1
|
Hu Q, Li X, Xi W, Xu J, Xu C, Ausin I, Wang Y. Arabidopsis F-box proteins D5BF1 and D5BF2 negatively regulate Agrobacterium-mediated transformation and tumorigenesis. MOLECULAR PLANT PATHOLOGY 2024; 25:e70006. [PMID: 39267531 PMCID: PMC11393451 DOI: 10.1111/mpp.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
The pathogen Agrobacterium tumefaciens is known for causing crown gall tumours in plants. However, it has also been harnessed as a valuable tool for plant genetic transformation. Apart from the T-DNA, Agrobacterium also delivers at least five virulence proteins into the host plant cells, which are required for an efficient infection. One of these virulence proteins is VirD5. F-box proteins, encoded in the host plant genome or the Ti plasmid, and the ubiquitin/26S proteasome system (UPS) also play an important role in facilitating Agrobacterium infection. Our study identified two Arabidopsis F-box proteins, D5BF1 and D5BF2, that bind VirD5 and facilitate its degradation via the UPS. Additionally, we found that Agrobacterium partially suppresses the expression of D5BF1 and D5BF2. Lastly, stable transformation and tumorigenesis efficiency assays revealed that D5BF1 and D5BF2 negatively regulate the Agrobacterium infection process, showing that the plant F-box proteins and UPS play a role in defending against Agrobacterium infection.
Collapse
Affiliation(s)
- Qin Hu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionCollege of Life Sciences, Northwest A&F UniversityYanglingShaanxiChina
- Institute of Future AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Xueying Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionCollege of Life Sciences, Northwest A&F UniversityYanglingShaanxiChina
- Institute of Future AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Weijie Xi
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionCollege of Life Sciences, Northwest A&F UniversityYanglingShaanxiChina
- Institute of Future AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Junjie Xu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionCollege of Life Sciences, Northwest A&F UniversityYanglingShaanxiChina
- Institute of Future AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Chao Xu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionCollege of Life Sciences, Northwest A&F UniversityYanglingShaanxiChina
- Institute of Future AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Israel Ausin
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionCollege of Life Sciences, Northwest A&F UniversityYanglingShaanxiChina
- Institute of Future AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Yafei Wang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionCollege of Life Sciences, Northwest A&F UniversityYanglingShaanxiChina
- Institute of Future AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
2
|
Zhang Y, Patankar H, Aljedaani F, Blilou I. A framework for date palm (Phoenix dactylifera L.) tissue regeneration and stable transformation. PHYSIOLOGIA PLANTARUM 2024; 176:e14189. [PMID: 38342489 DOI: 10.1111/ppl.14189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/13/2024]
Abstract
The date palm is a resilient, socioeconomically valuable desert fruit tree renowned for its heat, drought, and salinity tolerance. Date palm fruits are rich in nutrients and antioxidants, and their beneficial health properties can mitigate current and future food security challenges. However, it is challenging to improve date palm production through conventional breeding methods due to its slow growth. Date palm seeds do not produce true-to-type progeny, and commercial propagation relies on direct organogenesis from maternal tissue. Consequently, numerous economically important and valuable cultivars are lost due to tissue recalcitrance and challenges in inducing cell dedifferentiation and regeneration. Moreover, genetic engineering of date palms is currently impossible due to the lack of a stable genetic transformation protocol. This hampers the development of genetic resources in date palms. This study established a tissue culture pipeline and a genetic transformation protocol for various commercially important date palm cultivars. We used the non-invasive visual reporter RUBY and four morphogenic regulators to validate and improve date palm transformation potential. We found that the date palm BABY-BOOM (PdBBM) and the WOUND INDUCED DEDIFFERENTIATION (PdWIND1) enhanced transformation efficacy. We show that PdBBM can induce embryogenesis in hormone-free media and regenerate roots and shoots in recalcitrant varieties. On the other hand, PdWIND1 maintained embryogenic cells in their undifferentiated state. Our study provides a foundation for genetically improving date palms and a potential solution for preserving economically valuable varieties.
Collapse
Affiliation(s)
- Yasha Zhang
- BESE Division, Plant Cell and Developmental Biology, Center for Desert and Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Himanshu Patankar
- BESE Division, Plant Cell and Developmental Biology, Center for Desert and Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Fatima Aljedaani
- BESE Division, Plant Cell and Developmental Biology, Center for Desert and Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ikram Blilou
- BESE Division, Plant Cell and Developmental Biology, Center for Desert and Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Thomson G, Dickinson L, Jacob Y. Genomic consequences associated with Agrobacterium-mediated transformation of plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:342-363. [PMID: 37831618 PMCID: PMC10841553 DOI: 10.1111/tpj.16496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Attenuated strains of the naturally occurring plant pathogen Agrobacterium tumefaciens can transfer virtually any DNA sequence of interest to model plants and crops. This has made Agrobacterium-mediated transformation (AMT) one of the most commonly used tools in agricultural biotechnology. Understanding AMT, and its functional consequences, is of fundamental importance given that it sits at the intersection of many fundamental fields of study, including plant-microbe interactions, DNA repair/genome stability, and epigenetic regulation of gene expression. Despite extensive research and use of AMT over the last 40 years, the extent of genomic disruption associated with integrating exogenous DNA into plant genomes using this method remains underappreciated. However, new technologies like long-read sequencing make this disruption more apparent, complementing previous findings from multiple research groups that have tackled this question in the past. In this review, we cover progress on the molecular mechanisms involved in Agrobacterium-mediated DNA integration into plant genomes. We also discuss localized mutations at the site of insertion and describe the structure of these DNA insertions, which can range from single copy insertions to large concatemers, consisting of complex DNA originating from different sources. Finally, we discuss the prevalence of large-scale genomic rearrangements associated with the integration of DNA during AMT with examples. Understanding the intended and unintended effects of AMT on genome stability is critical to all plant researchers who use this methodology to generate new genetic variants.
Collapse
Affiliation(s)
- Geoffrey Thomson
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
| | - Lauren Dickinson
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
| | - Yannick Jacob
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
- Yale Cancer Center, Yale School of Medicine; New Haven, Connecticut 06511, USA
| |
Collapse
|
4
|
Yang Q, Wang T, Cao J, Wang HL, Tan S, Zhang Y, Park S, Park H, Woo HR, Li X, Xia X, Guo H, Li Z. Histone variant HTB4 delays leaf senescence by epigenetic control of Ib bHLH transcription factor-mediated iron homeostasis. THE NEW PHYTOLOGIST 2023; 240:694-709. [PMID: 37265004 DOI: 10.1111/nph.19008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 05/02/2023] [Indexed: 06/03/2023]
Abstract
Leaf senescence is an orderly process regulated by multiple internal factors and diverse environmental stresses including nutrient deficiency. Histone variants are involved in regulating plant growth and development. However, their functions and underlying regulatory mechanisms in leaf senescence remain largely unclear. Here, we found that H2B histone variant HTB4 functions as a negative regulator of leaf senescence. Loss of function of HTB4 led to early leaf senescence phenotypes that were rescued by functional complementation. RNA-seq analysis revealed that several Ib subgroup basic helix-loop-helix (bHLH) transcription factors (TFs) involved in iron (Fe) homeostasis, including bHLH038, bHLH039, bHLH100, and bHLH101, were suppressed in the htb4 mutant, thereby compromising the expressions of FERRIC REDUCTION OXIDASE 2 (FRO2) and IRON-REGULATED TRANSPORTER (IRT1), two important components of the Fe uptake machinery. Chromatin immunoprecipitation-quantitative polymerase chain reaction analysis revealed that HTB4 could bind to the promoter regions of Ib bHLH TFs and enhance their expression by promoting the enrichment of the active mark H3K4me3 near their transcriptional start sites. Moreover, overexpression of Ib bHLH TFs or IRT1 suppressed the premature senescence phenotype of the htb4 mutant. Our work established a signaling pathway, HTB4-bHLH TFs-FRO2/IRT1-Fe homeostasis, which regulates the onset and progression of leaf senescence.
Collapse
Affiliation(s)
- Qi Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ting Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jie Cao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hou-Ling Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shuya Tan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yuan Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Sanghoon Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Hyunsoo Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Xiaojuan Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinli Xia
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hongwei Guo
- Department of Biology, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Zhonghai Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
5
|
Wang L, Zhao F, Liu H, Chen H, Zhang F, Li S, Sun T, Nekrasov V, Huang S, Dong S. A modified Agrobacterium-mediated transformation for two oomycete pathogens. PLoS Pathog 2023; 19:e1011346. [PMID: 37083862 PMCID: PMC10156060 DOI: 10.1371/journal.ppat.1011346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 05/03/2023] [Accepted: 04/06/2023] [Indexed: 04/22/2023] Open
Abstract
Oomycetes are a group of filamentous microorganisms that include some of the biggest threats to food security and natural ecosystems. However, much of the molecular basis of the pathogenesis and the development in these organisms remains to be learned, largely due to shortage of efficient genetic manipulation methods. In this study, we developed modified transformation methods for two important oomycete species, Phytophthora infestans and Plasmopara viticola, that bring destructive damage in agricultural production. As part of the study, we established an improved Agrobacterium-mediated transformation (AMT) method by prokaryotic expression in Agrobacterium tumefaciens of AtVIP1 (VirE2-interacting protein 1), an Arabidopsis bZIP gene required for AMT but absent in oomycetes genomes. Using the new method, we achieved an increment in transformation efficiency in two P. infestans strains. We further obtained a positive GFP transformant of P. viticola using the modified AMT method. By combining this method with the CRISPR/Cas12a genome editing system, we successfully performed targeted mutagenesis and generated loss-of-function mutations in two P. infestans genes. We edited a MADS-box transcription factor-encoding gene and found that a homozygous mutation in MADS-box results in poor sporulation and significantly reduced virulence. Meanwhile, a single-copy avirulence effector-encoding gene Avr8 in P. infestans was targeted and the edited transformants were virulent on potato carrying the cognate resistance gene R8, suggesting that loss of Avr8 led to successful evasion of the host immune response by the pathogen. In summary, this study reports on a modified genetic transformation and genome editing system, providing a potential tool for accelerating molecular genetic studies not only in oomycetes, but also other microorganisms.
Collapse
Affiliation(s)
- Luyao Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Department of Plant Pathology and Key Laboratory of Integrated Management of Crop Disease and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Fei Zhao
- Department of Plant Pathology and Key Laboratory of Integrated Management of Crop Disease and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Haohao Liu
- Department of Plant Pathology and Key Laboratory of Integrated Management of Crop Disease and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Han Chen
- Department of Plant Pathology and Key Laboratory of Integrated Management of Crop Disease and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Fan Zhang
- Department of Plant Pathology and Key Laboratory of Integrated Management of Crop Disease and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Suhua Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Tongjun Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Vladimir Nekrasov
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, United Kingdom
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Suomeng Dong
- Department of Plant Pathology and Key Laboratory of Integrated Management of Crop Disease and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Corcoran ET, LeBlanc C, Huang YC, Arias Tsang M, Sarkiss A, Hu Y, Pedmale UV, Jacob Y. Systematic histone H4 replacement in Arabidopsis thaliana reveals a role for H4R17 in regulating flowering time. THE PLANT CELL 2022; 34:3611-3631. [PMID: 35879829 PMCID: PMC9516085 DOI: 10.1093/plcell/koac211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/15/2022] [Indexed: 06/13/2023]
Abstract
Despite the broad array of roles for epigenetic mechanisms on regulating diverse processes in eukaryotes, no experimental system is currently available in plants for the direct assessment of histone function. In this work, we present the development of a genetic strategy in Arabidopsis (Arabidopsis thaliana) whereby modified histone H4 transgenes can completely replace the expression of endogenous histone H4 genes. Accordingly, we established a collection of plants expressing different H4 point mutants targeting residues that may be post-translationally modified in vivo. To demonstrate its utility, we screened this new H4 mutant collection to uncover substitutions in H4 that alter flowering time. We identified different mutations in the H4 tail (H4R17A) and the H4 globular domain (H4R36A, H4R39K, H4R39A, and H4K44A) that strongly accelerate the floral transition. Furthermore, we identified a conserved regulatory relationship between H4R17 and the ISWI chromatin remodeling complex in plants: As with other biological systems, H4R17 regulates nucleosome spacing via ISWI. Overall, this work provides a large set of H4 mutants to the plant epigenetics community that can be used to systematically assess histone H4 function in Arabidopsis and a roadmap to replicate this strategy for studying other histone proteins in plants.
Collapse
Affiliation(s)
- Emma Tung Corcoran
- Faculty of Arts and Sciences, Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Chantal LeBlanc
- Faculty of Arts and Sciences, Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Yi-Chun Huang
- Faculty of Arts and Sciences, Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Mia Arias Tsang
- Faculty of Arts and Sciences, Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Anthony Sarkiss
- Faculty of Arts and Sciences, Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Yuzhao Hu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ullas V Pedmale
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
7
|
Raman V, Rojas CM, Vasudevan B, Dunning K, Kolape J, Oh S, Yun J, Yang L, Li G, Pant BD, Jiang Q, Mysore KS. Agrobacterium expressing a type III secretion system delivers Pseudomonas effectors into plant cells to enhance transformation. Nat Commun 2022; 13:2581. [PMID: 35546550 PMCID: PMC9095702 DOI: 10.1038/s41467-022-30180-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/20/2022] [Indexed: 01/07/2023] Open
Abstract
Agrobacterium-mediated plant transformation (AMT) is the basis of modern-day plant biotechnology. One major drawback of this technology is the recalcitrance of many plant species/varieties to Agrobacterium infection, most likely caused by elicitation of plant defense responses. Here, we develop a strategy to increase AMT by engineering Agrobacterium tumefaciens to express a type III secretion system (T3SS) from Pseudomonas syringae and individually deliver the P. syringae effectors AvrPto, AvrPtoB, or HopAO1 to suppress host defense responses. Using the engineered Agrobacterium, we demonstrate increase in AMT of wheat, alfalfa and switchgrass by ~250%-400%. We also show that engineered A. tumefaciens expressing a T3SS can deliver a plant protein, histone H2A-1, to enhance AMT. This strategy is of great significance to both basic research and agricultural biotechnology for transient and stable transformation of recalcitrant plant species/varieties and to deliver proteins into plant cells in a non-transgenic manner.
Collapse
Affiliation(s)
- Vidhyavathi Raman
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Clemencia M Rojas
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | | | - Kevin Dunning
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | | | - Sunhee Oh
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Jianfei Yun
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Lishan Yang
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Guangming Li
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Bikram D Pant
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | | | - Kirankumar S Mysore
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA.
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA.
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
8
|
Liu T, Cao L, Cheng Y, Ji J, Wei Y, Wang C, Duan K. MKK4/5-MPK3/6 Cascade Regulates Agrobacterium-Mediated Transformation by Modulating Plant Immunity in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:731690. [PMID: 34659297 PMCID: PMC8514879 DOI: 10.3389/fpls.2021.731690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/01/2021] [Indexed: 05/25/2023]
Abstract
Agrobacterium tumefaciens is a specialized plant pathogen that causes crown gall disease and is commonly used for Agrobacterium-mediated transformation. As a pathogen, Agrobacterium triggers plant immunity, which affects transformation. However, the signaling components and pathways in plant immunity to Agrobacterium remain elusive. We demonstrate that two Arabidopsis mitogen-activated protein kinase kinases (MAPKKs) MKK4/MKK5 and their downstream mitogen-activated protein kinases (MAPKs) MPK3/MPK6 play major roles in both Agrobacterium-triggered immunity and Agrobacterium-mediated transformation. Agrobacteria induce MPK3/MPK6 activity and the expression of plant defense response genes at a very early stage. This process is dependent on the MKK4/MKK5 function. The loss of the function of MKK4 and MKK5 or their downstream MPK3 and MPK6 abolishes plant immunity to agrobacteria and increases transformation frequency, whereas the activation of MKK4 and MKK5 enhances plant immunity and represses transformation. Global transcriptome analysis indicates that agrobacteria induce various plant defense pathways, including reactive oxygen species (ROS) production, ethylene (ET), and salicylic acid- (SA-) mediated defense responses, and that MKK4/MKK5 is essential for the induction of these pathways. The activation of MKK4 and MKK5 promotes ROS production and cell death during agrobacteria infection. Based on these results, we propose that the MKK4/5-MPK3/6 cascade is an essential signaling pathway regulating Agrobacterium-mediated transformation through the modulation of Agrobacterium-triggered plant immunity.
Collapse
|
9
|
Effects of lipid emulsions on the formation of Escherichia coli-Candida albicans mixed-species biofilms on PVC. Sci Rep 2021; 11:16929. [PMID: 34413406 PMCID: PMC8376934 DOI: 10.1038/s41598-021-96385-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/05/2021] [Indexed: 12/22/2022] Open
Abstract
Patients receiving lipid emulsions are at increased risk of contracting catheter-related bloodstream infections (CRBSIs) in the clinic. More than 15% of CRBSIs are polymicrobial. The objective of this study was to explore the effects of lipid emulsions on the formation of Escherichia coli (E. coli)–Candida albicans (C. albicans) mixed-species biofilms (BFs) on polyvinyl chloride (PVC) surfaces and the underlying mechanism. Mixed-species BFs were produced by coculturing E. coli and C. albicans with PVC in various concentrations of lipid emulsions. Crystal violet staining and XTT assays were performed to test the mixed-species BF biomass and the viability of microbes in the BFs. The microstructures of the BFs were observed by an approach that combined confocal laser scanning microscopy, fluorescence in situ hybridization, and scanning electron microscopy. The study found that lipid emulsions could promote the formation of E. coli–C. albicans mixed-species BFs, especially with 10% lipid emulsions. The mechanism by which lipid emulsions promote mixed-species BF formation may involve significant upregulation of the expression of the flhDC, iha, HTA1, and HWP1 genes, which are associated with bacterial motility, adhesion, and BF formation. The results derived from this study necessitate strict aseptic precautions when handling lipid emulsions and avoiding the use of high concentrations of lipid emulsions for as long as possible.
Collapse
|
10
|
Plant DNA Repair and Agrobacterium T-DNA Integration. Int J Mol Sci 2021; 22:ijms22168458. [PMID: 34445162 PMCID: PMC8395108 DOI: 10.3390/ijms22168458] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/28/2022] Open
Abstract
Agrobacterium species transfer DNA (T-DNA) to plant cells where it may integrate into plant chromosomes. The process of integration is thought to involve invasion and ligation of T-DNA, or its copying, into nicks or breaks in the host genome. Integrated T-DNA often contains, at its junctions with plant DNA, deletions of T-DNA or plant DNA, filler DNA, and/or microhomology between T-DNA and plant DNA pre-integration sites. T-DNA integration is also often associated with major plant genome rearrangements, including inversions and translocations. These characteristics are similar to those often found after repair of DNA breaks, and thus DNA repair mechanisms have frequently been invoked to explain the mechanism of T-DNA integration. However, the involvement of specific plant DNA repair proteins and Agrobacterium proteins in integration remains controversial, with numerous contradictory results reported in the literature. In this review I discuss this literature and comment on many of these studies. I conclude that either multiple known DNA repair pathways can be used for integration, or that some yet unknown pathway must exist to facilitate T-DNA integration into the plant genome.
Collapse
|
11
|
Lapham RA, Lee LY, Xhako E, Gómez EG, Nivya VM, Gelvin SB. Agrobacterium VirE2 Protein Modulates Plant Gene Expression and Mediates Transformation From Its Location Outside the Nucleus. FRONTIERS IN PLANT SCIENCE 2021; 12:684192. [PMID: 34149784 PMCID: PMC8213393 DOI: 10.3389/fpls.2021.684192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/10/2021] [Indexed: 05/27/2023]
Abstract
Agrobacterium effector protein VirE2 is important for plant transformation. VirE2 likely coats transferred DNA (T-DNA) in the plant cell and protects it from degradation. VirE2 localizes to the plant cytoplasm and interacts with several host proteins. Plant-expressed VirE2 can complement a virE2 mutant Agrobacterium strain to support transformation. We investigated whether VirE2 could facilitate transformation from a nuclear location by affixing to it a strong nuclear localization signal (NLS) sequence. Only cytoplasmic-, but not nuclear-localized, VirE2 could stimulate transformation. To investigate the ways VirE2 supports transformation, we generated transgenic Arabidopsis plants containing a virE2 gene under the control of an inducible promoter and performed RNA-seq and proteomic analyses before and after induction. Some differentially expressed plant genes were previously known to facilitate transformation. Knockout mutant lines of some other VirE2 differentially expressed genes showed altered transformation phenotypes. Levels of some proteins known to be important for transformation increased in response to VirE2 induction, but prior to or without induction of their corresponding mRNAs. Overexpression of some other genes whose proteins increased after VirE2 induction resulted in increased transformation susceptibility. We conclude that cytoplasmically localized VirE2 modulates both plant RNA and protein levels to facilitate transformation.
Collapse
Affiliation(s)
- Rachelle A. Lapham
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Lan-Ying Lee
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Eder Xhako
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Esteban Gañán Gómez
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Departamento de Ciencias Biológicas, Universidad EAFIT, Medellín, Colombia
| | - V. M. Nivya
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Department of Plant Science, School of Biological Science, Central University of Kerala, Kasaragod, India
| | - Stanton B. Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
12
|
Xin X, Su T, Li P, Wang W, Zhao X, Yu Y, Zhang D, Yu S, Zhang F. A histone H4 gene prevents drought-induced bolting in Chinese cabbage by attenuating the expression of flowering genes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:623-635. [PMID: 33005948 DOI: 10.1093/jxb/eraa452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Flowering is an important trait in Chinese cabbage, because premature flowering reduces yield and quality of the harvested products. Water deficit, caused by drought or other environmental conditions, induces early flowering. Drought resistance involves global reprogramming of transcription, hormone signaling, and chromatin modification. We show that a histone H4 protein, BrHIS4.A04, physically interacts with a homeodomain protein BrVIN3.1, which was selected during the domestication of late-bolting Chinese cabbage. Over-expression of BrHIS4.A04 resulted in premature flowering under normal growth conditions, but prevented further premature bolting in response to drought. We show that the expression of key abscisic acid (ABA) signaling genes, and also photoperiodic flowering genes was attenuated in BrHIS4.A04-overexpressing (BrHIS4.A04OE) plants under drought conditions. Furthermore, the relative change in H4-acetylation at these gene loci was reduced in BrHIS4.A04OE plants. We suggest that BrHIS4.A04 prevents premature bolting by attenuating the expression of photoperiodic flowering genes under drought conditions, through the ABA signaling pathway. Since BrHIS4.A04OE plants displayed no phenotype related to vegetative or reproductive development under laboratory-induced drought conditions, our findings contribute to the potential fine-tuning of flowering time in crops through genetic engineering without any growth penalty, although more data are necessary under field drought conditions.
Collapse
Affiliation(s)
- Xiaoyun Xin
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
| | - Tongbing Su
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Peirong Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Weihong Wang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Xiuyun Zhao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yangjun Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Deshuang Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Shuancang Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Fenglan Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| |
Collapse
|
13
|
Thompson MG, Moore WM, Hummel NFC, Pearson AN, Barnum CR, Scheller HV, Shih PM. Agrobacterium tumefaciens: A Bacterium Primed for Synthetic Biology. BIODESIGN RESEARCH 2020; 2020:8189219. [PMID: 37849895 PMCID: PMC10530663 DOI: 10.34133/2020/8189219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/26/2020] [Indexed: 10/19/2023] Open
Abstract
Agrobacterium tumefaciens is an important tool in plant biotechnology due to its natural ability to transfer DNA into the genomes of host plants. Genetic manipulations of A. tumefaciens have yielded considerable advances in increasing transformational efficiency in a number of plant species and cultivars. Moreover, there is overwhelming evidence that modulating the expression of various mediators of A. tumefaciens virulence can lead to more successful plant transformation; thus, the application of synthetic biology to enable targeted engineering of the bacterium may enable new opportunities for advancing plant biotechnology. In this review, we highlight engineering targets in both A. tumefaciens and plant hosts that could be exploited more effectively through precision genetic control to generate high-quality transformation events in a wider range of host plants. We then further discuss the current state of A. tumefaciens and plant engineering with regard to plant transformation and describe how future work may incorporate a rigorous synthetic biology approach to tailor strains of A. tumefaciens used in plant transformation.
Collapse
Affiliation(s)
- Mitchell G. Thompson
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | - William M. Moore
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Niklas F. C. Hummel
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | - Allison N. Pearson
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Collin R. Barnum
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | - Henrik V. Scheller
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Patrick M. Shih
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
- Genome Center, University of California-Davis, Davis, CA, USA
| |
Collapse
|
14
|
Orman-Ligeza B, Harwood W, Hedley PE, Hinchcliffe A, Macaulay M, Uauy C, Trafford K. TRA1: A Locus Responsible for Controlling Agrobacterium-Mediated Transformability in Barley. FRONTIERS IN PLANT SCIENCE 2020; 11:355. [PMID: 32373138 PMCID: PMC7176908 DOI: 10.3389/fpls.2020.00355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/10/2020] [Indexed: 05/18/2023]
Abstract
In barley (Hordeum vulgare L.), Agrobacterium-mediated transformation efficiency is highly dependent on genotype with very few cultivars being amenable to transformation. Golden Promise is the cultivar most widely used for barley transformation and developing embryos are the most common donor tissue. We tested whether barley mutants with abnormally large embryos were more or less amenable to transformation and discovered that mutant M1460 had a transformation efficiency similar to that of Golden Promise. The large-embryo phenotype of M1460 is due to mutation at the LYS3 locus. There are three other barley lines with independent mutations at the same LYS3 locus, and one of these, Risø1508 has an identical missense mutation to that in M1460. However, none of the lys3 mutants except M1460 were transformable showing that the locus responsible for transformation efficiency, TRA1, was not LYS3 but another locus unique to M1460. To identify TRA1, we generated a segregating population by crossing M1460 to the cultivar Optic, which is recalcitrant to transformation. After four rounds of backcrossing to Optic, plants were genotyped and their progeny were tested for transformability. Some of the progeny lines were transformable at high efficiencies similar to those seen for the parent M1460 and some were not transformable, like Optic. A region on chromosome 2H inherited from M1460 is present in transformable lines only. We propose that one of the 225 genes in this region is TRA1.
Collapse
Affiliation(s)
- Beata Orman-Ligeza
- National Institute of Agricultural Botany (NIAB), Cambridge, United Kingdom
| | - Wendy Harwood
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Pete E. Hedley
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | | | | | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Kay Trafford
- National Institute of Agricultural Botany (NIAB), Cambridge, United Kingdom
| |
Collapse
|
15
|
Lacroix B, Citovsky V. Pathways of DNA Transfer to Plants from Agrobacterium tumefaciens and Related Bacterial Species. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:231-251. [PMID: 31226020 PMCID: PMC6717549 DOI: 10.1146/annurev-phyto-082718-100101] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Genetic transformation of host plants by Agrobacterium tumefaciens and related species represents a unique model for natural horizontal gene transfer. Almost five decades of studying the molecular interactions between Agrobacterium and its host cells have yielded countless fundamental insights into bacterial and plant biology, even though several steps of the DNA transfer process remain poorly understood. Agrobacterium spp. may utilize different pathways for transferring DNA, which likely reflects the very wide host range of Agrobacterium. Furthermore, closely related bacterial species, such as rhizobia, are able to transfer DNA to host plant cells when they are provided with Agrobacterium DNA transfer machinery and T-DNA. Homologs of Agrobacterium virulence genes are found in many bacterial genomes, but only one non-Agrobacterium bacterial strain, Rhizobium etli CFN42, harbors a complete set of virulence genes and can mediate plant genetic transformation when carrying a T-DNA-containing plasmid.
Collapse
Affiliation(s)
- Benoît Lacroix
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794-5215, USA;
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794-5215, USA;
| |
Collapse
|
16
|
Ma J, Wan D, Duan B, Bai X, Bai Q, Chen N, Ma T. Genome sequence and genetic transformation of a widely distributed and cultivated poplar. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:451-460. [PMID: 30044051 PMCID: PMC6335071 DOI: 10.1111/pbi.12989] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 05/20/2023]
Abstract
Populus alba is widely distributed and cultivated in Europe and Asia. This species has been used for diverse studies. In this study, we assembled a de novo genome sequence of P. alba var. pyramidalis (= P. bolleana) and confirmed its high transformation efficiency and short transformation time by experiments. Through a process of hybrid genome assembly, a total of 464 M of the genome was assembled. Annotation analyses predicted 37 901 protein-coding genes. This genome is highly collinear to that of P. trichocarpa, with most genes having orthologs in the two species. We found a marked expansion of gene families related to histone and the hormone auxin but loss of disease resistance genes in P. alba if compared with the closely related P. trichocarpa. The genome sequence presented here represents a valuable resource for further molecular functional analyses of this species as a new tree model, poplar breeding practices and comparative genomic analyses across different poplars.
Collapse
Affiliation(s)
- Jianchao Ma
- State Key Laboratory of Grassland Agro‐EcosystemInstitute of Innovation Ecology & School of Life SciencesLanzhou UniversityLanzhouChina
| | - Dongshi Wan
- State Key Laboratory of Grassland Agro‐EcosystemInstitute of Innovation Ecology & School of Life SciencesLanzhou UniversityLanzhouChina
| | - Bingbing Duan
- State Key Laboratory of Grassland Agro‐EcosystemInstitute of Innovation Ecology & School of Life SciencesLanzhou UniversityLanzhouChina
| | - Xiaotao Bai
- State Key Laboratory of Grassland Agro‐EcosystemInstitute of Innovation Ecology & School of Life SciencesLanzhou UniversityLanzhouChina
| | - Qiuxian Bai
- State Key Laboratory of Grassland Agro‐EcosystemInstitute of Innovation Ecology & School of Life SciencesLanzhou UniversityLanzhouChina
| | - Ningning Chen
- State Key Laboratory of Grassland Agro‐EcosystemInstitute of Innovation Ecology & School of Life SciencesLanzhou UniversityLanzhouChina
| | - Tao Ma
- State Key Laboratory of Grassland Agro‐EcosystemInstitute of Innovation Ecology & School of Life SciencesLanzhou UniversityLanzhouChina
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduChina
| |
Collapse
|
17
|
Dokládal L, Benková E, Honys D, Dupľáková N, Lee LY, Gelvin SB, Sýkorová E. An armadillo-domain protein participates in a telomerase interaction network. PLANT MOLECULAR BIOLOGY 2018; 97:407-420. [PMID: 29948659 DOI: 10.1007/s11103-018-0747-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Arabidopsis and human ARM protein interact with telomerase. Deregulated mRNA levels of DNA repair and ribosomal protein genes in an Arabidopsis arm mutant suggest non-telomeric ARM function. The human homolog ARMC6 interacts with hTRF2. Telomerase maintains telomeres and has proposed non-telomeric functions. We previously identified interaction of the C-terminal domain of Arabidopsis telomerase reverse transcriptase (AtTERT) with an armadillo/β-catenin-like repeat (ARM) containing protein. Here we explore protein-protein interactions of the ARM protein, AtTERT domains, POT1a, TRF-like family and SMH family proteins, and the chromatin remodeling protein CHR19 using bimolecular fluorescence complementation (BiFC), yeast two-hybrid (Y2H) analysis, and co-immunoprecipitation. The ARM protein interacts with both the N- and C-terminal domains of AtTERT in different cellular compartments. ARM interacts with CHR19 and TRF-like I family proteins that also bind AtTERT directly or through interaction with POT1a. The putative human ARM homolog co-precipitates telomerase activity and interacts with hTRF2 protein in vitro. Analysis of Arabidopsis arm mutants shows no obvious changes in telomere length or telomerase activity, suggesting that ARM is not essential for telomere maintenance. The observed interactions with telomerase and Myb-like domain proteins (TRF-like family I) may therefore reflect possible non-telomeric functions. Transcript levels of several DNA repair and ribosomal genes are affected in arm mutants, and ARM, likely in association with other proteins, suppressed expression of XRCC3 and RPSAA promoter constructs in luciferase reporter assays. In conclusion, ARM can participate in non-telomeric functions of telomerase, and can also perform its own telomerase-independent functions.
Collapse
Affiliation(s)
- Ladislav Dokládal
- Institute of Biophysics, The Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Biology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Eva Benková
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
| | - David Honys
- Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojova 263, 16502, Prague, Czech Republic
| | - Nikoleta Dupľáková
- Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojova 263, 16502, Prague, Czech Republic
| | - Lan-Ying Lee
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907-1392, USA
| | - Stanton B Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907-1392, USA
| | - Eva Sýkorová
- Institute of Biophysics, The Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic.
| |
Collapse
|
18
|
Arabidopsis RETICULON-LIKE3 (RTNLB3) and RTNLB8 Participate in Agrobacterium-Mediated Plant Transformation. Int J Mol Sci 2018; 19:ijms19020638. [PMID: 29495267 PMCID: PMC5855860 DOI: 10.3390/ijms19020638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 12/05/2022] Open
Abstract
Agrobacterium tumefaciens can genetically transform various eukaryotic cells because of the presence of a resident tumor-inducing (Ti) plasmid. During infection, a defined region of the Ti plasmid, transfer DNA (T-DNA), is transferred from bacteria into plant cells and causes plant cells to abnormally synthesize auxin and cytokinin, which results in crown gall disease. T-DNA and several virulence (Vir) proteins are secreted through a type IV secretion system (T4SS) composed of T-pilus and a transmembrane protein complex. Three members of Arabidopsis reticulon-like B (RTNLB) proteins, RTNLB1, 2, and 4, interact with VirB2, the major component of T-pilus. Here, we have identified that other RTNLB proteins, RTNLB3 and 8, interact with VirB2 in vitro. Root-based A. tumefaciens transformation assays with Arabidopsis rtnlb3, or rtnlb5-10 single mutants showed that the rtnlb8 mutant was resistant to A. tumefaciens infection. In addition, rtnlb3 and rtnlb8 mutants showed reduced transient transformation efficiency in seedlings. RTNLB3- or 8 overexpression transgenic plants showed increased susceptibility to A. tumefaciens and Pseudomonas syringae infection. RTNLB1-4 and 8 transcript levels differed in roots, rosette leaves, cauline leaves, inflorescence, flowers, and siliques of wild-type plants. Taken together, RTNLB3 and 8 may participate in A. tumefaciens infection but may have different roles in plants.
Collapse
|
19
|
Lapham R, Lee LY, Tsugama D, Lee S, Mengiste T, Gelvin SB. VIP1 and Its Homologs Are Not Required for Agrobacterium-Mediated Transformation, but Play a Role in Botrytis and Salt Stress Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:749. [PMID: 29946325 PMCID: PMC6005860 DOI: 10.3389/fpls.2018.00749] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/15/2018] [Indexed: 05/02/2023]
Abstract
The bZIP transcription factor VIP1 interacts with the Agrobacterium virulence protein VirE2, but the role of VIP1 in Agrobacterium-mediated transformation remains controversial. Previously tested vip1-1 mutant plants produce a truncated protein containing the crucial bZIP DNA-binding domain. We generated the CRISPR/Cas mutant vip1-2 that lacks this domain. The transformation susceptibility of vip1-2 and wild-type plants is similar. Because of potential functional redundancy among VIP1 homologs, we tested transgenic lines expressing VIP1 fused to a SRDX repression domain. All VIP1-SRDX transgenic lines showed wild-type levels of transformation, indicating that neither VIP1 nor its homologs are required for Agrobacterium-mediated transformation. Because VIP1 is involved in innate immune response signaling, we tested the susceptibility of vip1 mutant and VIP1-SRDX plants to Pseudomonas syringae and Botrytis cinerea. vip1 mutant and VIP1-SRDX plants show increased susceptibility to B. cinerea but not to P. syringae infection, suggesting a role for VIP1 in B. cinerea, but not in P. syringae, defense signaling. B. cinerea susceptibility is dependent on abscisic acid (ABA) which is also important for abiotic stress responses. The germination of vip1 mutant and VIP1-SRDX seeds is sensitive to exogenous ABA, suggesting a role for VIP1 in response to ABA. vip1 mutant and VIP1-SRDX plants show increased tolerance to growth in salt, indicating a role for VIP1 in response to salt stress.
Collapse
Affiliation(s)
- Rachelle Lapham
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Lan-Ying Lee
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Daisuke Tsugama
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Sanghun Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Stanton B. Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- *Correspondence: Stanton B. Gelvin, ;
| |
Collapse
|
20
|
Wang Y, Zhang S, Huang F, Zhou X, Chen Z, Peng W, Luo M. VirD5 is required for efficient Agrobacterium infection and interacts with Arabidopsis VIP2. THE NEW PHYTOLOGIST 2018; 217:726-738. [PMID: 29084344 DOI: 10.1111/nph.14854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/13/2017] [Indexed: 05/28/2023]
Abstract
During Agrobacterium (Agrobacterium tumefaciens) infection, the translocated virulence proteins (VirD2, VirE2, VirE3, VirF and VirD5) play crucial roles. It is thought that, through protein-protein interactions, Agrobacterium uses and abuses host plant factors and systems to facilitate its infection. Although some molecular functions have been revealed, the roles of VirD5 still need to be further elucidated. Here, plant transformation and tumorigenesis mediated by genetically modified Agrobacterium strains were performed to examine VirD5 roles. In addition, protein-protein interaction-associated molecular and biochemistry technologies were used to reveal and elucidate VirD5 interaction with Arabidopsis VirE2 interacting protein 2 (VIP2). Our results showed that deleting virD5 from Agrobacterium reduced its tumor formation ability and stable transformation efficiency but did not affect the transient transformation efficiency. We also found that VirD5 can interact with Arabidopsis VIP2. Further experiments demonstrated that VirD5 can affect VIP2 binding to cap-binding proteins (CBP20 and CBP80). The tumorigenesis efficiency for cbp80 mutant was not significantly changed, but that for cbp20, cbp20cbp80 mutants were significantly increased. This work demonstrates experimentally that VirD5 is required for efficient Agrobacterium infection and may promote this process by competitive interaction with Arabidopsis VIP2. CBP20 is involved in the Agrobacterium infection process and its effect can be synergistically enhanced by CBP80.
Collapse
Affiliation(s)
- Yafei Wang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaojuan Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fei Huang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xu Zhou
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhuo Chen
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Peng
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meizhong Luo
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
21
|
Abstract
Agrobacterium strains transfer a single-strand form of T-DNA (T-strands) and Virulence (Vir) effector proteins to plant cells. Following transfer, T-strands likely form complexes with Vir and plant proteins that traffic through the cytoplasm and enter the nucleus. T-strands may subsequently randomly integrate into plant chromosomes and permanently express encoded transgenes, a process known as stable transformation. The molecular processes by which T-strands integrate into the host genome remain unknown. Although integration resembles DNA repair processes, the requirement of known DNA repair pathways for integration is controversial. The configuration and genomic position of integrated T-DNA molecules likely affect transgene expression, and control of integration is consequently important for basic research and agricultural biotechnology applications. This article reviews our current knowledge of the process of T-DNA integration and proposes ways in which this knowledge may be manipulated for genome editing and synthetic biology purposes.
Collapse
Affiliation(s)
- Stanton B Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA;
| |
Collapse
|
22
|
Hwang HH, Yu M, Lai EM. Agrobacterium-mediated plant transformation: biology and applications. THE ARABIDOPSIS BOOK 2017; 15:e0186. [PMID: 31068763 PMCID: PMC6501860 DOI: 10.1199/tab.0186] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant genetic transformation heavily relies on the bacterial pathogen Agrobacterium tumefaciens as a powerful tool to deliver genes of interest into a host plant. Inside the plant nucleus, the transferred DNA is capable of integrating into the plant genome for inheritance to the next generation (i.e. stable transformation). Alternatively, the foreign DNA can transiently remain in the nucleus without integrating into the genome but still be transcribed to produce desirable gene products (i.e. transient transformation). From the discovery of A. tumefaciens to its wide application in plant biotechnology, numerous aspects of the interaction between A. tumefaciens and plants have been elucidated. This article aims to provide a comprehensive review of the biology and the applications of Agrobacterium-mediated plant transformation, which may be useful for both microbiologists and plant biologists who desire a better understanding of plant transformation, protein expression in plants, and plant-microbe interaction.
Collapse
Affiliation(s)
- Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, 402
| | - Manda Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, 115
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, 115
| |
Collapse
|
23
|
Iwakawa H, Carter BC, Bishop BC, Ogas J, Gelvin SB. Perturbation of H3K27me3-Associated Epigenetic Processes Increases Agrobacterium-Mediated Transformation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:35-44. [PMID: 27926813 DOI: 10.1094/mpmi-12-16-0250-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Agrobacterium-mediated transformation is a core technology for basic plant science and agricultural biotechnology. Improving transformation frequency is a major goal for plant transgenesis. We previously showed that T-DNA insertions in some histone genes decreased transformation susceptibility, whereas overexpression of several Arabidopsis H2A and H4 isoforms increased transformation. Overexpression of several histone H2B and H3 isoforms had little effect on transformation frequency. However, overexpression of histone H3-11 (HTR11) enhanced transformation. HTR11 is a unique H3 variant that lacks lysine at positions 9 and 27. The modification status of these lysine residues in canonical H3 proteins plays a critical role in epigenetic determination of gene expression. We mutated histone H3-4 (HTR4), a canonical H3.3 protein that does not increase transformation when overexpressed, by replacing either or both K9 and K27 with the amino acids in HTR11 (either K9I, K27Q, or both). Overexpression of HTR4 with the K27Q but not the K9I substitution enhanced transformation. HTR4K27Q was incorporated into chromatin, and HTR4K27Q overexpression lines exhibited deregulated expression of H3K27me3-enriched genes. These results demonstrate that mutation of K27 in H3.3 is sufficient to perturb H3K27me3-dependent expression in plants as in animals and suggest a distinct epigenetic role for histone HTR11. Further, these observations implicate manipulation of H3K27me3-dependent gene expression as a novel strategy to increase transformation susceptibility.
Collapse
Affiliation(s)
| | - Benjamin C Carter
- 2 Biochemistry, Purdue University, West Lafayette, IN 47907-1392, U.S.A
| | - Brett C Bishop
- 2 Biochemistry, Purdue University, West Lafayette, IN 47907-1392, U.S.A
| | - Joe Ogas
- 2 Biochemistry, Purdue University, West Lafayette, IN 47907-1392, U.S.A
| | | |
Collapse
|
24
|
Zhao P, Wang K, Lin Z, Zhang W, Du L, Zhang Y, Ye X. Cloning and characterization of TaVIP2 gene from Triticum aestivum and functional analysis in Nicotiana tabacum. Sci Rep 2016; 6:37602. [PMID: 27857194 PMCID: PMC5114603 DOI: 10.1038/srep37602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/01/2016] [Indexed: 11/23/2022] Open
Abstract
Wheat is recalcitrant to genetic transformation. A potential solution is to manipulate the expression of some host proteins involved in T-DNA integration process. VirE2 interacting protein 2 (VIP2) plays an important role in T-DNA transport and integration. In this study, a TaVIP2 gene was cloned from common wheat. Southern blot and allele-specific polymerase chain reaction (AS-PCR) combined with an online chromosomal location software tool revealed that three TaVIP2 genes were located on wheat chromosomes 1AL, 1BL, and 1DL. These three homoeoallelic TaVIP2 genes all contained 13 exons and 12 introns, and their coding sequences were the same; there were a few single nucleotide polymorphisms (SNPs) among the three genes. The heterologous expression of the TaVIP2 gene in tobacco led to enhancement of the Agrobacterium-mediated transformation efficiency up to 2.5-fold. Transgenic tobacco plants expressing TaVIP2 showed enhanced resistance to powdery mildew. Further quantitative real-time PCR (qRT-PCR) revealed that overexpression of TaVIP2 in transgenic tobacco up-regulated the expression of an endogenous gene, NtPR-1, which likely contributed to powdery mildew resistance in transgenic tobacco. Our study indicates that the TaVIP2 gene may be highly useful in efforts to improve Agrobacterium-mediated transformation efficiency and to enhance powdery mildew resistance in wheat.
Collapse
Affiliation(s)
- Pei Zhao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Ke Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Zhishan Lin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Wei Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Lipu Du
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Yunlong Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Xingguo Ye
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| |
Collapse
|
25
|
EIN2-dependent regulation of acetylation of histone H3K14 and non-canonical histone H3K23 in ethylene signalling. Nat Commun 2016; 7:13018. [PMID: 27694846 PMCID: PMC5063967 DOI: 10.1038/ncomms13018] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 08/25/2016] [Indexed: 12/18/2022] Open
Abstract
Ethylene gas is essential for many developmental processes and stress responses in plants. EIN2 plays a key role in ethylene signalling but its function remains enigmatic. Here, we show that ethylene specifically elevates acetylation of histone H3K14 and the non-canonical acetylation of H3K23 in etiolated seedlings. The up-regulation of these two histone marks positively correlates with ethylene-regulated transcription activation, and the elevation requires EIN2. Both EIN2 and EIN3 interact with a SANT domain protein named EIN2 nuclear associated protein 1 (ENAP1), overexpression of which results in elevation of histone acetylation and enhanced ethylene-inducible gene expression in an EIN2-dependent manner. On the basis of these findings we propose a model where, in the presence of ethylene, the EIN2 C terminus contributes to downstream signalling via the elevation of acetylation at H3K14 and H3K23. ENAP1 may potentially mediate ethylene-induced histone acetylation via its interactions with EIN2 C terminus. The translocation of the C-terminal domain of EIN2 to the nucleus is essential for induction of gene expression in response to the plant hormone ethylene. Here, Zhang et al. show that EIN2 is required for ethylene-inducible elevation of histone acetylation marks associated with transcriptional activation.
Collapse
|
26
|
Dokládal L, Honys D, Rana R, Lee LY, Gelvin SB, Sýkorová E. cDNA Library Screening Identifies Protein Interactors Potentially Involved in Non-Telomeric Roles of Arabidopsis Telomerase. FRONTIERS IN PLANT SCIENCE 2015; 6:985. [PMID: 26617625 PMCID: PMC4641898 DOI: 10.3389/fpls.2015.00985] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/27/2015] [Indexed: 05/27/2023]
Abstract
Telomerase-reverse transcriptase (TERT) plays an essential catalytic role in maintaining telomeres. However, in animal systems telomerase plays additional non-telomeric functional roles. We previously screened an Arabidopsis cDNA library for proteins that interact with the C-terminal extension (CTE) TERT domain and identified a nuclear-localized protein that contains an RNA recognition motif (RRM). This RRM-protein forms homodimers in both plants and yeast. Mutation of the gene encoding the RRM-protein had no detectable effect on plant growth and development, nor did it affect telomerase activity or telomere length in vivo, suggesting a non-telomeric role for TERT/RRM-protein complexes. The gene encoding the RRM-protein is highly expressed in leaf and reproductive tissues. We further screened an Arabidopsis cDNA library for proteins that interact with the RRM-protein and identified five interactors. These proteins are involved in numerous non-telomere-associated cellular activities. In plants, the RRM-protein, both alone and in a complex with its interactors, localizes to nuclear speckles. Transcriptional analyses in wild-type and rrm mutant plants, as well as transcriptional co-analyses, suggest that TERT, the RRM-protein, and the RRM-protein interactors may play important roles in non-telomeric cellular functions.
Collapse
Affiliation(s)
- Ladislav Dokládal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology and Faculty of Science, Masaryk UniversityBrno, Czech Republic
- Institute of Biophysics – Academy of Sciences of the Czech Republic v.v.i.Brno, Czech Republic
| | - David Honys
- Institute of Experimental Botany – Academy of Sciences of the Czech Republic v.v.i.Prague, Czech Republic
| | - Rajiv Rana
- Institute of Experimental Botany – Academy of Sciences of the Czech Republic v.v.i.Prague, Czech Republic
| | - Lan-Ying Lee
- Department of Biological Sciences, Purdue University, West LafayetteIN, USA
| | - Stanton B. Gelvin
- Department of Biological Sciences, Purdue University, West LafayetteIN, USA
| | - Eva Sýkorová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology and Faculty of Science, Masaryk UniversityBrno, Czech Republic
- Institute of Biophysics – Academy of Sciences of the Czech Republic v.v.i.Brno, Czech Republic
| |
Collapse
|
27
|
Bourras S, Rouxel T, Meyer M. Agrobacterium tumefaciens Gene Transfer: How a Plant Pathogen Hacks the Nuclei of Plant and Nonplant Organisms. PHYTOPATHOLOGY 2015; 105:1288-1301. [PMID: 26151736 DOI: 10.1094/phyto-12-14-0380-rvw] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Agrobacterium species are soilborne gram-negative bacteria exhibiting predominantly a saprophytic lifestyle. Only a few of these species are capable of parasitic growth on plants, causing either hairy root or crown gall diseases. The core of the infection strategy of pathogenic Agrobacteria is a genetic transformation of the host cell, via stable integration into the host genome of a DNA fragment called T-DNA. This genetic transformation results in oncogenic reprogramming of the host to the benefit of the pathogen. This unique ability of interkingdom DNA transfer was largely used as a tool for genetic engineering. Thus, the artificial host range of Agrobacterium is continuously expanding and includes plant and nonplant organisms. The increasing availability of genomic tools encouraged genome-wide surveys of T-DNA tagged libraries, and the pattern of T-DNA integration in eukaryotic genomes was studied. Therefore, data have been collected in numerous laboratories to attain a better understanding of T-DNA integration mechanisms and potential biases. This review focuses on the intranuclear mechanisms necessary for proper targeting and stable expression of Agrobacterium oncogenic T-DNA in the host cell. More specifically, the role of genome features and the putative involvement of host's transcriptional machinery in relation to the T-DNA integration and effects on gene expression are discussed. Also, the mechanisms underlying T-DNA integration into specific genome compartments is reviewed, and a theoretical model for T-DNA intranuclear targeting is presented.
Collapse
Affiliation(s)
- Salim Bourras
- First, second, and third authors: INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, BP 01, F-78850 Thiverval-Grignon, France
| | - Thierry Rouxel
- First, second, and third authors: INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, BP 01, F-78850 Thiverval-Grignon, France
| | - Michel Meyer
- First, second, and third authors: INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, BP 01, F-78850 Thiverval-Grignon, France
| |
Collapse
|
28
|
Jia Y, Yao X, Zhao M, Zhao Q, Du Y, Yu C, Xie F. Comparison of Soybean Transformation Efficiency and Plant Factors Affecting Transformation during the Agrobacterium Infection Process. Int J Mol Sci 2015; 16:18522-43. [PMID: 26262617 PMCID: PMC4581258 DOI: 10.3390/ijms160818522] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 07/11/2015] [Accepted: 07/30/2015] [Indexed: 01/20/2023] Open
Abstract
The susceptibility of soybean genotype to Agrobacterium infection is a key factor for the high level of genetic transformation efficiency. The objective of this study is to evaluate the plant factors related to transformation in cotyledonary nodes during the Agrobacterium infection process. This study selected three genotypes (Williams 82, Shennong 9 and Bert) with high transformation efficiency, which presented better susceptibility to Agrobacterium infection, and three low transformation efficiency genotypes (General, Liaodou 16 and Kottman), which showed a relatively weak susceptibility. Gibberellin (GA) levels and soybean GA20ox2 and CYP707A2 transcripts of high-efficiency genotypes increased and were higher than those of low-efficiency genotypes; however, the opposite performance was shown in abscisic acid (ABA). Higher zeatin riboside (ZR) content and DNA quantity, and relatively higher expression of soybean IPT5, CYCD3 and CYCA3 were obtained in high-efficiency genotypes. High-efficiency genotypes had low methyl jasmonate (MeJA) content, polyphenol oxidase (PPO) and peroxidase (POD) activity, and relatively lower expression of soybean OPR3, PPO1 and PRX71. GA and ZR were positive plant factors for Agrobacterium-mediated soybean transformation by facilitating germination and growth, and increasing the number of cells in DNA synthesis cycle, respectively; MeJA, PPO, POD and ABA were negative plant factors by inducing defence reactions and repressing germination and growth, respectively.
Collapse
Affiliation(s)
- Yuying Jia
- Soybean Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xingdong Yao
- Soybean Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Mingzhe Zhao
- Soybean Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Qiang Zhao
- Soybean Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yanli Du
- Soybean Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Cuimei Yu
- Soybean Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Futi Xie
- Soybean Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
29
|
Wong HW, Liu Q, Sun SSM. Biofortification of rice with lysine using endogenous histones. PLANT MOLECULAR BIOLOGY 2015; 87:235-48. [PMID: 25512028 PMCID: PMC4302240 DOI: 10.1007/s11103-014-0272-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/04/2014] [Indexed: 05/03/2023]
Abstract
Rice is the most consumed cereal grain in the world, but deficient in the essential amino acid lysine. Therefore, people in developing countries with limited food diversity who rely on rice as their major food source may suffer from malnutrition. Biofortification of stable crops by genetic engineering provides a fast and sustainable method to solve this problem. In this study, two endogenous rice lysine-rich histone proteins, RLRH1 and RLRH2, were over-expressed in rice seeds to achieve lysine biofortification. Their protein sequences passed an allergic sequence-based homology test. Their accumulations in rice seeds were raised to a moderate level by the use of a modified rice glutelin 1 promoter with lowered expression strength to avoid the occurrence of physiological abnormalities like unfolded protein response. The expressed proteins were further targeted to protein storage vacuoles for stable storage using a glutelin 1 signal peptide. The lysine content in the transgenic rice seeds was enhanced by up to 35 %, while other essential amino acids remained balanced, meeting the nutritional standards of the World Health Organization. No obvious unfolded protein response was detected. Different degrees of chalkiness, however, were detected in the transgenic seeds, and were positively correlated with both the levels of accumulated protein and lysine enhancement. This study offered a solution to the lysine deficiency in rice, while at the same time addressing concerns about food safety and physiological abnormalities in biofortified crops.
Collapse
Affiliation(s)
- H. W. Wong
- State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong, China
- Present Address: SCG90, Science Center, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong, China
| | - Q. Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
| | - S. S. M. Sun
- State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong, China
- Present Address: SCG90, Science Center, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong, China
| |
Collapse
|
30
|
Wolterink-van Loo S, Ayala AAE, Hooykaas PJJ, van Heusden GPH. Interaction of the Agrobacterium tumefaciens virulence protein VirD2 with histones. MICROBIOLOGY-SGM 2014; 161:401-410. [PMID: 25505187 DOI: 10.1099/mic.0.083410-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Agrobacterium tumefaciens is a Gram-negative soil bacterium that genetically transforms plants and, under laboratory conditions, also transforms non-plant organisms, such as fungi and yeasts. During the transformation process a piece of ssDNA (T-strand) is transferred into the host cells via a type IV secretion system. The VirD2 relaxase protein, which is covalently attached at the 5' end of the T-strand through Tyr29, mediates nuclear entry as it contains a nuclear localization sequence. How the T-strand reaches the chromatin and becomes integrated in the chromosomal DNA is still far from clear. Here, we investigated whether VirD2 binds to histone proteins in the yeast Saccharomyces cerevisiae. Using immobilized GFP-VirD2 and in vitro synthesized His6-tagged S. cerevisiae proteins, interactions between VirD2 and the histones H2A, H2B, H3 and H4 were revealed. In vivo, these interactions were confirmed by bimolecular fluorescence complementation experiments. After co-cultivation of Agrobacterium strains expressing VirD2 tagged with a fragment of the yellow fluorescent protein analogue Venus with yeast strains expressing histone H2A or H2B tagged with the complementary part of Venus, fluorescence was detected in dot-shaped structures in the recipient yeast cells. The results indicated that VirD2 was transferred from Agrobacterium to yeast cells and that it interacted with histones in the host cell, and thus may help direct the T-DNA (transferred DNA) to the chromatin as a prelude to integration into the host chromosomal DNA.
Collapse
Affiliation(s)
- Suzanne Wolterink-van Loo
- Section Molecular and Developmental Genetics, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Abril A Escamilla Ayala
- Section Molecular and Developmental Genetics, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Paul J J Hooykaas
- Section Molecular and Developmental Genetics, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - G Paul H van Heusden
- Section Molecular and Developmental Genetics, Institute of Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
31
|
Shi Y, Lee LY, Gelvin SB. Is VIP1 important for Agrobacterium-mediated transformation? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:848-60. [PMID: 24953893 DOI: 10.1111/tpj.12596] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 05/07/2014] [Accepted: 06/09/2014] [Indexed: 05/05/2023]
Abstract
Agrobacterium genetically transforms plants by transferring and integrating T-(transferred) DNA into the host genome. This process requires both Agrobacterium and host proteins. VirE2 interacting protein 1 (VIP1), an Arabidopsis bZIP protein, has been suggested to mediate transformation through interaction with and targeting of VirE2 to nuclei. We examined the susceptibility of Arabidopsis vip1 mutant and VIP1 overexpressing plants to transformation by numerous Agrobacterium strains. In no instance could we detect altered transformation susceptibility. We also used confocal microscopy to examine the subcellular localization of Venus-tagged VirE2 or Venus-tagged VIP1, in the presence or absence of the other untagged protein, in different plant cell systems. We found that VIP1-Venus localized in both the cytoplasm and the nucleus of Arabidopsis roots, agroinfiltrated Nicotiana benthamiana leaves, Arabidopsis mesophyll protoplasts and tobacco BY-2 protoplasts, regardless of whether VirE2 was co-expressed. VirE2 localized exclusively to the cytoplasm of tobacco and Arabidopsis protoplasts, whether in the absence or presence of VIP1 overexpression. In transgenic Arabidopsis plants and agroinfiltrated N. benthamina leaves we could occasionally detect small aggregates of the Venus signal in nuclei, but these were likely to be imagining artifacts. The vast majority of VirE2 remained in the cytoplasm. We conclude that VIP1 is not important for Agrobacterium-mediated transformation or VirE2 subcellular localization.
Collapse
Affiliation(s)
- Yong Shi
- College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China; Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | | | | |
Collapse
|
32
|
Bilichak A, Yao Y, Kovalchuk I. Transient down-regulation of the RNA silencing machinery increases efficiency of Agrobacterium-mediated transformation of Arabidopsis. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:590-600. [PMID: 24472037 DOI: 10.1111/pbi.12165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/15/2013] [Indexed: 06/03/2023]
Abstract
Agrobacterium tumefaciens is a plant pathogen that is widely used in plant transformation. As the process of transgenesis includes the delivery of single-stranded T-DNA molecule, we hypothesized that transformation rate may negatively correlate with the efficiency of the RNA-silencing machinery. Using mutants compromised in either the transcriptional or post-transcriptional gene-silencing pathways, two inhibitors of stable transformation were revealed-AGO2 and NRPD1a. Furthermore, an immunoprecipitation experiment has shown that NRPD1, a subunit of Pol IV, directly interacts with Agrobacterium T-DNA in planta. Using the Tobacco rattle virus (TRV)--based virus-induced gene silencing (VIGS) technique, we demonstrated that the transient down-regulation of the expression of either AGO2 or NRPD1a genes in reproductive organs of Arabidopsis, leads to an increase in transformation rate. We observed a 6.0- and 3.5-fold increase in transformation rate upon transient downregulation of either AGO2 or NRPD1a genes, respectively. This is the first report demonstrating the increase in the plant transformation rate via VIGS-mediated transient down-regulation of the components of epigenetic machinery in reproductive tissue.
Collapse
MESH Headings
- Agrobacterium/physiology
- Arabidopsis/genetics
- Arabidopsis/microbiology
- Arabidopsis Proteins/metabolism
- Blotting, Southern
- DNA Breaks, Double-Stranded
- DNA Methylation/genetics
- DNA, Bacterial/genetics
- DNA-Directed RNA Polymerases/metabolism
- Down-Regulation
- Epigenesis, Genetic
- Genes, Plant
- Genetic Loci
- Models, Genetic
- Mutation/genetics
- Plants, Genetically Modified
- Protein Binding
- Protein Subunits/metabolism
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Reverse Genetics
- Transformation, Genetic
Collapse
Affiliation(s)
- Andriy Bilichak
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | | | | |
Collapse
|
33
|
Gohlke J, Deeken R. Plant responses to Agrobacterium tumefaciens and crown gall development. FRONTIERS IN PLANT SCIENCE 2014; 5:155. [PMID: 24795740 PMCID: PMC4006022 DOI: 10.3389/fpls.2014.00155] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/02/2014] [Indexed: 05/17/2023]
Abstract
Agrobacterium tumefaciens causes crown gall disease on various plant species by introducing its T-DNA into the genome. Therefore, Agrobacterium has been extensively studied both as a pathogen and an important biotechnological tool. The infection process involves the transfer of T-DNA and virulence proteins into the plant cell. At that time the gene expression patterns of host plants differ depending on the Agrobacterium strain, plant species and cell-type used. Later on, integration of the T-DNA into the plant host genome, expression of the encoded oncogenes, and increase in phytohormone levels induce a fundamental reprogramming of the transformed cells. This results in their proliferation and finally formation of plant tumors. The process of reprogramming is accompanied by altered gene expression, morphology and metabolism. In addition to changes in the transcriptome and metabolome, further genome-wide ("omic") approaches have recently deepened our understanding of the genetic and epigenetic basis of crown gall tumor formation. This review summarizes the current knowledge about plant responses in the course of tumor development. Special emphasis is placed on the connection between epigenetic, transcriptomic, metabolomic, and morphological changes in the developing tumor. These changes not only result in abnormally proliferating host cells with a heterotrophic and transport-dependent metabolism, but also cause differentiation and serve as mechanisms to balance pathogen defense and adapt to abiotic stress conditions, thereby allowing the coexistence of the crown gall and host plant.
Collapse
Affiliation(s)
- Jochen Gohlke
- School of Plant Sciences, University of ArizonaTucson, AZ, USA
| | - Rosalia Deeken
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of WuerzburgWuerzburg, Germany
- *Correspondence: Rosalia Deeken, Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany e-mail:
| |
Collapse
|
34
|
Bilichak A, Kovalchuk I. Manipulation of epigenetic factors and the DNA repair machinery for improving the frequency of plant transformation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2013.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Zhou X, Wang K, Lv D, Wu C, Li J, Zhao P, Lin Z, Du L, Yan Y, Ye X. Global analysis of differentially expressed genes and proteins in the wheat callus infected by Agrobacterium tumefaciens. PLoS One 2013; 8:e79390. [PMID: 24278131 PMCID: PMC3835833 DOI: 10.1371/journal.pone.0079390] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 09/20/2013] [Indexed: 12/24/2022] Open
Abstract
Agrobacterium-mediated plant transformation is an extremely complex and evolved process involving genetic determinants of both the bacteria and the host plant cells. However, the mechanism of the determinants remains obscure, especially in some cereal crops such as wheat, which is recalcitrant for Agrobacterium-mediated transformation. In this study, differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were analyzed in wheat callus cells co-cultured with Agrobacterium by using RNA sequencing (RNA-seq) and two-dimensional electrophoresis (2-DE) in conjunction with mass spectrometry (MS). A set of 4,889 DEGs and 90 DEPs were identified, respectively. Most of them are related to metabolism, chromatin assembly or disassembly and immune defense. After comparative analysis, 24 of the 90 DEPs were detected in RNA-seq and proteomics datasets simultaneously. In addition, real-time RT-PCR experiments were performed to check the differential expression of the 24 genes, and the results were consistent with the RNA-seq data. According to gene ontology (GO) analysis, we found that a big part of these differentially expressed genes were related to the process of stress or immunity response. Several putative determinants and candidate effectors responsive to Agrobacterium mediated transformation of wheat cells were discussed. We speculate that some of these genes are possibly related to Agrobacterium infection. Our results will help to understand the interaction between Agrobacterium and host cells, and may facilitate developing efficient transformation strategies in cereal crops.
Collapse
Affiliation(s)
- Xiaohong Zhou
- National Key Facility of Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ke Wang
- National Key Facility of Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dongwen Lv
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing, China
| | - Chengjun Wu
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jiarui Li
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Pei Zhao
- National Key Facility of Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhishan Lin
- National Key Facility of Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lipu Du
- National Key Facility of Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yueming Yan
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing, China
| | - Xingguo Ye
- National Key Facility of Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
36
|
Sardesai N, Lee LY, Chen H, Yi H, Olbricht GR, Stirnberg A, Jeffries J, Xiong K, Doerge RW, Gelvin SB. Cytokinins secreted by Agrobacterium promote transformation by repressing a plant myb transcription factor. Sci Signal 2013; 6:ra100. [PMID: 24255177 DOI: 10.1126/scisignal.2004518] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Agrobacterium-mediated transformation is the most widely used technique for generating transgenic plants. However, many crops remain recalcitrant. We found that an Arabidopsis myb family transcription factor (MTF1) inhibited plant transformation susceptibility. Mutating MTF1 increased attachment of several Agrobacterium strains to roots and increased both stable and transient transformation in both susceptible and transformation-resistant Arabidopsis ecotypes. Cytokinins from Agrobacterium tumefaciens decreased the expression of MTF1 through activation of the cytokinin response regulator ARR3. Mutating AHK3 and AHK4, genes that encode cytokinin-responsive kinases, increased the expression of MTF1 and impaired plant transformation. Mutant mtf1 plants also had increased expression of AT14A, which encodes a putative transmembrane receptor for cell adhesion molecules. Plants overexpressing AT14A exhibited increased susceptibility to transformation, whereas at14a mutant plants exhibited decreased attachment of bacteria to roots and decreased transformation, suggesting that AT14A may serve as an anchor point for Agrobacteria. Thus, by promoting bacterial attachment and transformation of resistant plants and increasing such processes in susceptible plants, treating roots with cytokinins may help engineer crops with improved features or yield.
Collapse
Affiliation(s)
- Nagesh Sardesai
- 1Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
AbstractThe grapevine (Vitis vinifera) genome was analyzed in silico for homologues of plant genes involved in Agrobacterium transformation in Arabidopsis thaliana and Nicotiana spp. Grapevine homologues of the glucomannan 4-betamannosyltransferase 9 gene CslA-09 involved in bacterial attachment to the cell wall, homologues of reticulon-like proteins BTI1, 2, 3 and RAB8 GTPases, both involved in T-DNA transfer to the host cell, homologues of VirE2 interacting protein VIP1 that contributes to the targeting of T-DNA into the nucleus and to its integration, and homologues of the histone protein H2A, which promotes the expression of T-DNA encoded genes, were selected. Sequences homologous to the arabinogalactan-protein AtAGP17 were not found in the grape genome. Seventeen selected candidates were tested by semiquantitative RT-PCR analysis for changes in their expression levels upon inoculation with Agrobacterium tumefaciens C58. Of the tested homologues, the expression of VvRab8a, VvVip1a and two histone genes (VvHta2 and VvHta10) increased significantly, therefore we hypothesize that these might be involved in Agrobacterium transformation of V. vinifera.
Collapse
|
38
|
Da Ines O, White CI. Gene Site-Specific Insertion in Plants. SITE-DIRECTED INSERTION OF TRANSGENES 2013. [DOI: 10.1007/978-94-007-4531-5_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
39
|
Vyacheslavova AO, Berdichevets IN, Tyurin AA, Shimshilashvili KR, Mustafaev ON, Goldenkova-Pavlova IV. Expression of heterologous genes in plant systems: New possibilities. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795412110130] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Saika H, Nonaka S, Osakabe K, Toki S. Sequential monitoring of transgene expression following Agrobacterium-mediated transformation of rice. PLANT & CELL PHYSIOLOGY 2012; 53:1974-83. [PMID: 23026817 DOI: 10.1093/pcp/pcs135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Although Agrobacterium-mediated transformation technology is now used widely in rice, many varieties of indica-type rice are still recalcitrant to Agrobacterium-mediated transformation. It was reported recently that T-DNA integration into the rice genome could be the limiting step in this method. Here, we attempted to establish an efficient sequential monitoring system for stable transformation events by visualizing stable transgene expression using a non-destructive and highly sensitive visible marker. Our results demonstrate that click beetle luciferase (ELuc) is an excellent marker allowing the observation of transformed cells in rice callus, exhibiting a sensitivity >30-fold higher than that of firefly luciferase. Since we have previously shown that green fluorescent protein (GFP) is a useful visual marker with which to follow transient and/or stable expression of transgenes in rice, we constructed an enhancer trap vector using both the gfbsd2 (GFP fused to the N-terminus of blasticidin S deaminase) and eluc genes. In this vector, the eluc gene is under the control of the Cauliflower mosaic virus 35S minimal promoter, while the gfbsd2 gene is under the control of the full-length rice elongation factor gene promoter. Observation of transformed callus under a dissecting microscope demonstrated that the level of ELuc luminescence reflected exclusively stable transgene expression, and that both transient and stable expression could be monitored by the level of GFP fluorescence. Moreover, we show that our system enables sequential quantification of transgene expression via differential measurement of ELuc luminescence and GFP fluorescence.
Collapse
Affiliation(s)
- Hiroaki Saika
- Plant Genome Engineering Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602 Japan
| | | | | | | |
Collapse
|
41
|
Splice variant of the SND1 transcription factor is a dominant negative of SND1 members and their regulation in Populus trichocarpa. Proc Natl Acad Sci U S A 2012; 109:14699-704. [PMID: 22915581 DOI: 10.1073/pnas.1212977109] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Secondary Wall-Associated NAC Domain 1s (SND1s) are transcription factors (TFs) known to activate a cascade of TF and pathway genes affecting secondary cell wall biosynthesis (xylogenesis) in Arabidopsis and poplars. Elevated SND1 transcriptional activation leads to ectopic xylogenesis and stunted growth. Nothing is known about the upstream regulators of SND1. Here we report the discovery of a stem-differentiating xylem (SDX)-specific alternative SND1 splice variant, PtrSND1-A2(IR), that acts as a dominant negative of SND1 transcriptional network genes in Populus trichocarpa. PtrSND1-A2(IR) derives from PtrSND1-A2, one of the four fully spliced PtrSND1 gene family members (PtrSND1-A1, -A2, -B1, and -B2). Each full-size PtrSND1 activates its own gene, and all four full-size members activate a common MYB gene (PtrMYB021). PtrSND1-A2(IR) represses the expression of its PtrSND1 member genes and PtrMYB021. Repression of the autoregulation of a TF family by its only splice variant has not been previously reported in plants. PtrSND1-A2(IR) lacks DNA binding and transactivation abilities but retains dimerization capability. PtrSND1-A2(IR) is localized exclusively in cytoplasmic foci. In the presence of any full-size PtrSND1 member, PtrSND1-A2(IR) is translocated into the nucleus exclusively as a heterodimeric partner with full-size PtrSND1s. Our findings are consistent with a model in which the translocated PtrSND1-A2(IR) lacking DNA-binding and transactivating abilities can disrupt the function of full-size PtrSND1s, making them nonproductive through heterodimerization, and thereby modulating the SND1 transcriptional network. PtrSND1-A2(IR) may contribute to transcriptional homeostasis to avoid deleterious effects on xylogenesis and plant growth.
Collapse
|
42
|
Lee LY, Wu FH, Hsu CT, Shen SC, Yeh HY, Liao DC, Fang MJ, Liu NT, Yen YC, Dokládal L, Sýkorová E, Gelvin SB, Lin CS. Screening a cDNA library for protein-protein interactions directly in planta. THE PLANT CELL 2012; 24:1746-59. [PMID: 22623495 PMCID: PMC3442567 DOI: 10.1105/tpc.112.097998] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/25/2012] [Accepted: 05/02/2012] [Indexed: 05/18/2023]
Abstract
Screening cDNA libraries for genes encoding proteins that interact with a bait protein is usually performed in yeast. However, subcellular compartmentation and protein modification may differ in yeast and plant cells, resulting in misidentification of protein partners. We used bimolecular fluorescence complementation technology to screen a plant cDNA library against a bait protein directly in plants. As proof of concept, we used the N-terminal fragment of yellow fluorescent protein- or nVenus-tagged Agrobacterium tumefaciens VirE2 and VirD2 proteins and the C-terminal extension (CTE) domain of Arabidopsis thaliana telomerase reverse transcriptase as baits to screen an Arabidopsis cDNA library encoding proteins tagged with the C-terminal fragment of yellow fluorescent protein. A library of colonies representing ~2 × 10(5) cDNAs was arrayed in 384-well plates. DNA was isolated from pools of 10 plates, individual plates, and individual rows and columns of the plates. Sequential screening of subsets of cDNAs in Arabidopsis leaf or tobacco (Nicotiana tabacum) Bright Yellow-2 protoplasts identified single cDNA clones encoding proteins that interact with either, or both, of the Agrobacterium bait proteins, or with CTE. T-DNA insertions in the genes represented by some cDNAs revealed five novel Arabidopsis proteins important for Agrobacterium-mediated plant transformation. We also used this cDNA library to confirm VirE2-interacting proteins in orchid (Phalaenopsis amabilis) flowers. Thus, this technology can be applied to several plant species.
Collapse
Affiliation(s)
- Lan-Ying Lee
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392
| | - Fu-Hui Wu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chen-Tran Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Shu-Chen Shen
- Scientific Instrument Center, Academia Sinica, Taipei 115, Taiwan
| | - Hsuan-Yu Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - De-Chih Liao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Mei-Jane Fang
- Core Facilities, Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Nien-Tze Liu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chen Yen
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392
| | - Ladislav Dokládal
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Eva Sýkorová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Stanton B. Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Address correspondence to
| |
Collapse
|
43
|
Gelvin SB. Traversing the Cell: Agrobacterium T-DNA's Journey to the Host Genome. FRONTIERS IN PLANT SCIENCE 2012; 3:52. [PMID: 22645590 PMCID: PMC3355731 DOI: 10.3389/fpls.2012.00052] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/28/2012] [Indexed: 05/05/2023]
Abstract
The genus Agrobacterium is unique in its ability to conduct interkingdom genetic exchange. Virulent Agrobacterium strains transfer single-strand forms of T-DNA (T-strands) and several Virulence effector proteins through a bacterial type IV secretion system into plant host cells. T-strands must traverse the plant wall and plasma membrane, traffic through the cytoplasm, enter the nucleus, and ultimately target host chromatin for stable integration. Because any DNA sequence placed between T-DNA "borders" can be transferred to plants and integrated into the plant genome, the transfer and intracellular trafficking processes must be mediated by bacterial and host proteins that form complexes with T-strands. This review summarizes current knowledge of proteins that interact with T-strands in the plant cell, and discusses several models of T-complex (T-strand and associated proteins) trafficking. A detailed understanding of how these macromolecular complexes enter the host cell and traverse the plant cytoplasm will require development of novel technologies to follow molecules from their bacterial site of synthesis into the plant cell, and how these transferred molecules interact with host proteins and sub-cellular structures within the host cytoplasm and nucleus.
Collapse
Affiliation(s)
- Stanton B. Gelvin
- Department of Biological Sciences, Purdue UniversityWest Lafayette, IN, USA
| |
Collapse
|
44
|
Harwood WA. Advances and remaining challenges in the transformation of barley and wheat. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1791-8. [PMID: 22140237 DOI: 10.1093/jxb/err380] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Highly efficient and cost-effective transformation technologies are essential for studying gene function in the major cereal crops, wheat and barley. Demand for efficient transformation systems to allow over-expression, or RNAi-mediated silencing of target genes, is greatly increasing. This is due to technology advances, such as rapid genome sequencing, enhancing the rate of gene discovery and thus leading to a large number of genes requiring functional analysis through transformation pipelines. Barley can be transformed at very high efficiency but the methods are genotype-dependent. Wheat is more difficult to transform, however, recent advances are also allowing the development of high-throughput transformation systems in wheat. For many gene function studies, barley can be used as a model for wheat due to its highly efficient transformation rates and smaller, less complex genome. An ideal transformation system needs to be extremely efficient, simple to perform, inexpensive, genotype-independent, and give the required expression of the transgene. Considerable progress has been made in enhancing transformation efficiencies, controlling transgene expression and in understanding and manipulating transgene insertion. However, a number of challenges still remain, one of the key ones being the development of genotype-independent transformation systems for wheat and barley.
Collapse
Affiliation(s)
- Wendy A Harwood
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK.
| |
Collapse
|
45
|
Tie W, Zhou F, Wang L, Xie W, Chen H, Li X, Lin Y. Reasons for lower transformation efficiency in indica rice using Agrobacterium tumefaciens-mediated transformation: lessons from transformation assays and genome-wide expression profiling. PLANT MOLECULAR BIOLOGY 2012; 78:1-18. [PMID: 22089972 DOI: 10.1007/s11103-011-9842-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 09/24/2011] [Indexed: 05/22/2023]
Abstract
Agrobacterium tumefaciens-mediated genetic transformation has been routinely used in rice for more than a decade. However, the transformation efficiency of the indica rice variety is still unsatisfactory and much lower than that of japonica cultivars. Further improvement on the transformation efficiency lies in the genetic manipulation of the plant itself, which requires a better understanding of the underlying process accounting for the susceptibility of plant cells to Agrobacterium infection as well as the identification of plant genes involved in the transformation process. In this study, transient and stable transformation assays using different japonica and indica cultivars showed that the lower transformation efficiency in indica rice was mainly due to the low efficiency in T-DNA integration into the plant genome. Analyses of the global gene expression patterns across the transformation process in different varieties revealed major differences in the expression of genes responding to Agrobacterium within the first 6 h after infection and more differentially expressed genes were observed in the indica cultivar Zhenshan 97 (ZS), with a number of genes repressed early during infection. Microarray analysis revealed an important effect of plant defense response on Agrobacterium-mediated transformation. It has been shown that some genes which may be necessary for the transformation process were down-regulated in the indica cultivar ZS. This dataset provided a versatile resource for plant genomic research to understand the regulatory network of transformation process, and showed great promise for improving indica rice transformation using genetic manipulation of the rice genome.
Collapse
Affiliation(s)
- Weiwei Tie
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Pitzschke A, Hirt H. New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. EMBO J 2010; 29:1021-32. [PMID: 20150897 DOI: 10.1038/emboj.2010.8] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 01/19/2010] [Indexed: 11/09/2022] Open
Abstract
Agrobacterium tumefaciens causes tumour formation in plants. Plant signals induce in the bacteria the expression of a range of virulence (Vir) proteins and the formation of a type IV secretion system (T4SS). On attachment to plant cells, a transfer DNA (T-DNA) and Vir proteins are imported into the host cells through the bacterial T4SS. Through interaction with a number of host proteins, the Vir proteins suppress the host innate immune system and support the transfer, nuclear targeting, and integration of T-DNA into host cell chromosomes. Owing to extensive genetic analyses, the bacterial side of the plant-Agrobacterium interaction is well understood. However, progress on the plant side has only been achieved recently, revealing a highly complex molecular choreography under the direction of the Vir proteins that impinge on multiple processes including transport, transcription, and chromosome status of their host cells.
Collapse
Affiliation(s)
- Andrea Pitzschke
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Applied Life Sciences, Muthgasse 18, Vienna, Austria
| | | |
Collapse
|
47
|
Gelvin SB. Plant proteins involved in Agrobacterium-mediated genetic transformation. ANNUAL REVIEW OF PHYTOPATHOLOGY 2010; 48:45-68. [PMID: 20337518 DOI: 10.1146/annurev-phyto-080508-081852] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Agrobacterium species genetically transform plants by transferring a region of plasmid DNA, T-DNA, into host plant cells. The bacteria also transfer several virulence effector proteins. T-DNA and virulence proteins presumably form T-complexes within the plant cell. Super-T-complexes likely also form by interaction of plant-encoded proteins with T-complexes. These protein-nucleic acid complexes traffic through the plant cytoplasm, enter the nucleus, and eventually deliver T-DNA to plant chromatin. Integration of T-DNA into the plant genome establishes a permanent transformation event, permitting stable expression of T-DNA-encoded transgenes. The transformation process is complex and requires participation of numerous plant proteins. This review discusses our current knowledge of plant proteins that contribute to Agrobacterium-mediated transformation, the roles these proteins play in the transformation process, and the modern technologies that have been employed to elucidate the cell biology of transformation.
Collapse
Affiliation(s)
- Stanton B Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA.
| |
Collapse
|