanye Zhu
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA; Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Scott Novick
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Patrick R Griffin
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Feng Zhang
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA; Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
| | - Gregg A Howe
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | - Karsten Melcher
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
25
|
Liu Y, Wu S, Lan K, Wang Q, Ye T, Jin H, Hu T, Xie T, Wei Q, Yin X. An Investigation of the JAZ Family and the CwMYC2-like Protein to Reveal Their Regulation Roles in the MeJA-Induced Biosynthesis of β-Elemene in Curcuma wenyujin. Int J Mol Sci 2023; 24:15004. [PMID: 37834452 PMCID: PMC10573570 DOI: 10.3390/ijms241915004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
β-Elemene (C15H24), a sesquiterpenoid compound isolated from the volatile oil of Curcuma wenyujin, has been proven to be effective for multiple cancers and is widely used in clinical treatment. Unfortunately, the β-elemene content in C. wenyujin is very low, which cannot meet market demands. Our previous research showed that methyl jasmonate (MeJA) induced the accumulation of β-elemene in C. wenyujin. However, the regulatory mechanism is unclear. In this study, 20 jasmonate ZIM-domain (JAZ) proteins in C. wenyujin were identified, which are the core regulatory factors of the JA signaling pathway. Then, the conservative domains, motifs composition, and evolutionary relationships of CwJAZs were analyzed comprehensively and systematically. The interaction analysis indicated that CwJAZs can form homodimers or heterodimers. Fifteen out of twenty CwJAZs were significantly induced via MeJA treatment. As the master switch of the JA signaling pathway, the CwMYC2-like protein has also been identified and demonstrated to interact with CwJAZ2/3/4/5/7/15/17/20. Further research found that the overexpression of the CwMYC2-like gene increased the accumulation of β-elemene in C. wenyujin leaves. Simultaneously, the expressions of HMGR, HMGS, DXS, DXR, MCT, HDS, HDR, and FPPS related to β-elemene biosynthesis were also up-regulated by the CwMYC2-like protein. These results indicate that CwJAZs and the CwMYC2-like protein respond to the JA signal to regulate the biosynthesis of β-elemene in C. wenyujin.
Collapse
Affiliation(s)
- Yuyang Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (S.W.); (K.L.); (Q.W.); (T.Y.); (H.J.); (T.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Shiyi Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (S.W.); (K.L.); (Q.W.); (T.Y.); (H.J.); (T.H.); (T.X.)
| | - Kaer Lan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (S.W.); (K.L.); (Q.W.); (T.Y.); (H.J.); (T.H.); (T.X.)
| | - Qian Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (S.W.); (K.L.); (Q.W.); (T.Y.); (H.J.); (T.H.); (T.X.)
| | - Tingyu Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (S.W.); (K.L.); (Q.W.); (T.Y.); (H.J.); (T.H.); (T.X.)
| | - Huanan Jin
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (S.W.); (K.L.); (Q.W.); (T.Y.); (H.J.); (T.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Tianyuan Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (S.W.); (K.L.); (Q.W.); (T.Y.); (H.J.); (T.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (S.W.); (K.L.); (Q.W.); (T.Y.); (H.J.); (T.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Qiuhui Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (S.W.); (K.L.); (Q.W.); (T.Y.); (H.J.); (T.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaopu Yin
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (S.W.); (K.L.); (Q.W.); (T.Y.); (H.J.); (T.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
26
|
Miccono MDLA, Yang HW, DeMott L, Melotto M. Review: Losing JAZ4 for growth and defense. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111816. [PMID: 37543224 DOI: 10.1016/j.plantsci.2023.111816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
JAZ proteins are involved in the regulation of the jasmonate signaling pathway, which is responsible for various physiological processes, such as defense response, adaptation to abiotic stress, growth, and development in Arabidopsis. The conserved domains of JAZ proteins can serve as binding sites for a broad array of regulatory proteins and the diversity of these protein-protein pairings result in a variety of functional outcomes. Plant growth and defense are two physiological processes that can conflict with each other, resulting in undesirable plant trade-offs. Recent observations have revealed a distinguishing feature of JAZ4; it acts as negative regulator of both plant immunity and growth and development. We suggest that these complex biological processes can be decoupled at the JAZ4 regulatory node, due to prominent expression of JAZ4 in specific tissues and organs. This spatial separation of actions could explain the increased disease resistance and size of the plant root and shoot in the absence of JAZ4. At the tissue level, JAZ4 could play a role in crosstalk between hormones such as ethylene and auxin to control organ differentiation. Deciphering biding of JAZ4 to specific regulators in different tissues and the downstream responses is key to unraveling molecular mechanisms toward developing new crop improvement strategies.
Collapse
Affiliation(s)
- Maria de Los Angeles Miccono
- Department of Plant Sciences, University of California, Davis, CA, USA; Horticulture and Agronomy Graduate Group, University of California, Davis, CA, USA
| | - Ho-Wen Yang
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Logan DeMott
- Department of Plant Sciences, University of California, Davis, CA, USA; Plant Pathology Graduate Group, University of California, Davis, CA, USA
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
27
|
Bhattacharyya S, Giridhar M, Meier B, Peiter E, Vothknecht UC, Chigri F. Global transcriptome profiling reveals root- and leaf-specific responses of barley ( Hordeum vulgare L.) to H 2O 2. FRONTIERS IN PLANT SCIENCE 2023; 14:1223778. [PMID: 37771486 PMCID: PMC10523330 DOI: 10.3389/fpls.2023.1223778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Abstract
In cereal crops, such as barley (Hordeum vulgare L.), the ability to appropriately respond to environmental cues is an important factor for yield stability and thus for agricultural production. Reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), are key components of signal transduction cascades involved in plant adaptation to changing environmental conditions. H2O2-mediated stress responses include the modulation of expression of stress-responsive genes required to cope with different abiotic and biotic stresses. Despite its importance, knowledge of the effects of H2O2 on the barley transcriptome is still scarce. In this study, we identified global transcriptomic changes induced after application of 10 mM H2O2 to five-day-old barley plants. In total, 1883 and 1001 differentially expressed genes (DEGs) were identified in roots and leaves, respectively. Most of these DEGs were organ-specific, with only 209 DEGs commonly regulated and 37 counter-regulated between both plant parts. A GO term analysis further confirmed that different processes were affected in roots and leaves. It revealed that DEGs in leaves mostly comprised genes associated with hormone signaling, response to H2O2 and abiotic stresses. This includes many transcriptions factors and small heat shock proteins. DEGs in roots mostly comprised genes linked to crucial aspects of H2O2 catabolism and oxidant detoxification, glutathione metabolism, as well as cell wall modulation. These categories include many peroxidases and glutathione transferases. As with leaves, the H2O2 response category in roots contains small heat shock proteins, however, mostly different members of this family were affected and they were all regulated in the opposite direction in the two plant parts. Validation of the expression of the selected commonly regulated DEGs by qRT-PCR was consistent with the RNA-seq data. The data obtained in this study provide an insight into the molecular mechanisms of oxidative stress responses in barley, which might also play a role upon other stresses that induce oxidative bursts.
Collapse
Affiliation(s)
| | - Maya Giridhar
- Institute for Cellular and Molecular Botany, University of Bonn, Bonn, Germany
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Bastian Meier
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Edgar Peiter
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ute C. Vothknecht
- Institute for Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Fatima Chigri
- Institute for Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| |
Collapse
|
28
|
Johnson LY, Major IT, Chen Y, Yang C, Vanegas-Cano LJ, Howe GA. Diversification of JAZ-MYC signaling function in immune metabolism. THE NEW PHYTOLOGIST 2023; 239:2277-2291. [PMID: 37403524 PMCID: PMC10528271 DOI: 10.1111/nph.19114] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/11/2023] [Indexed: 07/06/2023]
Abstract
Jasmonate (JA) re-programs metabolism to confer resistance to diverse environmental threats. Jasmonate stimulates the degradation of JASMONATE ZIM-DOMAIN (JAZ) proteins that repress the activity of MYC transcription factors. In Arabidopsis thaliana, MYC and JAZ are encoded by 4 and 13 genes, respectively. The extent to which expansion of the MYC and JAZ families has contributed to functional diversification of JA responses is not well understood. Here, we investigated the role of MYC and JAZ paralogs in controlling the production of defense compounds derived from aromatic amino acids (AAAs). Analysis of loss-of-function and dominant myc mutations identified MYC3 and MYC4 as the major regulators of JA-induced tryptophan metabolism. We developed a JAZ family-based, forward genetics approach to screen randomized jaz polymutants for allelic combinations that enhance tryptophan biosynthetic capacity. We found that mutants defective in all members (JAZ1/2/5/6) of JAZ group I over-accumulate AAA-derived defense compounds, constitutively express marker genes for the JA-ethylene branch of immunity and are more resistant to necrotrophic pathogens but not insect herbivores. In defining JAZ and MYC paralogs that regulate the production of amino-acid-derived defense compounds, our results provide insight into the specificity of JA signaling in immunity.
Collapse
Affiliation(s)
- Leah Y.D. Johnson
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
- Molecular Plant Sciences Program, Michigan State University, East Lansing, MI 48824, USA
| | - Ian T. Major
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Yani Chen
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Changxian Yang
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Leidy J. Vanegas-Cano
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Gregg A. Howe
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
- Molecular Plant Sciences Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
29
|
Lv G, Han R, Wang W, Yu Q, Liu G, Yang C, Jiang J. Functional study of BpCOI1 reveals its role in affecting disease resistance in birch. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107938. [PMID: 37579684 DOI: 10.1016/j.plaphy.2023.107938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Plants interact with biotic and abiotic environments. Some of these interactions are detrimental including herbivory consumption and infections by microbial pathogens. The COI1 (coronatine insensitive 1) protein is the master controller of JA-regulated plant responses and plays a regulatory role in the plant defense response. However, there is little information on COI1 function in birch (Betula platyphylla × Betula pendula). Herein, we studied the F-box protein BpCOI1 which is located in the nucleus. To validate the function of this protein, we developed transgenic birch plants with overexpression or repression of BpCOI1 gene. Growth traits, such as tree height, ground diameter, number of lateral branches, did not change significantly among transgenic lines. Alternaria alternata treatment experiments indicated that low expression of BpCOI1 reduced disease resistance in birch. Furthermore, our results showed that low expression of BpCOI1 significantly reduced the sensitivity of plants to exogenous MeJA. Co-expression analysis showed gene expression patterns with similar characteristics. These genes may be closely related in function, or members involved in the same signaling pathway or physiological process with BpCOI 1. The results of transcriptome sequencing and co-expression analysis showed that BpCOI1 affects plant defense against Alternaria alternata by regulating jasmonates. This study reveals the role of BpCOI1 in disease resistance and proposes the possibility of controlling diseases through molecular breeding in birch.
Collapse
Affiliation(s)
- Guanbin Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China
| | - Rui Han
- College of Forestry and Grassland Science, Jilin Agricultural University, Jilin, China
| | - Wei Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China
| | - Qibin Yu
- University of Florida, Lake Alfred, FL, USA
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China.
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China.
| |
Collapse
|
30
|
Wu Q, Zheng D, Lian N, Zhu X, Wu J. Hormonal Regulation and Stimulation Response of Jatropha curcas L. Homolog Overexpression on Tobacco Leaf Growth by Transcriptome Analysis. Int J Mol Sci 2023; 24:13183. [PMID: 37685991 PMCID: PMC10487882 DOI: 10.3390/ijms241713183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
The Flowering locus T (FT) gene encodes the florigen protein, which primarily regulates the flowering time in plants. Recent studies have shown that FT genes also significantly affect plant growth and development. The FT gene overexpression in plants promotes flowering and suppresses leaf and stem development. This study aimed to conduct a transcriptome analysis to investigate the multiple effects of Jatropha curcas L. homolog (JcFT) overexpression on leaf growth in tobacco plants. The findings revealed that JcFT overexpression affected various biological processes during leaf development, including plant hormone levels and signal transduction, lipid oxidation metabolism, terpenoid metabolism, and the jasmonic-acid-mediated signaling pathway. These results suggested that the effects of FT overexpression in plants were complex and multifaceted, and the combination of these factors might contribute to a reduction in the leaf size. This study comprehensively analyzed the effects of JcFT on leaf development at the transcriptome level and provided new insights into the function of FT and its homologous genes.
Collapse
Affiliation(s)
- Qiuhong Wu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Q.W.); (N.L.)
| | - Dongchao Zheng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China;
| | - Na Lian
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Q.W.); (N.L.)
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
| | - Xuli Zhu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Q.W.); (N.L.)
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
| | - Jun Wu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China;
- Sichuan-Chongqing Key Laboratory of Characteristic Biological Resources Research and Utilization, Chengdu 610065, China
| |
Collapse
|
31
|
Moy A, Czajka K, Michael P, Nkongolo K. Transcriptome Analysis Reveals Changes in Whole Gene Expression, Biological Process, and Molecular Functions Induced by Nickel in Jack Pine ( Pinus banksiana). PLANTS (BASEL, SWITZERLAND) 2023; 12:2889. [PMID: 37571042 PMCID: PMC10421529 DOI: 10.3390/plants12152889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023]
Abstract
Understanding the genetic response of plants to nickel stress is a necessary step to improving the utility of plants in environmental remediation and restoration. The main objective of this study was to generate whole genome expression profiles of P. banksiana exposed to nickel ion toxicity compared to reference genotypes. Pinus banksiana seedlings were screened in a growth chamber setting using a high concentration of 1600 mg of nickel per 1 kg of soil. RNA was extracted and sequenced using the Illumina platform, followed by de novo transcriptome assembly. Overall, 25,552 transcripts were assigned gene ontology. The biological processes in water-treated samples were analyzed, and 55% of transcripts were distributed among five categories: DNA metabolic process (19.3%), response to stress (13.3%), response to chemical stimuli (8.7%), signal transduction (7.7%) and response to biotic stimulus (6.0%). For molecular function, the highest percentages of genes were involved in nucleotide binding (27.6%), nuclease activity (27.3%) and kinase activity (10.3%). Sixty-two percent of genes were associated with cellular compartments. Of these genes, 21.7% were found in the plasma membrane, 16.1% in the cytosol, 12.4% with the chloroplast and 11.9% in the extracellular region. Nickel ions induced changes in gene expression, resulting in the emergence of differentially regulated categories. Overall, there were significant changes in gene expression with a total 4128 genes upregulated and 3754 downregulated genes detected in nickel-treated genotypes compared to water-treated control plants. For biological processes, the highest percentage of upregulated genes in plants exposed to nickel were associated with the response to stress (15%), the response to chemicals (11,1%), carbohydrate metabolic processes (7.4%) and catabolic processes (7.4%). The largest proportions of downregulated genes were associated with the biosynthetic process (21%), carbohydrate metabolic process (14.3%), response to biotic stimulus (10.7%) and response to stress (10.7%). For molecular function, genes encoding for enzyme regulatory and hydrolase activities represented the highest proportion (61%) of upregulated gene. The majority of downregulated genes were involved in the biosynthetic processes. Overall, 58% of upregulated genes were located in the extracellular region and the nucleus, while 42% of downregulated genes were localized to the plasma membrane and 33% to the extracellular region. This study represents the first report of a transcriptome from a conifer species treated with nickel.
Collapse
Affiliation(s)
| | | | | | - Kabwe Nkongolo
- Biomolecular Sciences Program and Department of Biology, School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (A.M.); (K.C.); (P.M.)
| |
Collapse
|
32
|
Zhang XH, Vichyavichien P, Nifakos N, Kaplan N, Jin XL, Wellman A, Spanoudis A, Klingler M. KED gene expression in early response to wounding stress in tomato plants. PHYSIOLOGIA PLANTARUM 2023; 175:e13978. [PMID: 37616012 DOI: 10.1111/ppl.13978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 08/25/2023]
Abstract
The wounding-responsive KED gene, named for its coding for a lysine (K), glutamic acid (E), and aspartic acid (D)-rich protein, is widely present among land plants. However, little is known about its regulation or function. In this study, we found that transcription of the tomato (Solanum lycopersicum) KED gene, SlKED, was rapidly and transiently elevated by wounding or ethephon treatment. Compared to the wild-type plants, the CRISPR/Cas9-mediated SlKED knockout plants did not exhibit altered expression patterns for genes involved in hormone biosynthesis or stress signaling, suggesting a lack of pleiotropic effect on other stress-responsive genes. Conversely, jasmonic acid did not appear to directly regulate SlKED expression. Wounded leaves of the KED-lacking plants exhibited higher binding of Evans blue dye than the wild-type, indicating a possible role for KED in healing damaged tissues. The SlKED knockout plants showed a similar dietary effect as the wild-type on the larval growth of tobacco hornworm. But a higher frequency of larval mandible (mouth) movement was recorded during the first 2 minutes of feeding on the wounded KED-lacking SlKED knockout plants than on the wounded KED-producing wild-type plants, probably reflecting an initial differential response by the feeding larvae to the SlKED knockout plants. Our findings suggest that SlKED may be an ethylene-mediated early responder to mechanical stress in tomato, acting downstream of the wound stress response pathways. Although its possible involvement in response to other biotic and abiotic stresses is still unclear, we propose that SlKED may play a role in plant's rapid, short-term, early wounding responses, such as in cellular damage healing.
Collapse
Affiliation(s)
- Xing-Hai Zhang
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Paveena Vichyavichien
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Nicholas Nifakos
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Noah Kaplan
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Xiao-Lu Jin
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Annalise Wellman
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Alexander Spanoudis
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Marcos Klingler
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
33
|
Xu L, Liu A, Wang T, Wang Y, Li L, Wu P. Characterization and Coexpression Analysis of the TIFY Family Genes in Euryale ferox Related to Leaf Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:2323. [PMID: 37375948 DOI: 10.3390/plants12122323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/27/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
TIFYs are plant-specific transcription factors that contain the TIFY structural domain and play an important role in plant leaf growth and development. However, the role played by TIFY in E. ferox (Euryale ferox Salisb.) leaf development has not been investigated. In this study, 23 TIFY genes were identified in E. ferox. Phylogenetic analyses of the TIFY genes showed clustering into three groups (JAZ, ZIM, and PPD). The TIFY domain was shown to be conserved. JAZ was mainly expanded via wholegenome triplication (WGT) in E. ferox. Based on analyses of the TIFY genes in nine species, we found that JAZ has a closer relationship with PPD, in addition to appearing the most recently and expanding most rapidly, leading to the rapid expansion of TIFYs in Nymphaeaceae. In addition, their different evolution types were discovered. Different gene expressions showed the distinct and corresponsive expression patterns of the EfTIFYs in different stages of tissue and leaf development. Finally, The qPCR analysis revealed that the expression of EfTIFY7.2 and EfTIFY10.1 showed an upward trend and high expression throughout leaf development. Further co-expression analysis indicated that EfTIFY7.2 might be more important for the development of E. ferox leaves. This information will be valuable when exploring the molecular mechanisms of EfTIFYs in plants.
Collapse
Affiliation(s)
- Lanruoyan Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225000, China
| | - Ailian Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225000, China
| | - Tianyu Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225000, China
| | - Yuhao Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225000, China
| | - Liangjun Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225000, China
| | - Peng Wu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
34
|
Ma Y, Ran J, Li G, Wang M, Yang C, Wen X, Geng X, Zhang L, Li Y, Zhang Z. Revealing the Roles of the JAZ Family in Defense Signaling and the Agarwood Formation Process in Aquilaria sinensis. Int J Mol Sci 2023; 24:9872. [PMID: 37373020 DOI: 10.3390/ijms24129872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Jasmonate ZIM-domain family proteins (JAZs) are repressors in the signaling cascades triggered by jasmonates (JAs). It has been proposed that JAs play essential roles in the sesquiterpene induction and agarwood formation processes in Aquilaria sinensis. However, the specific roles of JAZs in A. sinensis remain elusive. This study employed various methods, including phylogenetic analysis, real-time quantitative PCR, transcriptomic sequencing, yeast two-hybrid assay, and pull-down assay, to characterize A. sinensis JAZ family members and explore their correlations with WRKY transcription factors. The bioinformatic analysis revealed twelve putative AsJAZ proteins in five groups and sixty-four putative AsWRKY transcription factors in three groups. The AsJAZ and AsWRKY genes exhibited various tissue-specific or hormone-induced expression patterns. Some AsJAZ and AsWRKY genes were highly expressed in agarwood or significantly induced by methyl jasmonate in suspension cells. Potential relationships were proposed between AsJAZ4 and several AsWRKY transcription factors. The interaction between AsJAZ4 and AsWRKY75n was confirmed by yeast two-hybrid and pull-down assays. This study characterized the JAZ family members in A. sinensis and proposed a model of the function of the AsJAZ4/WRKY75n complex. This will advance our understanding of the roles of the AsJAZ proteins and their regulatory pathways.
Collapse
Affiliation(s)
- Yimian Ma
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiadong Ran
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Guoqiong Li
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Mengchen Wang
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chengmin Yang
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xin Wen
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xin Geng
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Liping Zhang
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yuan Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zheng Zhang
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
35
|
Riekötter J, Oklestkova J, Muth J, Twyman RM, Epping J. Transcriptomic analysis of Chinese yam ( Dioscorea polystachya Turcz.) variants indicates brassinosteroid involvement in tuber development. Front Nutr 2023; 10:1112793. [PMID: 37215221 PMCID: PMC10196131 DOI: 10.3389/fnut.2023.1112793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/11/2023] [Indexed: 05/24/2023] Open
Abstract
Dioscorea is an important but underutilized genus of flowering plants that grows predominantly in tropical and subtropical regions. Several species, known as yam, develop large underground tubers and aerial bulbils that are used as food. The Chinese yam (D. polystachya Turcz.) is one of the few Dioscorea species that grows well in temperate regions and has been proposed as a climate-resilient crop to enhance food security in Europe. However, the fragile, club-like tubers are unsuitable for mechanical harvesting, which is facilitated by shorter and thicker storage organs. Brassinosteroids (BRs) play a key role in plant cell division, cell elongation and proliferation, as well as in the gravitropic response. We collected RNA-Seq data from the head, middle and tip of two tuber shape variants: F60 (long, thin) and F2000 (short, thick). Comparative transcriptome analysis of F60 vs. F2000 revealed 30,229 differentially expressed genes (DEGs), 1,393 of which were differentially expressed in the growing tip. Several DEGs are involved in steroid/BR biosynthesis or signaling, or may be regulated by BRs. The quantification of endogenous BRs revealed higher levels of castasterone (CS), 28-norCS, 28-homoCS and brassinolide in F2000 compared to F60 tubers. The highest BR levels were detected in the growing tip, and CS was the most abundant (439.6 ± 196.41 pmol/g in F2000 and 365.6 ± 112.78 pmol/g in F60). Exogenous 24-epi-brassinolide (epi-BL) treatment (20 nM) in an aeroponic system significantly increased the width-to-length ratio (0.045 ± 0.002) compared to the mock-treated plants (0.03 ± 0.002) after 7 weeks, indicating that exogenous epi-BL produces shorter and thicker tubers. In this study we demonstrate the role of BRs in D. polystachya tuber shape, providing insight into the role of plant hormones in yam storage organ development. We found that BRs can influence tuber shape in Chinese yam by regulating the expression of genes involved cell expansion. Our data can help to improve the efficiency of Chinese yam cultivation, which could provide an alternative food source and thus contribute to future food security in Europe.
Collapse
Affiliation(s)
- Jenny Riekötter
- Department of Biology, Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Jana Oklestkova
- Laboratory of Growth Regulators, The Czech Academy of Science, Institute of Experimental Botany and Palacký University, Faculty of Science, Olomouc, Czechia
| | - Jost Muth
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | | | - Janina Epping
- Department of Biology, Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| |
Collapse
|
36
|
Timofeyenko K, Kanavalau D, Alexiou P, Kalyna M, Růžička K. Catsnap: a user-friendly algorithm for determining the conservation of protein variants reveals extensive parallelisms in the evolution of alternative splicing. THE NEW PHYTOLOGIST 2023; 238:1722-1732. [PMID: 36751910 PMCID: PMC10952736 DOI: 10.1111/nph.18799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Understanding the evolutionary conservation of complex eukaryotic transcriptomes significantly illuminates the physiological relevance of alternative splicing (AS). Examining the evolutionary depth of a given AS event with ordinary homology searches is generally challenging and time-consuming. Here, we present Catsnap, an algorithmic pipeline for assessing the conservation of putative protein isoforms generated by AS. It employs a machine learning approach following a database search with the provided pair of protein sequences. We used the Catsnap algorithm for analyzing the conservation of emerging experimentally characterized alternative proteins from plants and animals. Indeed, most of them are conserved among other species. Catsnap can detect the conserved functional protein isoforms regardless of the AS type by which they are generated. Notably, we found that while the primary amino acid sequence is maintained, the type of AS determining the inclusion or exclusion of protein regions varies throughout plant phylogenetic lineages in these proteins. We also document that this phenomenon is less seen among animals. In sum, our algorithm highlights the presence of unexpectedly frequent hotspots where protein isoforms recurrently arise to carry physiologically relevant functions. The user web interface is available at https://catsnap.cesnet.cz/.
Collapse
Affiliation(s)
- Ksenia Timofeyenko
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental BotanyCzech Academy of Sciences165 02Prague 6Czech Republic
- Functional Genomics and Proteomics of Plants and National Centre for Biomolecular ResearchMasaryk University625 00BrnoCzech Republic
| | | | - Panagiotis Alexiou
- Central European Institute of TechnologyMasaryk University625 00BrnoCzech Republic
| | - Maria Kalyna
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant BiologyUniversity of Natural Resources and Life Sciences (BOKU)1190ViennaAustria
| | - Kamil Růžička
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental BotanyCzech Academy of Sciences165 02Prague 6Czech Republic
| |
Collapse
|
37
|
Lv G, Han R, Shi J, Chen K, Liu G, Yu Q, Yang C, Jiang J. Genome-wide identification of the TIFY family reveals JAZ subfamily function in response to hormone treatment in Betula platyphylla. BMC PLANT BIOLOGY 2023; 23:143. [PMID: 36922795 PMCID: PMC10015818 DOI: 10.1186/s12870-023-04138-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The TIFY family is a plant-specific gene family and plays an important role in plant growth and development. But few reports have been reported on the phylogenetic analysis and gene expression profiling of TIFY family genes in birch (Betula platyphylla). RESULTS In this study, we characterized TIFY family and identified 12 TIFY genes and using phylogeny and chromosome mapping analysis in birch. TIFY family members were divided into JAZ, ZML, PPD and TIFY subfamilies. Phylogenetic analysis revealed that 12 TIFY genes were clustered into six evolutionary branches. The chromosome distribution showed that 12 TIFY genes were unevenly distributed on 5 chromosomes. Some TIFY family members were derived from gene duplication in birch. We found that six JAZ genes from JAZ subfamily played essential roles in response to Methyl jasmonate (MeJA), the JAZ genes were correlated with COI1 under MeJA. Co-expression and GO enrichment analysis further revealed that JAZ genes were related to hormone. JAZ proteins involved in the ABA and SA pathways. Subcellular localization experiments confirmed that the JAZ proteins were localized in the nucleus. Yeast two-hybrid assay showed that the JAZ proteins may form homologous or heterodimers to regulate hormones. CONCLUSION Our results provided novel insights into biological function of TIFY family and JAZ subfamily in birch. It provides the theoretical reference for in-depth analysis of plant hormone and molecular breeding design for resistance.
Collapse
Affiliation(s)
- Guanbin Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China
| | - Rui Han
- College of Forestry and Grassland Science, Jilin Agricultural University, Jilin, China
| | - Jingjing Shi
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China
| | - Kun Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China
| | - Qibin Yu
- University of Florida, Lake Alfred, FL, USA
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China.
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China.
| |
Collapse
|
38
|
Zhang S, Dong L, Zhang X, Fu X, Zhao L, Wu L, Wang X, Liu J. The transcription factor GhWRKY70 from gossypium hirsutum enhances resistance to verticillium wilt via the jasmonic acid pathway. BMC PLANT BIOLOGY 2023; 23:141. [PMID: 36915047 PMCID: PMC10012446 DOI: 10.1186/s12870-023-04141-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/28/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND The WRKY transcription factors play significant roles in plant growth, development, and defense responses. However, in cotton, the molecular mechanism of most WRKY proteins and their involvement in Verticillium wilt tolerance are not well understood. RESULTS GhWRKY70 is greatly up-regulated in cotton by Verticillium dahliae. Subcellular localization suggests that GhWRKY70 is only located in the nucleus. Transcriptional activation of GhWRKY70 further demonstrates that GhWRKY70 function as a transcriptional activator. Transgenic Arabidopsis plants overexpressing GhWRKY70 exhibited better growth performance and higher lignin content, antioxidant enzyme activities and jasmonic acid (JA) levels than wild-type plants after infection with V. dahliae. In addition, the transgenic Arabidopsis resulted in an enhanced expression level of AtAOS1, a gene related to JA synthesis, further leading to a higher JA accumulation compared to the wild type. However, the disease index (DI) values of the VIGS-treated cotton plants with TRV:WRKY70 were also significantly higher than those of the VIGS-treated cotton plants with TRV:00. The chlorophyll and lignin contents of TRV:WRKY70 plants were significantly lower than those of TRV:00 plants. GhAOS1 expression and JA abundance in TRV:WRKY70 plants were decreased. The GhWRKY70 protein was confirmed to bind to the W-box element in the promoter region of GhAOS by yeast one-hybrid assay and transient expression. CONCLUSION These results indicate that the GhWRKY70 transcription factor is a positive regulator in Verticillium wilt tolerance of cotton, and may promote the production of JA via regulation of GhAOS1 expression.
Collapse
Affiliation(s)
- Shuling Zhang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, No.180, Wusi East Road, 071000, Baoding, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Lijun Dong
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, No.180, Wusi East Road, 071000, Baoding, China
| | - Xue Zhang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, No.180, Wusi East Road, 071000, Baoding, China
| | - Xiaohong Fu
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, No.180, Wusi East Road, 071000, Baoding, China
| | - Lin Zhao
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, No.180, Wusi East Road, 071000, Baoding, China
| | - Lizhu Wu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China.
| | - Jianfeng Liu
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, No.180, Wusi East Road, 071000, Baoding, China.
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
39
|
Lv N, Tao C, Ou Y, Wang J, Deng X, Liu H, Shen Z, Li R, Shen Q. Root-Associated Antagonistic Pseudomonas spp. Contribute to Soil Suppressiveness against Banana Fusarium Wilt Disease of Banana. Microbiol Spectr 2023; 11:e0352522. [PMID: 36786644 PMCID: PMC10100972 DOI: 10.1128/spectrum.03525-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/24/2023] [Indexed: 02/15/2023] Open
Abstract
Members of the microbiotas colonizing the plant endophytic compartments and the surrounding bulk and rhizosphere soil play an important role in determining plant health. However, the relative contributions of the soil and endophytic microbiomes and their mechanistic roles in achieving disease suppression remain elusive. To disentangle the relative importance of the different microbiomes in the various plant compartments in inhibiting pathogen infection, we conducted a field experiment to track changes in the composition of microbial communities in bulk and rhizosphere soil and of root endophytes and leaf endosphere collected from bananas planted on Fusarium-infested orchards in disease-suppressive and disease-conducive soils. We found that the rhizosphere and roots were the two dominant plant parts whose bacterial communities contributed to pathogen suppression. We further observed that Pseudomonas was potentially a key organism acting as a pathogen antagonist, as illustrated by microbial community composition and network analysis. Subsequently, culturable pathogen-antagonistic Pseudomonas strains were isolated, and their potential suppressive functions or possible antibiosis in terms of auxin or siderophore synthesis and phosphate solubilization were screened to analyze the mode of action of candidate disease-suppressive Pseudomonas strains. In a follow-up in vivo and greenhouse experiment, we revealed that microbial consortia of culturable Pseudomonas strains P8 and S25 (or S36), isolated from banana plantlet rhizosphere and roots, respectively, significantly suppressed the survival of pathogens in the soil, manipulated the soil microbiome, and stimulated indigenous beneficial microbes. Overall, our study demonstrated that root-associated microbiomes, especially the antagonistic Pseudomonas sp. components, contribute markedly to soil suppression of banana Fusarium wilt. IMPORTANCE Soil suppression of Fusarium wilt disease has been proven to be linked with the local microbial community. However, the contribution of endophytic microbes to disease suppression in wilt-suppressive soils remains unclear. Moreover, the key microbes involving in Fusarium wilt-suppressive soils and in the endophytic populations have not been fully characterized. In this study, we demonstrate that root-associated microbes play vitally important roles in disease suppression. Root-associated Pseudomonas consortia were recognized as a key component in inhibiting pathogen abundance associated with the host banana plants. This finding is crucial to developing alternate strategies for soilborne disease management by harnessing the plant microbiome.
Collapse
Affiliation(s)
- Nana Lv
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Chengyuan Tao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Yannan Ou
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Jiabao Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan, People’s Republic of China
| | - Xuhui Deng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Hongjun Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Zongzhuan Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan, People’s Republic of China
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan, People’s Republic of China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan, People’s Republic of China
| |
Collapse
|
40
|
Han X, Kui M, He K, Yang M, Du J, Jiang Y, Hu Y. Jasmonate-regulated root growth inhibition and root hair elongation. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1176-1185. [PMID: 36346644 PMCID: PMC9923215 DOI: 10.1093/jxb/erac441] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/05/2022] [Indexed: 06/01/2023]
Abstract
The phytohormone jasmonate is an essential endogenous signal in the regulation of multiple plant processes for environmental adaptation, such as primary root growth inhibition and root hair elongation. Perception of environmental stresses promotes the accumulation of jasmonate, which is sensed by the CORONATINE INSENSITIVE1 (COI1)-JASMONATE ZIM-DOMAIN (JAZ) co-receptor, triggering the degradation of JAZ repressors and induction of transcriptional reprogramming. The basic helix-loop-helix (bHLH) subgroup IIIe transcription factors MYC2, MYC3, and MYC4 are the most extensively characterized JAZ-binding factors and together stimulate jasmonate-signaled primary root growth inhibition. Conversely, the bHLH subgroup IIId transcription factors (i.e. bHLH3 and bHLH17) physically associate with JAZ proteins and suppress jasmonate-induced root growth inhibition. For root hair development, JAZ proteins interact with and inhibit ROOT HAIR DEFECTIVE 6 (RHD6) and RHD6 LIKE1 (RSL1) transcription factors to modulate jasmonate-enhanced root hair elongation. Moreover, jasmonate also interacts with other signaling pathways (such as ethylene and auxin) to regulate primary root growth and/or root hair elongation. Here, we review recent progress into jasmonate-mediated primary root growth and root hair development.
Collapse
Affiliation(s)
- Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Mengyi Kui
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kunrong He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Milian Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiancan Du
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | | |
Collapse
|
41
|
Weraduwage SM, Sahu A, Kulke M, Vermaas JV, Sharkey TD. Characterization of promoter elements of isoprene-responsive genes and the ability of isoprene to bind START domain transcription factors. PLANT DIRECT 2023; 7:e483. [PMID: 36742092 PMCID: PMC9889695 DOI: 10.1002/pld3.483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Isoprene has recently been proposed to be a signaling molecule that can enhance tolerance of both biotic and abiotic stress. Not all plants make isoprene, but all plants tested to date respond to isoprene. We hypothesized that isoprene interacts with existing signaling pathways rather than requiring novel mechanisms for its effect on plants. We analyzed the cis-regulatory elements (CREs) in promoters of isoprene-responsive genes and the corresponding transcription factors binding these promoter elements to obtain clues about the transcription factors and other proteins involved in isoprene signaling. Promoter regions of isoprene-responsive genes were characterized using the Arabidopsis cis-regulatory element database. CREs bind ARR1, Dof, DPBF, bHLH112, GATA factors, GT-1, MYB, and WRKY transcription factors, and light-responsive elements were overrepresented in promoters of isoprene-responsive genes; CBF-, HSF-, WUS-binding motifs were underrepresented. Transcription factors corresponding to CREs overrepresented in promoters of isoprene-responsive genes were mainly those important for stress responses: drought-, salt/osmotic-, oxidative-, herbivory/wounding and pathogen-stress. More than half of the isoprene-responsive genes contained at least one binding site for TFs of the class IV (homeodomain leucine zipper) HD-ZIP family, such as GL2, ATML1, PDF2, HDG11, ATHB17. While the HD-zipper-loop-zipper (ZLZ) domain binds to the L1 box of the promoter region, a special domain called the steroidogenic acute regulatory protein-related lipid transfer, or START domain, can bind ligands such as fatty acids (e.g., linolenic and linoleic acid). We tested whether isoprene might bind in such a START domain. Molecular simulations and modeling to test interactions between isoprene and a class IV HD-ZIP family START-domain-containing protein were carried out. Without membrane penetration by the HDG11 START domain, isoprene within the lipid bilayer was inaccessible to this domain, preventing protein interactions with membrane bound isoprene. The cross-talk between isoprene-mediated signaling and other growth regulator and stress signaling pathways, in terms of common CREs and transcription factors could enhance the stability of the isoprene emission trait when it evolves in a plant but so far it has not been possible to say what how isoprene is sensed to initiate signaling responses.
Collapse
Affiliation(s)
- Sarathi M Weraduwage
- MSU-DOE Plant Research Laboratory Michigan State University East Lansing Michigan USA
- Department of Biochemistry and Molecular Biology Michigan State University East Lansing Michigan USA
- Great Lakes Bioenergy Research Center Michigan State University East Lansing Michigan USA
| | - Abira Sahu
- MSU-DOE Plant Research Laboratory Michigan State University East Lansing Michigan USA
| | - Martin Kulke
- MSU-DOE Plant Research Laboratory Michigan State University East Lansing Michigan USA
- Department of Biochemistry and Molecular Biology Michigan State University East Lansing Michigan USA
| | - Josh V Vermaas
- MSU-DOE Plant Research Laboratory Michigan State University East Lansing Michigan USA
- Department of Biochemistry and Molecular Biology Michigan State University East Lansing Michigan USA
| | - Thomas D Sharkey
- MSU-DOE Plant Research Laboratory Michigan State University East Lansing Michigan USA
- Department of Biochemistry and Molecular Biology Michigan State University East Lansing Michigan USA
- Great Lakes Bioenergy Research Center Michigan State University East Lansing Michigan USA
- Plant Resilience Institute Michigan State University East Lansing Michigan USA
| |
Collapse
|
42
|
Negi S, Bhakta S, Ganapathi TR, Tak H. MusaNAC29-like transcription factor improves stress tolerance through modulation of phytohormone content and expression of stress responsive genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111507. [PMID: 36332768 DOI: 10.1016/j.plantsci.2022.111507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/20/2022] [Accepted: 10/19/2022] [Indexed: 05/20/2023]
Abstract
Understanding the molecular mechanisms governed by genes and cross-talks among stress signaling pathways is vital for generating a broad view on stress responses in plants. Here, we analysed the effects of MusaNAC29-like transcription factor of banana on stress responses and report the quantitative modulation of phytohormone and flavonoid content and analysed the growth parameters and yield trait in transgenic banana plants. Expression of MusaNAC29-like transcription factor was strongly altered in responses to stress conditions and application of signaling molecules. Under control conditions, PMusaNAC29-like-GUS is activated in cells bordering xylem vessel elements and is strongly triggered in other cells types after influence of salicylic acid and abscisic acid. Transgenic banana plants of cultivar Rasthali and Grand Naine overexpressing MusaNAC29-like transcription factor displayed superior tolerance towards drought and salinity stress. LC-MS analysis indicated elevated levels of jasmonic acid and salicylic acid while content of zeatin was significantly reduced in leaves of transgenic banana lines. Transgenic banana lines displayed increased levels of gallic acid, coumaric acid, naringenin, chlorogenic acid while levels of vanillic acid and piperine were significantly reduced. Expression of stress related genes coding for antioxidants, thiol peptidase proteins, cold-regulated proteins, late embryogenesis abundant proteins, ethylene-responsive transcription factors, bHLH proteins, jasmonate-zim-domain proteins and WRKY transcription factors were significantly induced in transgenic banana lines. Though MusaNAC29-like transcription factor improved stress tolerance, its overexpression resulted in retarded growth of transgenic lines resulting in reduced yield of banana fruits.
Collapse
Affiliation(s)
- Sanjana Negi
- Department of Biotechnology, University of Mumbai, Mumbai 400098, India.
| | - Subham Bhakta
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - T R Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Himanshu Tak
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
43
|
Chen L, Liang Z, Xie S, Liu W, Wang M, Yan J, Yang S, Jiang B, Peng Q, Lin Y. Responses of differential metabolites and pathways to high temperature in cucumber anther. FRONTIERS IN PLANT SCIENCE 2023; 14:1131735. [PMID: 37123826 PMCID: PMC10140443 DOI: 10.3389/fpls.2023.1131735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Cucumber is one of the most important vegetable crops, which is widely planted all over the world. Cucumber always suffers from high-temperature stress in South China in summer. In this study, liquid chromatography-mass spectrometry (LC-MS) analysis was used to study the differential metabolites of cucumber anther between high-temperature (HT) stress and normal condition (CK). After HT, the pollen fertility was significantly reduced, and abnormal anther structures were observed by the paraffin section. In addition, the metabolomics analysis results showed that a total of 125 differential metabolites were identified after HT, consisting of 99 significantly upregulated and 26 significantly downregulated metabolites. Among these differential metabolites, a total of 26 related metabolic pathways were found, and four pathways showed significant differences, namely, porphyrin and chlorophyll metabolism; plant hormone signal transduction; amino sugar and nucleotide sugar metabolism; and glycine, serine, and threonine metabolism. In addition, pollen fertility was decreased by altering the metabolites of plant hormone signal transduction and amino acid and sugar metabolism pathway under HT. These results provide a comprehensive understanding of the metabolic changes in cucumber anther under HT.
Collapse
Affiliation(s)
- Lin Chen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Zhaojun Liang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Shuyan Xie
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Wenrui Liu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Min Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Jinqiang Yan
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Songguang Yang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Qingwu Peng
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Yu’e Lin
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
- *Correspondence: Yu’e Lin,
| |
Collapse
|
44
|
Barmukh R, Roorkiwal M, Dixit GP, Bajaj P, Kholova J, Smith MR, Chitikineni A, Bharadwaj C, Sreeman SM, Rathore A, Tripathi S, Yasin M, Vijayakumar AG, Rao Sagurthi S, Siddique KHM, Varshney RK. Characterization of 'QTL-hotspot' introgression lines reveals physiological mechanisms and candidate genes associated with drought adaptation in chickpea. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7255-7272. [PMID: 36006832 PMCID: PMC9730794 DOI: 10.1093/jxb/erac348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/24/2022] [Indexed: 05/16/2023]
Abstract
'QTL-hotspot' is a genomic region on linkage group 04 (CaLG04) in chickpea (Cicer arietinum) that harbours major-effect quantitative trait loci (QTLs) for multiple drought-adaptive traits, and it therefore represents a promising target for improving drought adaptation. To investigate the mechanisms underpinning the positive effects of 'QTL-hotspot' on seed yield under drought, we introgressed this region from the ICC 4958 genotype into five elite chickpea cultivars. The resulting introgression lines (ILs) and their parents were evaluated in multi-location field trials and semi-controlled conditions. The results showed that the 'QTL-hotspot' region improved seed yield under rainfed conditions by increasing seed weight, reducing the time to flowering, regulating traits related to canopy growth and early vigour, and enhancing transpiration efficiency. Whole-genome sequencing data analysis of the ILs and parents revealed four genes underlying the 'QTL-hotspot' region associated with drought adaptation. We validated diagnostic KASP markers closely linked to these genes using the ILs and their parents for future deployment in chickpea breeding programs. The CaTIFY4b-H2 haplotype of a potential candidate gene CaTIFY4b was identified as the superior haplotype for 100-seed weight. The candidate genes and superior haplotypes identified in this study have the potential to serve as direct targets for genetic manipulation and selection for chickpea improvement.
Collapse
Affiliation(s)
- Rutwik Barmukh
- Centre of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
| | - Manish Roorkiwal
- Centre of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Girish P Dixit
- ICAR - Indian Institute of Pulses Research (IIPR), Kanpur, India
| | - Prasad Bajaj
- Centre of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Jana Kholova
- Crops Physiology & Modeling, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Information Technologies, Faculty of Economics and Management, Czech University of Life Sciences Prague, Kamýcká 129, Prague, Czech Republic
| | - Millicent R Smith
- Centre of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Australia
| | - Annapurna Chitikineni
- Centre of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Chellapilla Bharadwaj
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- ICAR - Indian Agricultural Research Institute (IARI), Delhi, India
| | - Sheshshayee M Sreeman
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | - Abhishek Rathore
- Centre of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Mohammad Yasin
- RAK College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, India
| | | | | | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
| | - Rajeev K Varshney
- Centre of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
45
|
Zhou G, Yin H, Chen F, Wang Y, Gao Q, Yang F, He C, Zhang L, Wan Y. The genome of Areca catechu provides insights into sex determination of monoecious plants. THE NEW PHYTOLOGIST 2022; 236:2327-2343. [PMID: 36089819 DOI: 10.1111/nph.18471] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
The areca palm (Areca catechu) has a monoecious spadix, with male flowers on the apical side and females on the basal side. Here, we applied multiomics analysis to investigate sex determination and floral organ development in areca palms. We generated a chromosome-level reference genome of A. catechu with 16 pseudochromosomes, composed of 2.73 Gb and encoding 31 406 genes. Data from RNA-seq and ATAC-seq (assay for transposase accessible chromatin sequencing) suggested that jasmonic acid (JA) synthesis and signal transduction-related genes were differentially expressed between female and male flowers via epigenetic modifications. JA concentration in female flowers was c. 10 times than that in males on the same inflorescence, while JA concentration in hermaphroditic flowers of abnormal inflorescences was about twice that in male flowers of normal inflorescences. JA promotes the development of female flower organs by decreasing the expression of B-function genes, including AGL16, AP3, PIb and PIc. There is also a region on pseudochromosome 15 harboring sex-related genes, including CYP703, LOG, GPAT, AMS and BiP. Among them, CYP703, AMS and BiP were specifically expressed in male flowers.
Collapse
Affiliation(s)
- Guangzhen Zhou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Hongyan Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Fei Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
- Hainan Yazhou Bay Seed Laboratory, College of Tropical Crops, Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
| | - Yicheng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Qiang Gao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fusun Yang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Chaozhu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Yinglang Wan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| |
Collapse
|
46
|
Guan Y, Ding L, Jiang J, Jia D, Li S, Jin L, Zhao W, Zhang X, Song A, Chen S, Wang H, Ding B, Chen F. The TIFY family protein CmJAZ1-like negatively regulates petal size via interaction with the bHLH transcription factor CmBPE2 in Chrysanthemum morifolium. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1489-1506. [PMID: 36377371 DOI: 10.1111/tpj.16031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Petals are the second floral whorl of angiosperms, exhibiting astonishing diversity in their size between and within species. This variation is essential for protecting their inner reproductive organs and attracting pollinators for fertilization. However, currently, the genetic and developmental control of petal size remains unexplored. Chrysanthemum (Chrysanthemum morifolium) belongs to the Asteraceae family, the largest group of angiosperms, and the extraordinary diversity of petal size in chrysanthemums makes it an ideal model for exploring the regulation mechanism of petal size. Here, we reveal that overexpression of a JAZ repressor CmJAZ1-like exhibits decreased petal size compared to that of the wild-type as a result of repressed cell expansion. Through further in-depth exploration, we confirm an interaction pair between CmJAZ1-like and the bHLH transcription factor CmBPE2. The inhibition of CmBPE2 expression negatively regulates petal size by downregulating the expression of genes involved in cell expansion. Furthermore, CmJAZ1-like significantly reduced the activation ability of CmBPE2 on its target gene CmEXPA7 by directly interacting with it, thus participating in the regulation of petal size development in chrysanthemum. Our results will provide insights into the molecular mechanisms of petal size regulation in flowering plants.
Collapse
Affiliation(s)
- Yunxiao Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs. Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lian Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs. Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs. Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Diwen Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs. Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Song Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs. Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Li Jin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs. Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Wenqian Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs. Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Xue Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs. Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs. Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs. Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Haibin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs. Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Baoqing Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs. Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs. Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| |
Collapse
|
47
|
Serrano-Bueno G, de Los Reyes P, Chini A, Ferreras-Garrucho G, Sánchez de Medina-Hernández V, Boter M, Solano R, Valverde F. Regulation of floral senescence in Arabidopsis by coordinated action of CONSTANS and jasmonate signaling. MOLECULAR PLANT 2022; 15:1710-1724. [PMID: 36153646 DOI: 10.1016/j.molp.2022.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
In Arabidopsis, photoperiodic flowering is controlled by the regulatory hub gene CONSTANS (CO), whereas floral organ senescence is regulated by the jasmonates (JAs). Because these processes are chronologically ordered, it remains unknown whether there are common regulators of both processes. In this study, we discovered that CO protein accumulates in Arabidopsis flowers after floral induction, and it displays a diurnal pattern in floral organs different from that in the leaves. We observed that altered CO expression could affect flower senescence and abscission by interfering with JA response, as shown by petal-specific transcriptomic analysis as well as CO overexpression in JA synthesis and signaling mutants. We found that CO has a ZIM (ZINC-FINGER INFLORESCENCE MERISTEM) like domain that mediates its interaction with the JA response repressor JAZ3 (jasmonate ZIM-domain 3). Their interaction inhibits the repressor activity of JAZ3, resulting in activation of downstream transcription factors involved in promoting flower senescence. Furthermore, we showed that CO, JAZ3, and the E3 ubiquitin ligase COI1 (Coronatine Insensitive 1) could form a protein complex in planta, which promotes the degradation of both CO and JAZ3 in the presence of JAs. Taken together, our results indicate that CO, a key regulator of photoperiodic flowering, is also involved in promoting flower senescence and abscission by augmenting JA signaling and response. We propose that coordinated recruitment of photoperiodic and JA signaling pathways could be an efficient way for plants to chronologically order floral processes and ensure the success of offspring production.
Collapse
Affiliation(s)
- Gloria Serrano-Bueno
- Plant Development Group, Institute for Plant Biochemistry and Photosynthesis, CSIC-Universidad de Sevilla, 41092 Sevilla, Spain.
| | - Pedro de Los Reyes
- Plant Development Group, Institute for Plant Biochemistry and Photosynthesis, CSIC-Universidad de Sevilla, 41092 Sevilla, Spain
| | - Andrea Chini
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Gabriel Ferreras-Garrucho
- Plant Development Group, Institute for Plant Biochemistry and Photosynthesis, CSIC-Universidad de Sevilla, 41092 Sevilla, Spain
| | | | - Marta Boter
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Federico Valverde
- Plant Development Group, Institute for Plant Biochemistry and Photosynthesis, CSIC-Universidad de Sevilla, 41092 Sevilla, Spain.
| |
Collapse
|
48
|
Ahmad M, Varela Alonso A, Koletti AE, Rodić N, Reichelt M, Rödel P, Assimopoulou AN, Paun O, Declerck S, Schneider C, Molin EM. Dynamics of alkannin/shikonin biosynthesis in response to jasmonate and salicylic acid in Lithospermum officinale. Sci Rep 2022; 12:17093. [PMID: 36224205 PMCID: PMC9554848 DOI: 10.1038/s41598-022-21322-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/26/2022] [Indexed: 01/04/2023] Open
Abstract
Alkannin/shikonin and their derivatives are specialised metabolites of high pharmaceutical and ecological importance exclusively produced in the periderm of members of the plant family Boraginaceae. Previous studies have shown that their biosynthesis is induced in response to methyl jasmonate but not salicylic acid, two phytohormones that play important roles in plant defence. However, mechanistic understanding of induction and non-induction remains largely unknown. In the present study, we generated the first comprehensive transcriptomic dataset and metabolite profiles of Lithospermum officinale plants treated with methyl jasmonate and salicylic acid to shed light on the underlying mechanisms. Our results highlight the diverse biological processes activated by both phytohormones and reveal the important regulatory role of the mevalonate pathway in alkannin/shikonin biosynthesis in L. officinale. Furthermore, by modelling a coexpression network, we uncovered structural and novel regulatory candidate genes connected to alkannin/shikonin biosynthesis. Besides providing new mechanistic insights into alkannin/shikonin biosynthesis, the generated methyl jasmonate and salicylic acid elicited expression profiles together with the coexpression networks serve as important functional genomic resources for the scientific community aiming at deepening the understanding of alkannin/shikonin biosynthesis.
Collapse
Affiliation(s)
- Muhammad Ahmad
- grid.4332.60000 0000 9799 7097Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria ,grid.10420.370000 0001 2286 1424Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Alicia Varela Alonso
- grid.506382.aInstitut für Pflanzenkultur GmbH & Co. KG., Schnega, Germany ,grid.7942.80000 0001 2294 713XEarth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Antigoni E. Koletti
- grid.4793.90000000109457005Department of Chemical Engineering, Laboratory of Organic Chemistry and Center of Interdisciplinary Research and Innovation, Natural Products Research Centre of Excellence (NatPro-AUTh), Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Nebojša Rodić
- grid.4793.90000000109457005Department of Chemical Engineering, Laboratory of Organic Chemistry and Center of Interdisciplinary Research and Innovation, Natural Products Research Centre of Excellence (NatPro-AUTh), Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Michael Reichelt
- grid.418160.a0000 0004 0491 7131Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Philipp Rödel
- grid.506382.aInstitut für Pflanzenkultur GmbH & Co. KG., Schnega, Germany
| | - Andreana N. Assimopoulou
- grid.4793.90000000109457005Department of Chemical Engineering, Laboratory of Organic Chemistry and Center of Interdisciplinary Research and Innovation, Natural Products Research Centre of Excellence (NatPro-AUTh), Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Ovidiu Paun
- grid.10420.370000 0001 2286 1424Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Stéphane Declerck
- grid.7942.80000 0001 2294 713XEarth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Carolin Schneider
- grid.506382.aInstitut für Pflanzenkultur GmbH & Co. KG., Schnega, Germany
| | - Eva M. Molin
- grid.4332.60000 0000 9799 7097Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
49
|
Barmukh R, Roorkiwal M, Garg V, Khan AW, German L, Jaganathan D, Chitikineni A, Kholova J, Kudapa H, Sivasakthi K, Samineni S, Kale SM, Gaur PM, Sagurthi SR, Benitez‐Alfonso Y, Varshney RK. Genetic variation in CaTIFY4b contributes to drought adaptation in chickpea. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1701-1715. [PMID: 35534989 PMCID: PMC9398337 DOI: 10.1111/pbi.13840] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/28/2022] [Indexed: 05/26/2023]
Abstract
Chickpea production is vulnerable to drought stress. Identifying the genetic components underlying drought adaptation is crucial for enhancing chickpea productivity. Here, we present the fine mapping and characterization of 'QTL-hotspot', a genomic region controlling chickpea growth with positive consequences on crop production under drought. We report that a non-synonymous substitution in the transcription factor CaTIFY4b regulates seed weight and organ size in chickpea. Ectopic expression of CaTIFY4b in Medicago truncatula enhances root growth under water deficit. Our results suggest that allelic variation in 'QTL-hotspot' improves pre-anthesis water use, transpiration efficiency, root architecture and canopy development, enabling high-yield performance under terminal drought conditions. Gene expression analysis indicated that CaTIFY4b may regulate organ size under water deficit by modulating the expression of GRF-INTERACTING FACTOR1 (GIF1), a transcriptional co-activator of Growth-Regulating Factors. Taken together, our study offers new insights into the role of CaTIFY4b and on diverse physiological and molecular mechanisms underpinning chickpea growth and production under specific drought scenarios.
Collapse
Affiliation(s)
- Rutwik Barmukh
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
- Department of GeneticsOsmania UniversityHyderabadIndia
| | - Manish Roorkiwal
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
- Khalifa Center for Genetic Engineering and BiotechnologyUnited Arab Emirates UniversityAl‐AinUnited Arab Emirates
- The UWA Institute of AgricultureThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Vanika Garg
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Aamir W. Khan
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Liam German
- Centre for Plant ScienceSchool of BiologyUniversity of LeedsLeedsUK
| | - Deepa Jaganathan
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Annapurna Chitikineni
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Jana Kholova
- Crop Physiology and ModellingInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Himabindu Kudapa
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Kaliamoorthy Sivasakthi
- Crop Physiology and ModellingInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Srinivasan Samineni
- Crop BreedingInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Sandip M. Kale
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Pooran M. Gaur
- The UWA Institute of AgricultureThe University of Western AustraliaPerthWestern AustraliaAustralia
- Crop BreedingInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | | | | | - Rajeev K. Varshney
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
- The UWA Institute of AgricultureThe University of Western AustraliaPerthWestern AustraliaAustralia
- Murdoch’s Centre for Crop & Food InnovationState Agricultural Biotechnology CentreFood Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| |
Collapse
|
50
|
Guo M, Zhang Y, Jia X, Wang X, Zhang Y, Liu J, Yang Q, Ruan W, Yi K. Alternative splicing of REGULATOR OF LEAF INCLINATION 1 modulates phosphate starvation signaling and growth in plants. THE PLANT CELL 2022; 34:3319-3338. [PMID: 35640569 PMCID: PMC9421462 DOI: 10.1093/plcell/koac161] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/21/2022] [Indexed: 06/01/2023]
Abstract
Phosphate (Pi) limitation represents a primary constraint on crop production. To better cope with Pi deficiency stress, plants have evolved multiple adaptive mechanisms for phosphorus acquisition and utilization, including the alteration of growth and the activation of Pi starvation signaling. However, how these strategies are coordinated remains largely unknown. Here, we found that the alternative splicing (AS) of REGULATOR OF LEAF INCLINATION 1 (RLI1) in rice (Oryza sativa) produces two protein isoforms: RLI1a, containing MYB DNA binding domain and RLI1b, containing both MYB and coiled-coil (CC) domains. The absence of a CC domain in RLI1a enables it to activate broader target genes than RLI1b. RLI1a, but not RLI1b, regulates both brassinolide (BL) biosynthesis and signaling by directly activating BL-biosynthesis and signaling genes. Both RLI1a and RLI1b modulate Pi starvation signaling. RLI1 and PHOSPHATE STARVATION RESPONSE 2 function redundantly to regulate Pi starvation signaling and growth in response to Pi deficiency. Furthermore, the AS of RLI1-related genes to produce two isoforms for growth and Pi signaling is widely present in both dicots and monocots. Together, these findings indicate that the AS of RLI1 is an important and functionally conserved strategy to orchestrate Pi starvation signaling and growth to help plants adapt to Pi-limitation stress.
Collapse
Affiliation(s)
| | | | - Xianqing Jia
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Xueqing Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Yibo Zhang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Jifeng Liu
- Hebei Wotu Seed Co. Ltd., Handan 057550, China
| | | | | | - Keke Yi
- Author for correspondence: (K.Y.), (W.R.)
| |
Collapse
|