1
|
Reis RS, Clúa J, Jaskolowski A, Deforges J, Jacques-Vuarambon D, Guex N, Poirier Y. Phosphate deficiency alters transcript isoforms via alternative transcription start sites. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:218-233. [PMID: 39164918 DOI: 10.1111/tpj.16982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/24/2024] [Accepted: 07/13/2024] [Indexed: 08/22/2024]
Abstract
Alternative transcription start sites (TSS) are widespread in eukaryotes and can alter the 5' UTR length and coding potential of transcripts. Here we show that inorganic phosphate (Pi) availability regulates the usage of several alternative TSS in Arabidopsis (Arabidopsis thaliana). In comparison to phytohormone treatment, Pi had a pronounced and specific effect on the usage of many alternative TSS. By combining short-read RNA sequencing with long-read sequencing of full-length mRNAs, we identified a set of 45 genes showing alternative TSS under Pi deficiency. Alternative TSS affected several processes, such as translation via the exclusion of upstream open reading frames present in the 5' UTR of RETICULAN LIKE PROTEIN B1 mRNA, and subcellular localization via removal of the plastid transit peptide coding region from the mRNAs of HEME OXYGENASE 1 and SULFOQUINOVOSYLDIACYLGLYCEROL 2. Several alternative TSS also generated shorter transcripts lacking the coding potential for important domains. For example, the EVOLUTIONARILY CONSERVED C-TERMINAL REGION 4 (ECT4) locus, which encodes an N6-methyladenosine (m6A) reader, strongly expressed under Pi deficiency a short noncoding transcript (named ALTECT4) ~550 nt long with a TSS in the penultimate intron. The specific and robust induction of ALTECT4 production by Pi deficiency led to the identification of a role for m6A readers in primary root growth in response to low phosphate that is dependent on iron and is involved in modulating cell division in the root meristem. Our results identify alternative TSS usage as an important process in the plant response to Pi deficiency.
Collapse
Affiliation(s)
- Rodrigo S Reis
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
- Institute of Plant Sciences, University of Bern, Bern, CH-3013, Switzerland
| | - Joaquín Clúa
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Aime Jaskolowski
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Jules Deforges
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Dominique Jacques-Vuarambon
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
- Institute of Plant Sciences, University of Bern, Bern, CH-3013, Switzerland
| | - Nicolas Guex
- Bioinfomatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - Yves Poirier
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| |
Collapse
|
2
|
Liu L, Chen J, Gu C, Wang S, Xue Y, Wang Z, Han L, Song W, Liu X, Zhang J, Li M, Li C, Wang L, Zhang X, Zhou Z. The exocyst subunit CsExo70B promotes both fruit length and disease resistance via regulating receptor kinase abundance at plasma membrane in cucumber. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:347-362. [PMID: 37795910 PMCID: PMC10826989 DOI: 10.1111/pbi.14189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/24/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
Plant defence against pathogens generally occurs at the expense of growth and yield. Uncoupling the inverse relationship between growth and defence is of great importance for crop breeding, while the underlying genes and regulatory mechanisms remain largely elusive. The exocytosis complex was shown to play an important role in the trafficking of receptor kinases (RKs) to the plasma membrane (PM). Here, we found a Cucumis sativus exocytosis subunit Exo70B (CsExo70B) regulates the abundance of both development and defence RKs at the PM to promote fruit elongation and disease resistance in cucumber. Knockout of CsExo70B resulted in shorter fruit and susceptibility to pathogens. Mechanistically, CsExo70B associates with the developmental RK CsERECTA, which promotes fruit longitudinal growth in cucumber, and contributes to its accumulation at the PM. On the other side, CsExo70B confers to the spectrum resistance to pathogens in cucumber via a similar regulatory module of defence RKs. Moreover, CsExo70B overexpression lines showed an increased fruit yield as well as disease resistance. Collectively, our work reveals a regulatory mechanism that CsExo70B promotes both fruit elongation and disease resistance by maintaining appropriate RK levels at the PM and thus provides a possible strategy for superior cucumber breeding with high yield and robust pathogen resistance.
Collapse
Affiliation(s)
- Liu Liu
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Jiacai Chen
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Chaoheng Gu
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Shaoyun Wang
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Yufan Xue
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Zhongyi Wang
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Lijie Han
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Weiyuan Song
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Xiaofeng Liu
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Jiahao Zhang
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Min Li
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Chuang Li
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
- Sanya lnstitute of China Agricultural UniversitySanyaChina
| | - Liming Wang
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Xiaolan Zhang
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
- Sanya lnstitute of China Agricultural UniversitySanyaChina
| | - Zhaoyang Zhou
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
- Sanya lnstitute of China Agricultural UniversitySanyaChina
| |
Collapse
|
3
|
Million CR, Wijeratne S, Karhoff S, Cassone BJ, McHale LK, Dorrance AE. Molecular mechanisms underpinning quantitative resistance to Phytophthora sojae in Glycine max using a systems genomics approach. FRONTIERS IN PLANT SCIENCE 2023; 14:1277585. [PMID: 38023885 PMCID: PMC10662313 DOI: 10.3389/fpls.2023.1277585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Expression of quantitative disease resistance in many host-pathogen systems is controlled by genes at multiple loci, each contributing a small effect to the overall response. We used a systems genomics approach to study the molecular underpinnings of quantitative disease resistance in the soybean-Phytophthora sojae pathosystem, incorporating expression quantitative trait loci (eQTL) mapping and gene co-expression network analysis to identify the genes putatively regulating transcriptional changes in response to inoculation. These findings were compared to previously mapped phenotypic (phQTL) to identify the molecular mechanisms contributing to the expression of this resistance. A subset of 93 recombinant inbred lines (RILs) from a Conrad × Sloan population were inoculated with P. sojae isolate 1.S.1.1 using the tray-test method; RNA was extracted, sequenced, and the normalized read counts were genetically mapped from tissue collected at the inoculation site 24 h after inoculation from both mock and inoculated samples. In total, more than 100,000 eQTLs were mapped. There was a switch from predominantly cis-eQTLs in the mock treatment to an almost entirely nonoverlapping set of predominantly trans-eQTLs in the inoculated treatment, where greater than 100-fold more eQTLs were mapped relative to mock, indicating vast transcriptional reprogramming due to P. sojae infection occurred. The eQTLs were organized into 36 hotspots, with the four largest hotspots from the inoculated treatment corresponding to more than 70% of the eQTLs, each enriched for genes within plant-pathogen interaction pathways. Genetic regulation of trans-eQTLs in response to the pathogen was predicted to occur through transcription factors and signaling molecules involved in plant-pathogen interactions, plant hormone signal transduction, and MAPK pathways. Network analysis identified three co-expression modules that were correlated with susceptibility to P. sojae and associated with three eQTL hotspots. Among the eQTLs co-localized with phQTLs, two cis-eQTLs with putative functions in the regulation of root architecture or jasmonic acid, as well as the putative master regulators of an eQTL hotspot nearby a phQTL, represent candidates potentially underpinning the molecular control of these phQTLs for resistance.
Collapse
Affiliation(s)
- Cassidy R. Million
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
| | - Saranga Wijeratne
- Molecular and Cellular Imaging Center, The Ohio State University, Wooster, OH, United States
| | - Stephanie Karhoff
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Translational Plant Sciences Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Bryan J. Cassone
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Department of Biology, Brandon University, Brandon, Manitoba, MB, Canada
| | - Leah K. McHale
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| | - Anne E. Dorrance
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
4
|
Lee HY, Back K. 2-Hydroxymelatonin Promotes Seed Germination by Increasing Reactive Oxygen Species Production and Gibberellin Synthesis in Arabidopsis thaliana. Antioxidants (Basel) 2022; 11:antiox11040737. [PMID: 35453427 PMCID: PMC9028592 DOI: 10.3390/antiox11040737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
It was recently reported that 2-hydroxymelatonin (2-OHM) is responsible for inducing reactive oxygen species (ROS) in plants. ROS are crucial molecules that promote germination through interaction with hormones such as gibberellic acid (GA). In this study, to confirm the pro-oxidant role of 2-OHM, we investigated its effect on seed germination in Arabidopsis thaliana (L.) Heynh. Columbia-0. We found that 2-OHM treatment stimulated seed germination by 90% and 330% in non-dormant and dormant seeds, respectively, whereas melatonin marginally increased germination (~13%) in both seed types compared to untreated control seeds. The germination promotion effects of exogenous 2-OHM treatment were due to increased ROS production followed by the induction of GA synthesis and expression of responsive genes. Accordingly, melatonin 2-hydroxylase (M2H), the gene responsible for 2-OHM synthesis, was strictly expressed only during the germination process. Further molecular genetic analyses using m2h knockout mutant and M2H overexpression clearly supported an increase in ROS triggered by 2-OHM, followed by increased expression of GA-related genes, which shortened the time to germination. Notably, 2-OHM application to m2h knockout mutant seeds fully recovered germination to levels comparable to that of the wild type, whereas melatonin treatment failed to increase germination. Together, these results indicate that 2-OHM is a pivotal molecule that triggers increased ROS production during seed germination, thereby enhancing germination via the GA pathway in Arabidopsis thaliana.
Collapse
|
5
|
Huang FC, Chi SF, Chien PR, Liu YT, Chang HN, Lin CS, Hwang HH. Arabidopsis RAB8A, RAB8B and RAB8D Proteins Interact with Several RTNLB Proteins and are Involved in the Agrobacterium tumefaciens Infection Process. PLANT & CELL PHYSIOLOGY 2021; 62:1572-1588. [PMID: 34255832 DOI: 10.1093/pcp/pcab112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Arabidopsis thaliana small GTP-binding proteins, AtRAB8s, associate with the endomembrane system and modulate tubulovesicular trafficking between compartments of the biosynthetic and endocytic pathways. There are five members in Arabidopsis, namely AtRAB8A-8E. Yeast two-hybrid assays, bimolecular fluorescence complementation assays and glutathione-S-transferase pull-down assays showed that RAB8A, 8B and 8D interacted with several membrane-associated reticulon-like (AtRTNLB) proteins in yeast, plant cells and in vitro. Furthermore, RAB8A, 8B and 8D proteins showed interactions with the Agrobacterium tumefaciens virulence protein, VirB2, a component of a type IV secretion system (T4SS). A. tumefaciens uses a T4SS to transfer T-DNA and Virulence proteins to plants, which causes crown gall disease in plants. The Arabidopsis rab8A, rab8B and rab8D single mutants showed decreased levels of Agrobacterium-mediated root and seedling transformation, while the RAB8A, 8B and 8D overexpression transgenic Arabidopsis plants were hypersusceptible to A. tumefaciens and Pseudomonas syringae infections. RAB8A-8E transcripts accumulated differently in roots, rosette leaves, cauline leaves, inflorescence and flowers of wild-type plants. In summary, RAB8A, 8B and 8D interacted with several RTNLB proteins and participated in A. tumefaciens and P. syringae infection processes.
Collapse
Affiliation(s)
- Fan-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Shin-Fei Chi
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Pei-Ru Chien
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Yin-Tzu Liu
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Hsin-Nung Chang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
6
|
Genome-wide analysis uncovers tomato leaf lncRNAs transcriptionally active upon Pseudomonas syringae pv. tomato challenge. Sci Rep 2021; 11:24523. [PMID: 34972834 PMCID: PMC8720101 DOI: 10.1038/s41598-021-04005-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/01/2021] [Indexed: 01/27/2023] Open
Abstract
Plants rely on (in)direct detection of bacterial pathogens through plasma membrane-localized and intracellular receptor proteins. Surface pattern-recognition receptors (PRRs) participate in the detection of microbe-associated molecular patterns (MAMPs) and are required for the activation of pattern-triggered immunity (PTI). Pathogenic bacteria, such as Pseudomonas syringae pv. tomato (Pst) deploys ~ 30 effector proteins into the plant cell that contribute to pathogenicity. Resistant plants are capable of detecting the presence or activity of effectors and mount another response termed effector-triggered immunity (ETI). In order to investigate the involvement of tomato’s long non-coding RNAs (lncRNAs) in the immune response against Pst, we used RNA-seq data to predict and characterize those that are transcriptionally active in leaves challenged with a large set of treatments. Our prediction strategy was validated by sequence comparison with tomato lncRNAs described in previous works and by an alternative approach (RT-qPCR). Early PTI (30 min), late PTI (6 h) and ETI (6 h) differentially expressed (DE) lncRNAs were identified and used to perform a co-expression analysis including neighboring (± 100 kb) DE protein-coding genes. Some of the described networks could represent key regulatory mechanisms of photosynthesis, PRR abundance at the cell surface and mitigation of oxidative stress, associated to tomato-Pst pathosystem.
Collapse
|
7
|
Wang S, Xue M, He C, Shen D, Jiang C, Zhao H, Niu D. AtMC1 Associates With LSM4 to Regulate Plant Immunity Through Modulating Pre-mRNA Splicing. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1423-1432. [PMID: 34515495 DOI: 10.1094/mpmi-07-21-0197-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Alternative splicing of pre-mRNAs is an important gene regulatory mechanism shaping the transcriptome. AtMC1 is an Arabidopsis thaliana type I metacaspase that positively regulates the hypersensitive response. Here, we found that AtMC1 is involved in the regulation of plant immunity to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and is physically associated with Sm-like4 (LSM4), which is involved in pre-mRNA splicing. AtMC1 and LSM4 protein levels both increased with their coexpression as compared with their separate expression in vivo. Like AtMC1, LSM4 negatively regulates plant immunity to P. syringae pv. tomato DC3000 infection. By RNA sequencing, AtMC1 was shown to modulate the splicing of many pre-mRNAs, including 4CL3, which is a negative regulator of plant immunity. Thus, AtMC1 plays a regulatory role in pre-mRNA splicing, which might contribute to AtMC1-mediated plant immunity.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Shune Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Mei Xue
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Chan He
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Danyu Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Chunhao Jiang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongwei Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongdong Niu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Jamsheer K M, Kumar M, Srivastava V. SNF1-related protein kinase 1: the many-faced signaling hub regulating developmental plasticity in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6042-6065. [PMID: 33693699 DOI: 10.1093/jxb/erab079] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/17/2021] [Indexed: 05/03/2023]
Abstract
The Snf1-related protein kinase 1 (SnRK1) is the plant homolog of the heterotrimeric AMP-activated protein kinase/sucrose non-fermenting 1 (AMPK/Snf1), which works as a major regulator of growth under nutrient-limiting conditions in eukaryotes. Along with its conserved role as a master regulator of sugar starvation responses, SnRK1 is involved in controlling the developmental plasticity and resilience under diverse environmental conditions in plants. In this review, through mining and analyzing the interactome and phosphoproteome data of SnRK1, we are highlighting its role in fundamental cellular processes such as gene regulation, protein synthesis, primary metabolism, protein trafficking, nutrient homeostasis, and autophagy. Along with the well-characterized molecular interaction in SnRK1 signaling, our analysis highlights several unchartered regions of SnRK1 signaling in plants such as its possible communication with chromatin remodelers, histone modifiers, and inositol phosphate signaling. We also discuss potential reciprocal interactions of SnRK1 signaling with other signaling pathways and cellular processes, which could be involved in maintaining flexibility and homeostasis under different environmental conditions. Overall, this review provides a comprehensive overview of the SnRK1 signaling network in plants and suggests many novel directions for future research.
Collapse
Affiliation(s)
- Muhammed Jamsheer K
- Amity Food & Agriculture Foundation, Amity University Uttar Pradesh, Sector 125, Noida 201313, India
| | - Manoj Kumar
- Amity Food & Agriculture Foundation, Amity University Uttar Pradesh, Sector 125, Noida 201313, India
| | - Vibha Srivastava
- Department of Crop, Soil & Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
9
|
Tahmasebi A, Niazi A. Comparison of Transcriptional Response of C 3 and C 4 Plants to Drought Stress Using Meta-Analysis and Systems Biology Approach. FRONTIERS IN PLANT SCIENCE 2021; 12:668736. [PMID: 34276729 PMCID: PMC8280774 DOI: 10.3389/fpls.2021.668736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/03/2021] [Indexed: 05/24/2023]
Abstract
Drought stress affects a range of plant processes. It is still not well-known how C3 and C4 plants respond to drought. Here, we used a combination of meta-analysis and network analysis to compare the transcriptional responses of Oryza sativa (rice), a C3 plant, and Zea mays (maize), a C4 plant, to drought stress. The findings showed that drought stress changes the expression of genes and affects different mechanisms in the C3 and C4 plants. We identified several genes that were differentially expressed genes (DEGs) under stress conditions in both species, most of which are associated with photosynthesis, molecule metabolic process, and response to stress. Additionally, we observed that many DEGs physically located within the quantitative trait locus regions are associated with C isotope signature (d13C), photosynthetic gas exchange, and root characteristics traits. Through the gene co-expression and differential co-expression network methods, we identified sets of genes with similar and different behaviors among C3 and C4 plants during drought stress. This result indicates that mitogen-activated protein kinases (MAPK) signaling pathway plays an important part in the differences between the C3 and C4 species. The present study provides a better understanding of the mechanisms underlying the response of C3 and C4 plants to drought stress, which may useful for engineering drought tolerance in plants.
Collapse
Affiliation(s)
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| |
Collapse
|
10
|
Nandakumar M, Malathi P, Sundar AR, Rajadurai CP, Philip M, Viswanathan R. Role of miRNAs in the host-pathogen interaction between sugarcane and Colletotrichum falcatum, the red rot pathogen. PLANT CELL REPORTS 2021; 40:851-870. [PMID: 33818644 DOI: 10.1007/s00299-021-02682-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/15/2021] [Indexed: 02/08/2023]
Abstract
KEY MESSAGE Sugarcane microRNAs specifically involved during compatible and incompatible interactions with red rot pathogen Colletotrichum falcatum were identified. We have identified how the miRNAs regulate their gene targets and elaborated evidently on the underlying molecular mechanism of sugarcane defense response to C. falcatum for the first time. Resistance against the fungal pathogen Colletotrichum falcatum causing red rot is one of the most desirable traits for sustainable crop cultivation in sugarcane. To gain new insight into the host defense mechanism against C. falcatum, we studied the role of sugarcane microRNAs during compatible and incompatible interactions by adopting the NGS platform. We have sequenced a total of 80 miRNA families that comprised 980 miRNAs, and the putative targets of the miRNAs include transcription factors, membrane-bound proteins, glutamate receptor proteins, lignin biosynthesis proteins, signaling cascade proteins, transporter proteins, mitochondrial proteins, ER proteins, defense-related, stress response proteins, translational regulation proteins, cell proliferation, and ubiquitination proteins. Further, qRT-PCR analyses of 8 differentially regulated miRNAs and 26 gene transcript targets expression indicated that these miRNAs have a regulatory effect on the expression of respective target genes in most of the cases. Also, the results suggest that certain miRNA regulates many target genes that are involved in inciting early responses to the pathogen infection, signaling pathways, endoplasmic reticulum stress, and resistance gene activation through feedback response from various cellular processes during the compatible and incompatible interaction with the red rot pathogen C. falcatum. The present study revealed the role of sugarcane miRNAs and their target genes during sugarcane-C. falcatum interaction and provided new insight into the miRNA-mediated defense mechanism in sugarcane for the first time.
Collapse
Affiliation(s)
- M Nandakumar
- ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - P Malathi
- ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - A R Sundar
- ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - C P Rajadurai
- AgriGenome Labs, Infopark-Smart City Short Rd, Kochi, Kerala, 682030, India
| | - Manuel Philip
- AgriGenome Labs, Infopark-Smart City Short Rd, Kochi, Kerala, 682030, India
| | - R Viswanathan
- ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India.
| |
Collapse
|
11
|
Lin S, Medina CA, Boge B, Hu J, Fransen S, Norberg S, Yu LX. Identification of genetic loci associated with forage quality in response to water deficit in autotetraploid alfalfa (Medicago sativa L.). BMC PLANT BIOLOGY 2020; 20:303. [PMID: 32611315 PMCID: PMC7328273 DOI: 10.1186/s12870-020-02520-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/24/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Alfalfa has been cultivated in many regions around the world as an important forage crop due to its nutritive value to livestock and ability to adapt to various environments. However, the genetic basis by which plasticity of quality-relevant traits influence alfalfa adaption to different water conditions remain largely unknown. RESULTS In the present study, 198 accessions of alfalfa of the core collection for drought tolerance were evaluated for 26 forage quality traits in a field trial under an imposed deficit irrigation gradient. Regression analysis between quality traits and water stress revealed that values of fiber-related traits were negatively correlated with values of energy-related traits as water deficit increased. More than one hundred significant markers associated with forage quality under different water treatments were identified using genome-wide association studies with genotyping by sequencing. Among them, 131 markers associated with multiple traits in all the water deficit treatments. Most of the associated markers were dependent to the levels of water deficit, suggesting genetic controls for forage quality traits were dependent to the stress treatment. Twenty-four loci associated with forage quality were annotated to functional genes that may play roles in cell development or in response to water stress. CONCLUSIONS This study addressed the genetic base of phenotypic variation of forage quality traits under water deficit. The SNP markers identified in this study will be useful in marker-assisted selection for the genetic improvement of alfalfa with enhanced drought tolerance while maintaining forage quality.
Collapse
Affiliation(s)
- Sen Lin
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, 24106 N Bunn Road, Prosser, WA, 99350, USA
| | - Cesar Augusto Medina
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, 24106 N Bunn Road, Prosser, WA, 99350, USA
| | - Bill Boge
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, 24106 N Bunn Road, Prosser, WA, 99350, USA
| | - Jinguo Hu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, 24106 N Bunn Road, Prosser, WA, 99350, USA
| | - Steven Fransen
- Irrigated Agriculture Extension and Research Center, Washington State University, 24106 N Bunn Road, Prosser, Washington, USA
| | - Steven Norberg
- Washington State University Franklin County Extension Office, 404 West Clark Street, Pasco, Washington, USA
| | - Long-Xi Yu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, 24106 N Bunn Road, Prosser, WA, 99350, USA.
| |
Collapse
|
12
|
Wang W, Liu N, Gao C, Cai H, Romeis T, Tang D. The Arabidopsis exocyst subunits EXO70B1 and EXO70B2 regulate FLS2 homeostasis at the plasma membrane. THE NEW PHYTOLOGIST 2020; 227:529-544. [PMID: 32119118 DOI: 10.1111/nph.16515] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
The plasma membrane (PM)-localized receptor kinase FLAGELLIN SENSING 2 (FLS2) recognizes bacterial flagellin or its immunogenic epitope flg22, and initiates microbe-associated molecular pattern-triggered immunity, which inhibits infection by bacterial pathogens. The localization, abundance and activity of FLS2 are under dynamic control. Here, we demonstrate that Arabidopsis thaliana EXO70B1, a subunit of the exocyst complex, plays a critical role in FLS2 signaling that is independent of the truncated Toll/interleukin-1 receptor-nucleotide binding sequence protein TIR-NBS2 (TN2). In the exo70B1-3 mutant, the abundance of FLS2 protein at the PM is diminished, consistent with the impaired flg22 response of this mutant. EXO70B1-GFP plants showed increased FLS2 accumulation at the PM and therefore enhanced FLS2 signaling. The EXO70B1-mediated trafficking of FLS2 to the PM is partially independent of the PENETRATION 1 (PEN1)-containing secretory pathway. In addition, EXO70B1 interacts with EXO70B2, a close homolog of EXO70B1, and both proteins associate with FLS2 and contribute to the accumulation of FLS2 at the PM. Taken together, our data suggest that the exocyst complex subunits EXO70B1 and EXO70B2 regulate the trafficking of FLS2 to the PM, which represents a new layer of regulation of FLS2 function in plant immunity.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Na Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chenyang Gao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiren Cai
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tina Romeis
- Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
13
|
Lee D, Lal NK, Lin ZJD, Ma S, Liu J, Castro B, Toruño T, Dinesh-Kumar SP, Coaker G. Regulation of reactive oxygen species during plant immunity through phosphorylation and ubiquitination of RBOHD. Nat Commun 2020; 11:1838. [PMID: 32296066 PMCID: PMC7160206 DOI: 10.1038/s41467-020-15601-5] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 03/09/2020] [Indexed: 01/08/2023] Open
Abstract
Production of reactive oxygen species (ROS) is critical for successful activation of immune responses against pathogen infection. The plant NADPH oxidase RBOHD is a primary player in ROS production during innate immunity. However, how RBOHD is negatively regulated remains elusive. Here we show that RBOHD is regulated by C-terminal phosphorylation and ubiquitination. Genetic and biochemical analyses reveal that the PBL13 receptor-like cytoplasmic kinase phosphorylates RBOHD's C-terminus and two phosphorylated residues (S862 and T912) affect RBOHD activity and stability, respectively. Using protein array technology, we identified an E3 ubiquitin ligase PIRE (PBL13 interacting RING domain E3 ligase) that interacts with both PBL13 and RBOHD. Mimicking phosphorylation of RBOHD (T912D) results in enhanced ubiquitination and decreased protein abundance. PIRE and PBL13 mutants display higher RBOHD protein accumulation, increased ROS production, and are more resistant to bacterial infection. Thus, our study reveals an intricate post-translational network that negatively regulates the abundance of a conserved NADPH oxidase.
Collapse
Affiliation(s)
- DongHyuk Lee
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Neeraj K Lal
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Zuh-Jyh Daniel Lin
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA.,Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Shisong Ma
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis, CA, 95616, USA.,School of Life Sciences, University of Science and Technology of China, 230027, Hefei, China
| | - Jun Liu
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA.,Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Bardo Castro
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Tania Toruño
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Gitta Coaker
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
14
|
Asano T, Nguyen THN, Yasuda M, Sidiq Y, Nishimura K, Nakashita H, Nishiuchi T. Arabidopsis MAPKKK δ-1 is required for full immunity against bacterial and fungal infection. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2085-2097. [PMID: 31844896 PMCID: PMC7094076 DOI: 10.1093/jxb/erz556] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/13/2019] [Indexed: 05/25/2023]
Abstract
The genome of Arabidopsis encodes more than 60 mitogen-activated protein kinase kinase (MAPKK) kinases (MAPKKKs); however, the functions of most MAPKKKs and their downstream MAPKKs are largely unknown. Here, MAPKKK δ-1 (MKD1), a novel Raf-like MAPKKK, was isolated from Arabidopsis as a subunit of a complex including the transcription factor AtNFXL1, which is involved in the trichothecene phytotoxin response and in disease resistance against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (PstDC3000). A MKD1-dependent cascade positively regulates disease resistance against PstDC3000 and the trichothecene mycotoxin-producing fungal pathogen Fusarium sporotrichioides. MKD1 expression was induced by trichothecenes derived from Fusarium species. MKD1 directly interacted with MKK1 and MKK5 in vivo, and phosphorylated MKK1 and MKK5 in vitro. Correspondingly, mkk1 mutants and MKK5RNAi transgenic plants showed enhanced susceptibility to F. sporotrichioides. MKD1 was required for full activation of two MAPKs (MPK3 and MPK6) by the T-2 toxin and flg22. Finally, quantitative phosphoproteomics suggested that an MKD1-dependent cascade controlled phosphorylation of a disease resistance protein, SUMO, and a mycotoxin-detoxifying enzyme. Our findings suggest that the MKD1-MKK1/MKK5-MPK3/MPK6-dependent signaling cascade is involved in the full immune responses against both bacterial and fungal infection.
Collapse
Affiliation(s)
- Tomoya Asano
- Institute for Gene Research, Advanced Science Research Center, Kanazawa University, Takaramachi, Kanazawa, Ishikawa, Japan
| | - Thi Hang-Ni Nguyen
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Michiko Yasuda
- Plant Acquired Immunity Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Yasir Sidiq
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kohji Nishimura
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Shimane, Japan
| | - Hideo Nakashita
- Plant Acquired Immunity Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Takumi Nishiuchi
- Institute for Gene Research, Advanced Science Research Center, Kanazawa University, Takaramachi, Kanazawa, Ishikawa, Japan
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
15
|
Huang FC, Hwang HH. Arabidopsis RETICULON-LIKE4 (RTNLB4) Protein Participates in Agrobacterium Infection and VirB2 Peptide-Induced Plant Defense Response. Int J Mol Sci 2020; 21:ijms21051722. [PMID: 32138311 PMCID: PMC7084338 DOI: 10.3390/ijms21051722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/27/2022] Open
Abstract
Agrobacterium tumefaciens uses the type IV secretion system, which consists of VirB1-B11 and VirD4 proteins, to deliver effectors into plant cells. The effectors manipulate plant proteins to assist in T-DNA transfer, integration, and expression in plant cells. The Arabidopsis reticulon-like (RTNLB) proteins are located in the endoplasmic reticulum and are involved in endomembrane trafficking in plant cells. The rtnlb4 mutants were recalcitrant to A. tumefaciens infection, but overexpression of RTNLB4 in transgenic plants resulted in hypersusceptibility to A. tumefaciens transformation, which suggests the involvement of RTNLB4 in A. tumefaciens infection. The expression of defense-related genes, including FRK1, PR1, WRKY22, and WRKY29, were less induced in RTNLB4 overexpression (O/E) transgenic plants after A. tumefaciens elf18 peptide treatment. Pretreatment with elf18 peptide decreased Agrobacterium-mediated transient expression efficiency more in wild-type seedlings than RTNLB4 O/E transgenic plants, which suggests that the induced defense responses in RTNLB4 O/E transgenic plants might be affected after bacterial elicitor treatments. Similarly, A. tumefaciens VirB2 peptide pretreatment reduced transient T-DNA expression in wild-type seedlings to a greater extent than in RTNLB4 O/E transgenic seedlings. Furthermore, the VirB2 peptides induced FRK1, WRKY22, and WRKY29 gene expression in wild-type seedlings but not efr-1 and bak1 mutants. The induced defense-related gene expression was lower in RTNLB4 O/E transgenic plants than wild-type seedlings after VirB2 peptide treatment. These data suggest that RTNLB4 may participate in elf18 and VirB2 peptide-induced defense responses and may therefore affect the A. tumefaciens infection process.
Collapse
Affiliation(s)
- Fan-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan;
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 402, Taiwan
| | - Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan;
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 402, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: ; Tel.: +886-4-2284-0416-412
| |
Collapse
|
16
|
Leitão ST, Malosetti M, Song Q, van Eeuwijk F, Rubiales D, Vaz Patto MC. Natural Variation in Portuguese Common Bean Germplasm Reveals New Sources of Resistance Against Fusarium oxysporum f. sp. phaseoli and Resistance-Associated Candidate Genes. PHYTOPATHOLOGY 2020; 110:633-647. [PMID: 31680652 DOI: 10.1094/phyto-06-19-0207-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Common bean (Phaseolus vulgaris) is one of the most consumed legume crops in the world, and Fusarium wilt, caused by the fungus Fusarium oxysporum f. sp. phaseoli, is one of the major diseases affecting its production. Portugal holds a very promising common bean germplasm with an admixed genetic background that may reveal novel genetic resistance combinations between the original Andean and Mesoamerican gene pools. To identify new sources of Fusarium wilt resistance and detect resistance-associated single-nucleotide polymorphisms (SNPs), we explored, for the first time, a diverse collection of the underused Portuguese common bean germplasm by using genome-wide association analyses. The collection was evaluated for Fusarium wilt resistance under growth chamber conditions, with the highly virulent F. oxysporum f. sp. phaseoli strain FOP-SP1 race 6. Fourteen of the 162 Portuguese accessions evaluated were highly resistant and 71 intermediate. The same collection was genotyped with DNA sequencing arrays, and SNP-resistance associations were tested via a mixed linear model accounting for the genetic relatedness between accessions. The results from the association mapping revealed nine SNPs associated with resistance on chromosomes Pv04, Pv05, Pv07, and Pv08, indicating that Fusarium wilt resistance is under oligogenic control. Putative candidate genes related to phytoalexin biosynthesis, hypersensitive response, and plant primary metabolism were identified. The results reported here highlight the importance of exploring underused germplasm for new sources of resistance and provide new genomic targets for the development of functional markers to support selection in future disease resistance breeding programs.
Collapse
Affiliation(s)
- Susana T Leitão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Qijan Song
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, U.S.A
| | | | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Córdoba, Spain
| | - Maria Carlota Vaz Patto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
17
|
Zhang L, Xing J, Lin J. At the intersection of exocytosis and endocytosis in plants. THE NEW PHYTOLOGIST 2019; 224:1479-1489. [PMID: 31230354 DOI: 10.1111/nph.16018] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/03/2019] [Indexed: 05/18/2023]
Abstract
Vesicle exocytosis and endocytosis control the activities and turnover of plasma membrane proteins required for signaling triggering or attenuating at the cell surface. In recent years, the diverse exocytic and endocytic trafficking pathways have been uncovered in plants. The balance between conventional and unconventional protein secretion provides an efficient strategy to respond to stress conditions. Similarly, clathrin-dependent and -independent endocytosis cooperatively regulate the dynamics of membrane proteins in response to environmental cues. In fact, many aspects of plant growth and development, such as tip growth, immune response, and protein polarity establishment, involve the tight deployment of exo-endocytic trafficking. However, our understanding of their intersection is limited. Here, we discuss recent advances in the molecular factors coupling plant exo-endocytic trafficking and the biological significance of balance between exocytosis and endocytosis in plants.
Collapse
Affiliation(s)
- Liang Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jingjing Xing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 457001, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
18
|
Ekanayake G, LaMontagne ED, Heese A. Never Walk Alone: Clathrin-Coated Vesicle (CCV) Components in Plant Immunity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:387-409. [PMID: 31386597 DOI: 10.1146/annurev-phyto-080417-045841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
At the host-pathogen interface, the protein composition of the plasma membrane (PM) has important implications for how a plant cell perceives and responds to invading microbial pathogens. A plant's ability to modulate its PM composition is critical for regulating the strength, duration, and integration of immune responses. One mechanism by which plant cells reprogram their cell surface is vesicular trafficking, including secretion and endocytosis. These trafficking processes add or remove cargo proteins (such as pattern-recognition receptors, transporters, and other proteins with immune functions) to or from the PM via small, membrane-bound vesicles. Clathrin-coated vesicles (CCVs) that form at the PM and trans-Golgi network/early endosomes have emerged as the prominent vesicle type in the regulation of plant immune responses. In this review, we discuss the roles of the CCV core, adaptors, and accessory components in plant defense signaling and immunity against various microbial pathogens.
Collapse
Affiliation(s)
- Gayani Ekanayake
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA; ,
| | - Erica D LaMontagne
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA; ,
| | - Antje Heese
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA; ,
| |
Collapse
|
19
|
Struk S, Jacobs A, Sánchez Martín-Fontecha E, Gevaert K, Cubas P, Goormachtig S. Exploring the protein-protein interaction landscape in plants. PLANT, CELL & ENVIRONMENT 2019; 42:387-409. [PMID: 30156707 DOI: 10.1111/pce.13433] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/16/2018] [Indexed: 05/24/2023]
Abstract
Protein-protein interactions (PPIs) represent an essential aspect of plant systems biology. Identification of key protein players and their interaction networks provide crucial insights into the regulation of plant developmental processes and into interactions of plants with their environment. Despite the great advance in the methods for the discovery and validation of PPIs, still several challenges remain. First, the PPI networks are usually highly dynamic, and the in vivo interactions are often transient and difficult to detect. Therefore, the properties of the PPIs under study need to be considered to select the most suitable technique, because each has its own advantages and limitations. Second, besides knowledge on the interacting partners of a protein of interest, characteristics of the interaction, such as the spatial or temporal dynamics, are highly important. Hence, multiple approaches have to be combined to obtain a comprehensive view on the PPI network present in a cell. Here, we present the progress in commonly used methods to detect and validate PPIs in plants with a special emphasis on the PPI features assessed in each approach and how they were or can be used for the study of plant interactions with their environment.
Collapse
Affiliation(s)
- Sylwia Struk
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Anse Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Elena Sánchez Martín-Fontecha
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Pilar Cubas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
20
|
Shan J, Cai Z, Zhang Y, Xu H, Rao J, Fan Y, Yang J. The underlying pathway involved in inter-subspecific hybrid male sterility in rice. Genomics 2018; 111:1447-1455. [PMID: 30336276 DOI: 10.1016/j.ygeno.2018.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 09/14/2018] [Accepted: 09/28/2018] [Indexed: 11/24/2022]
Abstract
f5 locus in rice (Oryza sativa L.) confers significant effects on hybrid male sterility and segregation distortion. BC14F2 plants with f5-i/i, f5-j/j and f5-i/j genotypes were used to dissect the underlying pathway of f5-caused hybrid male sterility via comparative transcriptome analysis. A total of 350, 421, and 480 differentially expressed genes (DEGs) were identified from f5-i/j vs f5-j/j, f5-j/j vs f5-i/i, and f5-i/j vs f5-i/i, respectively. 145 DEGs were identified simultaneously in f5-i/j vs f5-j/j and f5-i/j vs f5-i/i. Enrichment analysis indicated that stress and cell control related processes were enriched. The expression of ascorbate peroxidase (APX) and most of the heat shock proteins (HSPs) were decreased, which might result in higher sensitivity to various stresses in pollen cells. A model was proposed to summarize the underlying process for f5-caused hybrid male sterility. These results would provide significant clues to further dissecting the molecular mechanism of f5-caused inter-subspecific reproductive isolation.
Collapse
Affiliation(s)
- Jianwei Shan
- College of Life Science and Technology; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China
| | - Zhongquan Cai
- College of Life Science and Technology; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China; College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Yu Zhang
- College of Life Science and Technology; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China
| | - Hannan Xu
- College of Life Science and Technology; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China
| | - Jianglei Rao
- College of Life Science and Technology; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China
| | - Yourong Fan
- College of Life Science and Technology; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China.
| | - Jiangyi Yang
- College of Life Science and Technology; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
21
|
Lee HY, Back K. Melatonin induction and its role in high light stress tolerance in Arabidopsis thaliana. J Pineal Res 2018; 65:e12504. [PMID: 29770489 DOI: 10.1111/jpi.12504] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022]
Abstract
In plants, melatonin is a potent bioactive molecule involved in the response against various biotic and abiotic stresses. However, little is known of its defensive role against high light (HL) stress. In this study, we found that melatonin was transiently induced in response to HL stress in Arabidopsis thaliana with a simultaneous increase in the expression of melatonin biosynthetic genes, including serotonin N-acetyltransferase1 (SNAT1). Transient induction of melatonin was also observed in the flu mutant, a singlet oxygen (1 O2 )-producing mutant, upon light exposure, suggestive of melatonin induction by chloroplastidic 1 O2 against HL stress. An Arabidopsis snat1 mutant was devoid of melatonin induction upon HL stress, resulting in high susceptibility to HL stress. Exogenous melatonin treatment mitigated damage caused by HL stress in the snat1 mutant by reducing O2- production and increasing the expression of various ROS-responsive genes. In analogy, an Arabidopsis SNAT1-overexpressing line showed increased tolerance of HL stress concomitant with a reduction in malondialdehyde and ion leakage. A complementation line expressing an Arabidopsis SNAT1 genomic fragment in the snat1 mutant completely restored HL stress susceptibility in the snat1 mutant to levels comparable to that of wild-type Col-0 plants. The results of the analysis of several Arabidopsis genetic lines reveal for the first time at the genetic level that melatonin is involved in conferring HL stress tolerance in plants.
Collapse
Affiliation(s)
- Hyoung Yool Lee
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, South Korea
| | - Kyoungwhan Back
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
22
|
Machado SR, Gregório EA, Rodrigues TM. Structural associations between organelle membranes in nectary parenchyma cells. PLANTA 2018; 247:1067-1076. [PMID: 29344723 DOI: 10.1007/s00425-018-2844-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/07/2018] [Indexed: 06/07/2023]
Abstract
The close association between membranes and organelles, and the intense chloroplast remodeling in parenchyma cells of extrafloral nectaries occurred only at the secretion time and suggest a relationship with the nectar secretion. Associations between membranes and organelles have been well documented in different tissues and cells of plants, but poorly explored in secretory cells. Here, we described the close physical juxtaposition between membranes and organelles, mainly with chloroplasts, in parenchyma cells of Citharexylum myrianthum (Verbenaeceae) extrafloral nectaries under transmission electron microscopy, using conventional and microwave fixation. At the time of nectar secretion, nectary parenchyma cells exhibit a multitude of different organelle and membrane associations as mitochondria-mitochondria, mitochondria-endoplasmic reticulum, mitochondria-chloroplast, chloroplast-nuclear envelope, mitochondria-nuclear envelope, chloroplast-plasmalemma, chloroplast-chloroplast, chloroplast-tonoplast, chloroplast-peroxisome, and mitochondria-peroxisome. These associations were visualized as amorphous electron-dense material, a network of dense fibrillar material and/or dense bridges. Chloroplasts exhibited protrusions variable in shape and extension, which bring them closer to each other and to plasmalemma, tonoplast, and nuclear envelope. Parenchyma cells in the pre- and post-secretory stages did not exhibit any association or juxtaposition of membranes and organelles, and chloroplast protrusions were absent. Chloroplasts had peripheral reticulum that was more developed in the secretory stage. We propose that such subcellular phenomena during the time of nectar secretion optimize the movement of signaling molecules and the exchange of metabolites. Our results open new avenues on the potential mechanisms of organelle contact in parenchyma nectary cells, and reveal new attributes of the secretory cells on the subcellular level.
Collapse
Affiliation(s)
- Silvia Rodrigues Machado
- Department of Botany, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Elisa A Gregório
- Center of Electron Microscopy (CME), Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Tatiane M Rodrigues
- Department of Botany, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
23
|
Arabidopsis RETICULON-LIKE3 (RTNLB3) and RTNLB8 Participate in Agrobacterium-Mediated Plant Transformation. Int J Mol Sci 2018; 19:ijms19020638. [PMID: 29495267 PMCID: PMC5855860 DOI: 10.3390/ijms19020638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 12/05/2022] Open
Abstract
Agrobacterium tumefaciens can genetically transform various eukaryotic cells because of the presence of a resident tumor-inducing (Ti) plasmid. During infection, a defined region of the Ti plasmid, transfer DNA (T-DNA), is transferred from bacteria into plant cells and causes plant cells to abnormally synthesize auxin and cytokinin, which results in crown gall disease. T-DNA and several virulence (Vir) proteins are secreted through a type IV secretion system (T4SS) composed of T-pilus and a transmembrane protein complex. Three members of Arabidopsis reticulon-like B (RTNLB) proteins, RTNLB1, 2, and 4, interact with VirB2, the major component of T-pilus. Here, we have identified that other RTNLB proteins, RTNLB3 and 8, interact with VirB2 in vitro. Root-based A. tumefaciens transformation assays with Arabidopsis rtnlb3, or rtnlb5-10 single mutants showed that the rtnlb8 mutant was resistant to A. tumefaciens infection. In addition, rtnlb3 and rtnlb8 mutants showed reduced transient transformation efficiency in seedlings. RTNLB3- or 8 overexpression transgenic plants showed increased susceptibility to A. tumefaciens and Pseudomonas syringae infection. RTNLB1-4 and 8 transcript levels differed in roots, rosette leaves, cauline leaves, inflorescence, flowers, and siliques of wild-type plants. Taken together, RTNLB3 and 8 may participate in A. tumefaciens infection but may have different roles in plants.
Collapse
|
24
|
Pizarro L, Leibman-Markus M, Schuster S, Bar M, Meltz T, Avni A. Tomato Prenylated RAB Acceptor Protein 1 Modulates Trafficking and Degradation of the Pattern Recognition Receptor LeEIX2, Affecting the Innate Immune Response. FRONTIERS IN PLANT SCIENCE 2018; 9:257. [PMID: 29545816 PMCID: PMC5838007 DOI: 10.3389/fpls.2018.00257] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/12/2018] [Indexed: 05/18/2023]
Abstract
Plants recognize microbial/pathogen associated molecular patterns (MAMP/PAMP) through pattern recognition receptors (PRRs) triggering an immune response against pathogen progression. MAMP/PAMP triggered immune response requires PRR endocytosis and trafficking for proper deployment. LeEIX2 is a well-known Solanum lycopersicum RLP-PRR, able to recognize and respond to the fungal MAMP/PAMP ethylene-inducing xylanase (EIX), and its function is highly dependent on intracellular trafficking. Identifying protein machinery components regulating LeEIX2 intracellular trafficking is crucial to our understanding of LeEIX2 mediated immune responses. In this work, we identified a novel trafficking protein, SlPRA1A, a predicted regulator of RAB, as an interactor of LeEIX2. Overexpression of SlPRA1A strongly decreases LeEIX2 endosomal localization, as well as LeEIX2 protein levels. Accordingly, the innate immune responses to EIX are markedly reduced by SlPRA1A overexpression, presumably due to a decreased LeEIX2 availability. Studies into the role of SlPRA1A in LeEIX2 trafficking revealed that LeEIX2 localization in multivesicular bodies/late endosomes is augmented by SlPRA1A. Furthermore, inhibiting vacuolar function prevents the LeEIX2 protein level reduction mediated by SlPRA1A, suggesting that SlPRA1A may redirect LeEIX2 trafficking to the vacuole for degradation. Interestingly, SlPRA1A overexpression reduces the amount of several RLP-PRRs, but does not affect the protein level of receptor-like kinase PRRs, suggesting a specific role of SlPRA1A in RLP-PRR trafficking and degradation.
Collapse
Affiliation(s)
- Lorena Pizarro
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | | | - Silvia Schuster
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Tal Meltz
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Adi Avni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Adi Avni,
| |
Collapse
|
25
|
Griffing LR, Lin C, Perico C, White RR, Sparkes I. Plant ER geometry and dynamics: biophysical and cytoskeletal control during growth and biotic response. PROTOPLASMA 2017; 254:43-56. [PMID: 26862751 PMCID: PMC5216105 DOI: 10.1007/s00709-016-0945-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/13/2016] [Indexed: 05/20/2023]
Abstract
The endoplasmic reticulum (ER) is an intricate and dynamic network of membrane tubules and cisternae. In plant cells, the ER 'web' pervades the cortex and endoplasm and is continuous with adjacent cells as it passes through plasmodesmata. It is therefore the largest membranous organelle in plant cells. It performs essential functions including protein and lipid synthesis, and its morphology and movement are linked to cellular function. An emerging trend is that organelles can no longer be seen as discrete membrane-bound compartments, since they can physically interact and 'communicate' with one another. The ER may form a connecting central role in this process. This review tackles our current understanding and quantification of ER dynamics and how these change under a variety of biotic and developmental cues.
Collapse
Affiliation(s)
- Lawrence R Griffing
- Biology Department, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| | - Congping Lin
- Mathematics Research Institute, Harrison Building, University of Exeter, Exeter, EX4 4QF, UK
| | - Chiara Perico
- Biosciences, CLES, Exeter University, Geoffrey Pope Building, Stocker Rd, Exeter, EX4 4QD, UK
| | - Rhiannon R White
- Biosciences, CLES, Exeter University, Geoffrey Pope Building, Stocker Rd, Exeter, EX4 4QD, UK
| | - Imogen Sparkes
- Biosciences, CLES, Exeter University, Geoffrey Pope Building, Stocker Rd, Exeter, EX4 4QD, UK.
| |
Collapse
|
26
|
Dufayard JF, Bettembourg M, Fischer I, Droc G, Guiderdoni E, Périn C, Chantret N, Diévart A. New Insights on Leucine-Rich Repeats Receptor-Like Kinase Orthologous Relationships in Angiosperms. FRONTIERS IN PLANT SCIENCE 2017; 8:381. [PMID: 28424707 PMCID: PMC5380761 DOI: 10.3389/fpls.2017.00381] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/06/2017] [Indexed: 05/18/2023]
Abstract
Leucine-Rich Repeats Receptor-Like Kinase (LRR-RLK) genes represent a large and complex gene family in plants, mainly involved in development and stress responses. These receptors are composed of an LRR-containing extracellular domain (ECD), a transmembrane domain (TM) and an intracellular kinase domain (KD). To provide new perspectives on functional analyses of these genes in model and non-model plant species, we performed a phylogenetic analysis on 8,360 LRR-RLK receptors in 31 angiosperm genomes (8 monocots and 23 dicots). We identified 101 orthologous groups (OGs) of genes being conserved among almost all monocot and dicot species analyzed. We observed that more than 10% of these OGs are absent in the Brassicaceae species studied. We show that the ECD structural features are not always conserved among orthologs, suggesting that functions may have diverged in some OG sets. Moreover, we looked at targets of positive selection footprints in 12 pairs of OGs and noticed that depending on the subgroups, positive selection occurred more frequently either in the ECDs or in the KDs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nathalie Chantret
- INRA, UMR AGAPMontpellier, France
- *Correspondence: Anne Diévart, Nathalie Chantret,
| | - Anne Diévart
- CIRAD, UMR AGAPMontpellier, France
- *Correspondence: Anne Diévart, Nathalie Chantret,
| |
Collapse
|
27
|
Koch A, Kang HG, Steinbrenner J, Dempsey DA, Klessig DF, Kogel KH. MORC Proteins: Novel Players in Plant and Animal Health. FRONTIERS IN PLANT SCIENCE 2017; 8:1720. [PMID: 29093720 PMCID: PMC5651269 DOI: 10.3389/fpls.2017.01720] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/20/2017] [Indexed: 05/02/2023]
Abstract
Microrchidia (MORC) proteins comprise a family of proteins that have been identified in prokaryotes and eukaryotes. They are defined by two hallmark domains: a GHKL-type ATPase and an S5 fold. MORC proteins in plants were first discovered via a genetic screen for Arabidopsis mutants compromised for resistance to a viral pathogen. Subsequent studies expanded their role in plant immunity and revealed their involvement in gene silencing and transposable element repression. Emerging data suggest that MORC proteins also participate in pathogen-induced chromatin remodeling and epigenetic gene regulation. In addition, biochemical analyses recently demonstrated that plant MORCs have topoisomerase II (topo II)-like DNA modifying activities that may be important for their function. Interestingly, animal MORC proteins exhibit many parallels with their plant counterparts, as they have been implicated in disease development and gene silencing. In addition, human MORCs, like plant MORCs, bind salicylic acid and this inhibits some of their topo II-like activities. In this review, we will focus primarily on plant MORCs, although relevant comparisons with animal MORCs will be provided.
Collapse
Affiliation(s)
- Aline Koch
- Centre for BioSystems, Land Use and Nutrition, Institute for Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| | - Hong-Gu Kang
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Jens Steinbrenner
- Centre for BioSystems, Land Use and Nutrition, Institute for Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Daniel F. Klessig
- Boyce Thompson Institute for Plant Research, Ithaca, NY, United States
- *Correspondence: Daniel F. Klessig
| | - Karl-Heinz Kogel
- Centre for BioSystems, Land Use and Nutrition, Institute for Phytopathology, Justus Liebig University Giessen, Giessen, Germany
- Karl-Heinz Kogel
| |
Collapse
|
28
|
Abstract
Plants are sessile organisms exposed constantly to potential virulent microbes seeking for full pathogenesis in hosts. Different from animals employing both adaptive and innate immune systems, plants only rely on innate immunity to detect and fight against pathogen invasions. Plant innate immunity is proposed to be a two-tiered immune system including pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In PTI, PAMPs, the elicitors derived from microbial pathogens, are perceived by cell surface-localized proteins, known as pattern recognition receptors (PRRs), including receptor-like kinases (RLKs) and receptor-like proteins (RLPs). As single-pass transmembrane proteins, RLKs and RLPs contain an extracellular domain (ECD) responsible for ligand binding. Recognitions of signal molecules by PRR-ECDs induce homo- or heterooligomerization of RLKs and RLPs to trigger corresponding intracellular immune responses. RLKs possess a cytoplasmic Ser/Thr kinase domain that is absent in RLPs, implying that protein phosphorylations underlie key mechanism in transducing immunity signalings and that RLPs unlikely mediate signal transduction independently, and recruitment of other patterns, such as RLKs, is required for the function of RLPs in plant immunity. Receptor-like cytoplasmic kinases, resembling RLK structures but lacking the ECD, act as immediate substrates of PRRs, modulating PRR activities and linking PRRs with downstream signaling mediators. In this chapter, we summarize recent discoveries illustrating the molecular machines of major components of PRR complexes in mediating pathogen perception and immunity activation in plants.
Collapse
Affiliation(s)
- K He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China.
| | - Y Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
29
|
Zou C, Wang P, Xu Y. Bulked sample analysis in genetics, genomics and crop improvement. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1941-55. [PMID: 26990124 PMCID: PMC5043468 DOI: 10.1111/pbi.12559] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/09/2016] [Accepted: 03/12/2016] [Indexed: 05/18/2023]
Abstract
Biological assay has been based on analysis of all individuals collected from sample populations. Bulked sample analysis (BSA), which works with selected and pooled individuals, has been extensively used in gene mapping through bulked segregant analysis with biparental populations, mapping by sequencing with major gene mutants and pooled genomewide association study using extreme variants. Compared to conventional entire population analysis, BSA significantly reduces the scale and cost by simplifying the procedure. The bulks can be built by selection of extremes or representative samples from any populations and all types of segregants and variants that represent wide ranges of phenotypic variation for the target trait. Methods and procedures for sampling, bulking and multiplexing are described. The samples can be analysed using individual markers, microarrays and high-throughput sequencing at all levels of DNA, RNA and protein. The power of BSA is affected by population size, selection of extreme individuals, sequencing strategies, genetic architecture of the trait and marker density. BSA will facilitate plant breeding through development of diagnostic and constitutive markers, agronomic genomics, marker-assisted selection and selective phenotyping. Applications of BSA in genetics, genomics and crop improvement are discussed with their future perspectives.
Collapse
Affiliation(s)
- Cheng Zou
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pingxi Wang
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunbi Xu
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China.
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico.
| |
Collapse
|
30
|
Zhang H, Hu J. Shaping the Endoplasmic Reticulum into a Social Network. Trends Cell Biol 2016; 26:934-943. [PMID: 27339937 DOI: 10.1016/j.tcb.2016.06.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/25/2016] [Accepted: 06/02/2016] [Indexed: 10/21/2022]
Abstract
In eukaryotic cells, the endoplasmic reticulum (ER) is constructed as a network of tubules and sheets that exist in one continuous membrane system. Several classes of integral membrane protein have been shown to shape ER membranes. Functional studies using mutant proteins have begun to reveal the significance of ER morphology and membrane dynamics. In this review, we discuss the common protein modules and mechanisms that generate the characteristic shape of the ER. We also describe the cellular functions closely related to ER morphology, particularly contacts with other membrane systems, and their potential roles in the development of multicellular organisms.
Collapse
Affiliation(s)
- Hong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Junjie Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
31
|
Brauer EK, Ahsan N, Dale R, Kato N, Coluccio AE, Piñeros MA, Kochian LV, Thelen JJ, Popescu SC. The Raf-like Kinase ILK1 and the High Affinity K+ Transporter HAK5 Are Required for Innate Immunity and Abiotic Stress Response. PLANT PHYSIOLOGY 2016; 171:1470-84. [PMID: 27208244 PMCID: PMC4902592 DOI: 10.1104/pp.16.00035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 04/29/2016] [Indexed: 05/04/2023]
Abstract
Plant perception of pathogen-associated molecular patterns (PAMPs) and other environmental stresses trigger transient ion fluxes at the plasma membrane. Apart from the role of Ca(2+) uptake in signaling, the regulation and significance of PAMP-induced ion fluxes in immunity remain unknown. We characterized the functions of INTEGRIN-LINKED KINASE1 (ILK1) that encodes a Raf-like MAP2K kinase with functions insufficiently understood in plants. Analysis of ILK1 mutants impaired in the expression or kinase activity revealed that ILK1 contributes to plant defense to bacterial pathogens, osmotic stress sensitivity, and cellular responses and total ion accumulation in the plant upon treatment with a bacterial-derived PAMP, flg22. The calmodulin-like protein CML9, a negative modulator of flg22-triggered immunity, interacted with, and suppressed ILK1 kinase activity. ILK1 interacted with and promoted the accumulation of HAK5, a putative (H(+))/K(+) symporter that mediates a high-affinity uptake during K(+) deficiency. ILK1 or HAK5 expression was required for several flg22 responses including gene induction, growth arrest, and plasma membrane depolarization. Furthermore, flg22 treatment induced a rapid K(+) efflux at both the plant and cellular levels in wild type, while mutants with impaired ILK1 or HAK5 expression exhibited a comparatively increased K(+) loss. Taken together, our results position ILK1 as a link between plant defense pathways and K(+) homeostasis.
Collapse
Affiliation(s)
- Elizabeth K Brauer
- The Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211 (N.A., J.T.T.); Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (R.D., N.K.); and Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, New York 14853 (A.E.C., M.A.P., L.V.K.)
| | - Nagib Ahsan
- The Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211 (N.A., J.T.T.); Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (R.D., N.K.); and Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, New York 14853 (A.E.C., M.A.P., L.V.K.)
| | - Renee Dale
- The Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211 (N.A., J.T.T.); Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (R.D., N.K.); and Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, New York 14853 (A.E.C., M.A.P., L.V.K.)
| | - Naohiro Kato
- The Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211 (N.A., J.T.T.); Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (R.D., N.K.); and Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, New York 14853 (A.E.C., M.A.P., L.V.K.)
| | - Alison E Coluccio
- The Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211 (N.A., J.T.T.); Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (R.D., N.K.); and Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, New York 14853 (A.E.C., M.A.P., L.V.K.)
| | - Miguel A Piñeros
- The Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211 (N.A., J.T.T.); Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (R.D., N.K.); and Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, New York 14853 (A.E.C., M.A.P., L.V.K.)
| | - Leon V Kochian
- The Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211 (N.A., J.T.T.); Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (R.D., N.K.); and Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, New York 14853 (A.E.C., M.A.P., L.V.K.)
| | - Jay J Thelen
- The Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211 (N.A., J.T.T.); Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (R.D., N.K.); and Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, New York 14853 (A.E.C., M.A.P., L.V.K.)
| | - Sorina C Popescu
- The Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (E.K.B., S.C.P.); Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211 (N.A., J.T.T.); Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (R.D., N.K.); and Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Cornell University, Ithaca, New York 14853 (A.E.C., M.A.P., L.V.K.)
| |
Collapse
|
32
|
Applications in high-content functional protein microarrays. Curr Opin Chem Biol 2016; 30:21-27. [DOI: 10.1016/j.cbpa.2015.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/11/2015] [Indexed: 12/19/2022]
|
33
|
Abstract
Protein kinases regulate signaling pathways by phosphorylating their targets. They play critical roles in plant signaling networks. Although many important protein kinases have been identified in plants, their substrates are largely unknown. We have developed and produced plant protein microarrays with more than 15,000 purified plant proteins. Here, we describe a detailed protocol to use these microarrays to identify plant protein kinase substrates via in vitro phosphorylation assays on these arrays.
Collapse
|
34
|
Big Data in Plant Science: Resources and Data Mining Tools for Plant Genomics and Proteomics. Methods Mol Biol 2016; 1415:533-47. [PMID: 27115651 DOI: 10.1007/978-1-4939-3572-7_27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In modern plant biology, progress is increasingly defined by the scientists' ability to gather and analyze data sets of high volume and complexity, otherwise known as "big data". Arguably, the largest increase in the volume of plant data sets over the last decade is a consequence of the application of the next-generation sequencing and mass-spectrometry technologies to the study of experimental model and crop plants. The increase in quantity and complexity of biological data brings challenges, mostly associated with data acquisition, processing, and sharing within the scientific community. Nonetheless, big data in plant science create unique opportunities in advancing our understanding of complex biological processes at a level of accuracy without precedence, and establish a base for the plant systems biology. In this chapter, we summarize the major drivers of big data in plant science and big data initiatives in life sciences with a focus on the scope and impact of iPlant, a representative cyberinfrastructure platform for plant science.
Collapse
|
35
|
Kriechbaumer V, Botchway SW, Slade SE, Knox K, Frigerio L, Oparka K, Hawes C. Reticulomics: Protein-Protein Interaction Studies with Two Plasmodesmata-Localized Reticulon Family Proteins Identify Binding Partners Enriched at Plasmodesmata, Endoplasmic Reticulum, and the Plasma Membrane. PLANT PHYSIOLOGY 2015; 169:1933-45. [PMID: 26353761 PMCID: PMC4634090 DOI: 10.1104/pp.15.01153] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/08/2015] [Indexed: 05/19/2023]
Abstract
The endoplasmic reticulum (ER) is a ubiquitous organelle that plays roles in secretory protein production, folding, quality control, and lipid biosynthesis. The cortical ER in plants is pleomorphic and structured as a tubular network capable of morphing into flat cisternae, mainly at three-way junctions, and back to tubules. Plant reticulon family proteins (RTNLB) tubulate the ER by dimerization and oligomerization, creating localized ER membrane tensions that result in membrane curvature. Some RTNLB ER-shaping proteins are present in the plasmodesmata (PD) proteome and may contribute to the formation of the desmotubule, the axial ER-derived structure that traverses primary PD. Here, we investigate the binding partners of two PD-resident reticulon proteins, RTNLB3 and RTNLB6, that are located in primary PD at cytokinesis in tobacco (Nicotiana tabacum). Coimmunoprecipitation of green fluorescent protein-tagged RTNLB3 and RTNLB6 followed by mass spectrometry detected a high percentage of known PD-localized proteins as well as plasma membrane proteins with putative membrane-anchoring roles. Förster resonance energy transfer by fluorescence lifetime imaging microscopy assays revealed a highly significant interaction of the detected PD proteins with the bait RTNLB proteins. Our data suggest that RTNLB proteins, in addition to a role in ER modeling, may play important roles in linking the cortical ER to the plasma membrane.
Collapse
Affiliation(s)
- Verena Kriechbaumer
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (V.K., C.H.);Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom (S.W.B.);Warwickshire Private Hospital (WPH) Proteomics Facility Research Technology Platform (S.E.S.) and School of Life Sciences (S.E.S., L.F.), University of Warwick, Coventry CV4 7AL, United Kingdom; andInstitute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (K.K., K.O.)
| | - Stanley W Botchway
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (V.K., C.H.);Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom (S.W.B.);Warwickshire Private Hospital (WPH) Proteomics Facility Research Technology Platform (S.E.S.) and School of Life Sciences (S.E.S., L.F.), University of Warwick, Coventry CV4 7AL, United Kingdom; andInstitute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (K.K., K.O.)
| | - Susan E Slade
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (V.K., C.H.);Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom (S.W.B.);Warwickshire Private Hospital (WPH) Proteomics Facility Research Technology Platform (S.E.S.) and School of Life Sciences (S.E.S., L.F.), University of Warwick, Coventry CV4 7AL, United Kingdom; andInstitute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (K.K., K.O.)
| | - Kirsten Knox
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (V.K., C.H.);Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom (S.W.B.);Warwickshire Private Hospital (WPH) Proteomics Facility Research Technology Platform (S.E.S.) and School of Life Sciences (S.E.S., L.F.), University of Warwick, Coventry CV4 7AL, United Kingdom; andInstitute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (K.K., K.O.)
| | - Lorenzo Frigerio
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (V.K., C.H.);Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom (S.W.B.);Warwickshire Private Hospital (WPH) Proteomics Facility Research Technology Platform (S.E.S.) and School of Life Sciences (S.E.S., L.F.), University of Warwick, Coventry CV4 7AL, United Kingdom; andInstitute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (K.K., K.O.)
| | - Karl Oparka
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (V.K., C.H.);Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom (S.W.B.);Warwickshire Private Hospital (WPH) Proteomics Facility Research Technology Platform (S.E.S.) and School of Life Sciences (S.E.S., L.F.), University of Warwick, Coventry CV4 7AL, United Kingdom; andInstitute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (K.K., K.O.)
| | - Chris Hawes
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (V.K., C.H.);Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom (S.W.B.);Warwickshire Private Hospital (WPH) Proteomics Facility Research Technology Platform (S.E.S.) and School of Life Sciences (S.E.S., L.F.), University of Warwick, Coventry CV4 7AL, United Kingdom; andInstitute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (K.K., K.O.)
| |
Collapse
|
36
|
Knox K, Wang P, Kriechbaumer V, Tilsner J, Frigerio L, Sparkes I, Hawes C, Oparka K. Putting the Squeeze on Plasmodesmata: A Role for Reticulons in Primary Plasmodesmata Formation. PLANT PHYSIOLOGY 2015; 168:1563-72. [PMID: 26084919 PMCID: PMC4528765 DOI: 10.1104/pp.15.00668] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/15/2015] [Indexed: 05/19/2023]
Abstract
Primary plasmodesmata (PD) arise at cytokinesis when the new cell plate forms. During this process, fine strands of endoplasmic reticulum (ER) are laid down between enlarging Golgi-derived vesicles to form nascent PD, each pore containing a desmotubule, a membranous rod derived from the cortical ER. Little is known about the forces that model the ER during cell plate formation. Here, we show that members of the reticulon (RTNLB) family of ER-tubulating proteins in Arabidopsis (Arabidopsis thaliana) may play a role in the formation of the desmotubule. RTNLB3 and RTNLB6, two RTNLBs present in the PD proteome, are recruited to the cell plate at late telophase, when primary PD are formed, and remain associated with primary PD in the mature cell wall. Both RTNLBs showed significant colocalization at PD with the viral movement protein of Tobacco mosaic virus, while superresolution imaging (three-dimensional structured illumination microscopy) of primary PD revealed the central desmotubule to be labeled by RTNLB6. Fluorescence recovery after photobleaching studies showed that these RTNLBs are mobile at the edge of the developing cell plate, where new wall materials are being delivered, but significantly less mobile at its center, where PD are forming. A truncated RTNLB3, unable to constrict the ER, was not recruited to the cell plate at cytokinesis. We discuss the potential roles of RTNLBs in desmotubule formation.
Collapse
Affiliation(s)
- Kirsten Knox
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom (K.K., K.O.);Plant Cell Biology, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (P.W., V.K., C.H.);Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, United Kingdom (J.T.);Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (L.F.); andBiosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom (I.S.)
| | - Pengwei Wang
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom (K.K., K.O.);Plant Cell Biology, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (P.W., V.K., C.H.);Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, United Kingdom (J.T.);Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (L.F.); andBiosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom (I.S.)
| | - Verena Kriechbaumer
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom (K.K., K.O.);Plant Cell Biology, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (P.W., V.K., C.H.);Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, United Kingdom (J.T.);Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (L.F.); andBiosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom (I.S.)
| | - Jens Tilsner
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom (K.K., K.O.);Plant Cell Biology, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (P.W., V.K., C.H.);Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, United Kingdom (J.T.);Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (L.F.); andBiosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom (I.S.)
| | - Lorenzo Frigerio
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom (K.K., K.O.);Plant Cell Biology, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (P.W., V.K., C.H.);Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, United Kingdom (J.T.);Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (L.F.); andBiosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom (I.S.)
| | - Imogen Sparkes
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom (K.K., K.O.);Plant Cell Biology, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (P.W., V.K., C.H.);Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, United Kingdom (J.T.);Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (L.F.); andBiosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom (I.S.)
| | - Chris Hawes
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom (K.K., K.O.);Plant Cell Biology, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (P.W., V.K., C.H.);Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, United Kingdom (J.T.);Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (L.F.); andBiosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom (I.S.)
| | - Karl Oparka
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom (K.K., K.O.);Plant Cell Biology, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (P.W., V.K., C.H.);Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, United Kingdom (J.T.);Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (L.F.); andBiosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom (I.S.)
| |
Collapse
|
37
|
Kimura T, Endo S, Inui M, Saitoh SI, Miyake K, Takai T. Endoplasmic Protein Nogo-B (RTN4-B) Interacts with GRAMD4 and Regulates TLR9-Mediated Innate Immune Responses. THE JOURNAL OF IMMUNOLOGY 2015; 194:5426-36. [PMID: 25917084 DOI: 10.4049/jimmunol.1402006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 03/05/2015] [Indexed: 12/18/2022]
Abstract
TLRs are distributed in their characteristic cellular or subcellular compartments to efficiently recognize specific ligands and to initiate intracellular signaling. Whereas TLRs recognizing pathogen-associated lipids or proteins are localized to the cell surface, nucleic acid-sensing TLRs are expressed in endosomes and lysosomes. Several endoplasmic reticulum (ER)-resident proteins are known to regulate the trafficking of TLRs to the specific cellular compartments, thus playing important roles in the initiation of innate immune responses. In this study, we show that an ER-resident protein, Nogo-B (or RTN4-B), is necessary for immune responses triggered by nucleic acid-sensing TLRs, and that a newly identified Nogo-B-binding protein (glucosyltransferases, Rab-like GTPase activators and myotubularins [GRAM] domain containing 4 [GRAMD4]) negatively regulates the responses. Production of inflammatory cytokines in vitro by macrophages stimulated with CpG-B oligonucleotides or polyinosinic:polycytidylic acid was attenuated in the absence of Nogo-B, which was also confirmed in serum samples from Nogo-deficient mice injected with polyinosinic:polycytidylic acid. Although a deficiency of Nogo-B did not change the incorporation or delivery of CpG to endosomes, the localization of TLR9 to endolysosomes was found to be impaired. We identified GRAMD4 as a downmodulator for TLR9 response with a Nogo-B binding ability in ER, because our knockdown and overexpression experiments indicated that GRAMD4 suppresses the TLR9 response and knockdown of Gramd4 strongly enhanced the response in the absence of Nogo-B. Our findings indicate a critical role of Nogo-B and GRAMD4 in trafficking of TLR9.
Collapse
Affiliation(s)
- Toshifumi Kimura
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; and
| | - Shota Endo
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; and
| | - Masanori Inui
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; and
| | - Shin-Ichiroh Saitoh
- Division of Innate Immunity, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; and
| |
Collapse
|
38
|
Hwang EE, Wang MB, Bravo JE, Banta LM. Unmasking host and microbial strategies in the Agrobacterium-plant defense tango. FRONTIERS IN PLANT SCIENCE 2015; 6:200. [PMID: 25873923 PMCID: PMC4379751 DOI: 10.3389/fpls.2015.00200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/12/2015] [Indexed: 05/27/2023]
Abstract
Coevolutionary forces drive adaptation of both plant-associated microbes and their hosts. Eloquently captured in the Red Queen Hypothesis, the complexity of each plant-pathogen relationship reflects escalating adversarial strategies, but also external biotic and abiotic pressures on both partners. Innate immune responses are triggered by highly conserved pathogen-associated molecular patterns, or PAMPs, that are harbingers of microbial presence. Upon cell surface receptor-mediated recognition of these pathogen-derived molecules, host plants mount a variety of physiological responses to limit pathogen survival and/or invasion. Successful pathogens often rely on secretion systems to translocate host-modulating effectors that subvert plant defenses, thereby increasing virulence. Host plants, in turn, have evolved to recognize these effectors, activating what has typically been characterized as a pathogen-specific form of immunity. Recent data support the notion that PAMP-triggered and effector-triggered defenses are complementary facets of a convergent, albeit differentially regulated, set of immune responses. This review highlights the key players in the plant's recognition and signal transduction pathways, with a focus on the aspects that may limit Agrobacterium tumefaciens infection and the ways it might overcome those defenses. Recent advances in the field include a growing appreciation for the contributions of cytoskeletal dynamics and membrane trafficking to the regulation of these exquisitely tuned defenses. Pathogen counter-defenses frequently manipulate the interwoven hormonal pathways that mediate host responses. Emerging systems-level analyses include host physiological factors such as circadian cycling. The existing literature indicates that varying or even conflicting results from different labs may well be attributable to environmental factors including time of day of infection, temperature, and/or developmental stage of the host plant.
Collapse
Affiliation(s)
| | | | | | - Lois M. Banta
- *Correspondence: Lois M. Banta, Thompson Biology Lab, Department of Biology, Williams College, 59 Lab Campus Drive, Williamstown, MA 01267, USA
| |
Collapse
|
39
|
Wu G, Liu S, Zhao Y, Wang W, Kong Z, Tang D. ENHANCED DISEASE RESISTANCE4 associates with CLATHRIN HEAVY CHAIN2 and modulates plant immunity by regulating relocation of EDR1 in Arabidopsis. THE PLANT CELL 2015; 27:857-73. [PMID: 25747881 PMCID: PMC4558660 DOI: 10.1105/tpc.114.134668] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/22/2015] [Indexed: 05/05/2023]
Abstract
Obligate biotrophs, such as the powdery mildew pathogens, deliver effectors to the host cell and obtain nutrients from the infection site. The interface between the plant host and the biotrophic pathogen thus represents a major battleground for plant-pathogen interactions. Increasing evidence shows that cellular trafficking plays an important role in plant immunity. Here, we report that Arabidopsis thaliana ENHANCED DISEASE RESISTANCE4 (EDR4) plays a negative role in resistance to powdery mildew and that the enhanced disease resistance in edr4 mutants requires salicylic acid signaling. EDR4 mainly localizes to the plasma membrane and endosomal compartments. Genetic analyses show that EDR4 and EDR1 function in the same genetic pathway. EDR1 and EDR4 accumulate at the penetration site of powdery mildew infection, and EDR4 physically interacts with EDR1, recruiting EDR1 to the fungal penetration site. In addition, EDR4 interacts with CLATHRIN HEAVY CHAIN2 (CHC2), and edr4 mutants show reduced endocytosis rates. Taken together, our data indicate that EDR4 associates with CHC2 and modulates plant immunity by regulating the relocation of EDR1 in Arabidopsis.
Collapse
Affiliation(s)
- Guangheng Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Simu Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaofei Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dingzhong Tang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
40
|
Ben Khaled S, Postma J, Robatzek S. A moving view: subcellular trafficking processes in pattern recognition receptor-triggered plant immunity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:379-402. [PMID: 26243727 DOI: 10.1146/annurev-phyto-080614-120347] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A significant challenge for plants is to induce localized defense responses at sites of pathogen attack. Therefore, host subcellular trafficking processes enable accumulation and exchange of defense compounds, which contributes to the plant on-site defenses in response to pathogen perception. This review summarizes our current understanding of the transport processes that facilitate immunity, the significance of which is highlighted by pathogens reprogramming membrane trafficking through host cell translocated effectors. Prominent immune-related cargos of plant trafficking pathways are the pattern recognition receptors (PRRs), which must be present at the plasma membrane to sense microbes in the apoplast. We focus on the dynamic localization of the FLS2 receptor and discuss the pathways that regulate receptor transport within the cell and their link to FLS2-mediated immunity. One emerging theme is that ligand-induced late endocytic trafficking is conserved across different PRR protein families as well as across different plant species.
Collapse
Affiliation(s)
- Sara Ben Khaled
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| | | | | |
Collapse
|
41
|
Yamamoto M, Tantikanjana T, Nishio T, Nasrallah ME, Nasrallah JB. Site-specific N-glycosylation of the S-locus receptor kinase and its role in the self-incompatibility response of the brassicaceae. THE PLANT CELL 2014; 26:4749-62. [PMID: 25480368 PMCID: PMC4311203 DOI: 10.1105/tpc.114.131987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The S-locus receptor kinase SRK is a highly polymorphic transmembrane kinase of the stigma epidermis. Through allele-specific interaction with its pollen coat-localized ligand, the S-locus cysteine-rich protein SCR, SRK is responsible for recognition and inhibition of self pollen in the self-incompatibility response of the Brassicaceae. The SRK extracellular ligand binding domain contains several potential N-glycosylation sites that exhibit varying degrees of conservation among SRK variants. However, the glycosylation status and functional importance of these sites are currently unclear. We investigated this issue in transgenic Arabidopsis thaliana stigmas that express the Arabidopsis lyrata SRKb variant and exhibit an incompatible response toward SCRb-expressing pollen. Analysis of single- and multiple-glycosylation site mutations of SRKb demonstrated that, although five of six potential N-glycosylation sites in SRKb are glycosylated in stigmas, N-glycosylation is not important for SCRb-dependent activation of SRKb. Rather, N-glycosylation functions primarily to ensure the proper and efficient subcellular trafficking of SRK to the plasma membrane. The study provides insight into the function of a receptor that regulates a critical phase of the plant life cycle and represents a valuable addition to the limited information available on the contribution of N-glycosylation to the subcellular trafficking and function of plant receptor kinases.
Collapse
Affiliation(s)
- Masaya Yamamoto
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York 14850
| | - Titima Tantikanjana
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York 14850
| | - Takeshi Nishio
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 981-855, Japan
| | - Mikhail E Nasrallah
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York 14850
| | - June B Nasrallah
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York 14850
| |
Collapse
|
42
|
Li B, Lu D, Shan L. Ubiquitination of pattern recognition receptors in plant innate immunity. MOLECULAR PLANT PATHOLOGY 2014; 15:737-746. [PMID: 25275148 PMCID: PMC4183980 DOI: 10.1111/mpp.12128] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Lacking an adaptive immune system, plants largely rely on plasma membrane-resident pattern recognition receptors (PRRs) to sense pathogen invasion. The activation of PRRs leads to the profound immune responses that coordinately contribute to the restriction of pathogen multiplication. Protein post-translational modifications dynamically shape the intensity and duration of the signalling pathways. In this review, we discuss the specific regulation of PRR activation and signalling by protein ubiquitination, endocytosis and degradation, with a particular focus on the bacterial flagellin receptor FLS2 (flagellin sensing 2) in Arabidopsis.
Collapse
Affiliation(s)
- Bo Li
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dongping Lu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Libo Shan
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
43
|
Zhang Z, Shrestha J, Tateda C, Greenberg JT. Salicylic acid signaling controls the maturation and localization of the arabidopsis defense protein ACCELERATED CELL DEATH6. MOLECULAR PLANT 2014; 7:1365-1383. [PMID: 24923602 PMCID: PMC4168298 DOI: 10.1093/mp/ssu072] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
ACCELERATED CELL DEATH6 (ACD6) is a multipass membrane protein with an ankyrin domain that acts in a positive feedback loop with the defense signal salicylic acid (SA). This study implemented biochemical approaches to infer changes in ACD6 complexes and localization. In addition to forming endoplasmic reticulum (ER)- and plasma membrane (PM)-localized complexes, ACD6 forms soluble complexes, where it is bound to cytosolic HSP70, ubiquitinated, and degraded via the proteasome. Thus, ACD6 constitutively undergoes ER-associated degradation. During SA signaling, the soluble ACD6 pool decreases, whereas the PM pool increases. Similarly, ACD6-1, an activated version of ACD6 that induces SA, is present at low levels in the soluble fraction and high levels in the PM. However, ACD6 variants with amino acid substitutions in the ankyrin domain form aberrant, inactive complexes, are induced by a SA agonist, but show no PM localization. SA signaling also increases the PM pools of FLAGELLIN SENSING2 (FLS2) and BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1). FLS2 forms complexes ACD6; both FLS2 and BAK1 require ACD6 for maximal accumulation at the PM in response to SA signaling. A plausible scenario is that SA increases the efficiency of productive folding and/or complex formation in the ER, such that ACD6, together with FLS2 and BAK1, reaches the cell surface to more effectively promote immune responses.
Collapse
Affiliation(s)
- Zhongqin Zhang
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA
| | - Jay Shrestha
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA
| | - Chika Tateda
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA
| | - Jean T Greenberg
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA.
| |
Collapse
|
44
|
Brauer EK, Popescu SC, Popescu GV. Experimental and analytical approaches to characterize plant kinases using protein microarrays. Methods Mol Biol 2014; 1171:217-235. [PMID: 24908131 DOI: 10.1007/978-1-4939-0922-3_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Comprehensive analysis of protein kinases and cellular signaling pathways requires the identification of kinase substrates and interaction partners using large-scale amenable approaches. Here, we describe our methods for producing plant protein microarrays (PMAs) and discuss various parameters critical to the quality of PMAs. Next, we describe methods for detecting protein-protein interactions and kinase activity including auto-phosphorylation and substrate phosphorylation. We have provided a short video demonstrating how to conduct an interaction assay and how to properly handle a protein microarray. Finally, a set of analytical methods are presented as a bioinformatics pipeline for the acquisition of PMA data and for selecting PMA candidates using statistical testing. The experimental and analytical protocols described here outline the steps to produce and utilize PMAs to analyze signaling networks.
Collapse
Affiliation(s)
- Elizabeth K Brauer
- The Boyce Thompson Institute for Plant Research, 533 Tower Road, Office 121, Ithaca, NY, 14850, USA
| | | | | |
Collapse
|
45
|
Tintor N, Saijo Y. ER-mediated control for abundance, quality, and signaling of transmembrane immune receptors in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:65. [PMID: 24616730 PMCID: PMC3933923 DOI: 10.3389/fpls.2014.00065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 02/07/2014] [Indexed: 05/03/2023]
Abstract
Plants recognize a wide range of microbes with cell-surface and intracellular immune receptors. Transmembrane pattern recognition receptors (PRRs) initiate immune responses upon recognition of cognate ligands characteristic of microbes or aberrant cellular states, designated microbe-associated molecular patterns or danger-associated molecular patterns (DAMPs), respectively.Pattern-triggered immunity provides a first line of defense that restricts the invasion and propagation of both adapted and non-adapted pathogens. Receptor kinases (RKs) and receptor-like proteins (RLPs) with an extracellular leucine-rich repeat or lysine-motif (LysM) domain are extensively used as PRRs. The correct folding of the extracellular domain of these receptors is under quality control (QC) in the endoplasmic reticulum (ER), which thus provides a critical step in plant immunity. Genetic and structural insight suggests that ERQC regulates not only the abundance and quality of transmembrane receptors but also affects signal sorting between multi-branched pathways downstream of the receptor. However, ERQC dysfunction can also positively stimulate plant immunity, possibly through cell death and DAMP signaling pathways.
Collapse
Affiliation(s)
- Nico Tintor
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Yusuke Saijo
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
- Laboratory of Plant Immunity, Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan
- Japan Science and Technology, Precursory Research for Embryonic Science and TechnologyKawaguchi, Japan
- *Correspondence: Yusuke Saijo, Laboratory of Plant Immunity, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 630-0192 Ikoma, Japan e-mail:
| |
Collapse
|
46
|
Smith JM, Salamango DJ, Leslie ME, Collins CA, Heese A. Sensitivity to Flg22 is modulated by ligand-induced degradation and de novo synthesis of the endogenous flagellin-receptor FLAGELLIN-SENSING2. PLANT PHYSIOLOGY 2014; 164:440-54. [PMID: 24220680 PMCID: PMC3875820 DOI: 10.1104/pp.113.229179] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/09/2013] [Indexed: 05/18/2023]
Abstract
FLAGELLIN-SENSING2 (FLS2) is the plant cell surface receptor that perceives bacterial flagellin or flg22 peptide, initiates flg22-signaling responses, and contributes to bacterial growth restriction. Flg22 elicitation also leads to ligand-induced endocytosis and degradation of FLS2 within 1 h. Why plant cells remove this receptor precisely at the time during which its function is required remains mainly unknown. Here, we assessed in planta flg22-signaling competency in the context of ligand-induced degradation of endogenous FLS2 and chemical interference known to impede flg22-dependent internalization of FLS2 into endocytic vesicles. Within 1 h after an initial flg22 treatment, Arabidopsis (Arabidopsis thaliana) leaf tissue was unable to reelicit flg22 signaling in a ligand-, time-, and dose-dependent manner. These results indicate that flg22-induced degradation of endogenous FLS2 may serve to desensitize cells to the same stimulus (homologous desensitization), likely to prevent continuous signal output upon repetitive flg22 stimulation. In addition to impeding ligand-induced FLS2 degradation, pretreatment with the vesicular trafficking inhibitors Wortmannin or Tyrphostin A23 impaired flg22-elicited reactive oxygen species production that was partially independent of BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1. Interestingly, these inhibitors did not affect flg22-induced mitogen-activated protein kinase phosphorylation, indicating the ability to utilize vesicular trafficking inhibitors to target different flg22-signaling responses. For Tyrphostin A23, reduced flg22-induced reactive oxygen species could be separated from the defect in FLS2 degradation. At later times (>2 h) after the initial flg22 elicitation, recovery of FLS2 protein levels positively correlated with resensitization to flg22, indicating that flg22-induced new synthesis of FLS2 may prepare cells for a new round of monitoring the environment for flg22.
Collapse
|
47
|
Bouhidel K. Plasma membrane protein trafficking in plant-microbe interactions: a plant cell point of view. FRONTIERS IN PLANT SCIENCE 2014; 5:735. [PMID: 25566303 PMCID: PMC4273610 DOI: 10.3389/fpls.2014.00735] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/03/2014] [Indexed: 05/21/2023]
Abstract
In order to ensure their physiological and cellular functions, plasma membrane (PM) proteins must be properly conveyed from their site of synthesis, i.e., the endoplasmic reticulum, to their final destination, the PM, through the secretory pathway. PM protein homeostasis also relies on recycling and/or degradation, two processes that are initiated by endocytosis. Vesicular membrane trafficking events to and from the PM have been shown to be altered when plant cells are exposed to mutualistic or pathogenic microbes. In this review, we will describe the fine-tune regulation of such alterations, and their consequence in PM protein activity. We will consider the formation of intracellular perimicrobial compartments, the PM protein trafficking machinery of the host, and the delivery or retrieval of signaling and transport proteins such as pattern-recognition receptors, producers of reactive oxygen species, and sugar transporters.
Collapse
Affiliation(s)
- Karim Bouhidel
- UMR1347 Agroécologie AgroSup/INRA/uB, ERL CNRS 6300, Université de Bourgogne , Dijon, France
| |
Collapse
|
48
|
Nakano RT, Yamada K, Bednarek P, Nishimura M, Hara-Nishimura I. ER bodies in plants of the Brassicales order: biogenesis and association with innate immunity. FRONTIERS IN PLANT SCIENCE 2014; 5:73. [PMID: 24653729 PMCID: PMC3947992 DOI: 10.3389/fpls.2014.00073] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/12/2014] [Indexed: 05/20/2023]
Abstract
The endoplasmic reticulum (ER) forms highly organized network structures composed of tubules and cisternae. Many plant species develop additional ER-derived structures, most of which are specific for certain groups of species. In particular, a rod-shaped structure designated as the ER body is produced by plants of the Brassicales order, which includes Arabidopsis thaliana. Genetic analyses and characterization of A. thaliana mutants possessing a disorganized ER morphology or lacking ER bodies have provided insights into the highly organized mechanisms responsible for the formation of these unique ER structures. The accumulation of proteins specific for the ER body within the ER plays an important role in the formation of ER bodies. However, a mutant that exhibits morphological defects of both the ER and ER bodies has not been identified. This suggests that plants in the Brassicales order have evolved novel mechanisms for the development of this unique organelle, which are distinct from those used to maintain generic ER structures. In A. thaliana, ER bodies are ubiquitous in seedlings and roots, but rare in rosette leaves. Wounding of rosette leaves induces de novo formation of ER bodies, suggesting that these structures are associated with resistance against pathogens and/or herbivores. ER bodies accumulate a large amount of β-glucosidases, which can produce substances that potentially protect against invading pests. Biochemical studies have determined that the enzymatic activities of these β-glucosidases are enhanced during cell collapse. These results suggest that ER bodies are involved in plant immunity, although there is no direct evidence of this. In this review, we provide recent perspectives of ER and ER body formation in A. thaliana, and discuss clues for the functions of ER bodies. We highlight defense strategies against biotic stress that are unique for the Brassicales order, and discuss how ER structures could contribute to these strategies.
Collapse
Affiliation(s)
- Ryohei T. Nakano
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Kenji Yamada
- Department of Cell Biology, National Institute for Basic BiologyOkazaki, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (Sokendai)Okazaki, Japan
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznañ, Poland
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic BiologyOkazaki, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (Sokendai)Okazaki, Japan
| | - Ikuko Hara-Nishimura
- Department of Botany, Graduate School of Science, Kyoto UniversityKyoto, Japan
- *Correspondence: Ikuko Hara-Nishimura, Laboratory of Plant Molecular and Cell Biology, Department of Botany, Graduate School of Science, Kyoto University, Kita-Shirakawa Oiwake-cho, Sakyo-ku, 606-8502 Kyoto, Japan e-mail:
| |
Collapse
|
49
|
Endocytosis: At the Crossroads of Pattern Recognition Immune Receptors and Pathogen Effectors. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-3-642-41787-0_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
50
|
Moreau M, Westlake T, Zampogna G, Popescu G, Tian M, Noutsos C, Popescu S. The Arabidopsis oligopeptidases TOP1 and TOP2 are salicylic acid targets that modulate SA-mediated signaling and the immune response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:603-14. [PMID: 24004003 DOI: 10.1111/tpj.12320] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/15/2013] [Accepted: 08/28/2013] [Indexed: 05/03/2023]
Abstract
Salicylic acid (SA) is a small phenolic molecule with hormonal properties, and is an essential component of the immune response. SA exerts its functions by interacting with protein targets; however, the specific cellular components modulated by SA and critical for immune signal transduction are largely unknown. To uncover cellular activities targeted by SA, we probed Arabidopsis protein microarrays with a functional analog of SA. We demonstrate that thimet oligopeptidases (TOPs) constitute a class of SA-binding enzymes. Biochemical evidence demonstrated that SA interacts with TOPs and inhibits their peptidase activities to various degrees both in vitro and in plant extracts. Functional characterization of mutants with altered TOP expression indicated that TOP1 and TOP2 mediate SA-dependent signaling and are necessary for the immune response to avirulent pathogens. Our results support a model whereby TOP1 and TOP2 act in separate pathways to modulate SA-mediated cellular processes.
Collapse
Affiliation(s)
- Magali Moreau
- The Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY, 14850, USA
| | | | | | | | | | | | | |
Collapse
|